48caa588fd531029222814ad58a9f8913a958f49
[sfrench/cifs-2.6.git] / arch / x86 / kernel / smpboot.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3  *      x86 SMP booting functions
4  *
5  *      (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6  *      (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7  *      Copyright 2001 Andi Kleen, SuSE Labs.
8  *
9  *      Much of the core SMP work is based on previous work by Thomas Radke, to
10  *      whom a great many thanks are extended.
11  *
12  *      Thanks to Intel for making available several different Pentium,
13  *      Pentium Pro and Pentium-II/Xeon MP machines.
14  *      Original development of Linux SMP code supported by Caldera.
15  *
16  *      Fixes
17  *              Felix Koop      :       NR_CPUS used properly
18  *              Jose Renau      :       Handle single CPU case.
19  *              Alan Cox        :       By repeated request 8) - Total BogoMIPS report.
20  *              Greg Wright     :       Fix for kernel stacks panic.
21  *              Erich Boleyn    :       MP v1.4 and additional changes.
22  *      Matthias Sattler        :       Changes for 2.1 kernel map.
23  *      Michel Lespinasse       :       Changes for 2.1 kernel map.
24  *      Michael Chastain        :       Change trampoline.S to gnu as.
25  *              Alan Cox        :       Dumb bug: 'B' step PPro's are fine
26  *              Ingo Molnar     :       Added APIC timers, based on code
27  *                                      from Jose Renau
28  *              Ingo Molnar     :       various cleanups and rewrites
29  *              Tigran Aivazian :       fixed "0.00 in /proc/uptime on SMP" bug.
30  *      Maciej W. Rozycki       :       Bits for genuine 82489DX APICs
31  *      Andi Kleen              :       Changed for SMP boot into long mode.
32  *              Martin J. Bligh :       Added support for multi-quad systems
33  *              Dave Jones      :       Report invalid combinations of Athlon CPUs.
34  *              Rusty Russell   :       Hacked into shape for new "hotplug" boot process.
35  *      Andi Kleen              :       Converted to new state machine.
36  *      Ashok Raj               :       CPU hotplug support
37  *      Glauber Costa           :       i386 and x86_64 integration
38  */
39
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/export.h>
45 #include <linux/sched.h>
46 #include <linux/sched/topology.h>
47 #include <linux/sched/hotplug.h>
48 #include <linux/sched/task_stack.h>
49 #include <linux/percpu.h>
50 #include <linux/memblock.h>
51 #include <linux/err.h>
52 #include <linux/nmi.h>
53 #include <linux/tboot.h>
54 #include <linux/stackprotector.h>
55 #include <linux/gfp.h>
56 #include <linux/cpuidle.h>
57 #include <linux/numa.h>
58
59 #include <asm/acpi.h>
60 #include <asm/desc.h>
61 #include <asm/nmi.h>
62 #include <asm/irq.h>
63 #include <asm/realmode.h>
64 #include <asm/cpu.h>
65 #include <asm/numa.h>
66 #include <linux/pgtable.h>
67 #include <asm/tlbflush.h>
68 #include <asm/mtrr.h>
69 #include <asm/mwait.h>
70 #include <asm/apic.h>
71 #include <asm/io_apic.h>
72 #include <asm/fpu/internal.h>
73 #include <asm/setup.h>
74 #include <asm/uv/uv.h>
75 #include <linux/mc146818rtc.h>
76 #include <asm/i8259.h>
77 #include <asm/misc.h>
78 #include <asm/qspinlock.h>
79 #include <asm/intel-family.h>
80 #include <asm/cpu_device_id.h>
81 #include <asm/spec-ctrl.h>
82 #include <asm/hw_irq.h>
83
84 /* representing HT siblings of each logical CPU */
85 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
86 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
87
88 /* representing HT and core siblings of each logical CPU */
89 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
90 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
91
92 /* representing HT, core, and die siblings of each logical CPU */
93 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
94 EXPORT_PER_CPU_SYMBOL(cpu_die_map);
95
96 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
97
98 /* Per CPU bogomips and other parameters */
99 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
100 EXPORT_PER_CPU_SYMBOL(cpu_info);
101
102 /* Logical package management. We might want to allocate that dynamically */
103 unsigned int __max_logical_packages __read_mostly;
104 EXPORT_SYMBOL(__max_logical_packages);
105 static unsigned int logical_packages __read_mostly;
106 static unsigned int logical_die __read_mostly;
107
108 /* Maximum number of SMT threads on any online core */
109 int __read_mostly __max_smt_threads = 1;
110
111 /* Flag to indicate if a complete sched domain rebuild is required */
112 bool x86_topology_update;
113
114 int arch_update_cpu_topology(void)
115 {
116         int retval = x86_topology_update;
117
118         x86_topology_update = false;
119         return retval;
120 }
121
122 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
123 {
124         unsigned long flags;
125
126         spin_lock_irqsave(&rtc_lock, flags);
127         CMOS_WRITE(0xa, 0xf);
128         spin_unlock_irqrestore(&rtc_lock, flags);
129         *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
130                                                         start_eip >> 4;
131         *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
132                                                         start_eip & 0xf;
133 }
134
135 static inline void smpboot_restore_warm_reset_vector(void)
136 {
137         unsigned long flags;
138
139         /*
140          * Paranoid:  Set warm reset code and vector here back
141          * to default values.
142          */
143         spin_lock_irqsave(&rtc_lock, flags);
144         CMOS_WRITE(0, 0xf);
145         spin_unlock_irqrestore(&rtc_lock, flags);
146
147         *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
148 }
149
150 static void init_freq_invariance(bool secondary);
151
152 /*
153  * Report back to the Boot Processor during boot time or to the caller processor
154  * during CPU online.
155  */
156 static void smp_callin(void)
157 {
158         int cpuid;
159
160         /*
161          * If waken up by an INIT in an 82489DX configuration
162          * cpu_callout_mask guarantees we don't get here before
163          * an INIT_deassert IPI reaches our local APIC, so it is
164          * now safe to touch our local APIC.
165          */
166         cpuid = smp_processor_id();
167
168         /*
169          * the boot CPU has finished the init stage and is spinning
170          * on callin_map until we finish. We are free to set up this
171          * CPU, first the APIC. (this is probably redundant on most
172          * boards)
173          */
174         apic_ap_setup();
175
176         /*
177          * Save our processor parameters. Note: this information
178          * is needed for clock calibration.
179          */
180         smp_store_cpu_info(cpuid);
181
182         /*
183          * The topology information must be up to date before
184          * calibrate_delay() and notify_cpu_starting().
185          */
186         set_cpu_sibling_map(raw_smp_processor_id());
187
188         init_freq_invariance(true);
189
190         /*
191          * Get our bogomips.
192          * Update loops_per_jiffy in cpu_data. Previous call to
193          * smp_store_cpu_info() stored a value that is close but not as
194          * accurate as the value just calculated.
195          */
196         calibrate_delay();
197         cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
198         pr_debug("Stack at about %p\n", &cpuid);
199
200         wmb();
201
202         notify_cpu_starting(cpuid);
203
204         /*
205          * Allow the master to continue.
206          */
207         cpumask_set_cpu(cpuid, cpu_callin_mask);
208 }
209
210 static int cpu0_logical_apicid;
211 static int enable_start_cpu0;
212 /*
213  * Activate a secondary processor.
214  */
215 static void notrace start_secondary(void *unused)
216 {
217         /*
218          * Don't put *anything* except direct CPU state initialization
219          * before cpu_init(), SMP booting is too fragile that we want to
220          * limit the things done here to the most necessary things.
