Merge tag 'kvmarm-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmar...
[sfrench/cifs-2.6.git] / arch / powerpc / kvm / book3s_hv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5  *
6  * Authors:
7  *    Paul Mackerras <paulus@au1.ibm.com>
8  *    Alexander Graf <agraf@suse.de>
9  *    Kevin Wolf <mail@kevin-wolf.de>
10  *
11  * Description: KVM functions specific to running on Book 3S
12  * processors in hypervisor mode (specifically POWER7 and later).
13  *
14  * This file is derived from arch/powerpc/kvm/book3s.c,
15  * by Alexander Graf <agraf@suse.de>.
16  */
17
18 #include <linux/kvm_host.h>
19 #include <linux/kernel.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/preempt.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/stat.h>
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/fs.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/cpu.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36 #include <linux/gfp.h>
37 #include <linux/vmalloc.h>
38 #include <linux/highmem.h>
39 #include <linux/hugetlb.h>
40 #include <linux/kvm_irqfd.h>
41 #include <linux/irqbypass.h>
42 #include <linux/module.h>
43 #include <linux/compiler.h>
44 #include <linux/of.h>
45
46 #include <asm/ftrace.h>
47 #include <asm/reg.h>
48 #include <asm/ppc-opcode.h>
49 #include <asm/asm-prototypes.h>
50 #include <asm/archrandom.h>
51 #include <asm/debug.h>
52 #include <asm/disassemble.h>
53 #include <asm/cputable.h>
54 #include <asm/cacheflush.h>
55 #include <linux/uaccess.h>
56 #include <asm/interrupt.h>
57 #include <asm/io.h>
58 #include <asm/kvm_ppc.h>
59 #include <asm/kvm_book3s.h>
60 #include <asm/mmu_context.h>
61 #include <asm/lppaca.h>
62 #include <asm/processor.h>
63 #include <asm/cputhreads.h>
64 #include <asm/page.h>
65 #include <asm/hvcall.h>
66 #include <asm/switch_to.h>
67 #include <asm/smp.h>
68 #include <asm/dbell.h>
69 #include <asm/hmi.h>
70 #include <asm/pnv-pci.h>
71 #include <asm/mmu.h>
72 #include <asm/opal.h>
73 #include <asm/xics.h>
74 #include <asm/xive.h>
75 #include <asm/hw_breakpoint.h>
76 #include <asm/kvm_book3s_uvmem.h>
77 #include <asm/ultravisor.h>
78 #include <asm/dtl.h>
79 #include <asm/plpar_wrappers.h>
80
81 #include "book3s.h"
82
83 #define CREATE_TRACE_POINTS
84 #include "trace_hv.h"
85
86 /* #define EXIT_DEBUG */
87 /* #define EXIT_DEBUG_SIMPLE */
88 /* #define EXIT_DEBUG_INT */
89
90 /* Used to indicate that a guest page fault needs to be handled */
91 #define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
92 /* Used to indicate that a guest passthrough interrupt needs to be handled */
93 #define RESUME_PASSTHROUGH      (RESUME_GUEST | RESUME_FLAG_ARCH2)
94
95 /* Used as a "null" value for timebase values */
96 #define TB_NIL  (~(u64)0)
97
98 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
99
100 static int dynamic_mt_modes = 6;
101 module_param(dynamic_mt_modes, int, 0644);
102 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
103 static int target_smt_mode;
104 module_param(target_smt_mode, int, 0644);
105 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
106
107 static bool one_vm_per_core;
108 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
109 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires POWER8 or older)");
110
111 #ifdef CONFIG_KVM_XICS
112 static const struct kernel_param_ops module_param_ops = {
113         .set = param_set_int,
114         .get = param_get_int,
115 };
116
117 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
118 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
119
120 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
121 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
122 #endif
123
124 /* If set, guests are allowed to create and control nested guests */
125 static bool nested = true;
126 module_param(nested, bool, S_IRUGO | S_IWUSR);
127 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
128
129 static inline bool nesting_enabled(struct kvm *kvm)
130 {
131         return kvm->arch.nested_enable && kvm_is_radix(kvm);
132 }
133
134 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
135
136 /*
137  * RWMR values for POWER8.  These control the rate at which PURR
138  * and SPURR count and should be set according to the number of
139  * online threads in the vcore being run.
140  */
141 #define RWMR_RPA_P8_1THREAD     0x164520C62609AECAUL
142 #define RWMR_RPA_P8_2THREAD     0x7FFF2908450D8DA9UL
143 #define RWMR_RPA_P8_3THREAD     0x164520C62609AECAUL
144 #define RWMR_RPA_P8_4THREAD     0x199A421245058DA9UL
145 #define RWMR_RPA_P8_5THREAD     0x164520C62609AECAUL
146 #define RWMR_RPA_P8_6THREAD     0x164520C62609AECAUL
147 #define RWMR_RPA_P8_7THREAD     0x164520C62609AECAUL
148 #define RWMR_RPA_P8_8THREAD     0x164520C62609AECAUL
149
150 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
151         RWMR_RPA_P8_1THREAD,
152         RWMR_RPA_P8_1THREAD,
153         RWMR_RPA_P8_2THREAD,
154         RWMR_RPA_P8_3THREAD,
155         RWMR_RPA_P8_4THREAD,
156         RWMR_RPA_P8_5THREAD,
157         RWMR_RPA_P8_6THREAD,
158         RWMR_RPA_P8_7THREAD,
159         RWMR_RPA_P8_8THREAD,
160 };
161
162 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
163                 int *ip)
164 {
165         int i = *ip;
166         struct kvm_vcpu *vcpu;
167
168         while (++i < MAX_SMT_THREADS) {
169                 vcpu = READ_ONCE(vc->runnable_threads[i]);
170                 if (vcpu) {
171                         *ip = i;
172                         return vcpu;
173                 }
174         }
175         return NULL;
176 }
177
178 /* Used to traverse the list of runnable threads for a given vcore */
179 #define for_each_runnable_thread(i, vcpu, vc) \
180         for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
181
182 static bool kvmppc_ipi_thread(int cpu)
183 {
184         unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
185
186         /* If we're a nested hypervisor, fall back to ordinary IPIs for now */
187         if (kvmhv_on_pseries())
188                 return false;
189
190         /* On POWER9 we can use msgsnd to IPI any cpu */
191         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
192                 msg |= get_hard_smp_processor_id(cpu);
193                 smp_mb();
194                 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
195                 return true;
196         }
197
198         /* On POWER8 for IPIs to threads in the same core, use msgsnd */
199         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
200                 preempt_disable();
201                 if (cpu_first_thread_sibling(cpu) ==
202                     cpu_first_thread_sibling(smp_processor_id())) {
203                         msg |= cpu_thread_in_core(cpu);
204                         smp_mb();
205                         __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
206                         preempt_enable();
207                         return true;
208                 }
209                 preempt_enable();
210         }
211
212 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
213         if (cpu >= 0 && cpu < nr_cpu_ids) {
214                 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
215                         xics_wake_cpu(cpu);
216                         return true;
217                 }
218                 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
219                 return true;
220         }
221 #endif
222
223         return false;
224 }
225
226 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
227 {
228         int cpu;
229         struct rcuwait *waitp;
230
231         waitp = kvm_arch_vcpu_get_wait(vcpu);
232         if (rcuwait_wake_up(waitp))
233                 ++vcpu->stat.generic.halt_wakeup;
234
235         cpu = READ_ONCE(vcpu->arch.thread_cpu);
236         if (cpu >= 0 && kvmppc_ipi_thread(cpu))
237                 return;
238
239         /* CPU points to the first thread of the core */
240         cpu = vcpu->cpu;
241         if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
242                 smp_send_reschedule(cpu);
243 }
244
245 /*
246  * We use the vcpu_load/put functions to measure stolen time.
247  * Stolen time is counted as time when either the vcpu is able to
248  * run as part of a virtual core, but the task running the vcore
249  * is preempted or sleeping, or when the vcpu needs something done
250  * in the kernel by the task running the vcpu, but that task is
251  * preempted or sleeping.  Those two things have to be counted
252  * separately, since one of the vcpu tasks will take on the job
253  * of running the core, and the other vcpu tasks in the vcore will
254  * sleep waiting for it to do that, but that sleep shouldn't count
255  * as stolen time.
256  *
257  * Hence we accumulate stolen time when the vcpu can run as part of
258  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
259  * needs its task to do other things in the kernel (for example,
260  * service a page fault) in busy_stolen.  We don't accumulate
261  * stolen time for a vcore when it is inactive, or for a vcpu
262  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
263  * a misnomer; it means that the vcpu task is not executing in
264  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
265  * the kernel.  We don't have any way of dividing up that time
266  * between time that the vcpu is genuinely stopped, time that
267  * the task is actively working on behalf of the vcpu, and time
268  * that the task is preempted, so we don't count any of it as
269  * stolen.
270  *
271  * Updates to busy_stolen are protected by arch.tbacct_lock;
272  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
273  * lock.  The stolen times are measured in units of timebase ticks.
274  * (Note that the != TB_NIL checks below are purely defensive;
275  * they should never fail.)
276  */
277
278 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
279 {
280         unsigned long flags;
281
282         spin_lock_irqsave(&vc->stoltb_lock, flags);
283         vc->preempt_tb = mftb();
284         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
285 }
286
287 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
288 {
289         unsigned long flags;
290
291         spin_lock_irqsave(&vc->stoltb_lock, flags);
292         if (vc->preempt_tb != TB_NIL) {
293                 vc->stolen_tb += mftb() - vc->preempt_tb;
294                 vc->preempt_tb = TB_NIL;
295         }
296         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
297 }
298
299 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
300 {
301         struct kvmppc_vcore *vc = vcpu->arch.vcore;
302         unsigned long flags;
303
304         /*
305          * We can test vc->runner without taking the vcore lock,
306          * because only this task ever sets vc->runner to this
307          * vcpu, and once it is set to this vcpu, only this task
308          * ever sets it to NULL.
309          */
310         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
311                 kvmppc_core_end_stolen(vc);
312
313         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
314         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
315             vcpu->arch.busy_preempt != TB_NIL) {
316                 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
317                 vcpu->arch.busy_preempt = TB_NIL;
318         }
319         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
320 }
321
322 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
323 {
324         struct kvmppc_vcore *vc = vcpu->arch.vcore;
325         unsigned long flags;
326
327         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
328                 kvmppc_core_start_stolen(vc);
329
330         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
331         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
332                 vcpu->arch.busy_preempt = mftb();
333         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
334 }
335
336 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
337 {
338         vcpu->arch.pvr = pvr;
339 }
340
341 /* Dummy value used in computing PCR value below */
342 #define PCR_ARCH_31    (PCR_ARCH_300 << 1)
343
344 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
345 {
346         unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
347         struct kvmppc_vcore *vc = vcpu->arch.vcore;
348
349         /* We can (emulate) our own architecture version and anything older */
350         if (cpu_has_feature(CPU_FTR_ARCH_31))
351                 host_pcr_bit = PCR_ARCH_31;
352         else if (cpu_has_feature(CPU_FTR_ARCH_300))
353                 host_pcr_bit = PCR_ARCH_300;
354         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
355                 host_pcr_bit = PCR_ARCH_207;
356         else if (cpu_has_feature(CPU_FTR_ARCH_206))
357                 host_pcr_bit = PCR_ARCH_206;
358         else
359                 host_pcr_bit = PCR_ARCH_205;
360
361         /* Determine lowest PCR bit needed to run guest in given PVR level */
362         guest_pcr_bit = host_pcr_bit;
363         if (arch_compat) {
364                 switch (arch_compat) {
365                 case PVR_ARCH_205:
366                         guest_pcr_bit = PCR_ARCH_205;
367                         break;
368                 case PVR_ARCH_206:
369                 case PVR_ARCH_206p:
370                         guest_pcr_bit = PCR_ARCH_206;
371                         break;
372                 case PVR_ARCH_207:
373                         guest_pcr_bit = PCR_ARCH_207;
374                         break;
375                 case PVR_ARCH_300:
376                         guest_pcr_bit = PCR_ARCH_300;
377                         break;
378                 case PVR_ARCH_31:
379                         guest_pcr_bit = PCR_ARCH_31;
380                         break;
381                 default:
382                         return -EINVAL;
383                 }
384         }
385
386         /* Check requested PCR bits don't exceed our capabilities */
387         if (guest_pcr_bit > host_pcr_bit)
388                 return -EINVAL;
389
390         spin_lock(&vc->lock);
391         vc->arch_compat = arch_compat;
392         /*
393          * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
394          * Also set all reserved PCR bits
395          */
396         vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
397         spin_unlock(&vc->lock);
398
399         return 0;
400 }
401
402 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
403 {
404         int r;
405
406         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
407         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
408                vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
409         for (r = 0; r < 16; ++r)
410                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
411                        r, kvmppc_get_gpr(vcpu, r),
412                        r+16, kvmppc_get_gpr(vcpu, r+16));
413         pr_err("ctr = %.16lx  lr  = %.16lx\n",
414                vcpu->arch.regs.ctr, vcpu->arch.regs.link);
415         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
416                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
417         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
418                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
419         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
420                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
421         pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
422                vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
423         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
424         pr_err("fault dar = %.16lx dsisr = %.8x\n",
425                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
426         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
427         for (r = 0; r < vcpu->arch.slb_max; ++r)
428                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
429                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
430         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
431                vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
432                vcpu->arch.last_inst);
433 }
434
435 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
436 {
437         return kvm_get_vcpu_by_id(kvm, id);
438 }
439
440 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
441 {
442         vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
443         vpa->yield_count = cpu_to_be32(1);
444 }
445
446 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
447                    unsigned long addr, unsigned long len)
448 {
449         /* check address is cacheline aligned */
450         if (addr & (L1_CACHE_BYTES - 1))
451                 return -EINVAL;
452         spin_lock(&vcpu->arch.vpa_update_lock);
453         if (v->next_gpa != addr || v->len != len) {
454                 v->next_gpa = addr;
455                 v->len = addr ? len : 0;
456                 v->update_pending = 1;
457         }
458         spin_unlock(&vcpu->arch.vpa_update_lock);
459         return 0;
460 }
461
462 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
463 struct reg_vpa {
464         u32 dummy;
465         union {
466                 __be16 hword;
467                 __be32 word;
468         } length;
469 };
470
471 static int vpa_is_registered(struct kvmppc_vpa *vpap)
472 {
473         if (vpap->update_pending)
474                 return vpap->next_gpa != 0;
475         return vpap->pinned_addr != NULL;
476 }
477
478 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
479                                        unsigned long flags,
480                                        unsigned long vcpuid, unsigned long vpa)
481 {
482         struct kvm *kvm = vcpu->kvm;
483         unsigned long len, nb;
484         void *va;
485         struct kvm_vcpu *tvcpu;
486         int err;
487         int subfunc;
488         struct kvmppc_vpa *vpap;
489
490         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
491         if (!tvcpu)
492                 return H_PARAMETER;
493
494         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
495         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
496             subfunc == H_VPA_REG_SLB) {
497                 /* Registering new area - address must be cache-line aligned */
498                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
499                         return H_PARAMETER;
500
501                 /* convert logical addr to kernel addr and read length */
502                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
503                 if (va == NULL)
504                         return H_PARAMETER;
505                 if (subfunc == H_VPA_REG_VPA)
506                         len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
507                 else
508                         len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
509                 kvmppc_unpin_guest_page(kvm, va, vpa, false);
510
511                 /* Check length */
512                 if (len > nb || len < sizeof(struct reg_vpa))
513                         return H_PARAMETER;
514         } else {
515                 vpa = 0;
516                 len = 0;
517         }
518
519         err = H_PARAMETER;
520         vpap = NULL;
521         spin_lock(&tvcpu->arch.vpa_update_lock);
522
523         switch (subfunc) {
524         case H_VPA_REG_VPA:             /* register VPA */
525                 /*
526                  * The size of our lppaca is 1kB because of the way we align
527                  * it for the guest to avoid crossing a 4kB boundary. We only
528                  * use 640 bytes of the structure though, so we should accept
529                  * clients that set a size of 640.
530                  */
531                 BUILD_BUG_ON(sizeof(struct lppaca) != 640);
532                 if (len < sizeof(struct lppaca))
533                         break;
534                 vpap = &tvcpu->arch.vpa;
535                 err = 0;
536                 break;
537
538         case H_VPA_REG_DTL:             /* register DTL */
539                 if (len < sizeof(struct dtl_entry))
540                         break;
541                 len -= len % sizeof(struct dtl_entry);
542
543                 /* Check that they have previously registered a VPA */
544                 err = H_RESOURCE;
545                 if (!vpa_is_registered(&tvcpu->arch.vpa))
546                         break;
547
548                 vpap = &tvcpu->arch.dtl;
549                 err = 0;
550                 break;
551
552         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
553                 /* Check that they have previously registered a VPA */
554                 err = H_RESOURCE;
555                 if (!vpa_is_registered(&tvcpu->arch.vpa))
556                         break;
557
558                 vpap = &tvcpu->arch.slb_shadow;
559                 err = 0;
560                 break;
561
562         case H_VPA_DEREG_VPA:           /* deregister VPA */
563                 /* Check they don't still have a DTL or SLB buf registered */
564                 err = H_RESOURCE;
565                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
566                     vpa_is_registered(&tvcpu->arch.slb_shadow))
567                         break;
568
569                 vpap = &tvcpu->arch.vpa;
570                 err = 0;
571                 break;
572
573         case H_VPA_DEREG_DTL:           /* deregister DTL */
574                 vpap = &tvcpu->arch.dtl;
575                 err = 0;
576                 break;
577
578         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
579                 vpap = &tvcpu->arch.slb_shadow;
580                 err = 0;
581                 break;
582         }
583
584         if (vpap) {
585                 vpap->next_gpa = vpa;
586                 vpap->len = len;
587                 vpap->update_pending = 1;
588         }
589
590         spin_unlock(&tvcpu->arch.vpa_update_lock);
591
592         return err;
593 }
594
595 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
596 {
597         struct kvm *kvm = vcpu->kvm;
598         void *va;
599         unsigned long nb;
600         unsigned long gpa;
601
602         /*
603          * We need to pin the page pointed to by vpap->next_gpa,
604          * but we can't call kvmppc_pin_guest_page under the lock
605          * as it does get_user_pages() and down_read().  So we
606          * have to drop the lock, pin the page, then get the lock
607          * again and check that a new area didn't get registered
608          * in the meantime.
609          */
610         for (;;) {
611                 gpa = vpap->next_gpa;
612                 spin_unlock(&vcpu->arch.vpa_update_lock);
613                 va = NULL;
614                 nb = 0;
615                 if (gpa)
616                         va = kvmppc_pin_guest_page(kvm, gpa, &nb);
617                 spin_lock(&vcpu->arch.vpa_update_lock);
618                 if (gpa == vpap->next_gpa)
619                         break;
620                 /* sigh... unpin that one and try again */
621                 if (va)
622                         kvmppc_unpin_guest_page(kvm, va, gpa, false);
623         }
624
625         vpap->update_pending = 0;
626         if (va && nb < vpap->len) {
627                 /*
628                  * If it's now too short, it must be that userspace
629                  * has changed the mappings underlying guest memory,
630                  * so unregister the region.
631                  */
632                 kvmppc_unpin_guest_page(kvm, va, gpa, false);
633                 va = NULL;
634         }
635         if (vpap->pinned_addr)
636                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
637                                         vpap->dirty);
638         vpap->gpa = gpa;
639         vpap->pinned_addr = va;
640         vpap->dirty = false;
641         if (va)
642                 vpap->pinned_end = va + vpap->len;
643 }
644
645 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
646 {
647         if (!(vcpu->arch.vpa.update_pending ||
648               vcpu->arch.slb_shadow.update_pending ||
649               vcpu->arch.dtl.update_pending))
650                 return;
651
652         spin_lock(&vcpu->arch.vpa_update_lock);
653         if (vcpu->arch.vpa.update_pending) {
654                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
655                 if (vcpu->arch.vpa.pinned_addr)
656                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
657         }
658         if (vcpu->arch.dtl.update_pending) {
659                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
660                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
661                 vcpu->arch.dtl_index = 0;
662         }
663         if (vcpu->arch.slb_shadow.update_pending)
664                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
665         spin_unlock(&vcpu->arch.vpa_update_lock);
666 }
667
668 /*
669  * Return the accumulated stolen time for the vcore up until `now'.
670  * The caller should hold the vcore lock.
671  */
672 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
673 {
674         u64 p;
675         unsigned long flags;
676
677         spin_lock_irqsave(&vc->stoltb_lock, flags);
678         p = vc->stolen_tb;
679         if (vc->vcore_state != VCORE_INACTIVE &&
680             vc->preempt_tb != TB_NIL)
681                 p += now - vc->preempt_tb;
682         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
683         return p;
684 }
685
686 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
687                                     struct kvmppc_vcore *vc)
688 {
689         struct dtl_entry *dt;
690         struct lppaca *vpa;
691         unsigned long stolen;
692         unsigned long core_stolen;
693         u64 now;
694         unsigned long flags;
695
696         dt = vcpu->arch.dtl_ptr;
697         vpa = vcpu->arch.vpa.pinned_addr;
698         now = mftb();
699         core_stolen = vcore_stolen_time(vc, now);
700         stolen = core_stolen - vcpu->arch.stolen_logged;
701         vcpu->arch.stolen_logged = core_stolen;
702         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
703         stolen += vcpu->arch.busy_stolen;
704         vcpu->arch.busy_stolen = 0;
705         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
706         if (!dt || !vpa)
707                 return;
708         memset(dt, 0, sizeof(struct dtl_entry));
709         dt->dispatch_reason = 7;
710         dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
711         dt->timebase = cpu_to_be64(now + vc->tb_offset);
712         dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
713         dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
714         dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
715         ++dt;
716         if (dt == vcpu->arch.dtl.pinned_end)
717                 dt = vcpu->arch.dtl.pinned_addr;
718         vcpu->arch.dtl_ptr = dt;
719         /* order writing *dt vs. writing vpa->dtl_idx */
720         smp_wmb();
721         vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
722         vcpu->arch.dtl.dirty = true;
723 }
724
725 /* See if there is a doorbell interrupt pending for a vcpu */
726 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
727 {
728         int thr;
729         struct kvmppc_vcore *vc;
730
731         if (vcpu->arch.doorbell_request)
732                 return true;
733         /*
734          * Ensure that the read of vcore->dpdes comes after the read
735          * of vcpu->doorbell_request.  This barrier matches the
736          * smp_wmb() in kvmppc_guest_entry_inject().
737          */
738         smp_rmb();
739         vc = vcpu->arch.vcore;
740         thr = vcpu->vcpu_id - vc->first_vcpuid;
741         return !!(vc->dpdes & (1 << thr));
742 }
743
744 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
745 {
746         if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
747                 return true;
748         if ((!vcpu->arch.vcore->arch_compat) &&
749             cpu_has_feature(CPU_FTR_ARCH_207S))
750                 return true;
751         return false;
752 }
753
754 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
755                              unsigned long resource, unsigned long value1,
756                              unsigned long value2)
757 {
758         switch (resource) {
759         case H_SET_MODE_RESOURCE_SET_CIABR:
760                 if (!kvmppc_power8_compatible(vcpu))
761                         return H_P2;
762                 if (value2)
763                         return H_P4;
764                 if (mflags)
765                         return H_UNSUPPORTED_FLAG_START;
766                 /* Guests can't breakpoint the hypervisor */
767                 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
768                         return H_P3;
769                 vcpu->arch.ciabr  = value1;
770                 return H_SUCCESS;
771         case H_SET_MODE_RESOURCE_SET_DAWR0:
772                 if (!kvmppc_power8_compatible(vcpu))
773                         return H_P2;
774                 if (!ppc_breakpoint_available())
775                         return H_P2;
776                 if (mflags)
777                         return H_UNSUPPORTED_FLAG_START;
778                 if (value2 & DABRX_HYP)
779                         return H_P4;
780                 vcpu->arch.dawr0  = value1;
781                 vcpu->arch.dawrx0 = value2;
782                 return H_SUCCESS;
783         case H_SET_MODE_RESOURCE_SET_DAWR1:
784                 if (!kvmppc_power8_compatible(vcpu))
785                         return H_P2;
786                 if (!ppc_breakpoint_available())
787                         return H_P2;
788                 if (!cpu_has_feature(CPU_FTR_DAWR1))
789                         return H_P2;
790                 if (!vcpu->kvm->arch.dawr1_enabled)
791                         return H_FUNCTION;
792                 if (mflags)
793                         return H_UNSUPPORTED_FLAG_START;
794                 if (value2 & DABRX_HYP)
795                         return H_P4;
796                 vcpu->arch.dawr1  = value1;
797                 vcpu->arch.dawrx1 = value2;
798                 return H_SUCCESS;
799         case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
800                 /*
801                  * KVM does not support mflags=2 (AIL=2) and AIL=1 is reserved.
802                  * Keep this in synch with kvmppc_filter_guest_lpcr_hv.
