f016128ece13afa63fae9090e2e9d9c3018a4738
[sfrench/cifs-2.6.git] / arch / c6x / kernel / setup.c
1 /*
2  *  Port on Texas Instruments TMS320C6x architecture
3  *
4  *  Copyright (C) 2004, 2006, 2009, 2010, 2011 Texas Instruments Incorporated
5  *  Author: Aurelien Jacquiot (aurelien.jacquiot@jaluna.com)
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License version 2 as
9  *  published by the Free Software Foundation.
10  */
11 #include <linux/dma-mapping.h>
12 #include <linux/memblock.h>
13 #include <linux/seq_file.h>
14 #include <linux/bootmem.h>
15 #include <linux/clkdev.h>
16 #include <linux/initrd.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/of_fdt.h>
20 #include <linux/string.h>
21 #include <linux/errno.h>
22 #include <linux/cache.h>
23 #include <linux/delay.h>
24 #include <linux/sched.h>
25 #include <linux/clk.h>
26 #include <linux/cpu.h>
27 #include <linux/fs.h>
28 #include <linux/of.h>
29 #include <linux/console.h>
30
31 #include <asm/sections.h>
32 #include <asm/div64.h>
33 #include <asm/setup.h>
34 #include <asm/dscr.h>
35 #include <asm/clock.h>
36 #include <asm/soc.h>
37 #include <asm/special_insns.h>
38
39 static const char *c6x_soc_name;
40
41 int c6x_num_cores;
42 EXPORT_SYMBOL_GPL(c6x_num_cores);
43
44 unsigned int c6x_silicon_rev;
45 EXPORT_SYMBOL_GPL(c6x_silicon_rev);
46
47 /*
48  * Device status register. This holds information
49  * about device configuration needed by some drivers.
50  */
51 unsigned int c6x_devstat;
52 EXPORT_SYMBOL_GPL(c6x_devstat);
53
54 /*
55  * Some SoCs have fuse registers holding a unique MAC
56  * address. This is parsed out of the device tree with
57  * the resulting MAC being held here.
58  */
59 unsigned char c6x_fuse_mac[6];
60
61 unsigned long memory_start;
62 unsigned long memory_end;
63
64 unsigned long ram_start;
65 unsigned long ram_end;
66
67 /* Uncached memory for DMA consistent use (memdma=) */
68 static unsigned long dma_start __initdata;
69 static unsigned long dma_size __initdata;
70
71 struct cpuinfo_c6x {
72         const char *cpu_name;
73         const char *cpu_voltage;
74         const char *mmu;
75         const char *fpu;
76         char *cpu_rev;
77         unsigned int core_id;
78         char __cpu_rev[5];
79 };
80
81 static DEFINE_PER_CPU(struct cpuinfo_c6x, cpu_data);
82
83 unsigned int ticks_per_ns_scaled;
84 EXPORT_SYMBOL(ticks_per_ns_scaled);
85
86 unsigned int c6x_core_freq;
87
88 static void __init get_cpuinfo(void)
89 {
90         unsigned cpu_id, rev_id, csr;
91         struct clk *coreclk = clk_get_sys(NULL, "core");
92         unsigned long core_khz;
93         u64 tmp;
94         struct cpuinfo_c6x *p;
95         struct device_node *node, *np;
96
97         p = &per_cpu(cpu_data, smp_processor_id());
98
99         if (!IS_ERR(coreclk))
100                 c6x_core_freq = clk_get_rate(coreclk);
101         else {
102                 printk(KERN_WARNING
103                        "Cannot find core clock frequency. Using 700MHz\n");
104                 c6x_core_freq = 700000000;
105         }
106
107         core_khz = c6x_core_freq / 1000;
108
109         tmp = (uint64_t)core_khz << C6X_NDELAY_SCALE;
110         do_div(tmp, 1000000);
111         ticks_per_ns_scaled = tmp;
112
113         csr = get_creg(CSR);
114         cpu_id = csr >> 24;
115         rev_id = (csr >> 16) & 0xff;
116
117         p->mmu = "none";
118         p->fpu = "none";
119         p->cpu_voltage = "unknown";
120
121         switch (cpu_id) {
122         case 0:
123                 p->cpu_name = "C67x";
124                 p->fpu = "yes";
125                 break;
126         case 2:
127                 p->cpu_name = "C62x";
128                 break;
129         case 8:
130                 p->cpu_name = "C64x";
131                 break;
132         case 12:
133                 p->cpu_name = "C64x";
134                 break;
135         case 16:
136                 p->cpu_name = "C64x+";
137                 p->cpu_voltage = "1.2";
138                 break;
139         case 21:
140                 p->cpu_name = "C66X";
141                 p->cpu_voltage = "1.2";