221          */
222         cr4_init();
223
224 #ifdef CONFIG_X86_32
225         /* switch away from the initial page table */
226         load_cr3(swapper_pg_dir);
227         __flush_tlb_all();
228 #endif
229         load_current_idt();
230         cpu_init();
231         x86_cpuinit.early_percpu_clock_init();
232         preempt_disable();
233         smp_callin();
234
235         enable_start_cpu0 = 0;
236
237         /* otherwise gcc will move up smp_processor_id before the cpu_init */
238         barrier();
239         /*
240          * Check TSC synchronization with the boot CPU:
241          */
242         check_tsc_sync_target();
243
244         speculative_store_bypass_ht_init();
245
246         /*
247          * Lock vector_lock, set CPU online and bring the vector
248          * allocator online. Online must be set with vector_lock held
249          * to prevent a concurrent irq setup/teardown from seeing a
250          * half valid vector space.
251          */
252         lock_vector_lock();
253         set_cpu_online(smp_processor_id(), true);
254         lapic_online();
255         unlock_vector_lock();
256         cpu_set_state_online(smp_processor_id());
257         x86_platform.nmi_init();
258
259         /* enable local interrupts */
260         local_irq_enable();
261
262         /* to prevent fake stack check failure in clock setup */
263         boot_init_stack_canary();
264
265         x86_cpuinit.setup_percpu_clockev();
266
267         wmb();
268         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
269
270         /*
271          * Prevent tail call to cpu_startup_entry() because the stack protector
272          * guard has been changed a couple of function calls up, in
273          * boot_init_stack_canary() and must not be checked before tail calling
274          * another function.
275          */
276         prevent_tail_call_optimization();
277 }
278
279 /**
280  * topology_is_primary_thread - Check whether CPU is the primary SMT thread
281  * @cpu:        CPU to check
282  */
283 bool topology_is_primary_thread(unsigned int cpu)
284 {
285         return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu));
286 }
287
288 /**
289  * topology_smt_supported - Check whether SMT is supported by the CPUs
290  */
291 bool topology_smt_supported(void)
292 {
293         return smp_num_siblings > 1;
294 }
295
296 /**
297  * topology_phys_to_logical_pkg - Map a physical package id to a logical
298  *
299  * Returns logical package id or -1 if not found
300  */
301 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
302 {
303         int cpu;
304
305         for_each_possible_cpu(cpu) {
306                 struct cpuinfo_x86 *c = &cpu_data(cpu);
307
308                 if (c->initialized && c->phys_proc_id == phys_pkg)
309                         return c->logical_proc_id;
310         }
311         return -1;
312 }
313 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
314 /**
315  * topology_phys_to_logical_die - Map a physical die id to logical
316  *
317  * Returns logical die id or -1 if not found
318  */
319 int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
320 {
321         int cpu;
322         int proc_id = cpu_data(cur_cpu).phys_proc_id;
323
324         for_each_possible_cpu(cpu) {
325                 struct cpuinfo_x86 *c = &cpu_data(cpu);
326
327                 if (c->initialized && c->cpu_die_id == die_id &&
328                     c->phys_proc_id == proc_id)
329                         return c->logical_die_id;
330         }
331         return -1;
332 }
333 EXPORT_SYMBOL(topology_phys_to_logical_die);
334
335 /**
336  * topology_update_package_map - Update the physical to logical package map
337  * @pkg:        The physical package id as retrieved via CPUID
338  * @cpu:        The cpu for which this is updated
339  */
340 int topology_update_package_map(unsigned int pkg, unsigned int cpu)
341 {
342         int new;
343
344         /* Already available somewhere? */
345         new = topology_phys_to_logical_pkg(pkg);
346         if (new >= 0)
347                 goto found;
348
349         new = logical_packages++;
350         if (new != pkg) {
351                 pr_info("CPU %u Converting physical %u to logical package %u\n",
352                         cpu, pkg, new);
353         }
354 found:
355         cpu_data(cpu).logical_proc_id = new;
356         return 0;
357 }
358 /**
359  * topology_update_die_map - Update the physical to logical die map
360  * @die:        The die id as retrieved via CPUID
361  * @cpu:        The cpu for which this is updated
362  */
363 int topology_update_die_map(unsigned int die, unsigned int cpu)
364 {
365         int new;
366
367         /* Already available somewhere? */
368         new = topology_phys_to_logical_die(die, cpu);
369         if (new >= 0)
370                 goto found;
371
372         new = logical_die++;
373         if (new != die) {
374                 pr_info("CPU %u Converting physical %u to logical die %u\n",
375                         cpu, die, new);
376         }
377 found:
378         cpu_data(cpu).logical_die_id = new;
379         return 0;
380 }
381
382 void __init smp_store_boot_cpu_info(void)
383 {
384         int id = 0; /* CPU 0 */
385         struct cpuinfo_x86 *c = &cpu_data(id);
386
387         *c = boot_cpu_data;
388         c->cpu_index = id;
389         topology_update_package_map(c->phys_proc_id, id);
390         topology_update_die_map(c->cpu_die_id, id);
391         c->initialized = true;
392 }
393
394 /*
395  * The bootstrap kernel entry code has set these up. Save them for
396  * a given CPU
397  */
398 void smp_store_cpu_info(int id)
399 {
400         struct cpuinfo_x86 *c = &cpu_data(id);
401
402         /* Copy boot_cpu_data only on the first bringup */
403         if (!c->initialized)
404                 *c = boot_cpu_data;
405         c->cpu_index = id;
406         /*
407          * During boot time, CPU0 has this setup already. Save the info when
408          * bringing up AP or offlined CPU0.
409          */
410         identify_secondary_cpu(c);
411         c->initialized = true;
412 }
413
414 static bool
415 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
416 {
417         int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
418
419         return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
420 }
421
422 static bool
423 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
424 {
425         int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
426
427         return !WARN_ONCE(!topology_same_node(c, o),
428                 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
429                 "[node: %d != %d]. Ignoring dependency.\n",
430                 cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
431 }
432
433 #define link_mask(mfunc, c1, c2)                                        \
434 do {                                                                    \
435         cpumask_set_cpu((c1), mfunc(c2));                               \
436         cpumask_set_cpu((c2), mfunc(c1));                               \
437 } while (0)
438
439 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
440 {
441         if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
442                 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
443
444                 if (c->phys_proc_id == o->phys_proc_id &&
445                     c->cpu_die_id == o->cpu_die_id &&
446                     per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
447                         if (c->cpu_core_id == o->cpu_core_id)
448                                 return topology_sane(c, o, "smt");
449
450                         if ((c->cu_id != 0xff) &&
451                             (o->cu_id != 0xff) &&
452                             (c->cu_id == o->cu_id))
453                                 return topology_sane(c, o, "smt");
454                 }
455
456         } else if (c->phys_proc_id == o->phys_proc_id &&
457                    c->cpu_die_id == o->cpu_die_id &&
458                    c->cpu_core_id == o->cpu_core_id) {
459                 return topology_sane(c, o, "smt");
460         }
461
462         return false;
463 }
464
465 /*
466  * Define snc_cpu[] for SNC (Sub-NUMA Cluster) CPUs.
467  *
468  * These are Intel CPUs that enumerate an LLC that is shared by
469  * multiple NUMA nodes. The LLC on these systems is shared for
470  * off-package data access but private to the NUMA node (half
471  * of the package) for on-package access.
472  *
473  * CPUID (the source of the information about the LLC) can only
474  * enumerate the cache as being shared *or* unshared, but not
475  * this particular configuration. The CPU in this case enumerates
476  * the cache to be shared across the entire package (spanning both
477  * NUMA nodes).
478  */
479
480 static const struct x86_cpu_id snc_cpu[] = {
481         X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, NULL),
482         {}
483 };
484
485 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
486 {
487         int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
488
489         /* Do not match if we do not have a valid APICID for cpu: */
490         if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
491                 return false;
492
493         /* Do not match if LLC id does not match: */
494         if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
495                 return false;
496
497         /*
498          * Allow the SNC topology without warning. Return of false
499          * means 'c' does not share the LLC of 'o'. This will be
500          * reflected to userspace.
501          */
502         if (!topology_same_node(c, o) && x86_match_cpu(snc_cpu))
503                 return false;
504
505         return topology_sane(c, o, "llc");
506 }
507
508 /*
509  * Unlike the other levels, we do not enforce keeping a
510  * multicore group inside a NUMA node.  If this happens, we will
511  * discard the MC level of the topology later.