803                  */
804                 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
805                                 kvmhv_vcpu_is_radix(vcpu) && mflags == 3)
806                         return H_UNSUPPORTED_FLAG_START;
807                 return H_TOO_HARD;
808         default:
809                 return H_TOO_HARD;
810         }
811 }
812
813 /* Copy guest memory in place - must reside within a single memslot */
814 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
815                                   unsigned long len)
816 {
817         struct kvm_memory_slot *to_memslot = NULL;
818         struct kvm_memory_slot *from_memslot = NULL;
819         unsigned long to_addr, from_addr;
820         int r;
821
822         /* Get HPA for from address */
823         from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
824         if (!from_memslot)
825                 return -EFAULT;
826         if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
827                              << PAGE_SHIFT))
828                 return -EINVAL;
829         from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
830         if (kvm_is_error_hva(from_addr))
831                 return -EFAULT;
832         from_addr |= (from & (PAGE_SIZE - 1));
833
834         /* Get HPA for to address */
835         to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
836         if (!to_memslot)
837                 return -EFAULT;
838         if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
839                            << PAGE_SHIFT))
840                 return -EINVAL;
841         to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
842         if (kvm_is_error_hva(to_addr))
843                 return -EFAULT;
844         to_addr |= (to & (PAGE_SIZE - 1));
845
846         /* Perform copy */
847         r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
848                              len);
849         if (r)
850                 return -EFAULT;
851         mark_page_dirty(kvm, to >> PAGE_SHIFT);
852         return 0;
853 }
854
855 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
856                                unsigned long dest, unsigned long src)
857 {
858         u64 pg_sz = SZ_4K;              /* 4K page size */
859         u64 pg_mask = SZ_4K - 1;
860         int ret;
861
862         /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
863         if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
864                       H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
865                 return H_PARAMETER;
866
867         /* dest (and src if copy_page flag set) must be page aligned */
868         if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
869                 return H_PARAMETER;
870
871         /* zero and/or copy the page as determined by the flags */
872         if (flags & H_COPY_PAGE) {
873                 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
874                 if (ret < 0)
875                         return H_PARAMETER;
876         } else if (flags & H_ZERO_PAGE) {
877                 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
878                 if (ret < 0)
879                         return H_PARAMETER;
880         }
881
882         /* We can ignore the remaining flags */
883
884         return H_SUCCESS;
885 }
886
887 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
888 {
889         struct kvmppc_vcore *vcore = target->arch.vcore;
890
891         /*
892          * We expect to have been called by the real mode handler
893          * (kvmppc_rm_h_confer()) which would have directly returned
894          * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
895          * have useful work to do and should not confer) so we don't
896          * recheck that here.
897          *
898          * In the case of the P9 single vcpu per vcore case, the real
899          * mode handler is not called but no other threads are in the
900          * source vcore.
901          */
902
903         spin_lock(&vcore->lock);
904         if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
905             vcore->vcore_state != VCORE_INACTIVE &&
906             vcore->runner)
907                 target = vcore->runner;
908         spin_unlock(&vcore->lock);
909
910         return kvm_vcpu_yield_to(target);
911 }
912
913 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
914 {
915         int yield_count = 0;
916         struct lppaca *lppaca;
917
918         spin_lock(&vcpu->arch.vpa_update_lock);
919         lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
920         if (lppaca)
921                 yield_count = be32_to_cpu(lppaca->yield_count);
922         spin_unlock(&vcpu->arch.vpa_update_lock);
923         return yield_count;
924 }
925
926 /*
927  * H_RPT_INVALIDATE hcall handler for nested guests.
928  *
929  * Handles only nested process-scoped invalidation requests in L0.
930  */
931 static int kvmppc_nested_h_rpt_invalidate(struct kvm_vcpu *vcpu)
932 {
933         unsigned long type = kvmppc_get_gpr(vcpu, 6);
934         unsigned long pid, pg_sizes, start, end;
935
936         /*
937          * The partition-scoped invalidations aren't handled here in L0.
938          */
939         if (type & H_RPTI_TYPE_NESTED)
940                 return RESUME_HOST;
941
942         pid = kvmppc_get_gpr(vcpu, 4);
943         pg_sizes = kvmppc_get_gpr(vcpu, 7);
944         start = kvmppc_get_gpr(vcpu, 8);
945         end = kvmppc_get_gpr(vcpu, 9);
946
947         do_h_rpt_invalidate_prt(pid, vcpu->arch.nested->shadow_lpid,
948                                 type, pg_sizes, start, end);
949
950         kvmppc_set_gpr(vcpu, 3, H_SUCCESS);
951         return RESUME_GUEST;
952 }
953
954 static long kvmppc_h_rpt_invalidate(struct kvm_vcpu *vcpu,
955                                     unsigned long id, unsigned long target,
956                                     unsigned long type, unsigned long pg_sizes,
957                                     unsigned long start, unsigned long end)
958 {
959         if (!kvm_is_radix(vcpu->kvm))
960                 return H_UNSUPPORTED;
961
962         if (end < start)
963                 return H_P5;
964
965         /*
966          * Partition-scoped invalidation for nested guests.
967          */
968         if (type & H_RPTI_TYPE_NESTED) {
969                 if (!nesting_enabled(vcpu->kvm))
970                         return H_FUNCTION;
971
972                 /* Support only cores as target */
973                 if (target != H_RPTI_TARGET_CMMU)
974                         return H_P2;
975
976                 return do_h_rpt_invalidate_pat(vcpu, id, type, pg_sizes,
977                                                start, end);
978         }
979
980         /*
981          * Process-scoped invalidation for L1 guests.
982          */
983         do_h_rpt_invalidate_prt(id, vcpu->kvm->arch.lpid,
984                                 type, pg_sizes, start, end);
985         return H_SUCCESS;
986 }
987
988 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
989 {
990         struct kvm *kvm = vcpu->kvm;
991         unsigned long req = kvmppc_get_gpr(vcpu, 3);
992         unsigned long target, ret = H_SUCCESS;
993         int yield_count;
994         struct kvm_vcpu *tvcpu;
995         int idx, rc;
996
997         if (req <= MAX_HCALL_OPCODE &&
998             !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
999                 return RESUME_HOST;
1000
1001         switch (req) {
1002         case H_REMOVE:
1003                 ret = kvmppc_h_remove(vcpu, kvmppc_get_gpr(vcpu, 4),
1004                                         kvmppc_get_gpr(vcpu, 5),
1005                                         kvmppc_get_gpr(vcpu, 6));
1006                 if (ret == H_TOO_HARD)
1007                         return RESUME_HOST;
1008                 break;
1009         case H_ENTER:
1010                 ret = kvmppc_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
1011                                         kvmppc_get_gpr(vcpu, 5),
1012                                         kvmppc_get_gpr(vcpu, 6),
1013                                         kvmppc_get_gpr(vcpu, 7));
1014                 if (ret == H_TOO_HARD)
1015                         return RESUME_HOST;
1016                 break;
1017         case H_READ:
1018                 ret = kvmppc_h_read(vcpu, kvmppc_get_gpr(vcpu, 4),
1019                                         kvmppc_get_gpr(vcpu, 5));
1020                 if (ret == H_TOO_HARD)
1021                         return RESUME_HOST;
1022                 break;
1023         case H_CLEAR_MOD:
1024                 ret = kvmppc_h_clear_mod(vcpu, kvmppc_get_gpr(vcpu, 4),
1025                                         kvmppc_get_gpr(vcpu, 5));
1026                 if (ret == H_TOO_HARD)
1027                         return RESUME_HOST;
1028                 break;
1029         case H_CLEAR_REF:
1030                 ret = kvmppc_h_clear_ref(vcpu, kvmppc_get_gpr(vcpu, 4),
1031                                         kvmppc_get_gpr(vcpu, 5));
1032                 if (ret == H_TOO_HARD)
1033                         return RESUME_HOST;
1034                 break;
1035         case H_PROTECT:
1036                 ret = kvmppc_h_protect(vcpu, kvmppc_get_gpr(vcpu, 4),
1037                                         kvmppc_get_gpr(vcpu, 5),
1038                                         kvmppc_get_gpr(vcpu, 6));
1039                 if (ret == H_TOO_HARD)
1040                         return RESUME_HOST;
1041                 break;
1042         case H_BULK_REMOVE:
1043                 ret = kvmppc_h_bulk_remove(vcpu);
1044                 if (ret == H_TOO_HARD)
1045                         return RESUME_HOST;
1046                 break;
1047
1048         case H_CEDE:
1049                 break;
1050         case H_PROD:
1051                 target = kvmppc_get_gpr(vcpu, 4);
1052                 tvcpu = kvmppc_find_vcpu(kvm, target);
1053                 if (!tvcpu) {
1054                         ret = H_PARAMETER;
1055                         break;
1056                 }
1057                 tvcpu->arch.prodded = 1;
1058                 smp_mb();
1059                 if (tvcpu->arch.ceded)
1060                         kvmppc_fast_vcpu_kick_hv(tvcpu);
1061                 break;
1062         case H_CONFER:
1063                 target = kvmppc_get_gpr(vcpu, 4);
1064                 if (target == -1)
1065                         break;
1066                 tvcpu = kvmppc_find_vcpu(kvm, target);
1067                 if (!tvcpu) {
1068                         ret = H_PARAMETER;
1069                         break;
1070                 }
1071                 yield_count = kvmppc_get_gpr(vcpu, 5);
1072                 if (kvmppc_get_yield_count(tvcpu) != yield_count)
1073                         break;
1074                 kvm_arch_vcpu_yield_to(tvcpu);
1075                 break;
1076         case H_REGISTER_VPA:
1077                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
1078                                         kvmppc_get_gpr(vcpu, 5),
1079                                         kvmppc_get_gpr(vcpu, 6));
1080                 break;
1081         case H_RTAS:
1082                 if (list_empty(&kvm->arch.rtas_tokens))
1083                         return RESUME_HOST;
1084
1085                 idx = srcu_read_lock(&kvm->srcu);
1086                 rc = kvmppc_rtas_hcall(vcpu);
1087                 srcu_read_unlock(&kvm->srcu, idx);
1088
1089                 if (rc == -ENOENT)
1090                         return RESUME_HOST;
1091                 else if (rc == 0)
1092                         break;
1093
1094                 /* Send the error out to userspace via KVM_RUN */
1095                 return rc;
1096         case H_LOGICAL_CI_LOAD:
1097                 ret = kvmppc_h_logical_ci_load(vcpu);
1098                 if (ret == H_TOO_HARD)
1099                         return RESUME_HOST;
1100                 break;
1101         case H_LOGICAL_CI_STORE:
1102                 ret = kvmppc_h_logical_ci_store(vcpu);
1103                 if (ret == H_TOO_HARD)
1104                         return RESUME_HOST;
1105                 break;
1106         case H_SET_MODE:
1107                 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
1108                                         kvmppc_get_gpr(vcpu, 5),
1109                                         kvmppc_get_gpr(vcpu, 6),
1110                                         kvmppc_get_gpr(vcpu, 7));
1111                 if (ret == H_TOO_HARD)
1112                         return RESUME_HOST;
1113                 break;
1114         case H_XIRR:
1115         case H_CPPR:
1116         case H_EOI:
1117         case H_IPI:
1118         case H_IPOLL:
1119         case H_XIRR_X:
1120                 if (kvmppc_xics_enabled(vcpu)) {
1121                         if (xics_on_xive()) {
1122                                 ret = H_NOT_AVAILABLE;
1123                                 return RESUME_GUEST;
1124                         }
1125                         ret = kvmppc_xics_hcall(vcpu, req);
1126                         break;
1127                 }
1128                 return RESUME_HOST;
1129         case H_SET_DABR:
1130                 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
1131                 break;
1132         case H_SET_XDABR:
1133                 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1134                                                 kvmppc_get_gpr(vcpu, 5));
1135                 break;
1136 #ifdef CONFIG_SPAPR_TCE_IOMMU
1137         case H_GET_TCE:
1138                 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1139                                                 kvmppc_get_gpr(vcpu, 5));
1140                 if (ret == H_TOO_HARD)
1141                         return RESUME_HOST;
1142                 break;
1143         case H_PUT_TCE:
1144                 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1145                                                 kvmppc_get_gpr(vcpu, 5),
1146                                                 kvmppc_get_gpr(vcpu, 6));
1147                 if (ret == H_TOO_HARD)
1148                         return RESUME_HOST;
1149                 break;
1150         case H_PUT_TCE_INDIRECT:
1151                 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1152                                                 kvmppc_get_gpr(vcpu, 5),
1153                                                 kvmppc_get_gpr(vcpu, 6),
1154                                                 kvmppc_get_gpr(vcpu, 7));
1155                 if (ret == H_TOO_HARD)
1156                         return RESUME_HOST;
1157                 break;
1158         case H_STUFF_TCE:
1159                 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1160                                                 kvmppc_get_gpr(vcpu, 5),
1161                                                 kvmppc_get_gpr(vcpu, 6),
1162                                                 kvmppc_get_gpr(vcpu, 7));
1163                 if (ret == H_TOO_HARD)
1164                         return RESUME_HOST;
1165                 break;
1166 #endif
1167         case H_RANDOM:
1168                 if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4]))
1169                         ret = H_HARDWARE;
1170                 break;
1171         case H_RPT_INVALIDATE:
1172                 ret = kvmppc_h_rpt_invalidate(vcpu, kvmppc_get_gpr(vcpu, 4),
1173                                               kvmppc_get_gpr(vcpu, 5),
1174                                               kvmppc_get_gpr(vcpu, 6),
1175                                               kvmppc_get_gpr(vcpu, 7),
1176                                               kvmppc_get_gpr(vcpu, 8),
1177                                               kvmppc_get_gpr(vcpu, 9));
1178                 break;
1179
1180         case H_SET_PARTITION_TABLE:
1181                 ret = H_FUNCTION;
1182                 if (nesting_enabled(kvm))
1183                         ret = kvmhv_set_partition_table(vcpu);
1184                 break;
1185         case H_ENTER_NESTED:
1186                 ret = H_FUNCTION;
1187                 if (!nesting_enabled(kvm))
1188                         break;
1189                 ret = kvmhv_enter_nested_guest(vcpu);
1190                 if (ret == H_INTERRUPT) {
1191                         kvmppc_set_gpr(vcpu, 3, 0);
1192                         vcpu->arch.hcall_needed = 0;
1193                         return -EINTR;
1194                 } else if (ret == H_TOO_HARD) {
1195                         kvmppc_set_gpr(vcpu, 3, 0);
1196                         vcpu->arch.hcall_needed = 0;
1197                         return RESUME_HOST;
1198                 }
1199                 break;
1200         case H_TLB_INVALIDATE:
1201                 ret = H_FUNCTION;
1202                 if (nesting_enabled(kvm))
1203                         ret = kvmhv_do_nested_tlbie(vcpu);
1204                 break;
1205         case H_COPY_TOFROM_GUEST:
1206                 ret = H_FUNCTION;
1207                 if (nesting_enabled(kvm))
1208                         ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1209                 break;
1210         case H_PAGE_INIT:
1211                 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1212                                          kvmppc_get_gpr(vcpu, 5),
1213                                          kvmppc_get_gpr(vcpu, 6));
1214                 break;
1215         case H_SVM_PAGE_IN:
1216                 ret = H_UNSUPPORTED;
1217                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1218                         ret = kvmppc_h_svm_page_in(kvm,
1219                                                    kvmppc_get_gpr(vcpu, 4),
1220                                                    kvmppc_get_gpr(vcpu, 5),
1221                                                    kvmppc_get_gpr(vcpu, 6));
1222                 break;
1223         case H_SVM_PAGE_OUT:
1224                 ret = H_UNSUPPORTED;
1225                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1226                         ret = kvmppc_h_svm_page_out(kvm,
1227                                                     kvmppc_get_gpr(vcpu, 4),
1228                                                     kvmppc_get_gpr(vcpu, 5),
1229                                                     kvmppc_get_gpr(vcpu, 6));
1230                 break;
1231         case H_SVM_INIT_START:
1232                 ret = H_UNSUPPORTED;
1233                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1234                         ret = kvmppc_h_svm_init_start(kvm);
1235                 break;
1236         case H_SVM_INIT_DONE:
1237                 ret = H_UNSUPPORTED;
1238                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1239                         ret = kvmppc_h_svm_init_done(kvm);
1240                 break;
1241         case H_SVM_INIT_ABORT:
1242                 /*
1243                  * Even if that call is made by the Ultravisor, the SSR1 value
1244                  * is the guest context one, with the secure bit clear as it has
1245                  * not yet been secured. So we can't check it here.
1246                  * Instead the kvm->arch.secure_guest flag is checked inside
1247                  * kvmppc_h_svm_init_abort().
1248                  */
1249                 ret = kvmppc_h_svm_init_abort(kvm);
1250                 break;
1251
1252         default:
1253                 return RESUME_HOST;
1254         }
1255         WARN_ON_ONCE(ret == H_TOO_HARD);
1256         kvmppc_set_gpr(vcpu, 3, ret);
1257         vcpu->arch.hcall_needed = 0;
1258         return RESUME_GUEST;
1259 }
1260
1261 /*
1262  * Handle H_CEDE in the P9 path where we don't call the real-mode hcall
1263  * handlers in book3s_hv_rmhandlers.S.
1264  *
1265  * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1266  * that the cede logic in kvmppc_run_single_vcpu() works properly.
1267  */
1268 static void kvmppc_cede(struct kvm_vcpu *vcpu)
1269 {
1270         vcpu->arch.shregs.msr |= MSR_EE;
1271         vcpu->arch.ceded = 1;
1272         smp_mb();
1273         if (vcpu->arch.prodded) {
1274                 vcpu->arch.prodded = 0;
1275                 smp_mb();
1276                 vcpu->arch.ceded = 0;
1277         }
1278 }
1279
1280 static int kvmppc_hcall_impl_hv(unsigned long cmd)
1281 {
1282         switch (cmd) {
1283         case H_CEDE:
1284         case H_PROD:
1285         case H_CONFER:
1286         case H_REGISTER_VPA:
1287         case H_SET_MODE:
1288         case H_LOGICAL_CI_LOAD:
1289         case H_LOGICAL_CI_STORE:
1290 #ifdef CONFIG_KVM_XICS
1291         case H_XIRR:
1292         case H_CPPR:
1293         case H_EOI:
1294         case H_IPI:
1295         case H_IPOLL:
1296         case H_XIRR_X:
1297 #endif
1298         case H_PAGE_INIT:
1299         case H_RPT_INVALIDATE:
1300                 return 1;
1301         }
1302
1303         /* See if it's in the real-mode table */
1304         return kvmppc_hcall_impl_hv_realmode(cmd);
1305 }
1306
1307 static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu)
1308 {
1309         u32 last_inst;
1310
1311         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1312                                         EMULATE_DONE) {
1313                 /*
1314                  * Fetch failed, so return to guest and
1315                  * try executing it again.
1316                  */
1317                 return RESUME_GUEST;
1318         }
1319
1320         if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
1321                 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
1322                 vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu);
1323                 return RESUME_HOST;
1324         } else {
1325                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1326                 return RESUME_GUEST;
1327         }
1328 }
1329
1330 static void do_nothing(void *x)
1331 {
1332 }
1333
1334 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1335 {
1336         int thr, cpu, pcpu, nthreads;
1337         struct kvm_vcpu *v;
1338         unsigned long dpdes;
1339
1340         nthreads = vcpu->kvm->arch.emul_smt_mode;
1341         dpdes = 0;
1342         cpu = vcpu->vcpu_id & ~(nthreads - 1);
1343         for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1344                 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1345                 if (!v)
1346                         continue;
1347                 /*
1348                  * If the vcpu is currently running on a physical cpu thread,
1349                  * interrupt it in order to pull it out of the guest briefly,
1350                  * which will update its vcore->dpdes value.
1351                  */
1352                 pcpu = READ_ONCE(v->cpu);
1353                 if (pcpu >= 0)
1354                         smp_call_function_single(pcpu, do_nothing, NULL, 1);
1355                 if (kvmppc_doorbell_pending(v))
1356                         dpdes |= 1 << thr;
1357         }
1358         return dpdes;
1359 }
1360
1361 /*
1362  * On POWER9, emulate doorbell-related instructions in order to
1363  * give the guest the illusion of running on a multi-threaded core.
1364  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1365  * and mfspr DPDES.
1366  */
1367 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1368 {
1369         u32 inst, rb, thr;
1370         unsigned long arg;
1371         struct kvm *kvm = vcpu->kvm;
1372         struct kvm_vcpu *tvcpu;
1373
1374         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1375                 return RESUME_GUEST;
1376         if (get_op(inst) != 31)
1377                 return EMULATE_FAIL;
1378         rb = get_rb(inst);
1379         thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1380         switch (get_xop(inst)) {
1381         case OP_31_XOP_MSGSNDP:
1382                 arg = kvmppc_get_gpr(vcpu, rb);
1383                 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1384                         break;
1385                 arg &= 0x7f;
1386                 if (arg >= kvm->arch.emul_smt_mode)
1387                         break;
1388                 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1389                 if (!tvcpu)
1390                         break;
1391                 if (!tvcpu->arch.doorbell_request) {
1392                         tvcpu->arch.doorbell_request = 1;
1393                         kvmppc_fast_vcpu_kick_hv(tvcpu);
1394                 }
1395                 break;
1396         case OP_31_XOP_MSGCLRP:
1397                 arg = kvmppc_get_gpr(vcpu, rb);
1398                 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1399                         break;
1400                 vcpu->arch.vcore->dpdes = 0;
1401                 vcpu->arch.doorbell_request = 0;
1402                 break;
1403         case OP_31_XOP_MFSPR:
1404                 switch (get_sprn(inst)) {
1405                 case SPRN_TIR:
1406                         arg = thr;
1407                         break;
1408                 case SPRN_DPDES:
1409                         arg = kvmppc_read_dpdes(vcpu);
1410                         break;
1411                 default:
1412                         return EMULATE_FAIL;
1413                 }
1414                 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1415                 break;
1416         default:
1417                 return EMULATE_FAIL;
1418         }
1419         kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1420         return RESUME_GUEST;
1421 }
1422
1423 static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu,
1424                                  struct task_struct *tsk)
1425 {
1426         struct kvm_run *run = vcpu->run;
1427         int r = RESUME_HOST;
1428
1429         vcpu->stat.sum_exits++;
1430
1431         /*
1432          * This can happen if an interrupt occurs in the last stages
1433          * of guest entry or the first stages of guest exit (i.e. after
1434          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1435          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1436          * That can happen due to a bug, or due to a machine check
1437          * occurring at just the wrong time.
1438          */
1439         if (vcpu->arch.shregs.msr & MSR_HV) {
1440                 printk(KERN_EMERG "KVM trap in HV mode!\n");
1441                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1442                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1443                         vcpu->arch.shregs.msr);
1444                 kvmppc_dump_regs(vcpu);
1445                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1446                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1447                 return RESUME_HOST;
1448         }
1449         run->exit_reason = KVM_EXIT_UNKNOWN;
1450         run->ready_for_interrupt_injection = 1;
1451         switch (vcpu->arch.trap) {
1452         /* We're good on these - the host merely wanted to get our attention */
1453         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1454                 vcpu->stat.dec_exits++;
1455                 r = RESUME_GUEST;
1456                 break;
1457         case BOOK3S_INTERRUPT_EXTERNAL:
1458         case BOOK3S_INTERRUPT_H_DOORBELL:
1459         case BOOK3S_INTERRUPT_H_VIRT:
1460                 vcpu->stat.ext_intr_exits++;
1461                 r = RESUME_GUEST;
1462                 break;
1463         /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1464         case BOOK3S_INTERRUPT_HMI:
1465         case BOOK3S_INTERRUPT_PERFMON:
1466         case BOOK3S_INTERRUPT_SYSTEM_RESET:
1467                 r = RESUME_GUEST;
1468                 break;
1469         case BOOK3S_INTERRUPT_MACHINE_CHECK: {
1470                 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1471                                               DEFAULT_RATELIMIT_BURST);
1472                 /*
1473                  * Print the MCE event to host console. Ratelimit so the guest
1474                  * can't flood the host log.
1475                  */
1476                 if (__ratelimit(&rs))
1477                         machine_check_print_event_info(&vcpu->arch.mce_evt,false, true);
1478
1479                 /*
1480                  * If the guest can do FWNMI, exit to userspace so it can
1481                  * deliver a FWNMI to the guest.
1482                  * Otherwise we synthesize a machine check for the guest
1483                  * so that it knows that the machine check occurred.
1484                  */
1485                 if (!vcpu->kvm->arch.fwnmi_enabled) {
1486                         ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
1487                         kvmppc_core_queue_machine_check(vcpu, flags);
1488                         r = RESUME_GUEST;
1489                         break;
1490                 }
1491
1492                 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1493                 run->exit_reason = KVM_EXIT_NMI;
1494                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1495                 /* Clear out the old NMI status from run->flags */
1496                 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1497                 /* Now set the NMI status */
1498                 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1499                         run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1500                 else
1501                         run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1502
1503                 r = RESUME_HOST;
1504                 break;
1505         }
1506         case BOOK3S_INTERRUPT_PROGRAM:
1507         {
1508                 ulong flags;
1509                 /*
1510                  * Normally program interrupts are delivered directly
1511                  * to the guest by the hardware, but we can get here
1512                  * as a result of a hypervisor emulation interrupt
1513                  * (e40) getting turned into a 700 by BML RTAS.
1514                  */
1515                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1516                 kvmppc_core_queue_program(vcpu, flags);
1517                 r = RESUME_GUEST;
1518                 break;
1519         }
1520         case BOOK3S_INTERRUPT_SYSCALL:
1521         {
1522                 int i;
1523
1524                 if (unlikely(vcpu->arch.shregs.msr & MSR_PR)) {
1525                         /*
1526                          * Guest userspace executed sc 1. This can only be
1527                          * reached by the P9 path because the old path
1528                          * handles this case in realmode hcall handlers.
1529                          */
1530                         if (!kvmhv_vcpu_is_radix(vcpu)) {
1531                                 /*
1532                                  * A guest could be running PR KVM, so this
1533                                  * may be a PR KVM hcall. It must be reflected
1534                                  * to the guest kernel as a sc interrupt.
1535                                  */
1536                                 kvmppc_core_queue_syscall(vcpu);
1537                         } else {
1538                                 /*
1539                                  * Radix guests can not run PR KVM or nested HV
1540                                  * hash guests which might run PR KVM, so this
1541                                  * is always a privilege fault. Send a program
1542                                  * check to guest kernel.
1543                                  */
1544                                 kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV);
1545                         }
1546                         r = RESUME_GUEST;
1547                         break;
1548                 }
1549
1550                 /*
1551                  * hcall - gather args and set exit_reason. This will next be
1552                  * handled by kvmppc_pseries_do_hcall which may be able to deal
1553                  * with it and resume guest, or may punt to userspace.