142                 break;
143         default:
144                 p->cpu_name = "unknown";
145                 break;
146         }
147
148         if (cpu_id < 16) {
149                 switch (rev_id) {
150                 case 0x1:
151                         if (cpu_id > 8) {
152                                 p->cpu_rev = "DM640/DM641/DM642/DM643";
153                                 p->cpu_voltage = "1.2 - 1.4";
154                         } else {
155                                 p->cpu_rev = "C6201";
156                                 p->cpu_voltage = "2.5";
157                         }
158                         break;
159                 case 0x2:
160                         p->cpu_rev = "C6201B/C6202/C6211";
161                         p->cpu_voltage = "1.8";
162                         break;
163                 case 0x3:
164                         p->cpu_rev = "C6202B/C6203/C6204/C6205";
165                         p->cpu_voltage = "1.5";
166                         break;
167                 case 0x201:
168                         p->cpu_rev = "C6701 revision 0 (early CPU)";
169                         p->cpu_voltage = "1.8";
170                         break;
171                 case 0x202:
172                         p->cpu_rev = "C6701/C6711/C6712";
173                         p->cpu_voltage = "1.8";
174                         break;
175                 case 0x801:
176                         p->cpu_rev = "C64x";
177                         p->cpu_voltage = "1.5";
178                         break;
179                 default:
180                         p->cpu_rev = "unknown";
181                 }
182         } else {
183                 p->cpu_rev = p->__cpu_rev;
184                 snprintf(p->__cpu_rev, sizeof(p->__cpu_rev), "0x%x", cpu_id);
185         }
186
187         p->core_id = get_coreid();
188
189         node = of_find_node_by_name(NULL, "cpus");
190         if (node) {
191                 for_each_child_of_node(node, np)
192                         if (!strcmp("cpu", np->name))
193                                 ++c6x_num_cores;
194                 of_node_put(node);
195         }
196
197         node = of_find_node_by_name(NULL, "soc");
198         if (node) {
199                 if (of_property_read_string(node, "model", &c6x_soc_name))
200                         c6x_soc_name = "unknown";
201                 of_node_put(node);
202         } else
203                 c6x_soc_name = "unknown";
204
205         printk(KERN_INFO "CPU%d: %s rev %s, %s volts, %uMHz\n",
206                p->core_id, p->cpu_name, p->cpu_rev,
207                p->cpu_voltage, c6x_core_freq / 1000000);
208 }
209
210 /*
211  * Early parsing of the command line
212  */
213 static u32 mem_size __initdata;
214
215 /* "mem=" parsing. */
216 static int __init early_mem(char *p)
217 {
218         if (!p)
219                 return -EINVAL;
220
221         mem_size = memparse(p, &p);
222         /* don't remove all of memory when handling "mem={invalid}" */
223         if (mem_size == 0)
224                 return -EINVAL;
225
226         return 0;
227 }
228 early_param("mem", early_mem);
229
230 /* "memdma=<size>[@<address>]" parsing. */
231 static int __init early_memdma(char *p)
232 {
233         if (!p)
234                 return -EINVAL;
235
236         dma_size = memparse(p, &p);
237         if (*p == '@')
238                 dma_start = memparse(p, &p);
239
240         return 0;
241 }
242 early_param("memdma", early_memdma);
243
244 int __init c6x_add_memory(phys_addr_t start, unsigned long size)
245 {
246         static int ram_found __initdata;
247
248         /* We only handle one bank (the one with PAGE_OFFSET) for now */
249         if (ram_found)
250                 return -EINVAL;
251
252         if (start > PAGE_OFFSET || PAGE_OFFSET >= (start + size))
253                 return 0;
254
255         ram_start = start;
256         ram_end = start + size;
257
258         ram_found = 1;
259         return 0;
260 }
261
262 /*
263  * Do early machine setup and device tree parsing. This is called very
264  * early on the boot process.