512  */
513 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
514 {
515         if (c->phys_proc_id == o->phys_proc_id)
516                 return true;
517         return false;
518 }
519
520 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
521 {
522         if ((c->phys_proc_id == o->phys_proc_id) &&
523                 (c->cpu_die_id == o->cpu_die_id))
524                 return true;
525         return false;
526 }
527
528
529 #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
530 static inline int x86_sched_itmt_flags(void)
531 {
532         return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
533 }
534
535 #ifdef CONFIG_SCHED_MC
536 static int x86_core_flags(void)
537 {
538         return cpu_core_flags() | x86_sched_itmt_flags();
539 }
540 #endif
541 #ifdef CONFIG_SCHED_SMT
542 static int x86_smt_flags(void)
543 {
544         return cpu_smt_flags() | x86_sched_itmt_flags();
545 }
546 #endif
547 #endif
548
549 static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
550 #ifdef CONFIG_SCHED_SMT
551         { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
552 #endif
553 #ifdef CONFIG_SCHED_MC
554         { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
555 #endif
556         { NULL, },
557 };
558
559 static struct sched_domain_topology_level x86_topology[] = {
560 #ifdef CONFIG_SCHED_SMT
561         { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
562 #endif
563 #ifdef CONFIG_SCHED_MC
564         { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
565 #endif
566         { cpu_cpu_mask, SD_INIT_NAME(DIE) },
567         { NULL, },
568 };
569
570 /*
571  * Set if a package/die has multiple NUMA nodes inside.
572  * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
573  * Sub-NUMA Clustering have this.
574  */
575 static bool x86_has_numa_in_package;
576
577 void set_cpu_sibling_map(int cpu)
578 {
579         bool has_smt = smp_num_siblings > 1;
580         bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
581         struct cpuinfo_x86 *c = &cpu_data(cpu);
582         struct cpuinfo_x86 *o;
583         int i, threads;
584
585         cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
586
587         if (!has_mp) {
588                 cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
589                 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
590                 cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
591                 cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
592                 c->booted_cores = 1;
593                 return;
594         }
595
596         for_each_cpu(i, cpu_sibling_setup_mask) {
597                 o = &cpu_data(i);
598
599                 if ((i == cpu) || (has_smt && match_smt(c, o)))
600                         link_mask(topology_sibling_cpumask, cpu, i);
601
602                 if ((i == cpu) || (has_mp && match_llc(c, o)))
603                         link_mask(cpu_llc_shared_mask, cpu, i);
604
605         }
606
607         /*
608          * This needs a separate iteration over the cpus because we rely on all
609          * topology_sibling_cpumask links to be set-up.
610          */
611         for_each_cpu(i, cpu_sibling_setup_mask) {
612                 o = &cpu_data(i);
613
614                 if ((i == cpu) || (has_mp && match_pkg(c, o))) {
615                         link_mask(topology_core_cpumask, cpu, i);
616
617                         /*
618                          *  Does this new cpu bringup a new core?
619                          */
620                         if (cpumask_weight(
621                             topology_sibling_cpumask(cpu)) == 1) {
622                                 /*
623                                  * for each core in package, increment
624                                  * the booted_cores for this new cpu
625                                  */
626                                 if (cpumask_first(
627                                     topology_sibling_cpumask(i)) == i)
628                                         c->booted_cores++;
629                                 /*
630                                  * increment the core count for all
631                                  * the other cpus in this package
632                                  */
633                                 if (i != cpu)
634                                         cpu_data(i).booted_cores++;
635                         } else if (i != cpu && !c->booted_cores)
636                                 c->booted_cores = cpu_data(i).booted_cores;
637                 }
638                 if (match_pkg(c, o) && !topology_same_node(c, o))
639                         x86_has_numa_in_package = true;
640
641                 if ((i == cpu) || (has_mp && match_die(c, o)))
642                         link_mask(topology_die_cpumask, cpu, i);
643         }
644
645         threads = cpumask_weight(topology_sibling_cpumask(cpu));
646         if (threads > __max_smt_threads)
647                 __max_smt_threads = threads;
648 }
649
650 /* maps the cpu to the sched domain representing multi-core */
651 const struct cpumask *cpu_coregroup_mask(int cpu)
652 {
653         return cpu_llc_shared_mask(cpu);
654 }
655
656 static void impress_friends(void)
657 {
658         int cpu;
659         unsigned long bogosum = 0;
660         /*
661          * Allow the user to impress friends.
662          */
663         pr_debug("Before bogomips\n");
664         for_each_possible_cpu(cpu)
665                 if (cpumask_test_cpu(cpu, cpu_callout_mask))
666                         bogosum += cpu_data(cpu).loops_per_jiffy;
667         pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
668                 num_online_cpus(),
669                 bogosum/(500000/HZ),
670                 (bogosum/(5000/HZ))%100);
671
672         pr_debug("Before bogocount - setting activated=1\n");
673 }
674
675 void __inquire_remote_apic(int apicid)
676 {
677         unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
678         const char * const names[] = { "ID", "VERSION", "SPIV" };
679         int timeout;
680         u32 status;
681
682         pr_info("Inquiring remote APIC 0x%x...\n", apicid);
683
684         for (i = 0; i < ARRAY_SIZE(regs); i++) {
685                 pr_info("... APIC 0x%x %s: ", apicid, names[i]);
686
687                 /*
688                  * Wait for idle.
689                  */
690                 status = safe_apic_wait_icr_idle();
691                 if (status)
692                         pr_cont("a previous APIC delivery may have failed\n");
693
694                 apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
695
696                 timeout = 0;
697                 do {
698                         udelay(100);
699                         status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
700                 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
701
702                 switch (status) {
703                 case APIC_ICR_RR_VALID:
704                         status = apic_read(APIC_RRR);
705                         pr_cont("%08x\n", status);
706                         break;
707                 default:
708                         pr_cont("failed\n");
709                 }
710         }
711 }
712
713 /*
714  * The Multiprocessor Specification 1.4 (1997) example code suggests
715  * that there should be a 10ms delay between the BSP asserting INIT
716  * and de-asserting INIT, when starting a remote processor.
717  * But that slows boot and resume on modern processors, which include
718  * many cores and don't require that delay.
719  *
720  * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
721  * Modern processor families are quirked to remove the delay entirely.
722  */
723 #define UDELAY_10MS_DEFAULT 10000
724
725 static unsigned int init_udelay = UINT_MAX;
726
727 static int __init cpu_init_udelay(char *str)
728 {
729         get_option(&str, &init_udelay);
730
731         return 0;
732 }
733 early_param("cpu_init_udelay", cpu_init_udelay);
734
735 static void __init smp_quirk_init_udelay(void)
736 {
737         /* if cmdline changed it from default, leave it alone */
738         if (init_udelay != UINT_MAX)
739                 return;
740
741         /* if modern processor, use no delay */
742         if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
743             ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
744             ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
745                 init_udelay = 0;
746                 return;
747         }
748         /* else, use legacy delay */
749         init_udelay = UDELAY_10MS_DEFAULT;
750 }
751
752 /*
753  * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
754  * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
755  * won't ... remember to clear down the APIC, etc later.
756  */
757 int
758 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
759 {
760         unsigned long send_status, accept_status = 0;
761         int maxlvt;
762
763         /* Target chip */
764         /* Boot on the stack */
765         /* Kick the second */
766         apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
767
768         pr_debug("Waiting for send to finish...\n");
769         send_status = safe_apic_wait_icr_idle();
770
771         /*
772          * Give the other CPU some time to accept the IPI.