1554                  */
1555                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1556                 for (i = 0; i < 9; ++i)
1557                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1558                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1559                 vcpu->arch.hcall_needed = 1;
1560                 r = RESUME_HOST;
1561                 break;
1562         }
1563         /*
1564          * We get these next two if the guest accesses a page which it thinks
1565          * it has mapped but which is not actually present, either because
1566          * it is for an emulated I/O device or because the corresonding
1567          * host page has been paged out.
1568          *
1569          * Any other HDSI/HISI interrupts have been handled already for P7/8
1570          * guests. For POWER9 hash guests not using rmhandlers, basic hash
1571          * fault handling is done here.
1572          */
1573         case BOOK3S_INTERRUPT_H_DATA_STORAGE: {
1574                 unsigned long vsid;
1575                 long err;
1576
1577                 if (vcpu->arch.fault_dsisr == HDSISR_CANARY) {
1578                         r = RESUME_GUEST; /* Just retry if it's the canary */
1579                         break;
1580                 }
1581
1582                 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1583                         /*
1584                          * Radix doesn't require anything, and pre-ISAv3.0 hash
1585                          * already attempted to handle this in rmhandlers. The
1586                          * hash fault handling below is v3 only (it uses ASDR
1587                          * via fault_gpa).
1588                          */
1589                         r = RESUME_PAGE_FAULT;
1590                         break;
1591                 }
1592
1593                 if (!(vcpu->arch.fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT))) {
1594                         kvmppc_core_queue_data_storage(vcpu,
1595                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1596                         r = RESUME_GUEST;
1597                         break;
1598                 }
1599
1600                 if (!(vcpu->arch.shregs.msr & MSR_DR))
1601                         vsid = vcpu->kvm->arch.vrma_slb_v;
1602                 else
1603                         vsid = vcpu->arch.fault_gpa;
1604
1605                 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1606                                 vsid, vcpu->arch.fault_dsisr, true);
1607                 if (err == 0) {
1608                         r = RESUME_GUEST;
1609                 } else if (err == -1 || err == -2) {
1610                         r = RESUME_PAGE_FAULT;
1611                 } else {
1612                         kvmppc_core_queue_data_storage(vcpu,
1613                                 vcpu->arch.fault_dar, err);
1614                         r = RESUME_GUEST;
1615                 }
1616                 break;
1617         }
1618         case BOOK3S_INTERRUPT_H_INST_STORAGE: {
1619                 unsigned long vsid;
1620                 long err;
1621
1622                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1623                 vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
1624                         DSISR_SRR1_MATCH_64S;
1625                 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1626                         /*
1627                          * Radix doesn't require anything, and pre-ISAv3.0 hash
1628                          * already attempted to handle this in rmhandlers. The
1629                          * hash fault handling below is v3 only (it uses ASDR
1630                          * via fault_gpa).
1631                          */
1632                         if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1633                                 vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1634                         r = RESUME_PAGE_FAULT;
1635                         break;
1636                 }
1637
1638                 if (!(vcpu->arch.fault_dsisr & SRR1_ISI_NOPT)) {
1639                         kvmppc_core_queue_inst_storage(vcpu,
1640                                 vcpu->arch.fault_dsisr);
1641                         r = RESUME_GUEST;
1642                         break;
1643                 }
1644
1645                 if (!(vcpu->arch.shregs.msr & MSR_IR))
1646                         vsid = vcpu->kvm->arch.vrma_slb_v;
1647                 else
1648                         vsid = vcpu->arch.fault_gpa;
1649
1650                 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1651                                 vsid, vcpu->arch.fault_dsisr, false);
1652                 if (err == 0) {
1653                         r = RESUME_GUEST;
1654                 } else if (err == -1) {
1655                         r = RESUME_PAGE_FAULT;
1656                 } else {
1657                         kvmppc_core_queue_inst_storage(vcpu, err);
1658                         r = RESUME_GUEST;
1659                 }
1660                 break;
1661         }
1662
1663         /*
1664          * This occurs if the guest executes an illegal instruction.
1665          * If the guest debug is disabled, generate a program interrupt
1666          * to the guest. If guest debug is enabled, we need to check
1667          * whether the instruction is a software breakpoint instruction.
1668          * Accordingly return to Guest or Host.
1669          */
1670         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1671                 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1672                         vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1673                                 swab32(vcpu->arch.emul_inst) :
1674                                 vcpu->arch.emul_inst;
1675                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1676                         r = kvmppc_emulate_debug_inst(vcpu);
1677                 } else {
1678                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1679                         r = RESUME_GUEST;
1680                 }
1681                 break;
1682         /*
1683          * This occurs if the guest (kernel or userspace), does something that
1684          * is prohibited by HFSCR.
1685          * On POWER9, this could be a doorbell instruction that we need
1686          * to emulate.
1687          * Otherwise, we just generate a program interrupt to the guest.
1688          */
1689         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1690                 r = EMULATE_FAIL;
1691                 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1692                     cpu_has_feature(CPU_FTR_ARCH_300))
1693                         r = kvmppc_emulate_doorbell_instr(vcpu);
1694                 if (r == EMULATE_FAIL) {
1695                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1696                         r = RESUME_GUEST;
1697                 }
1698                 break;
1699
1700 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1701         case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1702                 /*
1703                  * This occurs for various TM-related instructions that
1704                  * we need to emulate on POWER9 DD2.2.  We have already
1705                  * handled the cases where the guest was in real-suspend
1706                  * mode and was transitioning to transactional state.
1707                  */
1708                 r = kvmhv_p9_tm_emulation(vcpu);
1709                 break;
1710 #endif
1711
1712         case BOOK3S_INTERRUPT_HV_RM_HARD:
1713                 r = RESUME_PASSTHROUGH;
1714                 break;
1715         default:
1716                 kvmppc_dump_regs(vcpu);
1717                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1718                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1719                         vcpu->arch.shregs.msr);
1720                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1721                 r = RESUME_HOST;
1722                 break;
1723         }
1724
1725         return r;
1726 }
1727
1728 static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu)
1729 {
1730         int r;
1731         int srcu_idx;
1732
1733         vcpu->stat.sum_exits++;
1734
1735         /*
1736          * This can happen if an interrupt occurs in the last stages
1737          * of guest entry or the first stages of guest exit (i.e. after
1738          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1739          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1740          * That can happen due to a bug, or due to a machine check
1741          * occurring at just the wrong time.
1742          */
1743         if (vcpu->arch.shregs.msr & MSR_HV) {
1744                 pr_emerg("KVM trap in HV mode while nested!\n");
1745                 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1746                          vcpu->arch.trap, kvmppc_get_pc(vcpu),
1747                          vcpu->arch.shregs.msr);
1748                 kvmppc_dump_regs(vcpu);
1749                 return RESUME_HOST;
1750         }
1751         switch (vcpu->arch.trap) {
1752         /* We're good on these - the host merely wanted to get our attention */
1753         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1754                 vcpu->stat.dec_exits++;
1755                 r = RESUME_GUEST;
1756                 break;
1757         case BOOK3S_INTERRUPT_EXTERNAL:
1758                 vcpu->stat.ext_intr_exits++;
1759                 r = RESUME_HOST;
1760                 break;
1761         case BOOK3S_INTERRUPT_H_DOORBELL:
1762         case BOOK3S_INTERRUPT_H_VIRT:
1763                 vcpu->stat.ext_intr_exits++;
1764                 r = RESUME_GUEST;
1765                 break;
1766         /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1767         case BOOK3S_INTERRUPT_HMI:
1768         case BOOK3S_INTERRUPT_PERFMON:
1769         case BOOK3S_INTERRUPT_SYSTEM_RESET:
1770                 r = RESUME_GUEST;
1771                 break;
1772         case BOOK3S_INTERRUPT_MACHINE_CHECK:
1773         {
1774                 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1775                                               DEFAULT_RATELIMIT_BURST);
1776                 /* Pass the machine check to the L1 guest */
1777                 r = RESUME_HOST;
1778                 /* Print the MCE event to host console. */
1779                 if (__ratelimit(&rs))
1780                         machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1781                 break;
1782         }
1783         /*
1784          * We get these next two if the guest accesses a page which it thinks
1785          * it has mapped but which is not actually present, either because
1786          * it is for an emulated I/O device or because the corresonding
1787          * host page has been paged out.
1788          */
1789         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1790                 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1791                 r = kvmhv_nested_page_fault(vcpu);
1792                 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1793                 break;
1794         case BOOK3S_INTERRUPT_H_INST_STORAGE:
1795                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1796                 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1797                                          DSISR_SRR1_MATCH_64S;
1798                 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1799                         vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1800                 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1801                 r = kvmhv_nested_page_fault(vcpu);
1802                 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1803                 break;
1804
1805 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1806         case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1807                 /*
1808                  * This occurs for various TM-related instructions that
1809                  * we need to emulate on POWER9 DD2.2.  We have already
1810                  * handled the cases where the guest was in real-suspend
1811                  * mode and was transitioning to transactional state.
1812                  */
1813                 r = kvmhv_p9_tm_emulation(vcpu);
1814                 break;
1815 #endif
1816
1817         case BOOK3S_INTERRUPT_HV_RM_HARD:
1818                 vcpu->arch.trap = 0;
1819                 r = RESUME_GUEST;
1820                 if (!xics_on_xive())
1821                         kvmppc_xics_rm_complete(vcpu, 0);
1822                 break;
1823         case BOOK3S_INTERRUPT_SYSCALL:
1824         {
1825                 unsigned long req = kvmppc_get_gpr(vcpu, 3);
1826
1827                 /*
1828                  * The H_RPT_INVALIDATE hcalls issued by nested
1829                  * guests for process-scoped invalidations when
1830                  * GTSE=0, are handled here in L0.
1831                  */
1832                 if (req == H_RPT_INVALIDATE) {
1833                         r = kvmppc_nested_h_rpt_invalidate(vcpu);
1834                         break;
1835                 }
1836
1837                 r = RESUME_HOST;
1838                 break;
1839         }
1840         default:
1841                 r = RESUME_HOST;
1842                 break;
1843         }
1844
1845         return r;
1846 }
1847
1848 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1849                                             struct kvm_sregs *sregs)
1850 {
1851         int i;
1852
1853         memset(sregs, 0, sizeof(struct kvm_sregs));
1854         sregs->pvr = vcpu->arch.pvr;
1855         for (i = 0; i < vcpu->arch.slb_max; i++) {
1856                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1857                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1858         }
1859
1860         return 0;
1861 }
1862
1863 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1864                                             struct kvm_sregs *sregs)
1865 {
1866         int i, j;
1867
1868         /* Only accept the same PVR as the host's, since we can't spoof it */
1869         if (sregs->pvr != vcpu->arch.pvr)
1870                 return -EINVAL;
1871
1872         j = 0;
1873         for (i = 0; i < vcpu->arch.slb_nr; i++) {
1874                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1875                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1876                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1877                         ++j;
1878                 }
1879         }
1880         vcpu->arch.slb_max = j;
1881
1882         return 0;
1883 }
1884
1885 /*
1886  * Enforce limits on guest LPCR values based on hardware availability,
1887  * guest configuration, and possibly hypervisor support and security
1888  * concerns.
1889  */
1890 unsigned long kvmppc_filter_lpcr_hv(struct kvm *kvm, unsigned long lpcr)
1891 {
1892         /* LPCR_TC only applies to HPT guests */
1893         if (kvm_is_radix(kvm))
1894                 lpcr &= ~LPCR_TC;
1895
1896         /* On POWER8 and above, userspace can modify AIL */
1897         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1898                 lpcr &= ~LPCR_AIL;
1899         if ((lpcr & LPCR_AIL) != LPCR_AIL_3)
1900                 lpcr &= ~LPCR_AIL; /* LPCR[AIL]=1/2 is disallowed */
1901         /*
1902          * On some POWER9s we force AIL off for radix guests to prevent
1903          * executing in MSR[HV]=1 mode with the MMU enabled and PIDR set to
1904          * guest, which can result in Q0 translations with LPID=0 PID=PIDR to
1905          * be cached, which the host TLB management does not expect.
1906          */
1907         if (kvm_is_radix(kvm) && cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG))
1908                 lpcr &= ~LPCR_AIL;
1909
1910         /*
1911          * On POWER9, allow userspace to enable large decrementer for the
1912          * guest, whether or not the host has it enabled.
1913          */
1914         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1915                 lpcr &= ~LPCR_LD;
1916
1917         return lpcr;
1918 }
1919
1920 static void verify_lpcr(struct kvm *kvm, unsigned long lpcr)
1921 {
1922         if (lpcr != kvmppc_filter_lpcr_hv(kvm, lpcr)) {
1923                 WARN_ONCE(1, "lpcr 0x%lx differs from filtered 0x%lx\n",
1924                           lpcr, kvmppc_filter_lpcr_hv(kvm, lpcr));
1925         }
1926 }
1927
1928 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1929                 bool preserve_top32)
1930 {
1931         struct kvm *kvm = vcpu->kvm;
1932         struct kvmppc_vcore *vc = vcpu->arch.vcore;
1933         u64 mask;
1934
1935         spin_lock(&vc->lock);
1936
1937         /*
1938          * Userspace can only modify
1939          * DPFD (default prefetch depth), ILE (interrupt little-endian),
1940          * TC (translation control), AIL (alternate interrupt location),
1941          * LD (large decrementer).
1942          * These are subject to restrictions from kvmppc_filter_lcpr_hv().
1943          */
1944         mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD;
1945
1946         /* Broken 32-bit version of LPCR must not clear top bits */
1947         if (preserve_top32)
1948                 mask &= 0xFFFFFFFF;
1949
1950         new_lpcr = kvmppc_filter_lpcr_hv(kvm,
1951                         (vc->lpcr & ~mask) | (new_lpcr & mask));
1952
1953         /*
1954          * If ILE (interrupt little-endian) has changed, update the
1955          * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1956          */
1957         if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1958                 struct kvm_vcpu *vcpu;
1959                 int i;
1960
1961                 kvm_for_each_vcpu(i, vcpu, kvm) {
1962                         if (vcpu->arch.vcore != vc)
1963                                 continue;
1964                         if (new_lpcr & LPCR_ILE)
1965                                 vcpu->arch.intr_msr |= MSR_LE;
1966                         else
1967                                 vcpu->arch.intr_msr &= ~MSR_LE;
1968                 }
1969         }
1970
1971         vc->lpcr = new_lpcr;
1972
1973         spin_unlock(&vc->lock);
1974 }
1975
1976 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1977                                  union kvmppc_one_reg *val)
1978 {
1979         int r = 0;
1980         long int i;
1981
1982         switch (id) {
1983         case KVM_REG_PPC_DEBUG_INST:
1984                 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1985                 break;
1986         case KVM_REG_PPC_HIOR:
1987                 *val = get_reg_val(id, 0);
1988                 break;
1989         case KVM_REG_PPC_DABR:
1990                 *val = get_reg_val(id, vcpu->arch.dabr);
1991                 break;
1992         case KVM_REG_PPC_DABRX:
1993                 *val = get_reg_val(id, vcpu->arch.dabrx);
1994                 break;
1995         case KVM_REG_PPC_DSCR:
1996                 *val = get_reg_val(id, vcpu->arch.dscr);
1997                 break;
1998         case KVM_REG_PPC_PURR:
1999                 *val = get_reg_val(id, vcpu->arch.purr);
2000                 break;
2001         case KVM_REG_PPC_SPURR:
2002                 *val = get_reg_val(id, vcpu->arch.spurr);
2003                 break;
2004         case KVM_REG_PPC_AMR:
2005                 *val = get_reg_val(id, vcpu->arch.amr);
2006                 break;
2007         case KVM_REG_PPC_UAMOR:
2008                 *val = get_reg_val(id, vcpu->arch.uamor);
2009                 break;
2010         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2011                 i = id - KVM_REG_PPC_MMCR0;
2012                 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
2013                 break;
2014         case KVM_REG_PPC_MMCR2:
2015                 *val = get_reg_val(id, vcpu->arch.mmcr[2]);
2016                 break;
2017         case KVM_REG_PPC_MMCRA:
2018                 *val = get_reg_val(id, vcpu->arch.mmcra);
2019                 break;
2020         case KVM_REG_PPC_MMCRS:
2021                 *val = get_reg_val(id, vcpu->arch.mmcrs);
2022                 break;
2023         case KVM_REG_PPC_MMCR3:
2024                 *val = get_reg_val(id, vcpu->arch.mmcr[3]);
2025                 break;
2026         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2027                 i = id - KVM_REG_PPC_PMC1;
2028                 *val = get_reg_val(id, vcpu->arch.pmc[i]);
2029                 break;
2030         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2031                 i = id - KVM_REG_PPC_SPMC1;
2032                 *val = get_reg_val(id, vcpu->arch.spmc[i]);
2033                 break;
2034         case KVM_REG_PPC_SIAR:
2035                 *val = get_reg_val(id, vcpu->arch.siar);
2036                 break;
2037         case KVM_REG_PPC_SDAR:
2038                 *val = get_reg_val(id, vcpu->arch.sdar);
2039                 break;
2040         case KVM_REG_PPC_SIER:
2041                 *val = get_reg_val(id, vcpu->arch.sier[0]);
2042                 break;
2043         case KVM_REG_PPC_SIER2:
2044                 *val = get_reg_val(id, vcpu->arch.sier[1]);
2045                 break;
2046         case KVM_REG_PPC_SIER3:
2047                 *val = get_reg_val(id, vcpu->arch.sier[2]);
2048                 break;
2049         case KVM_REG_PPC_IAMR:
2050                 *val = get_reg_val(id, vcpu->arch.iamr);
2051                 break;
2052         case KVM_REG_PPC_PSPB:
2053                 *val = get_reg_val(id, vcpu->arch.pspb);
2054                 break;
2055         case KVM_REG_PPC_DPDES:
2056                 /*
2057                  * On POWER9, where we are emulating msgsndp etc.,
2058                  * we return 1 bit for each vcpu, which can come from
2059                  * either vcore->dpdes or doorbell_request.
2060                  * On POWER8, doorbell_request is 0.
