367bd000f6d15dbb0aced89b3608bcd3f8ff1d94
[sfrench/cifs-2.6.git] / arch / s390 / kernel / process.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file handles the architecture dependent parts of process handling.
4  *
5  *    Copyright IBM Corp. 1999, 2009
6  *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>,
7  *               Hartmut Penner <hp@de.ibm.com>,
8  *               Denis Joseph Barrow,
9  */
10
11 #include <linux/elf-randomize.h>
12 #include <linux/compiler.h>
13 #include <linux/cpu.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/elfcore.h>
21 #include <linux/smp.h>
22 #include <linux/slab.h>
23 #include <linux/interrupt.h>
24 #include <linux/tick.h>
25 #include <linux/personality.h>
26 #include <linux/syscalls.h>
27 #include <linux/compat.h>
28 #include <linux/kprobes.h>
29 #include <linux/random.h>
30 #include <linux/export.h>
31 #include <linux/init_task.h>
32 #include <linux/entry-common.h>
33 #include <asm/cpu_mf.h>
34 #include <asm/io.h>
35 #include <asm/processor.h>
36 #include <asm/vtimer.h>
37 #include <asm/exec.h>
38 #include <asm/irq.h>
39 #include <asm/nmi.h>
40 #include <asm/smp.h>
41 #include <asm/stacktrace.h>
42 #include <asm/switch_to.h>
43 #include <asm/runtime_instr.h>
44 #include <asm/unwind.h>
45 #include "entry.h"
46
47 void ret_from_fork(void) asm("ret_from_fork");
48
49 void __ret_from_fork(struct task_struct *prev, struct pt_regs *regs)
50 {
51         void (*func)(void *arg);
52
53         schedule_tail(prev);
54
55         if (!user_mode(regs)) {
56                 /* Kernel thread */
57                 func = (void *)regs->gprs[9];
58                 func((void *)regs->gprs[10]);
59         }
60         clear_pt_regs_flag(regs, PIF_SYSCALL);
61         syscall_exit_to_user_mode(regs);
62 }
63
64 void flush_thread(void)
65 {
66 }
67
68 void arch_setup_new_exec(void)
69 {
70         if (S390_lowcore.current_pid != current->pid) {
71                 S390_lowcore.current_pid = current->pid;
72                 if (test_facility(40))
73                         lpp(&S390_lowcore.lpp);
74         }
75 }
76
77 void arch_release_task_struct(struct task_struct *tsk)
78 {
79         runtime_instr_release(tsk);
80         guarded_storage_release(tsk);
81 }
82
83 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
84 {
85         /*
86          * Save the floating-point or vector register state of the current
87          * task and set the CIF_FPU flag to lazy restore the FPU register
88          * state when returning to user space.
89          */
90         save_fpu_regs();
91
92         memcpy(dst, src, arch_task_struct_size);
93         dst->thread.fpu.regs = dst->thread.fpu.fprs;
94         return 0;
95 }
96
97 int copy_thread(unsigned long clone_flags, unsigned long new_stackp,
98                 unsigned long arg, struct task_struct *p, unsigned long tls)
99 {
100         struct fake_frame
101         {
102                 struct stack_frame sf;
103                 struct pt_regs childregs;
104         } *frame;
105
106         frame = container_of(task_pt_regs(p), struct fake_frame, childregs);
107         p->thread.ksp = (unsigned long) frame;
108         /* Save access registers to new thread structure. */
109         save_access_regs(&p->thread.acrs[0]);
110         /* start new process with ar4 pointing to the correct address space */
111         /* Don't copy debug registers */
112         memset(&p->thread.per_user, 0, sizeof(p->thread.per_user));
113         memset(&p->thread.per_event, 0, sizeof(p->thread.per_event));
114         clear_tsk_thread_flag(p, TIF_SINGLE_STEP);
115         p->thread.per_flags = 0;
116         /* Initialize per thread user and system timer values */
117         p->thread.user_timer = 0;
118         p->thread.guest_timer = 0;
119         p->thread.system_timer = 0;
120         p->thread.hardirq_timer = 0;