773          */
774         udelay(200);
775         if (APIC_INTEGRATED(boot_cpu_apic_version)) {
776                 maxlvt = lapic_get_maxlvt();
777                 if (maxlvt > 3)                 /* Due to the Pentium erratum 3AP.  */
778                         apic_write(APIC_ESR, 0);
779                 accept_status = (apic_read(APIC_ESR) & 0xEF);
780         }
781         pr_debug("NMI sent\n");
782
783         if (send_status)
784                 pr_err("APIC never delivered???\n");
785         if (accept_status)
786                 pr_err("APIC delivery error (%lx)\n", accept_status);
787
788         return (send_status | accept_status);
789 }
790
791 static int
792 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
793 {
794         unsigned long send_status = 0, accept_status = 0;
795         int maxlvt, num_starts, j;
796
797         maxlvt = lapic_get_maxlvt();
798
799         /*
800          * Be paranoid about clearing APIC errors.
801          */
802         if (APIC_INTEGRATED(boot_cpu_apic_version)) {
803                 if (maxlvt > 3)         /* Due to the Pentium erratum 3AP.  */
804                         apic_write(APIC_ESR, 0);
805                 apic_read(APIC_ESR);
806         }
807
808         pr_debug("Asserting INIT\n");
809
810         /*
811          * Turn INIT on target chip
812          */
813         /*
814          * Send IPI
815          */
816         apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
817                        phys_apicid);
818
819         pr_debug("Waiting for send to finish...\n");
820         send_status = safe_apic_wait_icr_idle();
821
822         udelay(init_udelay);
823
824         pr_debug("Deasserting INIT\n");
825
826         /* Target chip */
827         /* Send IPI */
828         apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
829
830         pr_debug("Waiting for send to finish...\n");
831         send_status = safe_apic_wait_icr_idle();
832
833         mb();
834
835         /*
836          * Should we send STARTUP IPIs ?
837          *
838          * Determine this based on the APIC version.
839          * If we don't have an integrated APIC, don't send the STARTUP IPIs.
840          */
841         if (APIC_INTEGRATED(boot_cpu_apic_version))
842                 num_starts = 2;
843         else
844                 num_starts = 0;
845
846         /*
847          * Run STARTUP IPI loop.
848          */
849         pr_debug("#startup loops: %d\n", num_starts);
850
851         for (j = 1; j <= num_starts; j++) {
852                 pr_debug("Sending STARTUP #%d\n", j);
853                 if (maxlvt > 3)         /* Due to the Pentium erratum 3AP.  */
854                         apic_write(APIC_ESR, 0);
855                 apic_read(APIC_ESR);
856                 pr_debug("After apic_write\n");
857
858                 /*
859                  * STARTUP IPI
860                  */
861
862                 /* Target chip */
863                 /* Boot on the stack */
864                 /* Kick the second */
865                 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
866                                phys_apicid);
867
868                 /*
869                  * Give the other CPU some time to accept the IPI.
870                  */
871                 if (init_udelay == 0)
872                         udelay(10);
873                 else
874                         udelay(300);
875
876                 pr_debug("Startup point 1\n");
877
878                 pr_debug("Waiting for send to finish...\n");
879                 send_status = safe_apic_wait_icr_idle();
880
881                 /*
882                  * Give the other CPU some time to accept the IPI.
883                  */
884                 if (init_udelay == 0)
885                         udelay(10);
886                 else
887                         udelay(200);
888
889                 if (maxlvt > 3)         /* Due to the Pentium erratum 3AP.  */
890                         apic_write(APIC_ESR, 0);
891                 accept_status = (apic_read(APIC_ESR) & 0xEF);
892                 if (send_status || accept_status)
893                         break;
894         }
895         pr_debug("After Startup\n");
896
897         if (send_status)
898                 pr_err("APIC never delivered???\n");
899         if (accept_status)
900                 pr_err("APIC delivery error (%lx)\n", accept_status);
901
902         return (send_status | accept_status);
903 }
904
905 /* reduce the number of lines printed when booting a large cpu count system */
906 static void announce_cpu(int cpu, int apicid)
907 {
908         static int current_node = NUMA_NO_NODE;
909         int node = early_cpu_to_node(cpu);
910         static int width, node_width;
911
912         if (!width)
913                 width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
914
915         if (!node_width)
916                 node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
917
918         if (cpu == 1)
919                 printk(KERN_INFO "x86: Booting SMP configuration:\n");
920
921         if (system_state < SYSTEM_RUNNING) {
922                 if (node != current_node) {
923                         if (current_node > (-1))
924                                 pr_cont("\n");
925                         current_node = node;
926
927                         printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
928                                node_width - num_digits(node), " ", node);
929                 }
930
931                 /* Add padding for the BSP */
932                 if (cpu == 1)
933                         pr_cont("%*s", width + 1, " ");
934
935                 pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
936
937         } else
938                 pr_info("Booting Node %d Processor %d APIC 0x%x\n",
939                         node, cpu, apicid);
940 }
941
942 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
943 {
944         int cpu;
945
946         cpu = smp_processor_id();
947         if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
948                 return NMI_HANDLED;
949
950         return NMI_DONE;
951 }
952
953 /*
954  * Wake up AP by INIT, INIT, STARTUP sequence.
955  *
956  * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
957  * boot-strap code which is not a desired behavior for waking up BSP. To
958  * void the boot-strap code, wake up CPU0 by NMI instead.
959  *
960  * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
961  * (i.e. physically hot removed and then hot added), NMI won't wake it up.
962  * We'll change this code in the future to wake up hard offlined CPU0 if
963  * real platform and request are available.
964  */
965 static int
966 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
967                int *cpu0_nmi_registered)
968 {
969         int id;
970         int boot_error;
971
972         preempt_disable();
973
974         /*
975          * Wake up AP by INIT, INIT, STARTUP sequence.
976          */
977         if (cpu) {
978                 boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
979                 goto out;
980         }
981
982         /*
983          * Wake up BSP by nmi.
984          *
985          * Register a NMI handler to help wake up CPU0.
986          */
987         boot_error = register_nmi_handler(NMI_LOCAL,
988                                           wakeup_cpu0_nmi, 0, "wake_cpu0");
989
990         if (!boot_error) {
991                 enable_start_cpu0 = 1;
992                 *cpu0_nmi_registered = 1;
993                 if (apic->dest_logical == APIC_DEST_LOGICAL)
994                         id = cpu0_logical_apicid;
995                 else
996                         id = apicid;
997                 boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
998         }
999
1000 out:
1001         preempt_enable();
1002
1003         return boot_error;
1004 }
1005
1006 int common_cpu_up(unsigned int cpu, struct task_struct *idle)
1007 {
1008         int ret;
1009
1010         /* Just in case we booted with a single CPU. */
1011         alternatives_enable_smp();
1012
1013         per_cpu(current_task, cpu) = idle;
1014
1015         /* Initialize the interrupt stack(s) */
1016         ret = irq_init_percpu_irqstack(cpu);
1017         if (ret)
1018                 return ret;
1019
1020 #ifdef CONFIG_X86_32
1021         /* Stack for startup_32 can be just as for start_secondary onwards */
1022         per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
1023 #else
1024         initial_gs = per_cpu_offset(cpu);
1025 #endif
1026         return 0;
1027 }
1028
1029 /*
1030  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
1031  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
1032  * Returns zero if CPU booted OK, else error code from
1033  * ->wakeup_secondary_cpu.
1034  */
1035 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
1036                        int *cpu0_nmi_registered)
1037 {
1038         /* start_ip had better be page-aligned! */
1039         unsigned long start_ip = real_mode_header->trampoline_start;
1040
1041         unsigned long boot_error = 0;
1042         unsigned long timeout;
1043
1044         idle->thread.sp = (unsigned long)task_pt_regs(idle);
1045         early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1046         initial_code = (unsigned long)start_secondary;
1047         initial_stack  = idle->thread.sp;
1048
1049         /* Enable the espfix hack for this CPU */
1050         init_espfix_ap(cpu);
1051
1052         /* So we see what's up */
1053         announce_cpu(cpu, apicid);
1054
1055         /*
1056          * This grunge runs the startup process for
1057          * the targeted processor.