2061                  */
2062                 *val = get_reg_val(id, vcpu->arch.vcore->dpdes |
2063                                    vcpu->arch.doorbell_request);
2064                 break;
2065         case KVM_REG_PPC_VTB:
2066                 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
2067                 break;
2068         case KVM_REG_PPC_DAWR:
2069                 *val = get_reg_val(id, vcpu->arch.dawr0);
2070                 break;
2071         case KVM_REG_PPC_DAWRX:
2072                 *val = get_reg_val(id, vcpu->arch.dawrx0);
2073                 break;
2074         case KVM_REG_PPC_DAWR1:
2075                 *val = get_reg_val(id, vcpu->arch.dawr1);
2076                 break;
2077         case KVM_REG_PPC_DAWRX1:
2078                 *val = get_reg_val(id, vcpu->arch.dawrx1);
2079                 break;
2080         case KVM_REG_PPC_CIABR:
2081                 *val = get_reg_val(id, vcpu->arch.ciabr);
2082                 break;
2083         case KVM_REG_PPC_CSIGR:
2084                 *val = get_reg_val(id, vcpu->arch.csigr);
2085                 break;
2086         case KVM_REG_PPC_TACR:
2087                 *val = get_reg_val(id, vcpu->arch.tacr);
2088                 break;
2089         case KVM_REG_PPC_TCSCR:
2090                 *val = get_reg_val(id, vcpu->arch.tcscr);
2091                 break;
2092         case KVM_REG_PPC_PID:
2093                 *val = get_reg_val(id, vcpu->arch.pid);
2094                 break;
2095         case KVM_REG_PPC_ACOP:
2096                 *val = get_reg_val(id, vcpu->arch.acop);
2097                 break;
2098         case KVM_REG_PPC_WORT:
2099                 *val = get_reg_val(id, vcpu->arch.wort);
2100                 break;
2101         case KVM_REG_PPC_TIDR:
2102                 *val = get_reg_val(id, vcpu->arch.tid);
2103                 break;
2104         case KVM_REG_PPC_PSSCR:
2105                 *val = get_reg_val(id, vcpu->arch.psscr);
2106                 break;
2107         case KVM_REG_PPC_VPA_ADDR:
2108                 spin_lock(&vcpu->arch.vpa_update_lock);
2109                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
2110                 spin_unlock(&vcpu->arch.vpa_update_lock);
2111                 break;
2112         case KVM_REG_PPC_VPA_SLB:
2113                 spin_lock(&vcpu->arch.vpa_update_lock);
2114                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
2115                 val->vpaval.length = vcpu->arch.slb_shadow.len;
2116                 spin_unlock(&vcpu->arch.vpa_update_lock);
2117                 break;
2118         case KVM_REG_PPC_VPA_DTL:
2119                 spin_lock(&vcpu->arch.vpa_update_lock);
2120                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
2121                 val->vpaval.length = vcpu->arch.dtl.len;
2122                 spin_unlock(&vcpu->arch.vpa_update_lock);
2123                 break;
2124         case KVM_REG_PPC_TB_OFFSET:
2125                 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
2126                 break;
2127         case KVM_REG_PPC_LPCR:
2128         case KVM_REG_PPC_LPCR_64:
2129                 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
2130                 break;
2131         case KVM_REG_PPC_PPR:
2132                 *val = get_reg_val(id, vcpu->arch.ppr);
2133                 break;
2134 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2135         case KVM_REG_PPC_TFHAR:
2136                 *val = get_reg_val(id, vcpu->arch.tfhar);
2137                 break;
2138         case KVM_REG_PPC_TFIAR:
2139                 *val = get_reg_val(id, vcpu->arch.tfiar);
2140                 break;
2141         case KVM_REG_PPC_TEXASR:
2142                 *val = get_reg_val(id, vcpu->arch.texasr);
2143                 break;
2144         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2145                 i = id - KVM_REG_PPC_TM_GPR0;
2146                 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
2147                 break;
2148         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2149         {
2150                 int j;
2151                 i = id - KVM_REG_PPC_TM_VSR0;
2152                 if (i < 32)
2153                         for (j = 0; j < TS_FPRWIDTH; j++)
2154                                 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
2155                 else {
2156                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
2157                                 val->vval = vcpu->arch.vr_tm.vr[i-32];
2158                         else
2159                                 r = -ENXIO;
2160                 }
2161                 break;
2162         }
2163         case KVM_REG_PPC_TM_CR:
2164                 *val = get_reg_val(id, vcpu->arch.cr_tm);
2165                 break;
2166         case KVM_REG_PPC_TM_XER:
2167                 *val = get_reg_val(id, vcpu->arch.xer_tm);
2168                 break;
2169         case KVM_REG_PPC_TM_LR:
2170                 *val = get_reg_val(id, vcpu->arch.lr_tm);
2171                 break;
2172         case KVM_REG_PPC_TM_CTR:
2173                 *val = get_reg_val(id, vcpu->arch.ctr_tm);
2174                 break;
2175         case KVM_REG_PPC_TM_FPSCR:
2176                 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
2177                 break;
2178         case KVM_REG_PPC_TM_AMR:
2179                 *val = get_reg_val(id, vcpu->arch.amr_tm);
2180                 break;
2181         case KVM_REG_PPC_TM_PPR:
2182                 *val = get_reg_val(id, vcpu->arch.ppr_tm);
2183                 break;
2184         case KVM_REG_PPC_TM_VRSAVE:
2185                 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
2186                 break;
2187         case KVM_REG_PPC_TM_VSCR:
2188                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2189                         *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
2190                 else
2191                         r = -ENXIO;
2192                 break;
2193         case KVM_REG_PPC_TM_DSCR:
2194                 *val = get_reg_val(id, vcpu->arch.dscr_tm);
2195                 break;
2196         case KVM_REG_PPC_TM_TAR:
2197                 *val = get_reg_val(id, vcpu->arch.tar_tm);
2198                 break;
2199 #endif
2200         case KVM_REG_PPC_ARCH_COMPAT:
2201                 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
2202                 break;
2203         case KVM_REG_PPC_DEC_EXPIRY:
2204                 *val = get_reg_val(id, vcpu->arch.dec_expires +
2205                                    vcpu->arch.vcore->tb_offset);
2206                 break;
2207         case KVM_REG_PPC_ONLINE:
2208                 *val = get_reg_val(id, vcpu->arch.online);
2209                 break;
2210         case KVM_REG_PPC_PTCR:
2211                 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
2212                 break;
2213         default:
2214                 r = -EINVAL;
2215                 break;
2216         }
2217
2218         return r;
2219 }
2220
2221 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2222                                  union kvmppc_one_reg *val)
2223 {
2224         int r = 0;
2225         long int i;
2226         unsigned long addr, len;
2227
2228         switch (id) {
2229         case KVM_REG_PPC_HIOR:
2230                 /* Only allow this to be set to zero */
2231                 if (set_reg_val(id, *val))
2232                         r = -EINVAL;
2233                 break;
2234         case KVM_REG_PPC_DABR:
2235                 vcpu->arch.dabr = set_reg_val(id, *val);
2236                 break;
2237         case KVM_REG_PPC_DABRX:
2238                 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
2239                 break;
2240         case KVM_REG_PPC_DSCR:
2241                 vcpu->arch.dscr = set_reg_val(id, *val);
2242                 break;
2243         case KVM_REG_PPC_PURR:
2244                 vcpu->arch.purr = set_reg_val(id, *val);
2245                 break;
2246         case KVM_REG_PPC_SPURR:
2247                 vcpu->arch.spurr = set_reg_val(id, *val);
2248                 break;
2249         case KVM_REG_PPC_AMR:
2250                 vcpu->arch.amr = set_reg_val(id, *val);
2251                 break;
2252         case KVM_REG_PPC_UAMOR:
2253                 vcpu->arch.uamor = set_reg_val(id, *val);
2254                 break;
2255         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2256                 i = id - KVM_REG_PPC_MMCR0;
2257                 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
2258                 break;
2259         case KVM_REG_PPC_MMCR2:
2260                 vcpu->arch.mmcr[2] = set_reg_val(id, *val);
2261                 break;
2262         case KVM_REG_PPC_MMCRA:
2263                 vcpu->arch.mmcra = set_reg_val(id, *val);
2264                 break;
2265         case KVM_REG_PPC_MMCRS:
2266                 vcpu->arch.mmcrs = set_reg_val(id, *val);
2267                 break;
2268         case KVM_REG_PPC_MMCR3:
2269                 *val = get_reg_val(id, vcpu->arch.mmcr[3]);
2270                 break;
2271         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2272                 i = id - KVM_REG_PPC_PMC1;
2273                 vcpu->arch.pmc[i] = set_reg_val(id, *val);
2274                 break;
2275         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2276                 i = id - KVM_REG_PPC_SPMC1;
2277                 vcpu->arch.spmc[i] = set_reg_val(id, *val);
2278                 break;
2279         case KVM_REG_PPC_SIAR:
2280                 vcpu->arch.siar = set_reg_val(id, *val);
2281                 break;
2282         case KVM_REG_PPC_SDAR:
2283                 vcpu->arch.sdar = set_reg_val(id, *val);
2284                 break;
2285         case KVM_REG_PPC_SIER:
2286                 vcpu->arch.sier[0] = set_reg_val(id, *val);
2287                 break;
2288         case KVM_REG_PPC_SIER2:
2289                 vcpu->arch.sier[1] = set_reg_val(id, *val);
2290                 break;
2291         case KVM_REG_PPC_SIER3:
2292                 vcpu->arch.sier[2] = set_reg_val(id, *val);
2293                 break;
2294         case KVM_REG_PPC_IAMR:
2295                 vcpu->arch.iamr = set_reg_val(id, *val);
2296                 break;
2297         case KVM_REG_PPC_PSPB:
2298                 vcpu->arch.pspb = set_reg_val(id, *val);
2299                 break;
2300         case KVM_REG_PPC_DPDES:
2301                 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
2302                 break;
2303         case KVM_REG_PPC_VTB:
2304                 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
2305                 break;
2306         case KVM_REG_PPC_DAWR:
2307                 vcpu->arch.dawr0 = set_reg_val(id, *val);
2308                 break;
2309         case KVM_REG_PPC_DAWRX:
2310                 vcpu->arch.dawrx0 = set_reg_val(id, *val) & ~DAWRX_HYP;
2311                 break;
2312         case KVM_REG_PPC_DAWR1:
2313                 vcpu->arch.dawr1 = set_reg_val(id, *val);
2314                 break;
2315         case KVM_REG_PPC_DAWRX1:
2316                 vcpu->arch.dawrx1 = set_reg_val(id, *val) & ~DAWRX_HYP;
2317                 break;
2318         case KVM_REG_PPC_CIABR:
2319                 vcpu->arch.ciabr = set_reg_val(id, *val);
2320                 /* Don't allow setting breakpoints in hypervisor code */
2321                 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
2322                         vcpu->arch.ciabr &= ~CIABR_PRIV;        /* disable */
2323                 break;
2324         case KVM_REG_PPC_CSIGR:
2325                 vcpu->arch.csigr = set_reg_val(id, *val);
2326                 break;
2327         case KVM_REG_PPC_TACR:
2328                 vcpu->arch.tacr = set_reg_val(id, *val);
2329                 break;
2330         case KVM_REG_PPC_TCSCR:
2331                 vcpu->arch.tcscr = set_reg_val(id, *val);
2332                 break;
2333         case KVM_REG_PPC_PID:
2334                 vcpu->arch.pid = set_reg_val(id, *val);
2335                 break;
2336         case KVM_REG_PPC_ACOP:
2337                 vcpu->arch.acop = set_reg_val(id, *val);
2338                 break;
2339         case KVM_REG_PPC_WORT:
2340                 vcpu->arch.wort = set_reg_val(id, *val);
2341                 break;
2342         case KVM_REG_PPC_TIDR:
2343                 vcpu->arch.tid = set_reg_val(id, *val);
2344                 break;
2345         case KVM_REG_PPC_PSSCR:
2346                 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
2347                 break;
2348         case KVM_REG_PPC_VPA_ADDR:
2349                 addr = set_reg_val(id, *val);
2350                 r = -EINVAL;
2351                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
2352                               vcpu->arch.dtl.next_gpa))
2353                         break;
2354                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
2355                 break;
2356         case KVM_REG_PPC_VPA_SLB:
2357                 addr = val->vpaval.addr;
2358                 len = val->vpaval.length;
2359                 r = -EINVAL;
2360                 if (addr && !vcpu->arch.vpa.next_gpa)
2361                         break;
2362                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
2363                 break;
2364         case KVM_REG_PPC_VPA_DTL:
2365                 addr = val->vpaval.addr;
2366                 len = val->vpaval.length;
2367                 r = -EINVAL;
2368                 if (addr && (len < sizeof(struct dtl_entry) ||
2369                              !vcpu->arch.vpa.next_gpa))
2370                         break;
2371                 len -= len % sizeof(struct dtl_entry);
2372                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
2373                 break;
2374         case KVM_REG_PPC_TB_OFFSET:
2375                 /* round up to multiple of 2^24 */
2376                 vcpu->arch.vcore->tb_offset =
2377                         ALIGN(set_reg_val(id, *val), 1UL << 24);
2378                 break;
2379         case KVM_REG_PPC_LPCR:
2380                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
2381                 break;
2382         case KVM_REG_PPC_LPCR_64:
2383                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
2384                 break;
2385         case KVM_REG_PPC_PPR:
2386                 vcpu->arch.ppr = set_reg_val(id, *val);
2387                 break;
2388 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2389         case KVM_REG_PPC_TFHAR:
2390                 vcpu->arch.tfhar = set_reg_val(id, *val);
2391                 break;
2392         case KVM_REG_PPC_TFIAR:
2393                 vcpu->arch.tfiar = set_reg_val(id, *val);
2394                 break;
2395         case KVM_REG_PPC_TEXASR:
2396                 vcpu->arch.texasr = set_reg_val(id, *val);
2397                 break;
2398         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2399                 i = id - KVM_REG_PPC_TM_GPR0;
2400                 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
2401                 break;
2402         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2403         {
2404                 int j;
2405                 i = id - KVM_REG_PPC_TM_VSR0;
2406                 if (i < 32)
2407                         for (j = 0; j < TS_FPRWIDTH; j++)
2408                                 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2409                 else
2410                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
2411                                 vcpu->arch.vr_tm.vr[i-32] = val->vval;
2412                         else
2413                                 r = -ENXIO;
2414                 break;
2415         }
2416         case KVM_REG_PPC_TM_CR:
2417                 vcpu->arch.cr_tm = set_reg_val(id, *val);
2418                 break;
2419         case KVM_REG_PPC_TM_XER:
2420                 vcpu->arch.xer_tm = set_reg_val(id, *val);
2421                 break;
2422         case KVM_REG_PPC_TM_LR:
2423                 vcpu->arch.lr_tm = set_reg_val(id, *val);
2424                 break;
2425         case KVM_REG_PPC_TM_CTR:
2426                 vcpu->arch.ctr_tm = set_reg_val(id, *val);
2427                 break;
2428         case KVM_REG_PPC_TM_FPSCR:
2429                 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2430                 break;
2431         case KVM_REG_PPC_TM_AMR:
2432                 vcpu->arch.amr_tm = set_reg_val(id, *val);
2433                 break;
2434         case KVM_REG_PPC_TM_PPR:
2435                 vcpu->arch.ppr_tm = set_reg_val(id, *val);
2436                 break;
2437         case KVM_REG_PPC_TM_VRSAVE:
2438                 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2439                 break;
2440         case KVM_REG_PPC_TM_VSCR:
2441                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2442                         vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2443                 else
2444                         r = - ENXIO;
2445                 break;
2446         case KVM_REG_PPC_TM_DSCR:
2447                 vcpu->arch.dscr_tm = set_reg_val(id, *val);
2448                 break;
2449         case KVM_REG_PPC_TM_TAR:
2450                 vcpu->arch.tar_tm = set_reg_val(id, *val);
2451                 break;
2452 #endif
2453         case KVM_REG_PPC_ARCH_COMPAT:
2454                 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2455                 break;
2456         case KVM_REG_PPC_DEC_EXPIRY:
2457                 vcpu->arch.dec_expires = set_reg_val(id, *val) -
2458                         vcpu->arch.vcore->tb_offset;
2459                 break;
2460         case KVM_REG_PPC_ONLINE:
2461                 i = set_reg_val(id, *val);
2462                 if (i && !vcpu->arch.online)
2463                         atomic_inc(&vcpu->arch.vcore->online_count);
2464                 else if (!i && vcpu->arch.online)
2465                         atomic_dec(&vcpu->arch.vcore->online_count);
2466                 vcpu->arch.online = i;
2467                 break;
2468         case KVM_REG_PPC_PTCR:
2469                 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2470                 break;
2471         default:
2472                 r = -EINVAL;
2473                 break;
2474         }
2475
2476         return r;
2477 }
2478
2479 /*
2480  * On POWER9, threads are independent and can be in different partitions.
2481  * Therefore we consider each thread to be a subcore.
2482  * There is a restriction that all threads have to be in the same
2483  * MMU mode (radix or HPT), unfortunately, but since we only support
2484  * HPT guests on a HPT host so far, that isn't an impediment yet.
2485  */
2486 static int threads_per_vcore(struct kvm *kvm)
2487 {
2488         if (cpu_has_feature(CPU_FTR_ARCH_300))
2489                 return 1;
2490         return threads_per_subcore;
2491 }
2492
2493 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2494 {
2495         struct kvmppc_vcore *vcore;
2496
2497         vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2498
2499         if (vcore == NULL)
2500                 return NULL;
2501
2502         spin_lock_init(&vcore->lock);
2503         spin_lock_init(&vcore->stoltb_lock);
2504         rcuwait_init(&vcore->wait);
2505         vcore->preempt_tb = TB_NIL;
2506         vcore->lpcr = kvm->arch.lpcr;
2507         vcore->first_vcpuid = id;
2508         vcore->kvm = kvm;
2509         INIT_LIST_HEAD(&vcore->preempt_list);
2510
2511         return vcore;
2512 }
2513
2514 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2515 static struct debugfs_timings_element {
2516         const char *name;
2517         size_t offset;
2518 } timings[] = {
2519         {"rm_entry",    offsetof(struct kvm_vcpu, arch.rm_entry)},
2520         {"rm_intr",     offsetof(struct kvm_vcpu, arch.rm_intr)},
2521         {"rm_exit",     offsetof(struct kvm_vcpu, arch.rm_exit)},
2522         {"guest",       offsetof(struct kvm_vcpu, arch.guest_time)},
2523         {"cede",        offsetof(struct kvm_vcpu, arch.cede_time)},
2524 };
2525
2526 #define N_TIMINGS       (ARRAY_SIZE(timings))
2527
2528 struct debugfs_timings_state {
2529         struct kvm_vcpu *vcpu;
2530         unsigned int    buflen;
2531         char            buf[N_TIMINGS * 100];
2532 };
2533
2534 static int debugfs_timings_open(struct inode *inode, struct file *file)
2535 {
2536         struct kvm_vcpu *vcpu = inode->i_private;
2537         struct debugfs_timings_state *p;
2538
2539         p = kzalloc(sizeof(*p), GFP_KERNEL);
2540         if (!p)
2541                 return -ENOMEM;
2542
2543         kvm_get_kvm(vcpu->kvm);
2544         p->vcpu = vcpu;
2545         file->private_data = p;
2546
2547         return nonseekable_open(inode, file);
2548 }
2549
2550 static int debugfs_timings_release(struct inode *inode, struct file *file)
2551 {
2552         struct debugfs_timings_state *p = file->private_data;
2553
2554         kvm_put_kvm(p->vcpu->kvm);
2555         kfree(p);
2556         return 0;
2557 }
2558
2559 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2560                                     size_t len, loff_t *ppos)
2561 {
2562         struct debugfs_timings_state *p = file->private_data;
2563         struct kvm_vcpu *vcpu = p->vcpu;
2564         char *s, *buf_end;
2565         struct kvmhv_tb_accumulator tb;
2566         u64 count;
2567         loff_t pos;
2568         ssize_t n;
2569         int i, loops;
2570         bool ok;
2571
2572         if (!p->buflen) {
2573                 s = p->buf;
2574                 buf_end = s + sizeof(p->buf);
2575                 for (i = 0; i < N_TIMINGS; ++i) {
2576                         struct kvmhv_tb_accumulator *acc;
2577
2578                         acc = (struct kvmhv_tb_accumulator *)
2579                                 ((unsigned long)vcpu + timings[i].offset);
2580                         ok = false;
2581                         for (loops = 0; loops < 1000; ++loops) {
2582                                 count = acc->seqcount;
2583                                 if (!(count & 1)) {
2584                                         smp_rmb();
2585                                         tb = *acc;
2586                                         smp_rmb();
2587                                         if (count == acc->seqcount) {
2588                                                 ok = true;
2589                                                 break;
2590                                         }
2591                                 }
2592                                 udelay(1);
2593                         }
2594                         if (!ok)
2595                                 snprintf(s, buf_end - s, "%s: stuck\n",
2596                                         timings[i].name);
2597                         else
2598                                 snprintf(s, buf_end - s,
2599                                         "%s: %llu %llu %llu %llu\n",
2600                                         timings[i].name, count / 2,
2601                                         tb_to_ns(tb.tb_total),
2602                                         tb_to_ns(tb.tb_min),
2603                                         tb_to_ns(tb.tb_max));
2604                         s += strlen(s);
2605                 }
2606                 p->buflen = s - p->buf;
2607         }
2608
2609         pos = *ppos;
2610         if (pos >= p->buflen)
2611                 return 0;
2612         if (len > p->buflen - pos)
2613                 len = p->buflen - pos;
2614         n = copy_to_user(buf, p->buf + pos, len);
2615         if (n) {
2616                 if (n == len)
2617                         return -EFAULT;
2618                 len -= n;
2619         }
2620         *ppos = pos + len;
2621         return len;
2622 }
2623
2624 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2625                                      size_t len, loff_t *ppos)
2626 {
2627         return -EACCES;
2628 }
2629
2630 static const struct file_operations debugfs_timings_ops = {
2631         .owner   = THIS_MODULE,
2632         .open    = debugfs_timings_open,
2633         .release = debugfs_timings_release,
2634         .read    = debugfs_timings_read,
2635         .write   = debugfs_timings_write,
2636         .llseek  = generic_file_llseek,
2637 };
2638
2639 /* Create a debugfs directory for the vcpu */
2640 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2641 {
2642         char buf[16];
2643         struct kvm *kvm = vcpu->kvm;
2644
2645         snprintf(buf, sizeof(buf), "vcpu%u", id);
2646         vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
2647         debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, vcpu,
2648                             &debugfs_timings_ops);
2649 }
2650
2651 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2652 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2653 {
2654 }
2655 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2656
2657 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu)
2658 {
2659         int err;
2660         int core;
2661         struct kvmppc_vcore *vcore;
2662         struct kvm *kvm;
2663         unsigned int id;
2664
2665         kvm = vcpu->kvm;
2666         id = vcpu->vcpu_id;
2667
2668         vcpu->arch.shared = &vcpu->arch.shregs;
2669 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2670         /*
2671          * The shared struct is never shared on HV,
2672          * so we can always use host endianness
2673          */
2674 #ifdef __BIG_ENDIAN__
2675         vcpu->arch.shared_big_endian = true;
2676 #else
2677         vcpu->arch.shared_big_endian = false;
2678 #endif
2679 #endif
2680         vcpu->arch.mmcr[0] = MMCR0_FC;
2681         vcpu->arch.ctrl = CTRL_RUNLATCH;
2682         /* default to host PVR, since we can't spoof it */
2683         kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2684         spin_lock_init(&vcpu->arch.vpa_update_lock);
2685         spin_lock_init(&vcpu->arch.tbacct_lock);
2686         vcpu->arch.busy_preempt = TB_NIL;
2687         vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2688
2689         /*
2690          * Set the default HFSCR for the guest from the host value.
2691          * This value is only used on POWER9.
2692          * On POWER9, we want to virtualize the doorbell facility, so we
2693          * don't set the HFSCR_MSGP bit, and that causes those instructions
2694          * to trap and then we emulate them.
2695          */
2696         vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2697                 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP | HFSCR_PREFIX;
2698         if (cpu_has_feature(CPU_FTR_HVMODE)) {
2699                 vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
2700 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2701                 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2702                         vcpu->arch.hfscr |= HFSCR_TM;
2703 #endif
2704         }
2705         if (cpu_has_feature(CPU_FTR_TM_COMP))
2706                 vcpu->arch.hfscr |= HFSCR_TM;
2707
2708         kvmppc_mmu_book3s_hv_init(vcpu);
2709
2710         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2711
2712         init_waitqueue_head(&vcpu->arch.cpu_run);
2713
2714         mutex_lock(&kvm->lock);
2715         vcore = NULL;
2716         err = -EINVAL;
2717         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2718                 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2719                         pr_devel("KVM: VCPU ID too high\n");
2720                         core = KVM_MAX_VCORES;
2721                 } else {
2722                         BUG_ON(kvm->arch.smt_mode != 1);
2723                         core = kvmppc_pack_vcpu_id(kvm, id);
2724                 }
2725         } else {
2726                 core = id / kvm->arch.smt_mode;
2727         }
2728         if (core < KVM_MAX_VCORES) {
2729                 vcore = kvm->arch.vcores[core];
2730                 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2731                         pr_devel("KVM: collision on id %u", id);
2732                         vcore = NULL;
2733                 } else if (!vcore) {
2734                         /*
2735                          * Take mmu_setup_lock for mutual exclusion
2736                          * with kvmppc_update_lpcr().
2737                          */
2738                         err = -ENOMEM;
2739                         vcore = kvmppc_vcore_create(kvm,
2740                                         id & ~(kvm->arch.smt_mode - 1));
2741                         mutex_lock(&kvm->arch.mmu_setup_lock);
2742                         kvm->arch.vcores[core] = vcore;
2743                         kvm->arch.online_vcores++;
2744                         mutex_unlock(&kvm->arch.mmu_setup_lock);
2745                 }
2746         }
2747         mutex_unlock(&kvm->lock);
2748
2749         if (!vcore)
2750                 return err;
2751
2752         spin_lock(&vcore->lock);
2753         ++vcore->num_threads;
2754         spin_unlock(&vcore->lock);
2755         vcpu->arch.vcore = vcore;
2756         vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2757         vcpu->arch.thread_cpu = -1;
2758         vcpu->arch.prev_cpu = -1;
2759
2760         vcpu->arch.cpu_type = KVM_CPU_3S_64;
2761         kvmppc_sanity_check(vcpu);
2762
2763         debugfs_vcpu_init(vcpu, id);
2764
2765         return 0;
2766 }
2767
2768 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2769                               unsigned long flags)
2770 {
2771         int err;
2772         int esmt = 0;
2773
2774         if (flags)
2775                 return -EINVAL;
2776         if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2777                 return -EINVAL;
2778         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2779                 /*
2780                  * On POWER8 (or POWER7), the threading mode is "strict",
2781                  * so we pack smt_mode vcpus per vcore.
2782                  */
2783                 if (smt_mode > threads_per_subcore)
2784                         return -EINVAL;
2785         } else {
2786                 /*
2787                  * On POWER9, the threading mode is "loose",
2788                  * so each vcpu gets its own vcore.
2789                  */
2790                 esmt = smt_mode;
2791                 smt_mode = 1;
2792         }
2793         mutex_lock(&kvm->lock);
2794         err = -EBUSY;
2795         if (!kvm->arch.online_vcores) {
2796                 kvm->arch.smt_mode = smt_mode;
2797                 kvm->arch.emul_smt_mode = esmt;
2798                 err = 0;
2799         }
2800         mutex_unlock(&kvm->lock);
2801
2802         return err;
2803 }
2804
2805 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2806 {
2807         if (vpa->pinned_addr)
2808                 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2809                                         vpa->dirty);
2810 }
2811
2812 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2813 {
2814         spin_lock(&vcpu->arch.vpa_update_lock);
2815         unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2816         unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2817         unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2818         spin_unlock(&vcpu->arch.vpa_update_lock);
2819 }
2820
2821 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2822 {
2823         /* Indicate we want to get back into the guest */
2824         return 1;
2825 }
2826
2827 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2828 {
2829         unsigned long dec_nsec, now;
2830
2831         now = get_tb();
2832         if (now > vcpu->arch.dec_expires) {
2833                 /* decrementer has already gone negative */
2834                 kvmppc_core_queue_dec(vcpu);
2835                 kvmppc_core_prepare_to_enter(vcpu);
2836                 return;
2837         }
2838         dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now);
2839         hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2840         vcpu->arch.timer_running = 1;
2841 }
2842
2843 extern int __kvmppc_vcore_entry(void);
2844
2845 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2846                                    struct kvm_vcpu *vcpu)
2847 {
2848         u64 now;
2849
2850         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2851                 return;
2852         spin_lock_irq(&vcpu->arch.tbacct_lock);
2853         now = mftb();
2854         vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2855                 vcpu->arch.stolen_logged;
2856         vcpu->arch.busy_preempt = now;
2857         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2858         spin_unlock_irq(&vcpu->arch.tbacct_lock);
2859         --vc->n_runnable;
2860         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2861 }
2862
2863 static int kvmppc_grab_hwthread(int cpu)
2864 {
2865         struct paca_struct *tpaca;
2866         long timeout = 10000;
2867
2868         tpaca = paca_ptrs[cpu];
2869
2870         /* Ensure the thread won't go into the kernel if it wakes */
2871         tpaca->kvm_hstate.kvm_vcpu = NULL;
2872         tpaca->kvm_hstate.kvm_vcore = NULL;
2873         tpaca->kvm_hstate.napping = 0;
2874         smp_wmb();
2875         tpaca->kvm_hstate.hwthread_req = 1;
2876
2877         /*
2878          * If the thread is already executing in the kernel (e.g. handling
2879          * a stray interrupt), wait for it to get back to nap mode.
2880          * The smp_mb() is to ensure that our setting of hwthread_req
2881          * is visible before we look at hwthread_state, so if this
2882          * races with the code at system_reset_pSeries and the thread
2883          * misses our setting of hwthread_req, we are sure to see its
2884          * setting of hwthread_state, and vice versa.
2885          */
2886         smp_mb();
2887         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2888                 if (--timeout <= 0) {
2889                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
2890                         return -EBUSY;
2891                 }
2892                 udelay(1);
2893         }
2894         return 0;
2895 }
2896
2897 static void kvmppc_release_hwthread(int cpu)
2898 {
2899         struct paca_struct *tpaca;
2900
2901         tpaca = paca_ptrs[cpu];
2902         tpaca->kvm_hstate.hwthread_req = 0;
2903         tpaca->kvm_hstate.kvm_vcpu = NULL;
2904         tpaca->kvm_hstate.kvm_vcore = NULL;
2905         tpaca->kvm_hstate.kvm_split_mode = NULL;
2906 }
2907
2908 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2909 {
2910         struct kvm_nested_guest *nested = vcpu->arch.nested;
2911         cpumask_t *cpu_in_guest;
2912         int i;
2913
2914         cpu = cpu_first_tlb_thread_sibling(cpu);
2915         if (nested) {
2916                 cpumask_set_cpu(cpu, &nested->need_tlb_flush);
2917                 cpu_in_guest = &nested->cpu_in_guest;
2918         } else {
2919                 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2920                 cpu_in_guest = &kvm->arch.cpu_in_guest;
2921         }
2922         /*
2923          * Make sure setting of bit in need_tlb_flush precedes
2924          * testing of cpu_in_guest bits.  The matching barrier on
2925          * the other side is the first smp_mb() in kvmppc_run_core().
2926          */
2927         smp_mb();
2928         for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
2929                                         i += cpu_tlb_thread_sibling_step())
2930                 if (cpumask_test_cpu(i, cpu_in_guest))
2931                         smp_call_function_single(i, do_nothing, NULL, 1);
2932 }
2933
2934 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2935 {
2936         struct kvm_nested_guest *nested = vcpu->arch.nested;
2937         struct kvm *kvm = vcpu->kvm;
2938         int prev_cpu;
2939
2940         if (!cpu_has_feature(CPU_FTR_HVMODE))
2941                 return;
2942
2943         if (nested)
2944                 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
2945         else
2946                 prev_cpu = vcpu->arch.prev_cpu;
2947
2948         /*
2949          * With radix, the guest can do TLB invalidations itself,
2950          * and it could choose to use the local form (tlbiel) if
2951          * it is invalidating a translation that has only ever been
2952          * used on one vcpu.  However, that doesn't mean it has
2953          * only ever been used on one physical cpu, since vcpus
2954          * can move around between pcpus.  To cope with this, when
2955          * a vcpu moves from one pcpu to another, we need to tell
2956          * any vcpus running on the same core as this vcpu previously
2957          * ran to flush the TLB.  The TLB is shared between threads,
2958          * so we use a single bit in .need_tlb_flush for all 4 threads.