265  */
266 notrace void __init machine_init(unsigned long dt_ptr)
267 {
268         const void *dtb = __va(dt_ptr);
269         const void *fdt = _fdt_start;
270
271         /* interrupts must be masked */
272         set_creg(IER, 2);
273
274         /*
275          * Set the Interrupt Service Table (IST) to the beginning of the
276          * vector table.
277          */
278         set_ist(_vectors_start);
279
280         lockdep_init();
281
282         /*
283          * dtb is passed in from bootloader.
284          * fdt is linked in blob.
285          */
286         if (dtb && dtb != fdt)
287                 fdt = dtb;
288
289         /* Do some early initialization based on the flat device tree */
290         early_init_dt_scan(fdt);
291
292         parse_early_param();
293 }
294
295 void __init setup_arch(char **cmdline_p)
296 {
297         int bootmap_size;
298         struct memblock_region *reg;
299
300         printk(KERN_INFO "Initializing kernel\n");
301
302         /* Initialize command line */
303         *cmdline_p = boot_command_line;
304
305         memory_end = ram_end;
306         memory_end &= ~(PAGE_SIZE - 1);
307
308         if (mem_size && (PAGE_OFFSET + PAGE_ALIGN(mem_size)) < memory_end)
309                 memory_end = PAGE_OFFSET + PAGE_ALIGN(mem_size);
310
311         /* add block that this kernel can use */
312         memblock_add(PAGE_OFFSET, memory_end - PAGE_OFFSET);
313
314         /* reserve kernel text/data/bss */
315         memblock_reserve(PAGE_OFFSET,
316                          PAGE_ALIGN((unsigned long)&_end - PAGE_OFFSET));
317
318         if (dma_size) {
319                 /* align to cacheability granularity */
320                 dma_size = CACHE_REGION_END(dma_size);
321
322                 if (!dma_start)
323                         dma_start = memory_end - dma_size;
324
325                 /* align to cacheability granularity */
326                 dma_start = CACHE_REGION_START(dma_start);
327
328                 /* reserve DMA memory taken from kernel memory */
329                 if (memblock_is_region_memory(dma_start, dma_size))
330                         memblock_reserve(dma_start, dma_size);
331         }
332
333         memory_start = PAGE_ALIGN((unsigned int) &_end);
334
335         printk(KERN_INFO "Memory Start=%08lx, Memory End=%08lx\n",
336                memory_start, memory_end);
337
338 #ifdef CONFIG_BLK_DEV_INITRD
339         /*
340          * Reserve initrd memory if in kernel memory.
341          */
342         if (initrd_start < initrd_end)
343                 if (memblock_is_region_memory(initrd_start,
344                                               initrd_end - initrd_start))
345                         memblock_reserve(initrd_start,
346                                          initrd_end - initrd_start);
347 #endif
348
349         init_mm.start_code = (unsigned long) &_stext;
350         init_mm.end_code   = (unsigned long) &_etext;
351         init_mm.end_data   = memory_start;
352         init_mm.brk        = memory_start;
353
354         /*
355          * Give all the memory to the bootmap allocator,  tell it to put the
356          * boot mem_map at the start of memory
357          */
358         bootmap_size = init_bootmem_node(NODE_DATA(0),
359                                          memory_start >> PAGE_SHIFT,
360                                          PAGE_OFFSET >> PAGE_SHIFT,
361                                          memory_end >> PAGE_SHIFT);
362         memblock_reserve(memory_start, bootmap_size);
363
364         unflatten_device_tree();
365
366         c6x_cache_init();
367
368         /* Set the whole external memory as non-cacheable */
369         disable_caching(ram_start, ram_end - 1);
370
371         /* Set caching of external RAM used by Linux */
372         for_each_memblock(memory, reg)
373                 enable_caching(CACHE_REGION_START(reg->base),
374                                CACHE_REGION_START(reg->base + reg->size - 1));
375
376 #ifdef CONFIG_BLK_DEV_INITRD
377         /*
378          * Enable caching for initrd which falls outside kernel memory.