1058          */
1059
1060         if (x86_platform.legacy.warm_reset) {
1061
1062                 pr_debug("Setting warm reset code and vector.\n");
1063
1064                 smpboot_setup_warm_reset_vector(start_ip);
1065                 /*
1066                  * Be paranoid about clearing APIC errors.
1067                 */
1068                 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1069                         apic_write(APIC_ESR, 0);
1070                         apic_read(APIC_ESR);
1071                 }
1072         }
1073
1074         /*
1075          * AP might wait on cpu_callout_mask in cpu_init() with
1076          * cpu_initialized_mask set if previous attempt to online
1077          * it timed-out. Clear cpu_initialized_mask so that after
1078          * INIT/SIPI it could start with a clean state.
1079          */
1080         cpumask_clear_cpu(cpu, cpu_initialized_mask);
1081         smp_mb();
1082
1083         /*
1084          * Wake up a CPU in difference cases:
1085          * - Use the method in the APIC driver if it's defined
1086          * Otherwise,
1087          * - Use an INIT boot APIC message for APs or NMI for BSP.
1088          */
1089         if (apic->wakeup_secondary_cpu)
1090                 boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1091         else
1092                 boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1093                                                      cpu0_nmi_registered);
1094
1095         if (!boot_error) {
1096                 /*
1097                  * Wait 10s total for first sign of life from AP
1098                  */
1099                 boot_error = -1;
1100                 timeout = jiffies + 10*HZ;
1101                 while (time_before(jiffies, timeout)) {
1102                         if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1103                                 /*
1104                                  * Tell AP to proceed with initialization
1105                                  */
1106                                 cpumask_set_cpu(cpu, cpu_callout_mask);
1107                                 boot_error = 0;
1108                                 break;
1109                         }
1110                         schedule();
1111                 }
1112         }
1113
1114         if (!boot_error) {
1115                 /*
1116                  * Wait till AP completes initial initialization
1117                  */
1118                 while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1119                         /*
1120                          * Allow other tasks to run while we wait for the
1121                          * AP to come online. This also gives a chance
1122                          * for the MTRR work(triggered by the AP coming online)
1123                          * to be completed in the stop machine context.
1124                          */
1125                         schedule();
1126                 }
1127         }
1128
1129         if (x86_platform.legacy.warm_reset) {
1130                 /*
1131                  * Cleanup possible dangling ends...
1132                  */
1133                 smpboot_restore_warm_reset_vector();
1134         }
1135
1136         return boot_error;
1137 }
1138
1139 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1140 {
1141         int apicid = apic->cpu_present_to_apicid(cpu);
1142         int cpu0_nmi_registered = 0;
1143         unsigned long flags;
1144         int err, ret = 0;
1145
1146         lockdep_assert_irqs_enabled();
1147
1148         pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1149
1150         if (apicid == BAD_APICID ||
1151             !physid_isset(apicid, phys_cpu_present_map) ||
1152             !apic->apic_id_valid(apicid)) {
1153                 pr_err("%s: bad cpu %d\n", __func__, cpu);
1154                 return -EINVAL;
1155         }
1156
1157         /*
1158          * Already booted CPU?
1159          */
1160         if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1161                 pr_debug("do_boot_cpu %d Already started\n", cpu);
1162                 return -ENOSYS;
1163         }
1164
1165         /*
1166          * Save current MTRR state in case it was changed since early boot
1167          * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1168          */
1169         mtrr_save_state();
1170
1171         /* x86 CPUs take themselves offline, so delayed offline is OK. */
1172         err = cpu_check_up_prepare(cpu);
1173         if (err && err != -EBUSY)
1174                 return err;
1175
1176         /* the FPU context is blank, nobody can own it */
1177         per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1178
1179         err = common_cpu_up(cpu, tidle);
1180         if (err)
1181                 return err;
1182
1183         err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
1184         if (err) {
1185                 pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1186                 ret = -EIO;
1187                 goto unreg_nmi;
1188         }
1189
1190         /*
1191          * Check TSC synchronization with the AP (keep irqs disabled
1192          * while doing so):
1193          */
1194         local_irq_save(flags);
1195         check_tsc_sync_source(cpu);
1196         local_irq_restore(flags);
1197
1198         while (!cpu_online(cpu)) {
1199                 cpu_relax();
1200                 touch_nmi_watchdog();
1201         }
1202
1203 unreg_nmi:
1204         /*
1205          * Clean up the nmi handler. Do this after the callin and callout sync
1206          * to avoid impact of possible long unregister time.
1207          */
1208         if (cpu0_nmi_registered)
1209                 unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1210
1211         return ret;
1212 }
1213
1214 /**
1215  * arch_disable_smp_support() - disables SMP support for x86 at runtime
1216  */
1217 void arch_disable_smp_support(void)
1218 {
1219         disable_ioapic_support();
1220 }
1221
1222 /*
1223  * Fall back to non SMP mode after errors.
1224  *
1225  * RED-PEN audit/test this more. I bet there is more state messed up here.
1226  */
1227 static __init void disable_smp(void)
1228 {
1229         pr_info("SMP disabled\n");
1230
1231         disable_ioapic_support();
1232
1233         init_cpu_present(cpumask_of(0));
1234         init_cpu_possible(cpumask_of(0));
1235
1236         if (smp_found_config)
1237                 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1238         else
1239                 physid_set_mask_of_physid(0, &phys_cpu_present_map);
1240         cpumask_set_cpu(0, topology_sibling_cpumask(0));
1241         cpumask_set_cpu(0, topology_core_cpumask(0));
1242         cpumask_set_cpu(0, topology_die_cpumask(0));
1243 }
1244
1245 /*
1246  * Various sanity checks.
1247  */
1248 static void __init smp_sanity_check(void)
1249 {
1250         preempt_disable();
1251
1252 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1253         if (def_to_bigsmp && nr_cpu_ids > 8) {
1254                 unsigned int cpu;
1255                 unsigned nr;
1256
1257                 pr_warn("More than 8 CPUs detected - skipping them\n"
1258                         "Use CONFIG_X86_BIGSMP\n");
1259
1260                 nr = 0;
1261                 for_each_present_cpu(cpu) {
1262                         if (nr >= 8)
1263                                 set_cpu_present(cpu, false);
1264                         nr++;
1265                 }
1266
1267                 nr = 0;
1268                 for_each_possible_cpu(cpu) {
1269                         if (nr >= 8)
1270                                 set_cpu_possible(cpu, false);
1271                         nr++;
1272                 }
1273
1274                 nr_cpu_ids = 8;
1275         }
1276 #endif
1277
1278         if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1279                 pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1280                         hard_smp_processor_id());
1281
1282                 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1283         }
1284
1285         /*
1286          * Should not be necessary because the MP table should list the boot
1287          * CPU too, but we do it for the sake of robustness anyway.
1288          */
1289         if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1290                 pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1291                           boot_cpu_physical_apicid);
1292                 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1293         }
1294         preempt_enable();
1295 }
1296
1297 static void __init smp_cpu_index_default(void)
1298 {
1299         int i;
1300         struct cpuinfo_x86 *c;
1301
1302         for_each_possible_cpu(i) {
1303                 c = &cpu_data(i);
1304                 /* mark all to hotplug */
1305                 c->cpu_index = nr_cpu_ids;
1306         }
1307 }
1308
1309 static void __init smp_get_logical_apicid(void)
1310 {
1311         if (x2apic_mode)
1312                 cpu0_logical_apicid = apic_read(APIC_LDR);
1313         else
1314                 cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1315 }
1316
1317 /*
1318  * Prepare for SMP bootup.
1319  * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1320  *            for common interface support.
1321  */
1322 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1323 {
1324         unsigned int i;
1325
1326         smp_cpu_index_default();
1327
1328         /*
1329          * Setup boot CPU information
1330          */
1331         smp_store_boot_cpu_info(); /* Final full version of the data */
1332         cpumask_copy(cpu_callin_mask, cpumask_of(0));
1333         mb();
1334
1335         for_each_possible_cpu(i) {
1336                 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1337                 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1338                 zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1339                 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1340         }
1341
1342         /*
1343          * Set 'default' x86 topology, this matches default_topology() in that
1344          * it has NUMA nodes as a topology level. See also
1345          * native_smp_cpus_done().