2959          */
2960         if (prev_cpu != pcpu) {
2961                 if (prev_cpu >= 0 &&
2962                     cpu_first_tlb_thread_sibling(prev_cpu) !=
2963                     cpu_first_tlb_thread_sibling(pcpu))
2964                         radix_flush_cpu(kvm, prev_cpu, vcpu);
2965                 if (nested)
2966                         nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
2967                 else
2968                         vcpu->arch.prev_cpu = pcpu;
2969         }
2970 }
2971
2972 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2973 {
2974         int cpu;
2975         struct paca_struct *tpaca;
2976         struct kvm *kvm = vc->kvm;
2977
2978         cpu = vc->pcpu;
2979         if (vcpu) {
2980                 if (vcpu->arch.timer_running) {
2981                         hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2982                         vcpu->arch.timer_running = 0;
2983                 }
2984                 cpu += vcpu->arch.ptid;
2985                 vcpu->cpu = vc->pcpu;
2986                 vcpu->arch.thread_cpu = cpu;
2987                 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2988         }
2989         tpaca = paca_ptrs[cpu];
2990         tpaca->kvm_hstate.kvm_vcpu = vcpu;
2991         tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2992         tpaca->kvm_hstate.fake_suspend = 0;
2993         /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2994         smp_wmb();
2995         tpaca->kvm_hstate.kvm_vcore = vc;
2996         if (cpu != smp_processor_id())
2997                 kvmppc_ipi_thread(cpu);
2998 }
2999
3000 static void kvmppc_wait_for_nap(int n_threads)
3001 {
3002         int cpu = smp_processor_id();
3003         int i, loops;
3004
3005         if (n_threads <= 1)
3006                 return;
3007         for (loops = 0; loops < 1000000; ++loops) {
3008                 /*
3009                  * Check if all threads are finished.
3010                  * We set the vcore pointer when starting a thread
3011                  * and the thread clears it when finished, so we look
3012                  * for any threads that still have a non-NULL vcore ptr.
3013                  */
3014                 for (i = 1; i < n_threads; ++i)
3015                         if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3016                                 break;
3017                 if (i == n_threads) {
3018                         HMT_medium();
3019                         return;
3020                 }
3021                 HMT_low();
3022         }
3023         HMT_medium();
3024         for (i = 1; i < n_threads; ++i)
3025                 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3026                         pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
3027 }
3028
3029 /*
3030  * Check that we are on thread 0 and that any other threads in
3031  * this core are off-line.  Then grab the threads so they can't
3032  * enter the kernel.
3033  */
3034 static int on_primary_thread(void)
3035 {
3036         int cpu = smp_processor_id();
3037         int thr;
3038
3039         /* Are we on a primary subcore? */
3040         if (cpu_thread_in_subcore(cpu))
3041                 return 0;
3042
3043         thr = 0;
3044         while (++thr < threads_per_subcore)
3045                 if (cpu_online(cpu + thr))
3046                         return 0;
3047
3048         /* Grab all hw threads so they can't go into the kernel */
3049         for (thr = 1; thr < threads_per_subcore; ++thr) {
3050                 if (kvmppc_grab_hwthread(cpu + thr)) {
3051                         /* Couldn't grab one; let the others go */
3052                         do {
3053                                 kvmppc_release_hwthread(cpu + thr);
3054                         } while (--thr > 0);
3055                         return 0;
3056                 }
3057         }
3058         return 1;
3059 }
3060
3061 /*
3062  * A list of virtual cores for each physical CPU.
3063  * These are vcores that could run but their runner VCPU tasks are
3064  * (or may be) preempted.
3065  */
3066 struct preempted_vcore_list {
3067         struct list_head        list;
3068         spinlock_t              lock;
3069 };
3070
3071 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
3072
3073 static void init_vcore_lists(void)
3074 {
3075         int cpu;
3076
3077         for_each_possible_cpu(cpu) {
3078                 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
3079                 spin_lock_init(&lp->lock);
3080                 INIT_LIST_HEAD(&lp->list);
3081         }
3082 }
3083
3084 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
3085 {
3086         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3087
3088         vc->vcore_state = VCORE_PREEMPT;
3089         vc->pcpu = smp_processor_id();
3090         if (vc->num_threads < threads_per_vcore(vc->kvm)) {
3091                 spin_lock(&lp->lock);
3092                 list_add_tail(&vc->preempt_list, &lp->list);
3093                 spin_unlock(&lp->lock);
3094         }
3095
3096         /* Start accumulating stolen time */
3097         kvmppc_core_start_stolen(vc);
3098 }
3099
3100 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
3101 {
3102         struct preempted_vcore_list *lp;
3103
3104         kvmppc_core_end_stolen(vc);
3105         if (!list_empty(&vc->preempt_list)) {
3106                 lp = &per_cpu(preempted_vcores, vc->pcpu);
3107                 spin_lock(&lp->lock);
3108                 list_del_init(&vc->preempt_list);
3109                 spin_unlock(&lp->lock);
3110         }
3111         vc->vcore_state = VCORE_INACTIVE;
3112 }
3113
3114 /*
3115  * This stores information about the virtual cores currently
3116  * assigned to a physical core.
3117  */
3118 struct core_info {
3119         int             n_subcores;
3120         int             max_subcore_threads;
3121         int             total_threads;
3122         int             subcore_threads[MAX_SUBCORES];
3123         struct kvmppc_vcore *vc[MAX_SUBCORES];
3124 };
3125
3126 /*
3127  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
3128  * respectively in 2-way micro-threading (split-core) mode on POWER8.
3129  */
3130 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
3131
3132 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
3133 {
3134         memset(cip, 0, sizeof(*cip));
3135         cip->n_subcores = 1;
3136         cip->max_subcore_threads = vc->num_threads;
3137         cip->total_threads = vc->num_threads;
3138         cip->subcore_threads[0] = vc->num_threads;
3139         cip->vc[0] = vc;
3140 }
3141
3142 static bool subcore_config_ok(int n_subcores, int n_threads)
3143 {
3144         /*
3145          * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
3146          * split-core mode, with one thread per subcore.
3147          */
3148         if (cpu_has_feature(CPU_FTR_ARCH_300))
3149                 return n_subcores <= 4 && n_threads == 1;
3150
3151         /* On POWER8, can only dynamically split if unsplit to begin with */
3152         if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
3153                 return false;
3154         if (n_subcores > MAX_SUBCORES)
3155                 return false;
3156         if (n_subcores > 1) {
3157                 if (!(dynamic_mt_modes & 2))
3158                         n_subcores = 4;
3159                 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
3160                         return false;
3161         }
3162
3163         return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
3164 }
3165
3166 static void init_vcore_to_run(struct kvmppc_vcore *vc)
3167 {
3168         vc->entry_exit_map = 0;
3169         vc->in_guest = 0;
3170         vc->napping_threads = 0;
3171         vc->conferring_threads = 0;
3172         vc->tb_offset_applied = 0;
3173 }
3174
3175 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
3176 {
3177         int n_threads = vc->num_threads;
3178         int sub;
3179
3180         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
3181                 return false;
3182
3183         /* In one_vm_per_core mode, require all vcores to be from the same vm */
3184         if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
3185                 return false;
3186
3187         if (n_threads < cip->max_subcore_threads)
3188                 n_threads = cip->max_subcore_threads;
3189         if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
3190                 return false;
3191         cip->max_subcore_threads = n_threads;
3192
3193         sub = cip->n_subcores;
3194         ++cip->n_subcores;
3195         cip->total_threads += vc->num_threads;
3196         cip->subcore_threads[sub] = vc->num_threads;
3197         cip->vc[sub] = vc;
3198         init_vcore_to_run(vc);
3199         list_del_init(&vc->preempt_list);
3200
3201         return true;
3202 }
3203
3204 /*
3205  * Work out whether it is possible to piggyback the execution of
3206  * vcore *pvc onto the execution of the other vcores described in *cip.
3207  */
3208 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
3209                           int target_threads)
3210 {
3211         if (cip->total_threads + pvc->num_threads > target_threads)
3212                 return false;
3213
3214         return can_dynamic_split(pvc, cip);
3215 }
3216
3217 static void prepare_threads(struct kvmppc_vcore *vc)
3218 {
3219         int i;
3220         struct kvm_vcpu *vcpu;
3221
3222         for_each_runnable_thread(i, vcpu, vc) {
3223                 if (signal_pending(vcpu->arch.run_task))
3224                         vcpu->arch.ret = -EINTR;
3225                 else if (vcpu->arch.vpa.update_pending ||
3226                          vcpu->arch.slb_shadow.update_pending ||
3227                          vcpu->arch.dtl.update_pending)
3228                         vcpu->arch.ret = RESUME_GUEST;
3229                 else
3230                         continue;
3231                 kvmppc_remove_runnable(vc, vcpu);
3232                 wake_up(&vcpu->arch.cpu_run);
3233         }
3234 }
3235
3236 static void collect_piggybacks(struct core_info *cip, int target_threads)
3237 {
3238         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3239         struct kvmppc_vcore *pvc, *vcnext;
3240
3241         spin_lock(&lp->lock);
3242         list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
3243                 if (!spin_trylock(&pvc->lock))
3244                         continue;
3245                 prepare_threads(pvc);
3246                 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
3247                         list_del_init(&pvc->preempt_list);
3248                         if (pvc->runner == NULL) {
3249                                 pvc->vcore_state = VCORE_INACTIVE;
3250                                 kvmppc_core_end_stolen(pvc);
3251                         }
3252                         spin_unlock(&pvc->lock);
3253                         continue;
3254                 }
3255                 if (!can_piggyback(pvc, cip, target_threads)) {
3256                         spin_unlock(&pvc->lock);
3257                         continue;
3258                 }
3259                 kvmppc_core_end_stolen(pvc);
3260                 pvc->vcore_state = VCORE_PIGGYBACK;
3261                 if (cip->total_threads >= target_threads)
3262                         break;
3263         }
3264         spin_unlock(&lp->lock);
3265 }
3266
3267 static bool recheck_signals_and_mmu(struct core_info *cip)
3268 {
3269         int sub, i;
3270         struct kvm_vcpu *vcpu;
3271         struct kvmppc_vcore *vc;
3272
3273         for (sub = 0; sub < cip->n_subcores; ++sub) {
3274                 vc = cip->vc[sub];
3275                 if (!vc->kvm->arch.mmu_ready)
3276                         return true;
3277                 for_each_runnable_thread(i, vcpu, vc)
3278                         if (signal_pending(vcpu->arch.run_task))
3279                                 return true;
3280         }
3281         return false;
3282 }
3283
3284 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
3285 {
3286         int still_running = 0, i;
3287         u64 now;
3288         long ret;
3289         struct kvm_vcpu *vcpu;
3290
3291         spin_lock(&vc->lock);
3292         now = get_tb();
3293         for_each_runnable_thread(i, vcpu, vc) {
3294                 /*
3295                  * It's safe to unlock the vcore in the loop here, because
3296                  * for_each_runnable_thread() is safe against removal of
3297                  * the vcpu, and the vcore state is VCORE_EXITING here,
3298                  * so any vcpus becoming runnable will have their arch.trap
3299                  * set to zero and can't actually run in the guest.
3300                  */
3301                 spin_unlock(&vc->lock);
3302                 /* cancel pending dec exception if dec is positive */
3303                 if (now < vcpu->arch.dec_expires &&
3304                     kvmppc_core_pending_dec(vcpu))
3305                         kvmppc_core_dequeue_dec(vcpu);
3306
3307                 trace_kvm_guest_exit(vcpu);
3308
3309                 ret = RESUME_GUEST;
3310                 if (vcpu->arch.trap)
3311                         ret = kvmppc_handle_exit_hv(vcpu,
3312                                                     vcpu->arch.run_task);
3313
3314                 vcpu->arch.ret = ret;
3315                 vcpu->arch.trap = 0;
3316
3317                 spin_lock(&vc->lock);
3318                 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
3319                         if (vcpu->arch.pending_exceptions)
3320                                 kvmppc_core_prepare_to_enter(vcpu);
3321                         if (vcpu->arch.ceded)
3322                                 kvmppc_set_timer(vcpu);
3323                         else
3324                                 ++still_running;
3325                 } else {
3326                         kvmppc_remove_runnable(vc, vcpu);
3327                         wake_up(&vcpu->arch.cpu_run);
3328                 }
3329         }
3330         if (!is_master) {
3331                 if (still_running > 0) {
3332                         kvmppc_vcore_preempt(vc);
3333                 } else if (vc->runner) {
3334                         vc->vcore_state = VCORE_PREEMPT;
3335                         kvmppc_core_start_stolen(vc);
3336                 } else {
3337                         vc->vcore_state = VCORE_INACTIVE;
3338                 }
3339                 if (vc->n_runnable > 0 && vc->runner == NULL) {
3340                         /* make sure there's a candidate runner awake */
3341                         i = -1;
3342                         vcpu = next_runnable_thread(vc, &i);
3343                         wake_up(&vcpu->arch.cpu_run);
3344                 }
3345         }
3346         spin_unlock(&vc->lock);
3347 }
3348
3349 /*
3350  * Clear core from the list of active host cores as we are about to
3351  * enter the guest. Only do this if it is the primary thread of the
3352  * core (not if a subcore) that is entering the guest.
3353  */
3354 static inline int kvmppc_clear_host_core(unsigned int cpu)
3355 {
3356         int core;
3357
3358         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3359                 return 0;
3360         /*
3361          * Memory barrier can be omitted here as we will do a smp_wmb()
3362          * later in kvmppc_start_thread and we need ensure that state is
3363          * visible to other CPUs only after we enter guest.
3364          */
3365         core = cpu >> threads_shift;
3366         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
3367         return 0;
3368 }
3369
3370 /*
3371  * Advertise this core as an active host core since we exited the guest
3372  * Only need to do this if it is the primary thread of the core that is
3373  * exiting.
3374  */
3375 static inline int kvmppc_set_host_core(unsigned int cpu)
3376 {
3377         int core;
3378
3379         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3380                 return 0;
3381
3382         /*
3383          * Memory barrier can be omitted here because we do a spin_unlock
3384          * immediately after this which provides the memory barrier.
3385          */
3386         core = cpu >> threads_shift;
3387         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3388         return 0;
3389 }
3390
3391 static void set_irq_happened(int trap)
3392 {
3393         switch (trap) {
3394         case BOOK3S_INTERRUPT_EXTERNAL:
3395                 local_paca->irq_happened |= PACA_IRQ_EE;
3396                 break;
3397         case BOOK3S_INTERRUPT_H_DOORBELL:
3398                 local_paca->irq_happened |= PACA_IRQ_DBELL;
3399                 break;
3400         case BOOK3S_INTERRUPT_HMI:
3401                 local_paca->irq_happened |= PACA_IRQ_HMI;
3402                 break;
3403         case BOOK3S_INTERRUPT_SYSTEM_RESET:
3404                 replay_system_reset();
3405                 break;
3406         }
3407 }
3408
3409 /*
3410  * Run a set of guest threads on a physical core.
3411  * Called with vc->lock held.
3412  */
3413 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3414 {
3415         struct kvm_vcpu *vcpu;
3416         int i;
3417         int srcu_idx;
3418         struct core_info core_info;
3419         struct kvmppc_vcore *pvc;
3420         struct kvm_split_mode split_info, *sip;
3421         int split, subcore_size, active;
3422         int sub;
3423         bool thr0_done;
3424         unsigned long cmd_bit, stat_bit;
3425         int pcpu, thr;
3426         int target_threads;
3427         int controlled_threads;
3428         int trap;
3429         bool is_power8;
3430
3431         if (WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)))
3432                 return;
3433
3434         /*
3435          * Remove from the list any threads that have a signal pending
3436          * or need a VPA update done
3437          */
3438         prepare_threads(vc);
3439
3440         /* if the runner is no longer runnable, let the caller pick a new one */
3441         if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3442                 return;
3443
3444         /*
3445          * Initialize *vc.
3446          */
3447         init_vcore_to_run(vc);
3448         vc->preempt_tb = TB_NIL;
3449
3450         /*
3451          * Number of threads that we will be controlling: the same as
3452          * the number of threads per subcore, except on POWER9,
3453          * where it's 1 because the threads are (mostly) independent.
3454          */
3455         controlled_threads = threads_per_vcore(vc->kvm);
3456
3457         /*
3458          * Make sure we are running on primary threads, and that secondary
3459          * threads are offline.  Also check if the number of threads in this
3460          * guest are greater than the current system threads per guest.
3461          */
3462         if ((controlled_threads > 1) &&
3463             ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
3464                 for_each_runnable_thread(i, vcpu, vc) {
3465                         vcpu->arch.ret = -EBUSY;
3466                         kvmppc_remove_runnable(vc, vcpu);
3467                         wake_up(&vcpu->arch.cpu_run);
3468                 }
3469                 goto out;
3470         }
3471
3472         /*
3473          * See if we could run any other vcores on the physical core
3474          * along with this one.
3475          */
3476         init_core_info(&core_info, vc);
3477         pcpu = smp_processor_id();
3478         target_threads = controlled_threads;
3479         if (target_smt_mode && target_smt_mode < target_threads)
3480                 target_threads = target_smt_mode;
3481         if (vc->num_threads < target_threads)
3482                 collect_piggybacks(&core_info, target_threads);
3483
3484         /*
3485          * Hard-disable interrupts, and check resched flag and signals.
3486          * If we need to reschedule or deliver a signal, clean up
3487          * and return without going into the guest(s).
3488          * If the mmu_ready flag has been cleared, don't go into the
3489          * guest because that means a HPT resize operation is in progress.
3490          */
3491         local_irq_disable();
3492         hard_irq_disable();
3493         if (lazy_irq_pending() || need_resched() ||
3494             recheck_signals_and_mmu(&core_info)) {
3495                 local_irq_enable();
3496                 vc->vcore_state = VCORE_INACTIVE;
3497                 /* Unlock all except the primary vcore */
3498                 for (sub = 1; sub < core_info.n_subcores; ++sub) {
3499                         pvc = core_info.vc[sub];
3500                         /* Put back on to the preempted vcores list */
3501                         kvmppc_vcore_preempt(pvc);
3502                         spin_unlock(&pvc->lock);
3503                 }
3504                 for (i = 0; i < controlled_threads; ++i)
3505                         kvmppc_release_hwthread(pcpu + i);
3506                 return;
3507         }
3508
3509         kvmppc_clear_host_core(pcpu);
3510
3511         /* Decide on micro-threading (split-core) mode */
3512         subcore_size = threads_per_subcore;
3513         cmd_bit = stat_bit = 0;
3514         split = core_info.n_subcores;
3515         sip = NULL;
3516         is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S);
3517
3518         if (split > 1) {
3519                 sip = &split_info;
3520                 memset(&split_info, 0, sizeof(split_info));
3521                 for (sub = 0; sub < core_info.n_subcores; ++sub)
3522                         split_info.vc[sub] = core_info.vc[sub];
3523
3524                 if (is_power8) {
3525                         if (split == 2 && (dynamic_mt_modes & 2)) {
3526                                 cmd_bit = HID0_POWER8_1TO2LPAR;
3527                                 stat_bit = HID0_POWER8_2LPARMODE;
3528                         } else {
3529                                 split = 4;
3530                                 cmd_bit = HID0_POWER8_1TO4LPAR;
3531                                 stat_bit = HID0_POWER8_4LPARMODE;
3532                         }
3533                         subcore_size = MAX_SMT_THREADS / split;
3534                         split_info.rpr = mfspr(SPRN_RPR);
3535                         split_info.pmmar = mfspr(SPRN_PMMAR);
3536                         split_info.ldbar = mfspr(SPRN_LDBAR);
3537                         split_info.subcore_size = subcore_size;
3538                 } else {
3539                         split_info.subcore_size = 1;
3540                 }
3541
3542                 /* order writes to split_info before kvm_split_mode pointer */
3543                 smp_wmb();
3544         }
3545
3546         for (thr = 0; thr < controlled_threads; ++thr) {
3547                 struct paca_struct *paca = paca_ptrs[pcpu + thr];
3548
3549                 paca->kvm_hstate.napping = 0;
3550                 paca->kvm_hstate.kvm_split_mode = sip;
3551         }
3552
3553         /* Initiate micro-threading (split-core) on POWER8 if required */
3554         if (cmd_bit) {
3555                 unsigned long hid0 = mfspr(SPRN_HID0);
3556
3557                 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3558                 mb();
3559                 mtspr(SPRN_HID0, hid0);
3560                 isync();
3561                 for (;;) {
3562                         hid0 = mfspr(SPRN_HID0);
3563                         if (hid0 & stat_bit)
3564                                 break;
3565                         cpu_relax();
3566                 }
3567         }
3568
3569         /*
3570          * On POWER8, set RWMR register.
3571          * Since it only affects PURR and SPURR, it doesn't affect
3572          * the host, so we don't save/restore the host value.
3573          */
3574         if (is_power8) {
3575                 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3576                 int n_online = atomic_read(&vc->online_count);
3577
3578                 /*
3579                  * Use the 8-thread value if we're doing split-core
3580                  * or if the vcore's online count looks bogus.
3581                  */
3582                 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3583                     n_online >= 1 && n_online <= MAX_SMT_THREADS)
3584                         rwmr_val = p8_rwmr_values[n_online];
3585                 mtspr(SPRN_RWMR, rwmr_val);
3586         }
3587
3588         /* Start all the threads */
3589         active = 0;
3590         for (sub = 0; sub < core_info.n_subcores; ++sub) {
3591                 thr = is_power8 ? subcore_thread_map[sub] : sub;
3592                 thr0_done = false;
3593                 active |= 1 << thr;
3594                 pvc = core_info.vc[sub];
3595                 pvc->pcpu = pcpu + thr;
3596                 for_each_runnable_thread(i, vcpu, pvc) {
3597                         kvmppc_start_thread(vcpu, pvc);
3598                         kvmppc_create_dtl_entry(vcpu, pvc);
3599                         trace_kvm_guest_enter(vcpu);
3600                         if (!vcpu->arch.ptid)
3601                                 thr0_done = true;
3602                         active |= 1 << (thr + vcpu->arch.ptid);
3603                 }
3604                 /*
3605                  * We need to start the first thread of each subcore
3606                  * even if it doesn't have a vcpu.
3607                  */
3608                 if (!thr0_done)
3609                         kvmppc_start_thread(NULL, pvc);
3610         }
3611
3612         /*
3613          * Ensure that split_info.do_nap is set after setting
3614          * the vcore pointer in the PACA of the secondaries.
3615          */
3616         smp_mb();
3617
3618         /*
3619          * When doing micro-threading, poke the inactive threads as well.
3620          * This gets them to the nap instruction after kvm_do_nap,
3621          * which reduces the time taken to unsplit later.
3622          */
3623         if (cmd_bit) {
3624                 split_info.do_nap = 1;  /* ask secondaries to nap when done */
3625                 for (thr = 1; thr < threads_per_subcore; ++thr)
3626                         if (!(active & (1 << thr)))
3627                                 kvmppc_ipi_thread(pcpu + thr);
3628         }
3629
3630         vc->vcore_state = VCORE_RUNNING;
3631         preempt_disable();
3632
3633         trace_kvmppc_run_core(vc, 0);
3634
3635         for (sub = 0; sub < core_info.n_subcores; ++sub)
3636                 spin_unlock(&core_info.vc[sub]->lock);
3637
3638         guest_enter_irqoff();
3639
3640         srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3641
3642         this_cpu_disable_ftrace();
3643
3644         /*
3645          * Interrupts will be enabled once we get into the guest,
3646          * so tell lockdep that we're about to enable interrupts.
3647          */
3648         trace_hardirqs_on();
3649
3650         trap = __kvmppc_vcore_entry();
3651
3652         trace_hardirqs_off();
3653
3654         this_cpu_enable_ftrace();
3655
3656         srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3657
3658         set_irq_happened(trap);
3659
3660         spin_lock(&vc->lock);
3661         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
3662         vc->vcore_state = VCORE_EXITING;
3663
3664         /* wait for secondary threads to finish writing their state to memory */
3665         kvmppc_wait_for_nap(controlled_threads);
3666
3667         /* Return to whole-core mode if we split the core earlier */
3668         if (cmd_bit) {
3669                 unsigned long hid0 = mfspr(SPRN_HID0);
3670                 unsigned long loops = 0;
3671
3672                 hid0 &= ~HID0_POWER8_DYNLPARDIS;
3673                 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3674                 mb();
3675                 mtspr(SPRN_HID0, hid0);
3676                 isync();
3677                 for (;;) {
3678                         hid0 = mfspr(SPRN_HID0);
3679                         if (!(hid0 & stat_bit))
3680                                 break;
3681                         cpu_relax();
3682                         ++loops;
3683                 }
3684                 split_info.do_nap = 0;
3685         }
3686
3687         kvmppc_set_host_core(pcpu);
3688
3689         guest_exit_irqoff();
3690
3691         local_irq_enable();
3692
3693         /* Let secondaries go back to the offline loop */
3694         for (i = 0; i < controlled_threads; ++i) {
3695                 kvmppc_release_hwthread(pcpu + i);
3696                 if (sip && sip->napped[i])
3697                         kvmppc_ipi_thread(pcpu + i);
3698                 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3699         }
3700
3701         spin_unlock(&vc->lock);
3702
3703         /* make sure updates to secondary vcpu structs are visible now */
3704         smp_mb();
3705
3706         preempt_enable();
3707
3708         for (sub = 0; sub < core_info.n_subcores; ++sub) {
3709                 pvc = core_info.vc[sub];
3710                 post_guest_process(pvc, pvc == vc);
3711         }
3712
3713         spin_lock(&vc->lock);
3714
3715  out:
3716         vc->vcore_state = VCORE_INACTIVE;
3717         trace_kvmppc_run_core(vc, 1);
3718 }
3719
3720 static void load_spr_state(struct kvm_vcpu *vcpu)
3721 {
3722         mtspr(SPRN_DSCR, vcpu->arch.dscr);
3723         mtspr(SPRN_IAMR, vcpu->arch.iamr);
3724         mtspr(SPRN_PSPB, vcpu->arch.pspb);
3725         mtspr(SPRN_FSCR, vcpu->arch.fscr);
3726         mtspr(SPRN_TAR, vcpu->arch.tar);
3727         mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
3728         mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
3729         mtspr(SPRN_BESCR, vcpu->arch.bescr);
3730         mtspr(SPRN_WORT, vcpu->arch.wort);
3731         mtspr(SPRN_TIDR, vcpu->arch.tid);
3732         mtspr(SPRN_AMR, vcpu->arch.amr);
3733         mtspr(SPRN_UAMOR, vcpu->arch.uamor);
3734
3735         /*
3736          * DAR, DSISR, and for nested HV, SPRGs must be set with MSR[RI]
3737          * clear (or hstate set appropriately to catch those registers
3738          * being clobbered if we take a MCE or SRESET), so those are done
3739          * later.
