treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 500
[sfrench/cifs-2.6.git] / arch / unicore32 / include / asm / cacheflush.h
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * linux/arch/unicore32/include/asm/cacheflush.h
4  *
5  * Code specific to PKUnity SoC and UniCore ISA
6  *
7  * Copyright (C) 2001-2010 GUAN Xue-tao
8  */
9 #ifndef __UNICORE_CACHEFLUSH_H__
10 #define __UNICORE_CACHEFLUSH_H__
11
12 #include <linux/mm.h>
13
14 #include <asm/shmparam.h>
15
16 #define CACHE_COLOUR(vaddr)     ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT)
17
18 /*
19  * This flag is used to indicate that the page pointed to by a pte is clean
20  * and does not require cleaning before returning it to the user.
21  */
22 #define PG_dcache_clean PG_arch_1
23
24 /*
25  *      MM Cache Management
26  *      ===================
27  *
28  *      The arch/unicore32/mm/cache.S files implement these methods.
29  *
30  *      Start addresses are inclusive and end addresses are exclusive;
31  *      start addresses should be rounded down, end addresses up.
32  *
33  *      See Documentation/core-api/cachetlb.rst for more information.
34  *      Please note that the implementation of these, and the required
35  *      effects are cache-type (VIVT/VIPT/PIPT) specific.
36  *
37  *      flush_icache_all()
38  *
39  *              Unconditionally clean and invalidate the entire icache.
40  *              Currently only needed for cache-v6.S and cache-v7.S, see
41  *              __flush_icache_all for the generic implementation.
42  *
43  *      flush_kern_all()
44  *
45  *              Unconditionally clean and invalidate the entire cache.
46  *
47  *      flush_user_all()
48  *
49  *              Clean and invalidate all user space cache entries
50  *              before a change of page tables.
51  *
52  *      flush_user_range(start, end, flags)
53  *
54  *              Clean and invalidate a range of cache entries in the
55  *              specified address space before a change of page tables.
56  *              - start - user start address (inclusive, page aligned)
57  *              - end   - user end address   (exclusive, page aligned)
58  *              - flags - vma->vm_flags field
59  *
60  *      coherent_kern_range(start, end)
61  *
62  *              Ensure coherency between the Icache and the Dcache in the
63  *              region described by start, end.  If you have non-snooping
64  *              Harvard caches, you need to implement this function.
65  *              - start  - virtual start address
66  *              - end    - virtual end address
67  *
68  *      coherent_user_range(start, end)
69  *
70  *              Ensure coherency between the Icache and the Dcache in the
71  *              region described by start, end.  If you have non-snooping
72  *              Harvard caches, you need to implement this function.
73  *              - start  - virtual start address
74  *              - end    - virtual end address
75  *
76  *      flush_kern_dcache_area(kaddr, size)
77  *
78  *              Ensure that the data held in page is written back.
79  *              - kaddr  - page address
80  *              - size   - region size
81  *
82  *      DMA Cache Coherency
83  *      ===================
84  *
85  *      dma_flush_range(start, end)
86  *
87  *              Clean and invalidate the specified virtual address range.
88  *              - start  - virtual start address
89  *              - end    - virtual end address
90  */
91
92 extern void __cpuc_flush_icache_all(void);
93 extern void __cpuc_flush_kern_all(void);
94 extern void __cpuc_flush_user_all(void);
95 extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int);
96 extern void __cpuc_coherent_kern_range(unsigned long, unsigned long);
97 extern void __cpuc_coherent_user_range(unsigned long, unsigned long);
98 extern void __cpuc_flush_dcache_area(void *, size_t);
99 extern void __cpuc_flush_kern_dcache_area(void *addr, size_t size);
100
101 /*
102  * Copy user data from/to a page which is mapped into a different
103  * processes address space.  Really, we want to allow our "user
104  * space" model to handle this.
105  */
106 extern void copy_to_user_page(struct vm_area_struct *, struct page *,
107         unsigned long, void *, const void *, unsigned long);
108 #define copy_from_user_page(vma, page, vaddr, dst, src, len)    \
109         do {                                                    \
110                 memcpy(dst, src, len);                          \
111         } while (0)
112
113 /*
114  * Convert calls to our calling convention.
115  */
116 /* Invalidate I-cache */
117 static inline void __flush_icache_all(void)
118 {
119         asm("movc       p0.c5, %0, #20;\n"
120             "nop; nop; nop; nop; nop; nop; nop; nop\n"
121             :
122             : "r" (0));
123 }
124
125 #define flush_cache_all()               __cpuc_flush_kern_all()
126
127 extern void flush_cache_mm(struct mm_struct *mm);
128 extern void flush_cache_range(struct vm_area_struct *vma,
129                 unsigned long start, unsigned long end);
130 extern void flush_cache_page(struct vm_area_struct *vma,
131                 unsigned long user_addr, unsigned long pfn);
132
133 #define flush_cache_dup_mm(mm) flush_cache_mm(mm)
134
135 /*
136  * flush_cache_user_range is used when we want to ensure that the
137  * Harvard caches are synchronised for the user space address range.
138  * This is used for the UniCore private sys_cacheflush system call.
139  */
140 #define flush_cache_user_range(vma, start, end) \
141         __cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end))
142
143 /*
144  * Perform necessary cache operations to ensure that data previously
145  * stored within this range of addresses can be executed by the CPU.
146  */
147 #define flush_icache_range(s, e)        __cpuc_coherent_kern_range(s, e)
148
149 /*
150  * Perform necessary cache operations to ensure that the TLB will
151  * see data written in the specified area.
152  */
153 #define clean_dcache_area(start, size)  cpu_dcache_clean_area(start, size)
154
155 /*
156  * flush_dcache_page is used when the kernel has written to the page
157  * cache page at virtual address page->virtual.
158  *
159  * If this page isn't mapped (ie, page_mapping == NULL), or it might
160  * have userspace mappings, then we _must_ always clean + invalidate
161  * the dcache entries associated with the kernel mapping.
162  *
163  * Otherwise we can defer the operation, and clean the cache when we are
164  * about to change to user space.  This is the same method as used on SPARC64.
165  * See update_mmu_cache for the user space part.
166  */
167 #define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1
168 extern void flush_dcache_page(struct page *);
169
170 #define flush_dcache_mmap_lock(mapping)         do { } while (0)
171 #define flush_dcache_mmap_unlock(mapping)       do { } while (0)
172
173 #define flush_icache_user_range(vma, page, addr, len)   \
174         flush_dcache_page(page)
175
176 /*
177  * We don't appear to need to do anything here.  In fact, if we did, we'd
178  * duplicate cache flushing elsewhere performed by flush_dcache_page().
179  */
180 #define flush_icache_page(vma, page)    do { } while (0)
181
182 /*
183  * flush_cache_vmap() is used when creating mappings (eg, via vmap,
184  * vmalloc, ioremap etc) in kernel space for pages.  On non-VIPT
185  * caches, since the direct-mappings of these pages may contain cached
186  * data, we need to do a full cache flush to ensure that writebacks
187  * don't corrupt data placed into these pages via the new mappings.
188  */
189 static inline void flush_cache_vmap(unsigned long start, unsigned long end)
190 {
191 }
192
193 static inline void flush_cache_vunmap(unsigned long start, unsigned long end)
194 {
195 }
196
197 #endif