1346          *
1347          * Must be done before set_cpus_sibling_map() is ran.
1348          */
1349         set_sched_topology(x86_topology);
1350
1351         set_cpu_sibling_map(0);
1352         init_freq_invariance(false);
1353         smp_sanity_check();
1354
1355         switch (apic_intr_mode) {
1356         case APIC_PIC:
1357         case APIC_VIRTUAL_WIRE_NO_CONFIG:
1358                 disable_smp();
1359                 return;
1360         case APIC_SYMMETRIC_IO_NO_ROUTING:
1361                 disable_smp();
1362                 /* Setup local timer */
1363                 x86_init.timers.setup_percpu_clockev();
1364                 return;
1365         case APIC_VIRTUAL_WIRE:
1366         case APIC_SYMMETRIC_IO:
1367                 break;
1368         }
1369
1370         /* Setup local timer */
1371         x86_init.timers.setup_percpu_clockev();
1372
1373         smp_get_logical_apicid();
1374
1375         pr_info("CPU0: ");
1376         print_cpu_info(&cpu_data(0));
1377
1378         uv_system_init();
1379
1380         set_mtrr_aps_delayed_init();
1381
1382         smp_quirk_init_udelay();
1383
1384         speculative_store_bypass_ht_init();
1385 }
1386
1387 void arch_thaw_secondary_cpus_begin(void)
1388 {
1389         set_mtrr_aps_delayed_init();
1390 }
1391
1392 void arch_thaw_secondary_cpus_end(void)
1393 {
1394         mtrr_aps_init();
1395 }
1396
1397 /*
1398  * Early setup to make printk work.
1399  */
1400 void __init native_smp_prepare_boot_cpu(void)
1401 {
1402         int me = smp_processor_id();
1403         switch_to_new_gdt(me);
1404         /* already set me in cpu_online_mask in boot_cpu_init() */
1405         cpumask_set_cpu(me, cpu_callout_mask);
1406         cpu_set_state_online(me);
1407         native_pv_lock_init();
1408 }
1409
1410 void __init calculate_max_logical_packages(void)
1411 {
1412         int ncpus;
1413
1414         /*
1415          * Today neither Intel nor AMD support heterogenous systems so
1416          * extrapolate the boot cpu's data to all packages.
1417          */
1418         ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1419         __max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1420         pr_info("Max logical packages: %u\n", __max_logical_packages);
1421 }
1422
1423 void __init native_smp_cpus_done(unsigned int max_cpus)
1424 {
1425         pr_debug("Boot done\n");
1426
1427         calculate_max_logical_packages();
1428
1429         if (x86_has_numa_in_package)
1430                 set_sched_topology(x86_numa_in_package_topology);
1431
1432         nmi_selftest();
1433         impress_friends();
1434         mtrr_aps_init();
1435 }
1436
1437 static int __initdata setup_possible_cpus = -1;
1438 static int __init _setup_possible_cpus(char *str)
1439 {
1440         get_option(&str, &setup_possible_cpus);
1441         return 0;
1442 }
1443 early_param("possible_cpus", _setup_possible_cpus);
1444
1445
1446 /*
1447  * cpu_possible_mask should be static, it cannot change as cpu's
1448  * are onlined, or offlined. The reason is per-cpu data-structures
1449  * are allocated by some modules at init time, and don't expect to
1450  * do this dynamically on cpu arrival/departure.
1451  * cpu_present_mask on the other hand can change dynamically.
1452  * In case when cpu_hotplug is not compiled, then we resort to current
1453  * behaviour, which is cpu_possible == cpu_present.
1454  * - Ashok Raj
1455  *
1456  * Three ways to find out the number of additional hotplug CPUs:
1457  * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1458  * - The user can overwrite it with possible_cpus=NUM
1459  * - Otherwise don't reserve additional CPUs.
1460  * We do this because additional CPUs waste a lot of memory.
1461  * -AK
1462  */
1463 __init void prefill_possible_map(void)
1464 {
1465         int i, possible;
1466
1467         /* No boot processor was found in mptable or ACPI MADT */
1468         if (!num_processors) {
1469                 if (boot_cpu_has(X86_FEATURE_APIC)) {
1470                         int apicid = boot_cpu_physical_apicid;
1471                         int cpu = hard_smp_processor_id();
1472
1473                         pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1474
1475                         /* Make sure boot cpu is enumerated */
1476                         if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1477                             apic->apic_id_valid(apicid))
1478                                 generic_processor_info(apicid, boot_cpu_apic_version);
1479                 }
1480
1481                 if (!num_processors)
1482                         num_processors = 1;
1483         }
1484
1485         i = setup_max_cpus ?: 1;
1486         if (setup_possible_cpus == -1) {
1487                 possible = num_processors;
1488 #ifdef CONFIG_HOTPLUG_CPU
1489                 if (setup_max_cpus)
1490                         possible += disabled_cpus;
1491 #else
1492                 if (possible > i)
1493                         possible = i;
1494 #endif
1495         } else
1496                 possible = setup_possible_cpus;
1497
1498         total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1499
1500         /* nr_cpu_ids could be reduced via nr_cpus= */
1501         if (possible > nr_cpu_ids) {
1502                 pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1503                         possible, nr_cpu_ids);
1504                 possible = nr_cpu_ids;
1505         }
1506
1507 #ifdef CONFIG_HOTPLUG_CPU
1508         if (!setup_max_cpus)
1509 #endif
1510         if (possible > i) {
1511                 pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1512                         possible, setup_max_cpus);
1513                 possible = i;
1514         }
1515
1516         nr_cpu_ids = possible;
1517
1518         pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1519                 possible, max_t(int, possible - num_processors, 0));
1520
1521         reset_cpu_possible_mask();
1522
1523         for (i = 0; i < possible; i++)
1524                 set_cpu_possible(i, true);
1525 }
1526
1527 #ifdef CONFIG_HOTPLUG_CPU
1528
1529 /* Recompute SMT state for all CPUs on offline */
1530 static void recompute_smt_state(void)
1531 {
1532         int max_threads, cpu;
1533
1534         max_threads = 0;
1535         for_each_online_cpu (cpu) {
1536                 int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1537
1538                 if (threads > max_threads)
1539                         max_threads = threads;
1540         }
1541         __max_smt_threads = max_threads;
1542 }
1543
1544 static void remove_siblinginfo(int cpu)
1545 {
1546         int sibling;
1547         struct cpuinfo_x86 *c = &cpu_data(cpu);
1548
1549         for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1550                 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1551                 /*/
1552                  * last thread sibling in this cpu core going down
1553                  */
1554                 if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1555                         cpu_data(sibling).booted_cores--;
1556         }
1557
1558         for_each_cpu(sibling, topology_die_cpumask(cpu))
1559                 cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1560         for_each_cpu(sibling, topology_sibling_cpumask(cpu))
1561                 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1562         for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1563                 cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1564         cpumask_clear(cpu_llc_shared_mask(cpu));
1565         cpumask_clear(topology_sibling_cpumask(cpu));
1566         cpumask_clear(topology_core_cpumask(cpu));
1567         cpumask_clear(topology_die_cpumask(cpu));
1568         c->cpu_core_id = 0;
1569         c->booted_cores = 0;
1570         cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1571         recompute_smt_state();
1572 }
1573
1574 static void remove_cpu_from_maps(int cpu)
1575 {
1576         set_cpu_online(cpu, false);
1577         cpumask_clear_cpu(cpu, cpu_callout_mask);
1578         cpumask_clear_cpu(cpu, cpu_callin_mask);
1579         /* was set by cpu_init() */
1580         cpumask_clear_cpu(cpu, cpu_initialized_mask);
1581         numa_remove_cpu(cpu);
1582 }
1583
1584 void cpu_disable_common(void)
1585 {
1586         int cpu = smp_processor_id();
1587
1588         remove_siblinginfo(cpu);
1589
1590         /* It's now safe to remove this processor from the online map */
1591         lock_vector_lock();
1592         remove_cpu_from_maps(cpu);
1593         unlock_vector_lock();
1594         fixup_irqs();
1595         lapic_offline();
1596 }
1597
1598 int native_cpu_disable(void)
1599 {
1600         int ret;
1601
1602         ret = lapic_can_unplug_cpu();
1603         if (ret)
1604                 return ret;
1605
1606         /*
1607          * Disable the local APIC. Otherwise IPI broadcasts will reach
1608          * it. It still responds normally to INIT, NMI, SMI, and SIPI
1609          * messages.