3740          */
3741
3742         if (!(vcpu->arch.ctrl & 1))
3743                 mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1);
3744 }
3745
3746 static void store_spr_state(struct kvm_vcpu *vcpu)
3747 {
3748         vcpu->arch.ctrl = mfspr(SPRN_CTRLF);
3749
3750         vcpu->arch.iamr = mfspr(SPRN_IAMR);
3751         vcpu->arch.pspb = mfspr(SPRN_PSPB);
3752         vcpu->arch.fscr = mfspr(SPRN_FSCR);
3753         vcpu->arch.tar = mfspr(SPRN_TAR);
3754         vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
3755         vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
3756         vcpu->arch.bescr = mfspr(SPRN_BESCR);
3757         vcpu->arch.wort = mfspr(SPRN_WORT);
3758         vcpu->arch.tid = mfspr(SPRN_TIDR);
3759         vcpu->arch.amr = mfspr(SPRN_AMR);
3760         vcpu->arch.uamor = mfspr(SPRN_UAMOR);
3761         vcpu->arch.dscr = mfspr(SPRN_DSCR);
3762 }
3763
3764 /*
3765  * Privileged (non-hypervisor) host registers to save.
3766  */
3767 struct p9_host_os_sprs {
3768         unsigned long dscr;
3769         unsigned long tidr;
3770         unsigned long iamr;
3771         unsigned long amr;
3772         unsigned long fscr;
3773 };
3774
3775 static void save_p9_host_os_sprs(struct p9_host_os_sprs *host_os_sprs)
3776 {
3777         host_os_sprs->dscr = mfspr(SPRN_DSCR);
3778         host_os_sprs->tidr = mfspr(SPRN_TIDR);
3779         host_os_sprs->iamr = mfspr(SPRN_IAMR);
3780         host_os_sprs->amr = mfspr(SPRN_AMR);
3781         host_os_sprs->fscr = mfspr(SPRN_FSCR);
3782 }
3783
3784 /* vcpu guest regs must already be saved */
3785 static void restore_p9_host_os_sprs(struct kvm_vcpu *vcpu,
3786                                     struct p9_host_os_sprs *host_os_sprs)
3787 {
3788         mtspr(SPRN_PSPB, 0);
3789         mtspr(SPRN_WORT, 0);
3790         mtspr(SPRN_UAMOR, 0);
3791
3792         mtspr(SPRN_DSCR, host_os_sprs->dscr);
3793         mtspr(SPRN_TIDR, host_os_sprs->tidr);
3794         mtspr(SPRN_IAMR, host_os_sprs->iamr);
3795
3796         if (host_os_sprs->amr != vcpu->arch.amr)
3797                 mtspr(SPRN_AMR, host_os_sprs->amr);
3798
3799         if (host_os_sprs->fscr != vcpu->arch.fscr)
3800                 mtspr(SPRN_FSCR, host_os_sprs->fscr);
3801
3802         /* Save guest CTRL register, set runlatch to 1 */
3803         if (!(vcpu->arch.ctrl & 1))
3804                 mtspr(SPRN_CTRLT, 1);
3805 }
3806
3807 static inline bool hcall_is_xics(unsigned long req)
3808 {
3809         return req == H_EOI || req == H_CPPR || req == H_IPI ||
3810                 req == H_IPOLL || req == H_XIRR || req == H_XIRR_X;
3811 }
3812
3813 /*
3814  * Guest entry for POWER9 and later CPUs.
3815  */
3816 static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
3817                          unsigned long lpcr)
3818 {
3819         struct kvmppc_vcore *vc = vcpu->arch.vcore;
3820         struct p9_host_os_sprs host_os_sprs;
3821         s64 dec;
3822         u64 tb;
3823         int trap, save_pmu;
3824
3825         WARN_ON_ONCE(vcpu->arch.ceded);
3826
3827         dec = mfspr(SPRN_DEC);
3828         tb = mftb();
3829         if (dec < 0)
3830                 return BOOK3S_INTERRUPT_HV_DECREMENTER;
3831         local_paca->kvm_hstate.dec_expires = dec + tb;
3832         if (local_paca->kvm_hstate.dec_expires < time_limit)
3833                 time_limit = local_paca->kvm_hstate.dec_expires;
3834
3835         save_p9_host_os_sprs(&host_os_sprs);
3836
3837         kvmhv_save_host_pmu();          /* saves it to PACA kvm_hstate */
3838
3839         kvmppc_subcore_enter_guest();
3840
3841         vc->entry_exit_map = 1;
3842         vc->in_guest = 1;
3843
3844         if (vcpu->arch.vpa.pinned_addr) {
3845                 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3846                 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3847                 lp->yield_count = cpu_to_be32(yield_count);
3848                 vcpu->arch.vpa.dirty = 1;
3849         }
3850
3851         if (cpu_has_feature(CPU_FTR_TM) ||
3852             cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3853                 kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3854
3855         kvmhv_load_guest_pmu(vcpu);
3856
3857         msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3858         load_fp_state(&vcpu->arch.fp);
3859 #ifdef CONFIG_ALTIVEC
3860         load_vr_state(&vcpu->arch.vr);
3861 #endif
3862         mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
3863
3864         load_spr_state(vcpu);
3865
3866         /*
3867          * When setting DEC, we must always deal with irq_work_raise via NMI vs
3868          * setting DEC. The problem occurs right as we switch into guest mode
3869          * if a NMI hits and sets pending work and sets DEC, then that will
3870          * apply to the guest and not bring us back to the host.
3871          *
3872          * irq_work_raise could check a flag (or possibly LPCR[HDICE] for
3873          * example) and set HDEC to 1? That wouldn't solve the nested hv
3874          * case which needs to abort the hcall or zero the time limit.
3875          *
3876          * XXX: Another day's problem.
3877          */
3878         mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb());
3879
3880         if (kvmhv_on_pseries()) {
3881                 /*
3882                  * We need to save and restore the guest visible part of the
3883                  * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
3884                  * doesn't do this for us. Note only required if pseries since
3885                  * this is done in kvmhv_vcpu_entry_p9() below otherwise.
3886                  */
3887                 unsigned long host_psscr;
3888                 /* call our hypervisor to load up HV regs and go */
3889                 struct hv_guest_state hvregs;
3890
3891                 host_psscr = mfspr(SPRN_PSSCR_PR);
3892                 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
3893                 kvmhv_save_hv_regs(vcpu, &hvregs);
3894                 hvregs.lpcr = lpcr;
3895                 vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
3896                 hvregs.version = HV_GUEST_STATE_VERSION;
3897                 if (vcpu->arch.nested) {
3898                         hvregs.lpid = vcpu->arch.nested->shadow_lpid;
3899                         hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
3900                 } else {
3901                         hvregs.lpid = vcpu->kvm->arch.lpid;
3902                         hvregs.vcpu_token = vcpu->vcpu_id;
3903                 }
3904                 hvregs.hdec_expiry = time_limit;
3905                 mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
3906                 mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
3907                 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
3908                                           __pa(&vcpu->arch.regs));
3909                 kvmhv_restore_hv_return_state(vcpu, &hvregs);
3910                 vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
3911                 vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
3912                 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
3913                 vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
3914                 mtspr(SPRN_PSSCR_PR, host_psscr);
3915
3916                 /* H_CEDE has to be handled now, not later */
3917                 if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
3918                     kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
3919                         kvmppc_cede(vcpu);
3920                         kvmppc_set_gpr(vcpu, 3, 0);
3921                         trap = 0;
3922                 }
3923         } else {
3924                 kvmppc_xive_push_vcpu(vcpu);
3925                 trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr);
3926                 if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
3927                     !(vcpu->arch.shregs.msr & MSR_PR)) {
3928                         unsigned long req = kvmppc_get_gpr(vcpu, 3);
3929
3930                         /* H_CEDE has to be handled now, not later */
3931                         if (req == H_CEDE) {
3932                                 kvmppc_cede(vcpu);
3933                                 kvmppc_xive_rearm_escalation(vcpu); /* may un-cede */
3934                                 kvmppc_set_gpr(vcpu, 3, 0);
3935                                 trap = 0;
3936
3937                         /* XICS hcalls must be handled before xive is pulled */
3938                         } else if (hcall_is_xics(req)) {
3939                                 int ret;
3940
3941                                 ret = kvmppc_xive_xics_hcall(vcpu, req);
3942                                 if (ret != H_TOO_HARD) {
3943                                         kvmppc_set_gpr(vcpu, 3, ret);
3944                                         trap = 0;
3945                                 }
3946                         }
3947                 }
3948                 kvmppc_xive_pull_vcpu(vcpu);
3949
3950                 if (kvm_is_radix(vcpu->kvm))
3951                         vcpu->arch.slb_max = 0;
3952         }
3953
3954         dec = mfspr(SPRN_DEC);
3955         if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
3956                 dec = (s32) dec;
3957         tb = mftb();
3958         vcpu->arch.dec_expires = dec + tb;
3959         vcpu->cpu = -1;
3960         vcpu->arch.thread_cpu = -1;
3961
3962         store_spr_state(vcpu);
3963
3964         restore_p9_host_os_sprs(vcpu, &host_os_sprs);
3965
3966         msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3967         store_fp_state(&vcpu->arch.fp);
3968 #ifdef CONFIG_ALTIVEC
3969         store_vr_state(&vcpu->arch.vr);
3970 #endif
3971         vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
3972
3973         if (cpu_has_feature(CPU_FTR_TM) ||
3974             cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3975                 kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3976
3977         save_pmu = 1;
3978         if (vcpu->arch.vpa.pinned_addr) {
3979                 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3980                 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3981                 lp->yield_count = cpu_to_be32(yield_count);
3982                 vcpu->arch.vpa.dirty = 1;
3983                 save_pmu = lp->pmcregs_in_use;
3984         }
3985         /* Must save pmu if this guest is capable of running nested guests */
3986         save_pmu |= nesting_enabled(vcpu->kvm);
3987
3988         kvmhv_save_guest_pmu(vcpu, save_pmu);
3989
3990         vc->entry_exit_map = 0x101;
3991         vc->in_guest = 0;
3992
3993         mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb());
3994         /* We may have raced with new irq work */
3995         if (test_irq_work_pending())
3996                 set_dec(1);
3997         mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso);
3998
3999         kvmhv_load_host_pmu();
4000
4001         kvmppc_subcore_exit_guest();
4002
4003         return trap;
4004 }
4005
4006 /*
4007  * Wait for some other vcpu thread to execute us, and
4008  * wake us up when we need to handle something in the host.
4009  */
4010 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
4011                                  struct kvm_vcpu *vcpu, int wait_state)
4012 {
4013         DEFINE_WAIT(wait);
4014
4015         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
4016         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4017                 spin_unlock(&vc->lock);
4018                 schedule();
4019                 spin_lock(&vc->lock);
4020         }
4021         finish_wait(&vcpu->arch.cpu_run, &wait);
4022 }
4023
4024 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
4025 {
4026         if (!halt_poll_ns_grow)
4027                 return;
4028
4029         vc->halt_poll_ns *= halt_poll_ns_grow;
4030         if (vc->halt_poll_ns < halt_poll_ns_grow_start)
4031                 vc->halt_poll_ns = halt_poll_ns_grow_start;
4032 }
4033
4034 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
4035 {
4036         if (halt_poll_ns_shrink == 0)
4037                 vc->halt_poll_ns = 0;
4038         else
4039                 vc->halt_poll_ns /= halt_poll_ns_shrink;
4040 }
4041
4042 #ifdef CONFIG_KVM_XICS
4043 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4044 {
4045         if (!xics_on_xive())
4046                 return false;
4047         return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
4048                 vcpu->arch.xive_saved_state.cppr;
4049 }
4050 #else
4051 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4052 {
4053         return false;
4054 }
4055 #endif /* CONFIG_KVM_XICS */
4056
4057 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
4058 {
4059         if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
4060             kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
4061                 return true;
4062
4063         return false;
4064 }
4065
4066 /*
4067  * Check to see if any of the runnable vcpus on the vcore have pending
4068  * exceptions or are no longer ceded
4069  */
4070 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
4071 {
4072         struct kvm_vcpu *vcpu;
4073         int i;
4074
4075         for_each_runnable_thread(i, vcpu, vc) {
4076                 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
4077                         return 1;
4078         }
4079
4080         return 0;
4081 }
4082
4083 /*
4084  * All the vcpus in this vcore are idle, so wait for a decrementer
4085  * or external interrupt to one of the vcpus.  vc->lock is held.
4086  */
4087 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
4088 {
4089         ktime_t cur, start_poll, start_wait;
4090         int do_sleep = 1;
4091         u64 block_ns;
4092
4093         /* Poll for pending exceptions and ceded state */
4094         cur = start_poll = ktime_get();
4095         if (vc->halt_poll_ns) {
4096                 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
4097                 ++vc->runner->stat.generic.halt_attempted_poll;
4098
4099                 vc->vcore_state = VCORE_POLLING;
4100                 spin_unlock(&vc->lock);
4101
4102                 do {
4103                         if (kvmppc_vcore_check_block(vc)) {
4104                                 do_sleep = 0;
4105                                 break;
4106                         }
4107                         cur = ktime_get();
4108                 } while (kvm_vcpu_can_poll(cur, stop));
4109
4110                 spin_lock(&vc->lock);
4111                 vc->vcore_state = VCORE_INACTIVE;
4112
4113                 if (!do_sleep) {
4114                         ++vc->runner->stat.generic.halt_successful_poll;
4115                         goto out;
4116                 }
4117         }
4118
4119         prepare_to_rcuwait(&vc->wait);
4120         set_current_state(TASK_INTERRUPTIBLE);
4121         if (kvmppc_vcore_check_block(vc)) {
4122                 finish_rcuwait(&vc->wait);
4123                 do_sleep = 0;
4124                 /* If we polled, count this as a successful poll */
4125                 if (vc->halt_poll_ns)
4126                         ++vc->runner->stat.generic.halt_successful_poll;
4127                 goto out;
4128         }
4129
4130         start_wait = ktime_get();
4131
4132         vc->vcore_state = VCORE_SLEEPING;
4133         trace_kvmppc_vcore_blocked(vc, 0);
4134         spin_unlock(&vc->lock);
4135         schedule();
4136         finish_rcuwait(&vc->wait);
4137         spin_lock(&vc->lock);
4138         vc->vcore_state = VCORE_INACTIVE;
4139         trace_kvmppc_vcore_blocked(vc, 1);
4140         ++vc->runner->stat.halt_successful_wait;
4141
4142         cur = ktime_get();
4143
4144 out:
4145         block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
4146
4147         /* Attribute wait time */
4148         if (do_sleep) {
4149                 vc->runner->stat.generic.halt_wait_ns +=
4150                         ktime_to_ns(cur) - ktime_to_ns(start_wait);
4151                 KVM_STATS_LOG_HIST_UPDATE(
4152                                 vc->runner->stat.generic.halt_wait_hist,
4153                                 ktime_to_ns(cur) - ktime_to_ns(start_wait));
4154                 /* Attribute failed poll time */
4155                 if (vc->halt_poll_ns) {
4156                         vc->runner->stat.generic.halt_poll_fail_ns +=
4157                                 ktime_to_ns(start_wait) -
4158                                 ktime_to_ns(start_poll);
4159                         KVM_STATS_LOG_HIST_UPDATE(
4160                                 vc->runner->stat.generic.halt_poll_fail_hist,
4161                                 ktime_to_ns(start_wait) -
4162                                 ktime_to_ns(start_poll));
4163                 }
4164         } else {
4165                 /* Attribute successful poll time */
4166                 if (vc->halt_poll_ns) {
4167                         vc->runner->stat.generic.halt_poll_success_ns +=
4168                                 ktime_to_ns(cur) -
4169                                 ktime_to_ns(start_poll);
4170                         KVM_STATS_LOG_HIST_UPDATE(
4171                                 vc->runner->stat.generic.halt_poll_success_hist,
4172                                 ktime_to_ns(cur) - ktime_to_ns(start_poll));
4173                 }
4174         }
4175
4176         /* Adjust poll time */
4177         if (halt_poll_ns) {
4178                 if (block_ns <= vc->halt_poll_ns)
4179                         ;
4180                 /* We slept and blocked for longer than the max halt time */
4181                 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
4182                         shrink_halt_poll_ns(vc);
4183                 /* We slept and our poll time is too small */
4184                 else if (vc->halt_poll_ns < halt_poll_ns &&
4185                                 block_ns < halt_poll_ns)
4186                         grow_halt_poll_ns(vc);
4187                 if (vc->halt_poll_ns > halt_poll_ns)
4188                         vc->halt_poll_ns = halt_poll_ns;
4189         } else
4190                 vc->halt_poll_ns = 0;
4191
4192         trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
4193 }
4194
4195 /*
4196  * This never fails for a radix guest, as none of the operations it does
4197  * for a radix guest can fail or have a way to report failure.
4198  */
4199 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
4200 {
4201         int r = 0;
4202         struct kvm *kvm = vcpu->kvm;
4203
4204         mutex_lock(&kvm->arch.mmu_setup_lock);
4205         if (!kvm->arch.mmu_ready) {
4206                 if (!kvm_is_radix(kvm))
4207                         r = kvmppc_hv_setup_htab_rma(vcpu);
4208                 if (!r) {
4209                         if (cpu_has_feature(CPU_FTR_ARCH_300))
4210                                 kvmppc_setup_partition_table(kvm);
4211                         kvm->arch.mmu_ready = 1;
4212                 }
4213         }
4214         mutex_unlock(&kvm->arch.mmu_setup_lock);
4215         return r;
4216 }
4217
4218 static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu)
4219 {
4220         struct kvm_run *run = vcpu->run;
4221         int n_ceded, i, r;
4222         struct kvmppc_vcore *vc;
4223         struct kvm_vcpu *v;
4224
4225         trace_kvmppc_run_vcpu_enter(vcpu);
4226
4227         run->exit_reason = 0;
4228         vcpu->arch.ret = RESUME_GUEST;
4229         vcpu->arch.trap = 0;
4230         kvmppc_update_vpas(vcpu);
4231
4232         /*
4233          * Synchronize with other threads in this virtual core
4234          */
4235         vc = vcpu->arch.vcore;
4236         spin_lock(&vc->lock);
4237         vcpu->arch.ceded = 0;
4238         vcpu->arch.run_task = current;
4239         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4240         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4241         vcpu->arch.busy_preempt = TB_NIL;
4242         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
4243         ++vc->n_runnable;
4244
4245         /*
4246          * This happens the first time this is called for a vcpu.
4247          * If the vcore is already running, we may be able to start
4248          * this thread straight away and have it join in.
4249          */
4250         if (!signal_pending(current)) {
4251                 if ((vc->vcore_state == VCORE_PIGGYBACK ||
4252                      vc->vcore_state == VCORE_RUNNING) &&
4253                            !VCORE_IS_EXITING(vc)) {
4254                         kvmppc_create_dtl_entry(vcpu, vc);
4255                         kvmppc_start_thread(vcpu, vc);
4256                         trace_kvm_guest_enter(vcpu);
4257                 } else if (vc->vcore_state == VCORE_SLEEPING) {
4258                         rcuwait_wake_up(&vc->wait);
4259                 }
4260
4261         }
4262
4263         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4264                !signal_pending(current)) {
4265                 /* See if the MMU is ready to go */
4266                 if (!vcpu->kvm->arch.mmu_ready) {
4267                         spin_unlock(&vc->lock);
4268                         r = kvmhv_setup_mmu(vcpu);
4269                         spin_lock(&vc->lock);
4270                         if (r) {
4271                                 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4272                                 run->fail_entry.
4273                                         hardware_entry_failure_reason = 0;
4274                                 vcpu->arch.ret = r;
4275                                 break;
4276                         }
4277                 }
4278
4279                 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4280                         kvmppc_vcore_end_preempt(vc);
4281
4282                 if (vc->vcore_state != VCORE_INACTIVE) {
4283                         kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
4284                         continue;
4285                 }
4286                 for_each_runnable_thread(i, v, vc) {
4287                         kvmppc_core_prepare_to_enter(v);
4288                         if (signal_pending(v->arch.run_task)) {
4289                                 kvmppc_remove_runnable(vc, v);
4290                                 v->stat.signal_exits++;
4291                                 v->run->exit_reason = KVM_EXIT_INTR;
4292                                 v->arch.ret = -EINTR;
4293                                 wake_up(&v->arch.cpu_run);
4294                         }
4295                 }
4296                 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
4297                         break;
4298                 n_ceded = 0;
4299                 for_each_runnable_thread(i, v, vc) {
4300                         if (!kvmppc_vcpu_woken(v))
4301                                 n_ceded += v->arch.ceded;
4302                         else
4303                                 v->arch.ceded = 0;
4304                 }
4305                 vc->runner = vcpu;
4306                 if (n_ceded == vc->n_runnable) {
4307                         kvmppc_vcore_blocked(vc);
4308                 } else if (need_resched()) {
4309                         kvmppc_vcore_preempt(vc);
4310                         /* Let something else run */
4311                         cond_resched_lock(&vc->lock);
4312                         if (vc->vcore_state == VCORE_PREEMPT)
4313                                 kvmppc_vcore_end_preempt(vc);
4314                 } else {
4315                         kvmppc_run_core(vc);
4316                 }
4317                 vc->runner = NULL;
4318         }
4319
4320         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4321                (vc->vcore_state == VCORE_RUNNING ||
4322                 vc->vcore_state == VCORE_EXITING ||
4323                 vc->vcore_state == VCORE_PIGGYBACK))
4324                 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
4325
4326         if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4327                 kvmppc_vcore_end_preempt(vc);
4328
4329         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4330                 kvmppc_remove_runnable(vc, vcpu);
4331                 vcpu->stat.signal_exits++;
4332                 run->exit_reason = KVM_EXIT_INTR;
4333                 vcpu->arch.ret = -EINTR;
4334         }
4335
4336         if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4337                 /* Wake up some vcpu to run the core */
4338                 i = -1;
4339                 v = next_runnable_thread(vc, &i);
4340                 wake_up(&v->arch.cpu_run);
4341         }
4342
4343         trace_kvmppc_run_vcpu_exit(vcpu);
4344         spin_unlock(&vc->lock);
4345         return vcpu->arch.ret;
4346 }
4347
4348 int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit,
4349                           unsigned long lpcr)
4350 {
4351         struct kvm_run *run = vcpu->run;
4352         int trap, r, pcpu;
4353         int srcu_idx;
4354         struct kvmppc_vcore *vc;
4355         struct kvm *kvm = vcpu->kvm;
4356         struct kvm_nested_guest *nested = vcpu->arch.nested;
4357
4358         trace_kvmppc_run_vcpu_enter(vcpu);
4359
4360         run->exit_reason = 0;
4361         vcpu->arch.ret = RESUME_GUEST;
4362         vcpu->arch.trap = 0;
4363
4364         vc = vcpu->arch.vcore;
4365         vcpu->arch.ceded = 0;
4366         vcpu->arch.run_task = current;
4367         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4368         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4369         vcpu->arch.busy_preempt = TB_NIL;
4370         vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4371         vc->runnable_threads[0] = vcpu;
4372         vc->n_runnable = 1;
4373         vc->runner = vcpu;
4374
4375         /* See if the MMU is ready to go */
4376         if (!kvm->arch.mmu_ready) {
4377                 r = kvmhv_setup_mmu(vcpu);
4378                 if (r) {
4379                         run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4380                         run->fail_entry.hardware_entry_failure_reason = 0;
4381                         vcpu->arch.ret = r;
4382                         return r;
4383                 }
4384         }
4385
4386         if (need_resched())
4387                 cond_resched();
4388
4389         kvmppc_update_vpas(vcpu);
4390
4391         init_vcore_to_run(vc);
4392         vc->preempt_tb = TB_NIL;
4393
4394         preempt_disable();
4395         pcpu = smp_processor_id();
4396         vc->pcpu = pcpu;
4397         if (kvm_is_radix(kvm))
4398                 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4399
4400         local_irq_disable();
4401         hard_irq_disable();
4402         if (signal_pending(current))
4403                 goto sigpend;
4404         if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready)
4405                 goto out;
4406
4407         if (!nested) {
4408                 kvmppc_core_prepare_to_enter(vcpu);
4409                 if (vcpu->arch.doorbell_request) {
4410                         vc->dpdes = 1;
4411                         smp_wmb();
4412                         vcpu->arch.doorbell_request = 0;
4413                 }
4414                 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4415                              &vcpu->arch.pending_exceptions))
4416                         lpcr |= LPCR_MER;
4417         } else if (vcpu->arch.pending_exceptions ||
4418                    vcpu->arch.doorbell_request ||
4419                    xive_interrupt_pending(vcpu)) {
4420                 vcpu->arch.ret = RESUME_HOST;
4421                 goto out;
4422         }
4423
4424         kvmppc_clear_host_core(pcpu);
4425
4426         local_paca->kvm_hstate.napping = 0;
4427         local_paca->kvm_hstate.kvm_split_mode = NULL;
4428         kvmppc_start_thread(vcpu, vc);
4429         kvmppc_create_dtl_entry(vcpu, vc);
4430         trace_kvm_guest_enter(vcpu);
4431
4432         vc->vcore_state = VCORE_RUNNING;
4433         trace_kvmppc_run_core(vc, 0);
4434
4435         guest_enter_irqoff();
4436
4437         srcu_idx = srcu_read_lock(&kvm->srcu);
4438
4439         this_cpu_disable_ftrace();
4440
4441         /* Tell lockdep that we're about to enable interrupts */
4442         trace_hardirqs_on();
4443
4444         trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr);
4445         vcpu->arch.trap = trap;
4446
4447         trace_hardirqs_off();
4448
4449         this_cpu_enable_ftrace();
4450
4451         srcu_read_unlock(&kvm->srcu, srcu_idx);
4452
4453         set_irq_happened(trap);
4454
4455         kvmppc_set_host_core(pcpu);
4456
4457         guest_exit_irqoff();
4458
4459         local_irq_enable();
4460
4461         cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest);
4462
4463         preempt_enable();
4464
4465         /*
4466          * cancel pending decrementer exception if DEC is now positive, or if
4467          * entering a nested guest in which case the decrementer is now owned
4468          * by L2 and the L1 decrementer is provided in hdec_expires
4469          */
4470         if (kvmppc_core_pending_dec(vcpu) &&
4471                         ((get_tb() < vcpu->arch.dec_expires) ||
4472                          (trap == BOOK3S_INTERRUPT_SYSCALL &&
4473                           kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4474                 kvmppc_core_dequeue_dec(vcpu);
4475
4476         trace_kvm_guest_exit(vcpu);
4477         r = RESUME_GUEST;
4478         if (trap) {
4479                 if (!nested)
4480                         r = kvmppc_handle_exit_hv(vcpu, current);
4481                 else
4482                         r = kvmppc_handle_nested_exit(vcpu);
4483         }
4484         vcpu->arch.ret = r;
4485
4486         if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded &&
4487             !kvmppc_vcpu_woken(vcpu)) {
4488                 kvmppc_set_timer(vcpu);
4489                 while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) {
4490                         if (signal_pending(current)) {
4491                                 vcpu->stat.signal_exits++;
4492                                 run->exit_reason = KVM_EXIT_INTR;
4493                                 vcpu->arch.ret = -EINTR;
4494                                 break;
4495                         }
4496                         spin_lock(&vc->lock);
4497                         kvmppc_vcore_blocked(vc);
4498                         spin_unlock(&vc->lock);
4499                 }
4500         }
4501         vcpu->arch.ceded = 0;
4502
4503         vc->vcore_state = VCORE_INACTIVE;
4504         trace_kvmppc_run_core(vc, 1);
4505
4506  done:
4507         kvmppc_remove_runnable(vc, vcpu);
4508         trace_kvmppc_run_vcpu_exit(vcpu);
4509
4510         return vcpu->arch.ret;
4511
4512  sigpend:
4513         vcpu->stat.signal_exits++;
4514         run->exit_reason = KVM_EXIT_INTR;
4515         vcpu->arch.ret = -EINTR;
4516  out:
4517         local_irq_enable();
4518         preempt_enable();
4519         goto done;
4520 }
4521
4522 static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu)
4523 {
4524         struct kvm_run *run = vcpu->run;
4525         int r;
4526         int srcu_idx;
4527         unsigned long ebb_regs[3] = {}; /* shut up GCC */
4528         unsigned long user_tar = 0;
4529         unsigned int user_vrsave;
4530         struct kvm *kvm;
4531
4532         if (!vcpu->arch.sane) {
4533                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4534                 return -EINVAL;
4535         }
4536
4537         /*
4538          * Don't allow entry with a suspended transaction, because
4539          * the guest entry/exit code will lose it.