121         p->thread.softirq_timer = 0;
122         p->thread.last_break = 1;
123
124         frame->sf.back_chain = 0;
125         frame->sf.gprs[5] = (unsigned long)frame + sizeof(struct stack_frame);
126         frame->sf.gprs[6] = (unsigned long)p;
127         /* new return point is ret_from_fork */
128         frame->sf.gprs[8] = (unsigned long)ret_from_fork;
129         /* fake return stack for resume(), don't go back to schedule */
130         frame->sf.gprs[9] = (unsigned long)frame;
131
132         /* Store access registers to kernel stack of new process. */
133         if (unlikely(p->flags & PF_KTHREAD)) {
134                 /* kernel thread */
135                 memset(&frame->childregs, 0, sizeof(struct pt_regs));
136                 frame->childregs.psw.mask = PSW_KERNEL_BITS | PSW_MASK_DAT |
137                                 PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK;
138                 frame->childregs.psw.addr =
139                                 (unsigned long)__ret_from_fork;
140                 frame->childregs.gprs[9] = new_stackp; /* function */
141                 frame->childregs.gprs[10] = arg;
142                 frame->childregs.gprs[11] = (unsigned long)do_exit;
143                 frame->childregs.orig_gpr2 = -1;
144
145                 return 0;
146         }
147         frame->childregs = *current_pt_regs();
148         frame->childregs.gprs[2] = 0;   /* child returns 0 on fork. */
149         frame->childregs.flags = 0;
150         if (new_stackp)
151                 frame->childregs.gprs[15] = new_stackp;
152
153         /* Don't copy runtime instrumentation info */
154         p->thread.ri_cb = NULL;
155         frame->childregs.psw.mask &= ~PSW_MASK_RI;
156         /* Don't copy guarded storage control block */
157         p->thread.gs_cb = NULL;
158         p->thread.gs_bc_cb = NULL;
159
160         /* Set a new TLS ?  */
161         if (clone_flags & CLONE_SETTLS) {
162                 if (is_compat_task()) {
163                         p->thread.acrs[0] = (unsigned int)tls;
164                 } else {
165                         p->thread.acrs[0] = (unsigned int)(tls >> 32);
166                         p->thread.acrs[1] = (unsigned int)tls;
167                 }
168         }
169         return 0;
170 }
171
172 void execve_tail(void)
173 {
174         current->thread.fpu.fpc = 0;
175         asm volatile("sfpc %0" : : "d" (0));
176 }
177
178 unsigned long get_wchan(struct task_struct *p)
179 {
180         struct unwind_state state;
181         unsigned long ip = 0;
182
183         if (!p || p == current || p->state == TASK_RUNNING || !task_stack_page(p))
184                 return 0;
185
186         if (!try_get_task_stack(p))
187                 return 0;
188
189         unwind_for_each_frame(&state, p, NULL, 0) {
190                 if (state.stack_info.type != STACK_TYPE_TASK) {
191                         ip = 0;
192                         break;
193                 }
194
195                 ip = unwind_get_return_address(&state);
196                 if (!ip)
197                         break;
198
199                 if (!in_sched_functions(ip))
200                         break;
201         }
202
203         put_task_stack(p);
204         return ip;
205 }
206
207 unsigned long arch_align_stack(unsigned long sp)
208 {
209         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
210                 sp -= get_random_int() & ~PAGE_MASK;
211         return sp & ~0xf;
212 }
213
214 static inline unsigned long brk_rnd(void)
215 {
216         return (get_random_int() & BRK_RND_MASK) << PAGE_SHIFT;
217 }
218
219 unsigned long arch_randomize_brk(struct mm_struct *mm)
220 {
221         unsigned long ret;
222
223         ret = PAGE_ALIGN(mm->brk + brk_rnd());
224         return (ret > mm->brk) ? ret : mm->brk;
225 }