1610          */
1611         apic_soft_disable();
1612         cpu_disable_common();
1613
1614         return 0;
1615 }
1616
1617 int common_cpu_die(unsigned int cpu)
1618 {
1619         int ret = 0;
1620
1621         /* We don't do anything here: idle task is faking death itself. */
1622
1623         /* They ack this in play_dead() by setting CPU_DEAD */
1624         if (cpu_wait_death(cpu, 5)) {
1625                 if (system_state == SYSTEM_RUNNING)
1626                         pr_info("CPU %u is now offline\n", cpu);
1627         } else {
1628                 pr_err("CPU %u didn't die...\n", cpu);
1629                 ret = -1;
1630         }
1631
1632         return ret;
1633 }
1634
1635 void native_cpu_die(unsigned int cpu)
1636 {
1637         common_cpu_die(cpu);
1638 }
1639
1640 void play_dead_common(void)
1641 {
1642         idle_task_exit();
1643
1644         /* Ack it */
1645         (void)cpu_report_death();
1646
1647         /*
1648          * With physical CPU hotplug, we should halt the cpu
1649          */
1650         local_irq_disable();
1651 }
1652
1653 static bool wakeup_cpu0(void)
1654 {
1655         if (smp_processor_id() == 0 && enable_start_cpu0)
1656                 return true;
1657
1658         return false;
1659 }
1660
1661 /*
1662  * We need to flush the caches before going to sleep, lest we have
1663  * dirty data in our caches when we come back up.
1664  */
1665 static inline void mwait_play_dead(void)
1666 {
1667         unsigned int eax, ebx, ecx, edx;
1668         unsigned int highest_cstate = 0;
1669         unsigned int highest_subcstate = 0;
1670         void *mwait_ptr;
1671         int i;
1672
1673         if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1674             boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1675                 return;
1676         if (!this_cpu_has(X86_FEATURE_MWAIT))
1677                 return;
1678         if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1679                 return;
1680         if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1681                 return;
1682
1683         eax = CPUID_MWAIT_LEAF;
1684         ecx = 0;
1685         native_cpuid(&eax, &ebx, &ecx, &edx);
1686
1687         /*
1688          * eax will be 0 if EDX enumeration is not valid.
1689          * Initialized below to cstate, sub_cstate value when EDX is valid.
1690          */
1691         if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1692                 eax = 0;
1693         } else {
1694                 edx >>= MWAIT_SUBSTATE_SIZE;
1695                 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1696                         if (edx & MWAIT_SUBSTATE_MASK) {
1697                                 highest_cstate = i;
1698                                 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1699                         }
1700                 }
1701                 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1702                         (highest_subcstate - 1);
1703         }
1704
1705         /*
1706          * This should be a memory location in a cache line which is
1707          * unlikely to be touched by other processors.  The actual
1708          * content is immaterial as it is not actually modified in any way.
1709          */
1710         mwait_ptr = &current_thread_info()->flags;
1711
1712         wbinvd();
1713
1714         while (1) {
1715                 /*
1716                  * The CLFLUSH is a workaround for erratum AAI65 for
1717                  * the Xeon 7400 series.  It's not clear it is actually
1718                  * needed, but it should be harmless in either case.
1719                  * The WBINVD is insufficient due to the spurious-wakeup
1720                  * case where we return around the loop.
1721                  */
1722                 mb();
1723                 clflush(mwait_ptr);
1724                 mb();
1725                 __monitor(mwait_ptr, 0, 0);
1726                 mb();
1727                 __mwait(eax, 0);
1728                 /*
1729                  * If NMI wants to wake up CPU0, start CPU0.
1730                  */
1731                 if (wakeup_cpu0())
1732                         start_cpu0();
1733         }
1734 }
1735
1736 void hlt_play_dead(void)
1737 {
1738         if (__this_cpu_read(cpu_info.x86) >= 4)
1739                 wbinvd();
1740
1741         while (1) {
1742                 native_halt();
1743                 /*
1744                  * If NMI wants to wake up CPU0, start CPU0.
1745                  */
1746                 if (wakeup_cpu0())
1747                         start_cpu0();
1748         }
1749 }
1750
1751 void native_play_dead(void)
1752 {
1753         play_dead_common();
1754         tboot_shutdown(TB_SHUTDOWN_WFS);
1755
1756         mwait_play_dead();      /* Only returns on failure */
1757         if (cpuidle_play_dead())
1758                 hlt_play_dead();
1759 }
1760
1761 #else /* ... !CONFIG_HOTPLUG_CPU */
1762 int native_cpu_disable(void)
1763 {
1764         return -ENOSYS;
1765 }
1766
1767 void native_cpu_die(unsigned int cpu)
1768 {
1769         /* We said "no" in __cpu_disable */
1770         BUG();
1771 }
1772
1773 void native_play_dead(void)
1774 {
1775         BUG();
1776 }
1777
1778 #endif
1779
1780 /*
1781  * APERF/MPERF frequency ratio computation.
1782  *
1783  * The scheduler wants to do frequency invariant accounting and needs a <1
1784  * ratio to account for the 'current' frequency, corresponding to
1785  * freq_curr / freq_max.
1786  *
1787  * Since the frequency freq_curr on x86 is controlled by micro-controller and
1788  * our P-state setting is little more than a request/hint, we need to observe
1789  * the effective frequency 'BusyMHz', i.e. the average frequency over a time
1790  * interval after discarding idle time. This is given by:
1791  *
1792  *   BusyMHz = delta_APERF / delta_MPERF * freq_base
1793  *
1794  * where freq_base is the max non-turbo P-state.
1795  *
1796  * The freq_max term has to be set to a somewhat arbitrary value, because we
1797  * can't know which turbo states will be available at a given point in time:
1798  * it all depends on the thermal headroom of the entire package. We set it to
1799  * the turbo level with 4 cores active.
1800  *
1801  * Benchmarks show that's a good compromise between the 1C turbo ratio
1802  * (freq_curr/freq_max would rarely reach 1) and something close to freq_base,
1803  * which would ignore the entire turbo range (a conspicuous part, making
1804  * freq_curr/freq_max always maxed out).
1805  *
1806  * An exception to the heuristic above is the Atom uarch, where we choose the
1807  * highest turbo level for freq_max since Atom's are generally oriented towards
1808  * power efficiency.
1809  *
1810  * Setting freq_max to anything less than the 1C turbo ratio makes the ratio
1811  * freq_curr / freq_max to eventually grow >1, in which case we clip it to 1.