4540          * If the guest has TM enabled, save away their TM-related SPRs
4541          * (they will get restored by the TM unavailable interrupt).
4542          */
4543 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4544         if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4545             (current->thread.regs->msr & MSR_TM)) {
4546                 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4547                         run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4548                         run->fail_entry.hardware_entry_failure_reason = 0;
4549                         return -EINVAL;
4550                 }
4551                 /* Enable TM so we can read the TM SPRs */
4552                 mtmsr(mfmsr() | MSR_TM);
4553                 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
4554                 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
4555                 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
4556                 current->thread.regs->msr &= ~MSR_TM;
4557         }
4558 #endif
4559
4560         /*
4561          * Force online to 1 for the sake of old userspace which doesn't
4562          * set it.
4563          */
4564         if (!vcpu->arch.online) {
4565                 atomic_inc(&vcpu->arch.vcore->online_count);
4566                 vcpu->arch.online = 1;
4567         }
4568
4569         kvmppc_core_prepare_to_enter(vcpu);
4570
4571         /* No need to go into the guest when all we'll do is come back out */
4572         if (signal_pending(current)) {
4573                 run->exit_reason = KVM_EXIT_INTR;
4574                 return -EINTR;
4575         }
4576
4577         kvm = vcpu->kvm;
4578         atomic_inc(&kvm->arch.vcpus_running);
4579         /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4580         smp_mb();
4581
4582         flush_all_to_thread(current);
4583
4584         /* Save userspace EBB and other register values */
4585         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4586                 ebb_regs[0] = mfspr(SPRN_EBBHR);
4587                 ebb_regs[1] = mfspr(SPRN_EBBRR);
4588                 ebb_regs[2] = mfspr(SPRN_BESCR);
4589                 user_tar = mfspr(SPRN_TAR);
4590         }
4591         user_vrsave = mfspr(SPRN_VRSAVE);
4592
4593         vcpu->arch.waitp = &vcpu->arch.vcore->wait;
4594         vcpu->arch.pgdir = kvm->mm->pgd;
4595         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4596
4597         do {
4598                 if (cpu_has_feature(CPU_FTR_ARCH_300))
4599                         r = kvmhv_run_single_vcpu(vcpu, ~(u64)0,
4600                                                   vcpu->arch.vcore->lpcr);
4601                 else
4602                         r = kvmppc_run_vcpu(vcpu);
4603
4604                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL) {
4605                         if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_PR)) {
4606                                 /*
4607                                  * These should have been caught reflected
4608                                  * into the guest by now. Final sanity check:
4609                                  * don't allow userspace to execute hcalls in
4610                                  * the hypervisor.
4611                                  */
4612                                 r = RESUME_GUEST;
4613                                 continue;
4614                         }
4615                         trace_kvm_hcall_enter(vcpu);
4616                         r = kvmppc_pseries_do_hcall(vcpu);
4617                         trace_kvm_hcall_exit(vcpu, r);
4618                         kvmppc_core_prepare_to_enter(vcpu);
4619                 } else if (r == RESUME_PAGE_FAULT) {
4620                         srcu_idx = srcu_read_lock(&kvm->srcu);
4621                         r = kvmppc_book3s_hv_page_fault(vcpu,
4622                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4623                         srcu_read_unlock(&kvm->srcu, srcu_idx);
4624                 } else if (r == RESUME_PASSTHROUGH) {
4625                         if (WARN_ON(xics_on_xive()))
4626                                 r = H_SUCCESS;
4627                         else
4628                                 r = kvmppc_xics_rm_complete(vcpu, 0);
4629                 }
4630         } while (is_kvmppc_resume_guest(r));
4631
4632         /* Restore userspace EBB and other register values */
4633         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4634                 mtspr(SPRN_EBBHR, ebb_regs[0]);
4635                 mtspr(SPRN_EBBRR, ebb_regs[1]);
4636                 mtspr(SPRN_BESCR, ebb_regs[2]);
4637                 mtspr(SPRN_TAR, user_tar);
4638         }
4639         mtspr(SPRN_VRSAVE, user_vrsave);
4640
4641         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4642         atomic_dec(&kvm->arch.vcpus_running);
4643
4644         srr_regs_clobbered();
4645
4646         return r;
4647 }
4648
4649 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4650                                      int shift, int sllp)
4651 {
4652         (*sps)->page_shift = shift;
4653         (*sps)->slb_enc = sllp;
4654         (*sps)->enc[0].page_shift = shift;
4655         (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4656         /*
4657          * Add 16MB MPSS support (may get filtered out by userspace)
4658          */
4659         if (shift != 24) {
4660                 int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4661                 if (penc != -1) {
4662                         (*sps)->enc[1].page_shift = 24;
4663                         (*sps)->enc[1].pte_enc = penc;
4664                 }
4665         }
4666         (*sps)++;
4667 }
4668
4669 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4670                                          struct kvm_ppc_smmu_info *info)
4671 {
4672         struct kvm_ppc_one_seg_page_size *sps;
4673
4674         /*
4675          * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4676          * POWER7 doesn't support keys for instruction accesses,
4677          * POWER8 and POWER9 do.
4678          */
4679         info->data_keys = 32;
4680         info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4681
4682         /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4683         info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4684         info->slb_size = 32;
4685
4686         /* We only support these sizes for now, and no muti-size segments */
4687         sps = &info->sps[0];
4688         kvmppc_add_seg_page_size(&sps, 12, 0);
4689         kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4690         kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4691
4692         /* If running as a nested hypervisor, we don't support HPT guests */
4693         if (kvmhv_on_pseries())
4694                 info->flags |= KVM_PPC_NO_HASH;
4695
4696         return 0;
4697 }
4698
4699 /*
4700  * Get (and clear) the dirty memory log for a memory slot.
4701  */
4702 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4703                                          struct kvm_dirty_log *log)
4704 {
4705         struct kvm_memslots *slots;
4706         struct kvm_memory_slot *memslot;
4707         int i, r;
4708         unsigned long n;
4709         unsigned long *buf, *p;
4710         struct kvm_vcpu *vcpu;
4711
4712         mutex_lock(&kvm->slots_lock);
4713
4714         r = -EINVAL;
4715         if (log->slot >= KVM_USER_MEM_SLOTS)
4716                 goto out;
4717
4718         slots = kvm_memslots(kvm);
4719         memslot = id_to_memslot(slots, log->slot);
4720         r = -ENOENT;
4721         if (!memslot || !memslot->dirty_bitmap)
4722                 goto out;
4723
4724         /*
4725          * Use second half of bitmap area because both HPT and radix
4726          * accumulate bits in the first half.
4727          */
4728         n = kvm_dirty_bitmap_bytes(memslot);
4729         buf = memslot->dirty_bitmap + n / sizeof(long);
4730         memset(buf, 0, n);
4731
4732         if (kvm_is_radix(kvm))
4733                 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4734         else
4735                 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4736         if (r)
4737                 goto out;
4738
4739         /*
4740          * We accumulate dirty bits in the first half of the
4741          * memslot's dirty_bitmap area, for when pages are paged
4742          * out or modified by the host directly.  Pick up these
4743          * bits and add them to the map.
4744          */
4745         p = memslot->dirty_bitmap;
4746         for (i = 0; i < n / sizeof(long); ++i)
4747                 buf[i] |= xchg(&p[i], 0);
4748
4749         /* Harvest dirty bits from VPA and DTL updates */
4750         /* Note: we never modify the SLB shadow buffer areas */
4751         kvm_for_each_vcpu(i, vcpu, kvm) {
4752                 spin_lock(&vcpu->arch.vpa_update_lock);
4753                 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
4754                 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
4755                 spin_unlock(&vcpu->arch.vpa_update_lock);
4756         }
4757
4758         r = -EFAULT;
4759         if (copy_to_user(log->dirty_bitmap, buf, n))
4760                 goto out;
4761
4762         r = 0;
4763 out:
4764         mutex_unlock(&kvm->slots_lock);
4765         return r;
4766 }
4767
4768 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot)
4769 {
4770         vfree(slot->arch.rmap);
4771         slot->arch.rmap = NULL;
4772 }
4773
4774 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
4775                                         struct kvm_memory_slot *slot,
4776                                         const struct kvm_userspace_memory_region *mem,
4777                                         enum kvm_mr_change change)
4778 {
4779         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4780
4781         if (change == KVM_MR_CREATE) {
4782                 slot->arch.rmap = vzalloc(array_size(npages,
4783                                           sizeof(*slot->arch.rmap)));
4784                 if (!slot->arch.rmap)
4785                         return -ENOMEM;
4786         }
4787
4788         return 0;
4789 }
4790
4791 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4792                                 const struct kvm_userspace_memory_region *mem,
4793                                 const struct kvm_memory_slot *old,
4794                                 const struct kvm_memory_slot *new,
4795                                 enum kvm_mr_change change)
4796 {
4797         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4798
4799         /*
4800          * If we are making a new memslot, it might make
4801          * some address that was previously cached as emulated
4802          * MMIO be no longer emulated MMIO, so invalidate
4803          * all the caches of emulated MMIO translations.
4804          */
4805         if (npages)
4806                 atomic64_inc(&kvm->arch.mmio_update);
4807
4808         /*
4809          * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
4810          * have already called kvm_arch_flush_shadow_memslot() to
4811          * flush shadow mappings.  For KVM_MR_CREATE we have no
4812          * previous mappings.  So the only case to handle is
4813          * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
4814          * has been changed.
4815          * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
4816          * to get rid of any THP PTEs in the partition-scoped page tables
4817          * so we can track dirtiness at the page level; we flush when
4818          * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
4819          * using THP PTEs.
4820          */
4821         if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
4822             ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
4823                 kvmppc_radix_flush_memslot(kvm, old);
4824         /*
4825          * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
4826          */
4827         if (!kvm->arch.secure_guest)
4828                 return;
4829
4830         switch (change) {
4831         case KVM_MR_CREATE:
4832                 /*
4833                  * @TODO kvmppc_uvmem_memslot_create() can fail and
4834                  * return error. Fix this.
4835                  */
4836                 kvmppc_uvmem_memslot_create(kvm, new);
4837                 break;
4838         case KVM_MR_DELETE:
4839                 kvmppc_uvmem_memslot_delete(kvm, old);
4840                 break;
4841         default:
4842                 /* TODO: Handle KVM_MR_MOVE */
4843                 break;
4844         }
4845 }
4846
4847 /*
4848  * Update LPCR values in kvm->arch and in vcores.
4849  * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
4850  * of kvm->arch.lpcr update).
4851  */
4852 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
4853 {
4854         long int i;
4855         u32 cores_done = 0;
4856
4857         if ((kvm->arch.lpcr & mask) == lpcr)
4858                 return;
4859
4860         kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
4861
4862         for (i = 0; i < KVM_MAX_VCORES; ++i) {
4863                 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
4864                 if (!vc)
4865                         continue;
4866
4867                 spin_lock(&vc->lock);
4868                 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
4869                 verify_lpcr(kvm, vc->lpcr);
4870                 spin_unlock(&vc->lock);
4871                 if (++cores_done >= kvm->arch.online_vcores)
4872                         break;
4873         }
4874 }
4875
4876 void kvmppc_setup_partition_table(struct kvm *kvm)
4877 {
4878         unsigned long dw0, dw1;
4879
4880         if (!kvm_is_radix(kvm)) {
4881                 /* PS field - page size for VRMA */
4882                 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
4883                         ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
4884                 /* HTABSIZE and HTABORG fields */
4885                 dw0 |= kvm->arch.sdr1;
4886
4887                 /* Second dword as set by userspace */
4888                 dw1 = kvm->arch.process_table;
4889         } else {
4890                 dw0 = PATB_HR | radix__get_tree_size() |
4891                         __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
4892                 dw1 = PATB_GR | kvm->arch.process_table;
4893         }
4894         kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
4895 }
4896
4897 /*
4898  * Set up HPT (hashed page table) and RMA (real-mode area).
4899  * Must be called with kvm->arch.mmu_setup_lock held.
4900  */
4901 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
4902 {
4903         int err = 0;
4904         struct kvm *kvm = vcpu->kvm;
4905         unsigned long hva;
4906         struct kvm_memory_slot *memslot;
4907         struct vm_area_struct *vma;
4908         unsigned long lpcr = 0, senc;
4909         unsigned long psize, porder;
4910         int srcu_idx;
4911
4912         /* Allocate hashed page table (if not done already) and reset it */
4913         if (!kvm->arch.hpt.virt) {
4914                 int order = KVM_DEFAULT_HPT_ORDER;
4915                 struct kvm_hpt_info info;
4916
4917                 err = kvmppc_allocate_hpt(&info, order);
4918                 /* If we get here, it means userspace didn't specify a
4919                  * size explicitly.  So, try successively smaller
4920                  * sizes if the default failed. */
4921                 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
4922                         err  = kvmppc_allocate_hpt(&info, order);
4923
4924                 if (err < 0) {
4925                         pr_err("KVM: Couldn't alloc HPT\n");
4926                         goto out;
4927                 }
4928
4929                 kvmppc_set_hpt(kvm, &info);
4930         }
4931
4932         /* Look up the memslot for guest physical address 0 */
4933         srcu_idx = srcu_read_lock(&kvm->srcu);
4934         memslot = gfn_to_memslot(kvm, 0);
4935
4936         /* We must have some memory at 0 by now */
4937         err = -EINVAL;
4938         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
4939                 goto out_srcu;
4940
4941         /* Look up the VMA for the start of this memory slot */
4942         hva = memslot->userspace_addr;
4943         mmap_read_lock(kvm->mm);
4944         vma = vma_lookup(kvm->mm, hva);
4945         if (!vma || (vma->vm_flags & VM_IO))
4946                 goto up_out;
4947
4948         psize = vma_kernel_pagesize(vma);
4949
4950         mmap_read_unlock(kvm->mm);
4951
4952         /* We can handle 4k, 64k or 16M pages in the VRMA */
4953         if (psize >= 0x1000000)
4954                 psize = 0x1000000;
4955         else if (psize >= 0x10000)
4956                 psize = 0x10000;
4957         else
4958                 psize = 0x1000;
4959         porder = __ilog2(psize);
4960
4961         senc = slb_pgsize_encoding(psize);
4962         kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
4963                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
4964         /* Create HPTEs in the hash page table for the VRMA */
4965         kvmppc_map_vrma(vcpu, memslot, porder);
4966
4967         /* Update VRMASD field in the LPCR */
4968         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
4969                 /* the -4 is to account for senc values starting at 0x10 */
4970                 lpcr = senc << (LPCR_VRMASD_SH - 4);
4971                 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
4972         }
4973
4974         /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
4975         smp_wmb();
4976         err = 0;
4977  out_srcu:
4978         srcu_read_unlock(&kvm->srcu, srcu_idx);
4979  out:
4980         return err;
4981
4982  up_out:
4983         mmap_read_unlock(kvm->mm);
4984         goto out_srcu;
4985 }
4986
4987 /*
4988  * Must be called with kvm->arch.mmu_setup_lock held and
4989  * mmu_ready = 0 and no vcpus running.
4990  */
4991 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
4992 {
4993         if (nesting_enabled(kvm))
4994                 kvmhv_release_all_nested(kvm);
4995         kvmppc_rmap_reset(kvm);
4996         kvm->arch.process_table = 0;
4997         /* Mutual exclusion with kvm_unmap_gfn_range etc. */
4998         spin_lock(&kvm->mmu_lock);
4999         kvm->arch.radix = 0;
5000         spin_unlock(&kvm->mmu_lock);
5001         kvmppc_free_radix(kvm);
5002         kvmppc_update_lpcr(kvm, LPCR_VPM1,
5003                            LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
5004         return 0;
5005 }
5006
5007 /*
5008  * Must be called with kvm->arch.mmu_setup_lock held and
5009  * mmu_ready = 0 and no vcpus running.
5010  */
5011 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
5012 {
5013         int err;
5014
5015         err = kvmppc_init_vm_radix(kvm);
5016         if (err)
5017                 return err;
5018         kvmppc_rmap_reset(kvm);
5019         /* Mutual exclusion with kvm_unmap_gfn_range etc. */
5020         spin_lock(&kvm->mmu_lock);
5021         kvm->arch.radix = 1;
5022         spin_unlock(&kvm->mmu_lock);
5023         kvmppc_free_hpt(&kvm->arch.hpt);
5024         kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
5025                            LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
5026         return 0;
5027 }
5028
5029 #ifdef CONFIG_KVM_XICS
5030 /*
5031  * Allocate a per-core structure for managing state about which cores are
5032  * running in the host versus the guest and for exchanging data between
5033  * real mode KVM and CPU running in the host.
5034  * This is only done for the first VM.
5035  * The allocated structure stays even if all VMs have stopped.
5036  * It is only freed when the kvm-hv module is unloaded.
5037  * It's OK for this routine to fail, we just don't support host
5038  * core operations like redirecting H_IPI wakeups.
5039  */
5040 void kvmppc_alloc_host_rm_ops(void)
5041 {
5042         struct kvmppc_host_rm_ops *ops;
5043         unsigned long l_ops;
5044         int cpu, core;
5045         int size;
5046
5047         /* Not the first time here ? */
5048         if (kvmppc_host_rm_ops_hv != NULL)
5049                 return;
5050
5051         ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
5052         if (!ops)
5053                 return;
5054
5055         size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
5056         ops->rm_core = kzalloc(size, GFP_KERNEL);
5057
5058         if (!ops->rm_core) {
5059                 kfree(ops);
5060                 return;
5061         }
5062
5063         cpus_read_lock();
5064
5065         for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
5066                 if (!cpu_online(cpu))
5067                         continue;
5068
5069                 core = cpu >> threads_shift;
5070                 ops->rm_core[core].rm_state.in_host = 1;
5071         }
5072
5073         ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
5074
5075         /*
5076          * Make the contents of the kvmppc_host_rm_ops structure visible
5077          * to other CPUs before we assign it to the global variable.
5078          * Do an atomic assignment (no locks used here), but if someone
5079          * beats us to it, just free our copy and return.
5080          */
5081         smp_wmb();
5082         l_ops = (unsigned long) ops;
5083
5084         if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
5085                 cpus_read_unlock();
5086                 kfree(ops->rm_core);
5087                 kfree(ops);
5088                 return;
5089         }
5090
5091         cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
5092                                              "ppc/kvm_book3s:prepare",
5093                                              kvmppc_set_host_core,
5094                                              kvmppc_clear_host_core);
5095         cpus_read_unlock();
5096 }
5097
5098 void kvmppc_free_host_rm_ops(void)
5099 {
5100         if (kvmppc_host_rm_ops_hv) {
5101                 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
5102                 kfree(kvmppc_host_rm_ops_hv->rm_core);
5103                 kfree(kvmppc_host_rm_ops_hv);
5104                 kvmppc_host_rm_ops_hv = NULL;
5105         }
5106 }
5107 #endif
5108
5109 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
5110 {
5111         unsigned long lpcr, lpid;
5112         char buf[32];
5113         int ret;
5114
5115         mutex_init(&kvm->arch.uvmem_lock);
5116         INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
5117         mutex_init(&kvm->arch.mmu_setup_lock);
5118
5119         /* Allocate the guest's logical partition ID */
5120
5121         lpid = kvmppc_alloc_lpid();
5122         if ((long)lpid < 0)
5123                 return -ENOMEM;
5124         kvm->arch.lpid = lpid;
5125
5126         kvmppc_alloc_host_rm_ops();
5127
5128         kvmhv_vm_nested_init(kvm);
5129
5130         /*
5131          * Since we don't flush the TLB when tearing down a VM,
5132          * and this lpid might have previously been used,
5133          * make sure we flush on each core before running the new VM.
5134          * On POWER9, the tlbie in mmu_partition_table_set_entry()
5135          * does this flush for us.
5136          */
5137         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5138                 cpumask_setall(&kvm->arch.need_tlb_flush);
5139
5140         /* Start out with the default set of hcalls enabled */
5141         memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
5142                sizeof(kvm->arch.enabled_hcalls));
5143
5144         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5145                 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
5146
5147         /* Init LPCR for virtual RMA mode */
5148         if (cpu_has_feature(CPU_FTR_HVMODE)) {
5149                 kvm->arch.host_lpid = mfspr(SPRN_LPID);
5150                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
5151                 lpcr &= LPCR_PECE | LPCR_LPES;
5152         } else {
5153                 lpcr = 0;
5154         }
5155         lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
5156                 LPCR_VPM0 | LPCR_VPM1;
5157         kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
5158                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
5159         /* On POWER8 turn on online bit to enable PURR/SPURR */
5160         if (cpu_has_feature(CPU_FTR_ARCH_207S))
5161                 lpcr |= LPCR_ONL;
5162         /*
5163          * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
5164          * Set HVICE bit to enable hypervisor virtualization interrupts.
5165          * Set HEIC to prevent OS interrupts to go to hypervisor (should
5166          * be unnecessary but better safe than sorry in case we re-enable
5167          * EE in HV mode with this LPCR still set)
5168          */
5169         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5170                 lpcr &= ~LPCR_VPM0;
5171                 lpcr |= LPCR_HVICE | LPCR_HEIC;
5172
5173                 /*
5174                  * If xive is enabled, we route 0x500 interrupts directly
5175                  * to the guest.
5176                  */
5177                 if (xics_on_xive())
5178                         lpcr |= LPCR_LPES;
5179         }
5180
5181         /*
5182          * If the host uses radix, the guest starts out as radix.
5183          */
5184         if (radix_enabled()) {
5185                 kvm->arch.radix = 1;
5186                 kvm->arch.mmu_ready = 1;
5187                 lpcr &= ~LPCR_VPM1;
5188                 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5189                 ret = kvmppc_init_vm_radix(kvm);
5190                 if (ret) {
5191                         kvmppc_free_lpid(kvm->arch.lpid);
5192                         return ret;
5193                 }
5194                 kvmppc_setup_partition_table(kvm);
5195         }
5196
5197         verify_lpcr(kvm, lpcr);
5198         kvm->arch.lpcr = lpcr;
5199
5200         /* Initialization for future HPT resizes */
5201         kvm->arch.resize_hpt = NULL;
5202
5203         /*
5204          * Work out how many sets the TLB has, for the use of
5205          * the TLB invalidation loop in book3s_hv_rmhandlers.S.
5206          */
5207         if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5208                 /*
5209                  * P10 will flush all the congruence class with a single tlbiel
5210                  */
5211                 kvm->arch.tlb_sets = 1;
5212         } else if (radix_enabled())
5213                 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;     /* 128 */
5214         else if (cpu_has_feature(CPU_FTR_ARCH_300))
5215                 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;      /* 256 */
5216         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
5217                 kvm->arch.tlb_sets = POWER8_TLB_SETS;           /* 512 */
5218         else
5219                 kvm->arch.tlb_sets = POWER7_TLB_SETS;           /* 128 */
5220
5221         /*
5222          * Track that we now have a HV mode VM active. This blocks secondary
5223          * CPU threads from coming online.