379          */
380         if (initrd_start < initrd_end) {
381                 if (!memblock_is_region_memory(initrd_start,
382                                                initrd_end - initrd_start))
383                         enable_caching(CACHE_REGION_START(initrd_start),
384                                        CACHE_REGION_START(initrd_end - 1));
385         }
386 #endif
387
388         /*
389          * Disable caching for dma coherent memory taken from kernel memory.
390          */
391         if (dma_size && memblock_is_region_memory(dma_start, dma_size))
392                 disable_caching(dma_start,
393                                 CACHE_REGION_START(dma_start + dma_size - 1));
394
395         /* Initialize the coherent memory allocator */
396         coherent_mem_init(dma_start, dma_size);
397
398         /*
399          * Free all memory as a starting point.
400          */
401         free_bootmem(PAGE_OFFSET, memory_end - PAGE_OFFSET);
402
403         /*
404          * Then reserve memory which is already being used.
405          */
406         for_each_memblock(reserved, reg) {
407                 pr_debug("reserved - 0x%08x-0x%08x\n",
408                          (u32) reg->base, (u32) reg->size);
409                 reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
410         }
411
412         max_low_pfn = PFN_DOWN(memory_end);
413         min_low_pfn = PFN_UP(memory_start);
414         max_mapnr = max_low_pfn - min_low_pfn;
415
416         /* Get kmalloc into gear */
417         paging_init();
418
419         /*
420          * Probe for Device State Configuration Registers.
421          * We have to do this early in case timer needs to be enabled
422          * through DSCR.
423          */
424         dscr_probe();
425
426         /* We do this early for timer and core clock frequency */
427         c64x_setup_clocks();
428
429         /* Get CPU info */
430         get_cpuinfo();
431
432 #if defined(CONFIG_VT) && defined(CONFIG_DUMMY_CONSOLE)
433         conswitchp = &dummy_con;
434 #endif
435 }
436
437 #define cpu_to_ptr(n) ((void *)((long)(n)+1))
438 #define ptr_to_cpu(p) ((long)(p) - 1)
439
440 static int show_cpuinfo(struct seq_file *m, void *v)
441 {
442         int n = ptr_to_cpu(v);
443         struct cpuinfo_c6x *p = &per_cpu(cpu_data, n);
444
445         if (n == 0) {
446                 seq_printf(m,
447                            "soc\t\t: %s\n"
448                            "soc revision\t: 0x%x\n"
449                            "soc cores\t: %d\n",
450                            c6x_soc_name, c6x_silicon_rev, c6x_num_cores);
451         }
452
453         seq_printf(m,
454                    "\n"
455                    "processor\t: %d\n"
456                    "cpu\t\t: %s\n"
457                    "core revision\t: %s\n"
458                    "core voltage\t: %s\n"
459                    "core id\t\t: %d\n"
460                    "mmu\t\t: %s\n"
461                    "fpu\t\t: %s\n"
462                    "cpu MHz\t\t: %u\n"
463                    "bogomips\t: %lu.%02lu\n\n",
464                    n,
465                    p->cpu_name, p->cpu_rev, p->cpu_voltage,
466                    p->core_id, p->mmu, p->fpu,
467                    (c6x_core_freq + 500000) / 1000000,
468                    (loops_per_jiffy/(500000/HZ)),
469                    (loops_per_jiffy/(5000/HZ))%100);
470
471         return 0;
472 }
473
474 static void *c_start(struct seq_file *m, loff_t *pos)
475 {
476         return *pos < nr_cpu_ids ? cpu_to_ptr(*pos) : NULL;
477 }
478 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
479 {
480         ++*pos;
481         return NULL;
482 }
483 static void c_stop(struct seq_file *m, void *v)
484 {
485 }
486
487 const struct seq_operations cpuinfo_op = {
488         c_start,
489         c_stop,
490         c_next,
491         show_cpuinfo
492 };
493
494 static struct cpu cpu_devices[NR_CPUS];
495
496 static int __init topology_init(void)
497 {
498         int i;
499
500         for_each_present_cpu(i)
501                 register_cpu(&cpu_devices[i], i);
502
503         return 0;
504 }
505
506 subsys_initcall(topology_init);