1812  */
1813
1814 DEFINE_STATIC_KEY_FALSE(arch_scale_freq_key);
1815
1816 static DEFINE_PER_CPU(u64, arch_prev_aperf);
1817 static DEFINE_PER_CPU(u64, arch_prev_mperf);
1818 static u64 arch_turbo_freq_ratio = SCHED_CAPACITY_SCALE;
1819 static u64 arch_max_freq_ratio = SCHED_CAPACITY_SCALE;
1820
1821 void arch_set_max_freq_ratio(bool turbo_disabled)
1822 {
1823         arch_max_freq_ratio = turbo_disabled ? SCHED_CAPACITY_SCALE :
1824                                         arch_turbo_freq_ratio;
1825 }
1826
1827 static bool turbo_disabled(void)
1828 {
1829         u64 misc_en;
1830         int err;
1831
1832         err = rdmsrl_safe(MSR_IA32_MISC_ENABLE, &misc_en);
1833         if (err)
1834                 return false;
1835
1836         return (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
1837 }
1838
1839 static bool slv_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1840 {
1841         int err;
1842
1843         err = rdmsrl_safe(MSR_ATOM_CORE_RATIOS, base_freq);
1844         if (err)
1845                 return false;
1846
1847         err = rdmsrl_safe(MSR_ATOM_CORE_TURBO_RATIOS, turbo_freq);
1848         if (err)
1849                 return false;
1850
1851         *base_freq = (*base_freq >> 16) & 0x3F;     /* max P state */
1852         *turbo_freq = *turbo_freq & 0x3F;           /* 1C turbo    */
1853
1854         return true;
1855 }
1856
1857 #include <asm/cpu_device_id.h>
1858 #include <asm/intel-family.h>
1859
1860 #define X86_MATCH(model)                                        \
1861         X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6,            \
1862                 INTEL_FAM6_##model, X86_FEATURE_APERFMPERF, NULL)
1863
1864 static const struct x86_cpu_id has_knl_turbo_ratio_limits[] = {
1865         X86_MATCH(XEON_PHI_KNL),
1866         X86_MATCH(XEON_PHI_KNM),
1867         {}
1868 };
1869
1870 static const struct x86_cpu_id has_skx_turbo_ratio_limits[] = {
1871         X86_MATCH(SKYLAKE_X),
1872         {}
1873 };
1874
1875 static const struct x86_cpu_id has_glm_turbo_ratio_limits[] = {
1876         X86_MATCH(ATOM_GOLDMONT),
1877         X86_MATCH(ATOM_GOLDMONT_D),
1878         X86_MATCH(ATOM_GOLDMONT_PLUS),
1879         {}
1880 };
1881
1882 static bool knl_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq,
1883                                 int num_delta_fratio)
1884 {
1885         int fratio, delta_fratio, found;
1886         int err, i;
1887         u64 msr;
1888
1889         err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1890         if (err)
1891                 return false;
1892
1893         *base_freq = (*base_freq >> 8) & 0xFF;      /* max P state */
1894
1895         err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1896         if (err)
1897                 return false;
1898
1899         fratio = (msr >> 8) & 0xFF;
1900         i = 16;
1901         found = 0;
1902         do {
1903                 if (found >= num_delta_fratio) {
1904                         *turbo_freq = fratio;
1905                         return true;
1906                 }
1907
1908                 delta_fratio = (msr >> (i + 5)) & 0x7;
1909
1910                 if (delta_fratio) {
1911                         found += 1;
1912                         fratio -= delta_fratio;
1913                 }
1914
1915                 i += 8;
1916         } while (i < 64);
1917
1918         return true;
1919 }
1920
1921 static bool skx_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, int size)
1922 {
1923         u64 ratios, counts;
1924         u32 group_size;
1925         int err, i;
1926
1927         err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1928         if (err)
1929                 return false;
1930
1931         *base_freq = (*base_freq >> 8) & 0xFF;      /* max P state */
1932
1933         err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &ratios);
1934         if (err)
1935                 return false;
1936
1937         err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT1, &counts);
1938         if (err)
1939                 return false;
1940
1941         for (i = 0; i < 64; i += 8) {
1942                 group_size = (counts >> i) & 0xFF;
1943                 if (group_size >= size) {
1944                         *turbo_freq = (ratios >> i) & 0xFF;
1945                         return true;
1946                 }
1947         }
1948
1949         return false;
1950 }
1951
1952 static bool core_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1953 {
1954         u64 msr;
1955         int err;
1956
1957         err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1958         if (err)
1959                 return false;
1960
1961         err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1962         if (err)
1963                 return false;
1964
1965         *base_freq = (*base_freq >> 8) & 0xFF;    /* max P state */
1966         *turbo_freq = (msr >> 24) & 0xFF;         /* 4C turbo    */
1967
1968         /* The CPU may have less than 4 cores */
1969         if (!*turbo_freq)
1970                 *turbo_freq = msr & 0xFF;         /* 1C turbo    */
1971
1972         return true;
1973 }
1974
1975 static bool intel_set_max_freq_ratio(void)
1976 {
1977         u64 base_freq, turbo_freq;
1978
1979         if (slv_set_max_freq_ratio(&base_freq, &turbo_freq))
1980                 goto out;
1981
1982         if (x86_match_cpu(has_glm_turbo_ratio_limits) &&
1983             skx_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1984                 goto out;
1985
1986         if (x86_match_cpu(has_knl_turbo_ratio_limits) &&
1987             knl_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1988                 goto out;
1989
1990         if (x86_match_cpu(has_skx_turbo_ratio_limits) &&
1991             skx_set_max_freq_ratio(&base_freq, &turbo_freq, 4))
1992                 goto out;
1993
1994         if (core_set_max_freq_ratio(&base_freq, &turbo_freq))
1995                 goto out;
1996
1997         return false;
1998
1999 out:
2000         /*
2001          * Some hypervisors advertise X86_FEATURE_APERFMPERF
2002          * but then fill all MSR's with zeroes.
2003          */
2004         if (!base_freq) {
2005                 pr_debug("Couldn't determine cpu base frequency, necessary for scale-invariant accounting.\n");
2006                 return false;
2007         }
2008
2009         arch_turbo_freq_ratio = div_u64(turbo_freq * SCHED_CAPACITY_SCALE,
2010                                         base_freq);
2011         arch_set_max_freq_ratio(turbo_disabled());
2012         return true;
2013 }
2014
2015 static void init_counter_refs(void)
2016 {
2017         u64 aperf, mperf;
2018
2019         rdmsrl(MSR_IA32_APERF, aperf);
2020         rdmsrl(MSR_IA32_MPERF, mperf);
2021
2022         this_cpu_write(arch_prev_aperf, aperf);
2023         this_cpu_write(arch_prev_mperf, mperf);
2024 }
2025
2026 static void init_freq_invariance(bool secondary)
2027 {
2028         bool ret = false;
2029
2030         if (!boot_cpu_has(X86_FEATURE_APERFMPERF))
2031                 return;
2032
2033         if (secondary) {
2034                 if (static_branch_likely(&arch_scale_freq_key)) {
2035                         init_counter_refs();
2036                 }
2037                 return;
2038         }
2039
2040         if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2041                 ret = intel_set_max_freq_ratio();
2042
2043         if (ret) {
2044                 init_counter_refs();
2045                 static_branch_enable(&arch_scale_freq_key);
2046         } else {
2047                 pr_debug("Couldn't determine max cpu frequency, necessary for scale-invariant accounting.\n");
2048         }
2049 }
2050
2051 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
2052
2053 void arch_scale_freq_tick(void)
2054 {
2055         u64 freq_scale;
2056         u64 aperf, mperf;
2057         u64 acnt, mcnt;
2058
2059         if (!arch_scale_freq_invariant())
2060                 return;
2061
2062         rdmsrl(MSR_IA32_APERF, aperf);
2063         rdmsrl(MSR_IA32_MPERF, mperf);
2064
2065         acnt = aperf - this_cpu_read(arch_prev_aperf);
2066         mcnt = mperf - this_cpu_read(arch_prev_mperf);
2067         if (!mcnt)
2068                 return;
2069
2070         this_cpu_write(arch_prev_aperf, aperf);
2071         this_cpu_write(arch_prev_mperf, mperf);
2072
2073         acnt <<= 2*SCHED_CAPACITY_SHIFT;
2074         mcnt *= arch_max_freq_ratio;
2075
2076         freq_scale = div64_u64(acnt, mcnt);
2077
2078         if (freq_scale > SCHED_CAPACITY_SCALE)
2079                 freq_scale = SCHED_CAPACITY_SCALE;
2080
2081         this_cpu_write(arch_freq_scale, freq_scale);
2082 }