5224          */
5225         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5226                 kvm_hv_vm_activated();
5227
5228         /*
5229          * Initialize smt_mode depending on processor.
5230          * POWER8 and earlier have to use "strict" threading, where
5231          * all vCPUs in a vcore have to run on the same (sub)core,
5232          * whereas on POWER9 the threads can each run a different
5233          * guest.
5234          */
5235         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5236                 kvm->arch.smt_mode = threads_per_subcore;
5237         else
5238                 kvm->arch.smt_mode = 1;
5239         kvm->arch.emul_smt_mode = 1;
5240
5241         /*
5242          * Create a debugfs directory for the VM
5243          */
5244         snprintf(buf, sizeof(buf), "vm%d", current->pid);
5245         kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
5246         kvmppc_mmu_debugfs_init(kvm);
5247         if (radix_enabled())
5248                 kvmhv_radix_debugfs_init(kvm);
5249
5250         return 0;
5251 }
5252
5253 static void kvmppc_free_vcores(struct kvm *kvm)
5254 {
5255         long int i;
5256
5257         for (i = 0; i < KVM_MAX_VCORES; ++i)
5258                 kfree(kvm->arch.vcores[i]);
5259         kvm->arch.online_vcores = 0;
5260 }
5261
5262 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
5263 {
5264         debugfs_remove_recursive(kvm->arch.debugfs_dir);
5265
5266         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5267                 kvm_hv_vm_deactivated();
5268
5269         kvmppc_free_vcores(kvm);
5270
5271
5272         if (kvm_is_radix(kvm))
5273                 kvmppc_free_radix(kvm);
5274         else
5275                 kvmppc_free_hpt(&kvm->arch.hpt);
5276
5277         /* Perform global invalidation and return lpid to the pool */
5278         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5279                 if (nesting_enabled(kvm))
5280                         kvmhv_release_all_nested(kvm);
5281                 kvm->arch.process_table = 0;
5282                 if (kvm->arch.secure_guest)
5283                         uv_svm_terminate(kvm->arch.lpid);
5284                 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
5285         }
5286
5287         kvmppc_free_lpid(kvm->arch.lpid);
5288
5289         kvmppc_free_pimap(kvm);
5290 }
5291
5292 /* We don't need to emulate any privileged instructions or dcbz */
5293 static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu,
5294                                      unsigned int inst, int *advance)
5295 {
5296         return EMULATE_FAIL;
5297 }
5298
5299 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
5300                                         ulong spr_val)
5301 {
5302         return EMULATE_FAIL;
5303 }
5304
5305 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
5306                                         ulong *spr_val)
5307 {
5308         return EMULATE_FAIL;
5309 }
5310
5311 static int kvmppc_core_check_processor_compat_hv(void)
5312 {
5313         if (cpu_has_feature(CPU_FTR_HVMODE) &&
5314             cpu_has_feature(CPU_FTR_ARCH_206))
5315                 return 0;
5316
5317         /* POWER9 in radix mode is capable of being a nested hypervisor. */
5318         if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
5319                 return 0;
5320
5321         return -EIO;
5322 }
5323
5324 #ifdef CONFIG_KVM_XICS
5325
5326 void kvmppc_free_pimap(struct kvm *kvm)
5327 {
5328         kfree(kvm->arch.pimap);
5329 }
5330
5331 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
5332 {
5333         return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5334 }
5335
5336 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5337 {
5338         struct irq_desc *desc;
5339         struct kvmppc_irq_map *irq_map;
5340         struct kvmppc_passthru_irqmap *pimap;
5341         struct irq_chip *chip;
5342         int i, rc = 0;
5343
5344         if (!kvm_irq_bypass)
5345                 return 1;
5346
5347         desc = irq_to_desc(host_irq);
5348         if (!desc)
5349                 return -EIO;
5350
5351         mutex_lock(&kvm->lock);
5352
5353         pimap = kvm->arch.pimap;
5354         if (pimap == NULL) {
5355                 /* First call, allocate structure to hold IRQ map */
5356                 pimap = kvmppc_alloc_pimap();
5357                 if (pimap == NULL) {
5358                         mutex_unlock(&kvm->lock);
5359                         return -ENOMEM;
5360                 }
5361                 kvm->arch.pimap = pimap;
5362         }
5363
5364         /*
5365          * For now, we only support interrupts for which the EOI operation
5366          * is an OPAL call followed by a write to XIRR, since that's
5367          * what our real-mode EOI code does, or a XIVE interrupt
5368          */
5369         chip = irq_data_get_irq_chip(&desc->irq_data);
5370         if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
5371                 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5372                         host_irq, guest_gsi);
5373                 mutex_unlock(&kvm->lock);
5374                 return -ENOENT;
5375         }
5376
5377         /*
5378          * See if we already have an entry for this guest IRQ number.
5379          * If it's mapped to a hardware IRQ number, that's an error,
5380          * otherwise re-use this entry.
5381          */
5382         for (i = 0; i < pimap->n_mapped; i++) {
5383                 if (guest_gsi == pimap->mapped[i].v_hwirq) {
5384                         if (pimap->mapped[i].r_hwirq) {
5385                                 mutex_unlock(&kvm->lock);
5386                                 return -EINVAL;
5387                         }
5388                         break;
5389                 }
5390         }
5391
5392         if (i == KVMPPC_PIRQ_MAPPED) {
5393                 mutex_unlock(&kvm->lock);
5394                 return -EAGAIN;         /* table is full */
5395         }
5396
5397         irq_map = &pimap->mapped[i];
5398
5399         irq_map->v_hwirq = guest_gsi;
5400         irq_map->desc = desc;
5401
5402         /*
5403          * Order the above two stores before the next to serialize with
5404          * the KVM real mode handler.
5405          */
5406         smp_wmb();
5407         irq_map->r_hwirq = desc->irq_data.hwirq;
5408
5409         if (i == pimap->n_mapped)
5410                 pimap->n_mapped++;
5411
5412         if (xics_on_xive())
5413                 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
5414         else
5415                 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
5416         if (rc)
5417                 irq_map->r_hwirq = 0;
5418
5419         mutex_unlock(&kvm->lock);
5420
5421         return 0;
5422 }
5423
5424 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5425 {
5426         struct irq_desc *desc;
5427         struct kvmppc_passthru_irqmap *pimap;
5428         int i, rc = 0;
5429
5430         if (!kvm_irq_bypass)
5431                 return 0;
5432
5433         desc = irq_to_desc(host_irq);
5434         if (!desc)
5435                 return -EIO;
5436
5437         mutex_lock(&kvm->lock);
5438         if (!kvm->arch.pimap)
5439                 goto unlock;
5440
5441         pimap = kvm->arch.pimap;
5442
5443         for (i = 0; i < pimap->n_mapped; i++) {
5444                 if (guest_gsi == pimap->mapped[i].v_hwirq)
5445                         break;
5446         }
5447
5448         if (i == pimap->n_mapped) {
5449                 mutex_unlock(&kvm->lock);
5450                 return -ENODEV;
5451         }
5452
5453         if (xics_on_xive())
5454                 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
5455         else
5456                 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5457
5458         /* invalidate the entry (what do do on error from the above ?) */
5459         pimap->mapped[i].r_hwirq = 0;
5460
5461         /*
5462          * We don't free this structure even when the count goes to
5463          * zero. The structure is freed when we destroy the VM.
5464          */
5465  unlock:
5466         mutex_unlock(&kvm->lock);
5467         return rc;
5468 }
5469
5470 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5471                                              struct irq_bypass_producer *prod)
5472 {
5473         int ret = 0;
5474         struct kvm_kernel_irqfd *irqfd =
5475                 container_of(cons, struct kvm_kernel_irqfd, consumer);
5476
5477         irqfd->producer = prod;
5478
5479         ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5480         if (ret)
5481                 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5482                         prod->irq, irqfd->gsi, ret);
5483
5484         return ret;
5485 }
5486
5487 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5488                                               struct irq_bypass_producer *prod)
5489 {
5490         int ret;
5491         struct kvm_kernel_irqfd *irqfd =
5492                 container_of(cons, struct kvm_kernel_irqfd, consumer);
5493
5494         irqfd->producer = NULL;
5495
5496         /*
5497          * When producer of consumer is unregistered, we change back to
5498          * default external interrupt handling mode - KVM real mode
5499          * will switch back to host.
5500          */
5501         ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5502         if (ret)
5503                 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5504                         prod->irq, irqfd->gsi, ret);
5505 }
5506 #endif
5507
5508 static long kvm_arch_vm_ioctl_hv(struct file *filp,
5509                                  unsigned int ioctl, unsigned long arg)
5510 {
5511         struct kvm *kvm __maybe_unused = filp->private_data;
5512         void __user *argp = (void __user *)arg;
5513         long r;
5514
5515         switch (ioctl) {
5516
5517         case KVM_PPC_ALLOCATE_HTAB: {
5518                 u32 htab_order;
5519
5520                 /* If we're a nested hypervisor, we currently only support radix */
5521                 if (kvmhv_on_pseries()) {
5522                         r = -EOPNOTSUPP;
5523                         break;
5524                 }
5525
5526                 r = -EFAULT;
5527                 if (get_user(htab_order, (u32 __user *)argp))
5528                         break;
5529                 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5530                 if (r)
5531                         break;
5532                 r = 0;
5533                 break;
5534         }
5535
5536         case KVM_PPC_GET_HTAB_FD: {
5537                 struct kvm_get_htab_fd ghf;
5538
5539                 r = -EFAULT;
5540                 if (copy_from_user(&ghf, argp, sizeof(ghf)))
5541                         break;
5542                 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5543                 break;
5544         }
5545
5546         case KVM_PPC_RESIZE_HPT_PREPARE: {
5547                 struct kvm_ppc_resize_hpt rhpt;
5548
5549                 r = -EFAULT;
5550                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5551                         break;
5552
5553                 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5554                 break;
5555         }
5556
5557         case KVM_PPC_RESIZE_HPT_COMMIT: {
5558                 struct kvm_ppc_resize_hpt rhpt;
5559
5560                 r = -EFAULT;
5561                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5562                         break;
5563
5564                 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5565                 break;
5566         }
5567
5568         default:
5569                 r = -ENOTTY;
5570         }
5571
5572         return r;
5573 }
5574
5575 /*
5576  * List of hcall numbers to enable by default.
5577  * For compatibility with old userspace, we enable by default
5578  * all hcalls that were implemented before the hcall-enabling
5579  * facility was added.  Note this list should not include H_RTAS.
5580  */
5581 static unsigned int default_hcall_list[] = {
5582         H_REMOVE,
5583         H_ENTER,
5584         H_READ,
5585         H_PROTECT,
5586         H_BULK_REMOVE,
5587 #ifdef CONFIG_SPAPR_TCE_IOMMU
5588         H_GET_TCE,
5589         H_PUT_TCE,
5590 #endif
5591         H_SET_DABR,
5592         H_SET_XDABR,
5593         H_CEDE,
5594         H_PROD,
5595         H_CONFER,
5596         H_REGISTER_VPA,
5597 #ifdef CONFIG_KVM_XICS
5598         H_EOI,
5599         H_CPPR,
5600         H_IPI,
5601         H_IPOLL,
5602         H_XIRR,
5603         H_XIRR_X,
5604 #endif
5605         0
5606 };
5607
5608 static void init_default_hcalls(void)
5609 {
5610         int i;
5611         unsigned int hcall;
5612
5613         for (i = 0; default_hcall_list[i]; ++i) {
5614                 hcall = default_hcall_list[i];
5615                 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5616                 __set_bit(hcall / 4, default_enabled_hcalls);
5617         }
5618 }
5619
5620 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5621 {
5622         unsigned long lpcr;
5623         int radix;
5624         int err;
5625
5626         /* If not on a POWER9, reject it */
5627         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5628                 return -ENODEV;
5629
5630         /* If any unknown flags set, reject it */
5631         if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5632                 return -EINVAL;
5633
5634         /* GR (guest radix) bit in process_table field must match */
5635         radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5636         if (!!(cfg->process_table & PATB_GR) != radix)
5637                 return -EINVAL;
5638
5639         /* Process table size field must be reasonable, i.e. <= 24 */
5640         if ((cfg->process_table & PRTS_MASK) > 24)
5641                 return -EINVAL;
5642
5643         /* We can change a guest to/from radix now, if the host is radix */
5644         if (radix && !radix_enabled())
5645                 return -EINVAL;
5646
5647         /* If we're a nested hypervisor, we currently only support radix */
5648         if (kvmhv_on_pseries() && !radix)
5649                 return -EINVAL;
5650
5651         mutex_lock(&kvm->arch.mmu_setup_lock);
5652         if (radix != kvm_is_radix(kvm)) {
5653                 if (kvm->arch.mmu_ready) {
5654                         kvm->arch.mmu_ready = 0;
5655                         /* order mmu_ready vs. vcpus_running */
5656                         smp_mb();
5657                         if (atomic_read(&kvm->arch.vcpus_running)) {
5658                                 kvm->arch.mmu_ready = 1;
5659                                 err = -EBUSY;
5660                                 goto out_unlock;
5661                         }
5662                 }
5663                 if (radix)
5664                         err = kvmppc_switch_mmu_to_radix(kvm);
5665                 else
5666                         err = kvmppc_switch_mmu_to_hpt(kvm);
5667                 if (err)
5668                         goto out_unlock;
5669         }
5670
5671         kvm->arch.process_table = cfg->process_table;
5672         kvmppc_setup_partition_table(kvm);
5673
5674         lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5675         kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5676         err = 0;
5677
5678  out_unlock:
5679         mutex_unlock(&kvm->arch.mmu_setup_lock);
5680         return err;
5681 }
5682
5683 static int kvmhv_enable_nested(struct kvm *kvm)
5684 {
5685         if (!nested)
5686                 return -EPERM;
5687         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5688                 return -ENODEV;
5689         if (!radix_enabled())
5690                 return -ENODEV;
5691
5692         /* kvm == NULL means the caller is testing if the capability exists */
5693         if (kvm)
5694                 kvm->arch.nested_enable = true;
5695         return 0;
5696 }
5697
5698 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5699                                  int size)
5700 {
5701         int rc = -EINVAL;
5702
5703         if (kvmhv_vcpu_is_radix(vcpu)) {
5704                 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
5705
5706                 if (rc > 0)
5707                         rc = -EINVAL;
5708         }
5709
5710         /* For now quadrants are the only way to access nested guest memory */
5711         if (rc && vcpu->arch.nested)
5712                 rc = -EAGAIN;
5713
5714         return rc;
5715 }
5716
5717 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5718                                 int size)
5719 {
5720         int rc = -EINVAL;
5721
5722         if (kvmhv_vcpu_is_radix(vcpu)) {
5723                 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
5724
5725                 if (rc > 0)
5726                         rc = -EINVAL;
5727         }
5728
5729         /* For now quadrants are the only way to access nested guest memory */
5730         if (rc && vcpu->arch.nested)
5731                 rc = -EAGAIN;
5732
5733         return rc;
5734 }
5735
5736 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
5737 {
5738         unpin_vpa(kvm, vpa);
5739         vpa->gpa = 0;
5740         vpa->pinned_addr = NULL;
5741         vpa->dirty = false;
5742         vpa->update_pending = 0;
5743 }
5744
5745 /*
5746  * Enable a guest to become a secure VM, or test whether
5747  * that could be enabled.
5748  * Called when the KVM_CAP_PPC_SECURE_GUEST capability is
5749  * tested (kvm == NULL) or enabled (kvm != NULL).
5750  */
5751 static int kvmhv_enable_svm(struct kvm *kvm)
5752 {
5753         if (!kvmppc_uvmem_available())
5754                 return -EINVAL;
5755         if (kvm)
5756                 kvm->arch.svm_enabled = 1;
5757         return 0;
5758 }
5759
5760 /*
5761  *  IOCTL handler to turn off secure mode of guest
5762  *
5763  * - Release all device pages
5764  * - Issue ucall to terminate the guest on the UV side
5765  * - Unpin the VPA pages.
5766  * - Reinit the partition scoped page tables
5767  */
5768 static int kvmhv_svm_off(struct kvm *kvm)
5769 {
5770         struct kvm_vcpu *vcpu;
5771         int mmu_was_ready;
5772         int srcu_idx;
5773         int ret = 0;
5774         int i;
5775
5776         if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
5777                 return ret;
5778
5779         mutex_lock(&kvm->arch.mmu_setup_lock);
5780         mmu_was_ready = kvm->arch.mmu_ready;
5781         if (kvm->arch.mmu_ready) {
5782                 kvm->arch.mmu_ready = 0;
5783                 /* order mmu_ready vs. vcpus_running */
5784                 smp_mb();
5785                 if (atomic_read(&kvm->arch.vcpus_running)) {
5786                         kvm->arch.mmu_ready = 1;
5787                         ret = -EBUSY;
5788                         goto out;
5789                 }
5790         }
5791
5792         srcu_idx = srcu_read_lock(&kvm->srcu);
5793         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5794                 struct kvm_memory_slot *memslot;
5795                 struct kvm_memslots *slots = __kvm_memslots(kvm, i);
5796
5797                 if (!slots)
5798                         continue;
5799
5800                 kvm_for_each_memslot(memslot, slots) {
5801                         kvmppc_uvmem_drop_pages(memslot, kvm, true);
5802                         uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
5803                 }
5804         }
5805         srcu_read_unlock(&kvm->srcu, srcu_idx);
5806
5807         ret = uv_svm_terminate(kvm->arch.lpid);
5808         if (ret != U_SUCCESS) {
5809                 ret = -EINVAL;
5810                 goto out;
5811         }
5812
5813         /*
5814          * When secure guest is reset, all the guest pages are sent
5815          * to UV via UV_PAGE_IN before the non-boot vcpus get a
5816          * chance to run and unpin their VPA pages. Unpinning of all
5817          * VPA pages is done here explicitly so that VPA pages
5818          * can be migrated to the secure side.
5819          *
5820          * This is required to for the secure SMP guest to reboot
5821          * correctly.
5822          */
5823         kvm_for_each_vcpu(i, vcpu, kvm) {
5824                 spin_lock(&vcpu->arch.vpa_update_lock);
5825                 unpin_vpa_reset(kvm, &vcpu->arch.dtl);
5826                 unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
5827                 unpin_vpa_reset(kvm, &vcpu->arch.vpa);
5828                 spin_unlock(&vcpu->arch.vpa_update_lock);
5829         }
5830
5831         kvmppc_setup_partition_table(kvm);
5832         kvm->arch.secure_guest = 0;
5833         kvm->arch.mmu_ready = mmu_was_ready;
5834 out:
5835         mutex_unlock(&kvm->arch.mmu_setup_lock);
5836         return ret;
5837 }
5838
5839 static int kvmhv_enable_dawr1(struct kvm *kvm)
5840 {
5841         if (!cpu_has_feature(CPU_FTR_DAWR1))
5842                 return -ENODEV;
5843
5844         /* kvm == NULL means the caller is testing if the capability exists */
5845         if (kvm)
5846                 kvm->arch.dawr1_enabled = true;
5847         return 0;
5848 }
5849
5850 static bool kvmppc_hash_v3_possible(void)
5851 {
5852         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5853                 return false;
5854
5855         if (!cpu_has_feature(CPU_FTR_HVMODE))
5856                 return false;
5857
5858         /*
5859          * POWER9 chips before version 2.02 can't have some threads in
5860          * HPT mode and some in radix mode on the same core.
5861          */
5862         if (radix_enabled()) {
5863                 unsigned int pvr = mfspr(SPRN_PVR);
5864                 if ((pvr >> 16) == PVR_POWER9 &&
5865                     (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
5866                      ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
5867                         return false;
5868         }
5869
5870         return true;
5871 }
5872
5873 static struct kvmppc_ops kvm_ops_hv = {
5874         .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
5875         .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
5876         .get_one_reg = kvmppc_get_one_reg_hv,
5877         .set_one_reg = kvmppc_set_one_reg_hv,
5878         .vcpu_load   = kvmppc_core_vcpu_load_hv,
5879         .vcpu_put    = kvmppc_core_vcpu_put_hv,
5880         .inject_interrupt = kvmppc_inject_interrupt_hv,
5881         .set_msr     = kvmppc_set_msr_hv,
5882         .vcpu_run    = kvmppc_vcpu_run_hv,
5883         .vcpu_create = kvmppc_core_vcpu_create_hv,
5884         .vcpu_free   = kvmppc_core_vcpu_free_hv,
5885         .check_requests = kvmppc_core_check_requests_hv,
5886         .get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
5887         .flush_memslot  = kvmppc_core_flush_memslot_hv,
5888         .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
5889         .commit_memory_region  = kvmppc_core_commit_memory_region_hv,
5890         .unmap_gfn_range = kvm_unmap_gfn_range_hv,
5891         .age_gfn = kvm_age_gfn_hv,
5892         .test_age_gfn = kvm_test_age_gfn_hv,
5893         .set_spte_gfn = kvm_set_spte_gfn_hv,
5894         .free_memslot = kvmppc_core_free_memslot_hv,
5895         .init_vm =  kvmppc_core_init_vm_hv,
5896         .destroy_vm = kvmppc_core_destroy_vm_hv,
5897         .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
5898         .emulate_op = kvmppc_core_emulate_op_hv,
5899         .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
5900         .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
5901         .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
5902         .arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
5903         .hcall_implemented = kvmppc_hcall_impl_hv,
5904 #ifdef CONFIG_KVM_XICS
5905         .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
5906         .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
5907 #endif
5908         .configure_mmu = kvmhv_configure_mmu,
5909         .get_rmmu_info = kvmhv_get_rmmu_info,
5910         .set_smt_mode = kvmhv_set_smt_mode,
5911         .enable_nested = kvmhv_enable_nested,
5912         .load_from_eaddr = kvmhv_load_from_eaddr,
5913         .store_to_eaddr = kvmhv_store_to_eaddr,
5914         .enable_svm = kvmhv_enable_svm,
5915         .svm_off = kvmhv_svm_off,
5916         .enable_dawr1 = kvmhv_enable_dawr1,
5917         .hash_v3_possible = kvmppc_hash_v3_possible,
5918 };
5919
5920 static int kvm_init_subcore_bitmap(void)
5921 {
5922         int i, j;
5923         int nr_cores = cpu_nr_cores();
5924         struct sibling_subcore_state *sibling_subcore_state;
5925
5926         for (i = 0; i < nr_cores; i++) {
5927                 int first_cpu = i * threads_per_core;
5928                 int node = cpu_to_node(first_cpu);
5929
5930                 /* Ignore if it is already allocated. */
5931                 if (paca_ptrs[first_cpu]->sibling_subcore_state)
5932                         continue;
5933
5934                 sibling_subcore_state =
5935                         kzalloc_node(sizeof(struct sibling_subcore_state),
5936                                                         GFP_KERNEL, node);
5937                 if (!sibling_subcore_state)
5938                         return -ENOMEM;
5939
5940
5941                 for (j = 0; j < threads_per_core; j++) {
5942                         int cpu = first_cpu + j;
5943
5944                         paca_ptrs[cpu]->sibling_subcore_state =
5945                                                 sibling_subcore_state;
5946                 }
5947         }
5948         return 0;
5949 }
5950
5951 static int kvmppc_radix_possible(void)
5952 {
5953         return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
5954 }
5955
5956 static int kvmppc_book3s_init_hv(void)
5957 {
5958         int r;
5959
5960         if (!tlbie_capable) {
5961                 pr_err("KVM-HV: Host does not support TLBIE\n");
5962                 return -ENODEV;
5963         }
5964
5965         /*
5966          * FIXME!! Do we need to check on all cpus ?
5967          */
5968         r = kvmppc_core_check_processor_compat_hv();
5969         if (r < 0)
5970                 return -ENODEV;
5971
5972         r = kvmhv_nested_init();
5973         if (r)
5974                 return r;
5975
5976         r = kvm_init_subcore_bitmap();
5977         if (r)
5978                 return r;
5979
5980         /*
5981          * We need a way of accessing the XICS interrupt controller,
5982          * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
5983          * indirectly, via OPAL.
5984          */
5985 #ifdef CONFIG_SMP
5986         if (!xics_on_xive() && !kvmhv_on_pseries() &&
5987             !local_paca->kvm_hstate.xics_phys) {
5988                 struct device_node *np;
5989
5990                 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
5991                 if (!np) {
5992                         pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
5993                         return -ENODEV;
5994                 }
5995                 /* presence of intc confirmed - node can be dropped again */
5996                 of_node_put(np);
5997         }
5998 #endif
5999
6000         kvm_ops_hv.owner = THIS_MODULE;
6001         kvmppc_hv_ops = &kvm_ops_hv;
6002
6003         init_default_hcalls();
6004
6005         init_vcore_lists();
6006
6007         r = kvmppc_mmu_hv_init();
6008         if (r)
6009                 return r;
6010
6011         if (kvmppc_radix_possible())
6012                 r = kvmppc_radix_init();
6013
6014         r = kvmppc_uvmem_init();
6015         if (r < 0)
6016                 pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
6017
6018         return r;
6019 }
6020
6021 static void kvmppc_book3s_exit_hv(void)
6022 {
6023         kvmppc_uvmem_free();
6024         kvmppc_free_host_rm_ops();
6025         if (kvmppc_radix_possible())
6026                 kvmppc_radix_exit();
6027         kvmppc_hv_ops = NULL;
6028         kvmhv_nested_exit();
6029 }
6030
6031 module_init(kvmppc_book3s_init_hv);
6032 module_exit(kvmppc_book3s_exit_hv);
6033 MODULE_LICENSE("GPL");
6034 MODULE_ALIAS_MISCDEV(KVM_MINOR);
6035 MODULE_ALIAS("devname:kvm");