da8df0e504ac6ef4e6529f7d128437724d6572af
[sfrench/cifs-2.6.git] / arch / blackfin / kernel / process.c
1 /*
2  * Blackfin architecture-dependent process handling
3  *
4  * Copyright 2004-2009 Analog Devices Inc.
5  *
6  * Licensed under the GPL-2 or later
7  */
8
9 #include <linux/module.h>
10 #include <linux/unistd.h>
11 #include <linux/user.h>
12 #include <linux/uaccess.h>
13 #include <linux/slab.h>
14 #include <linux/sched.h>
15 #include <linux/tick.h>
16 #include <linux/fs.h>
17 #include <linux/err.h>
18
19 #include <asm/blackfin.h>
20 #include <asm/fixed_code.h>
21 #include <asm/mem_map.h>
22 #include <asm/irq.h>
23
24 asmlinkage void ret_from_fork(void);
25
26 /* Points to the SDRAM backup memory for the stack that is currently in
27  * L1 scratchpad memory.
28  */
29 void *current_l1_stack_save;
30
31 /* The number of tasks currently using a L1 stack area.  The SRAM is
32  * allocated/deallocated whenever this changes from/to zero.
33  */
34 int nr_l1stack_tasks;
35
36 /* Start and length of the area in L1 scratchpad memory which we've allocated
37  * for process stacks.
38  */
39 void *l1_stack_base;
40 unsigned long l1_stack_len;
41
42 /*
43  * Powermanagement idle function, if any..
44  */
45 void (*pm_idle)(void) = NULL;
46 EXPORT_SYMBOL(pm_idle);
47
48 void (*pm_power_off)(void) = NULL;
49 EXPORT_SYMBOL(pm_power_off);
50
51 /*
52  * The idle loop on BFIN
53  */
54 #ifdef CONFIG_IDLE_L1
55 static void default_idle(void)__attribute__((l1_text));
56 void cpu_idle(void)__attribute__((l1_text));
57 #endif
58
59 /*
60  * This is our default idle handler.  We need to disable
61  * interrupts here to ensure we don't miss a wakeup call.
62  */
63 static void default_idle(void)
64 {
65 #ifdef CONFIG_IPIPE
66         ipipe_suspend_domain();
67 #endif
68         hard_local_irq_disable();
69         if (!need_resched())
70                 idle_with_irq_disabled();
71
72         hard_local_irq_enable();
73 }
74
75 /*
76  * The idle thread.  We try to conserve power, while trying to keep
77  * overall latency low.  The architecture specific idle is passed
78  * a value to indicate the level of "idleness" of the system.
79  */
80 void cpu_idle(void)
81 {
82         /* endless idle loop with no priority at all */
83         while (1) {
84                 void (*idle)(void) = pm_idle;
85
86 #ifdef CONFIG_HOTPLUG_CPU
87                 if (cpu_is_offline(smp_processor_id()))
88                         cpu_die();
89 #endif
90                 if (!idle)
91                         idle = default_idle;
92                 tick_nohz_idle_enter();
93                 rcu_idle_enter();
94                 while (!need_resched())
95                         idle();
96                 rcu_idle_exit();
97                 tick_nohz_idle_exit();
98                 preempt_enable_no_resched();
99                 schedule();
100                 preempt_disable();
101         }
102 }
103
104 /*
105  * Do necessary setup to start up a newly executed thread.
106  *
107  * pass the data segment into user programs if it exists,
108  * it can't hurt anything as far as I can tell
109  */
110 void start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
111 {
112         regs->pc = new_ip;
113         if (current->mm)
114                 regs->p5 = current->mm->start_data;
115 #ifndef CONFIG_SMP
116         task_thread_info(current)->l1_task_info.stack_start =
117                 (void *)current->mm->context.stack_start;
118         task_thread_info(current)->l1_task_info.lowest_sp = (void *)new_sp;
119         memcpy(L1_SCRATCH_TASK_INFO, &task_thread_info(current)->l1_task_info,
120                sizeof(*L1_SCRATCH_TASK_INFO));
121 #endif
122         wrusp(new_sp);
123 }
124 EXPORT_SYMBOL_GPL(start_thread);
125
126 void flush_thread(void)
127 {
128 }
129
130 asmlinkage int bfin_vfork(struct pt_regs *regs)
131 {
132         return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, rdusp(), regs, 0, NULL,
133                        NULL);
134 }
135
136 asmlinkage int bfin_clone(struct pt_regs *regs)
137 {
138         unsigned long clone_flags;
139         unsigned long newsp;
140
141 #ifdef __ARCH_SYNC_CORE_DCACHE
142         if (current->nr_cpus_allowed == num_possible_cpus())
143                 set_cpus_allowed_ptr(current, cpumask_of(smp_processor_id()));
144 #endif
145
146         /* syscall2 puts clone_flags in r0 and usp in r1 */
147         clone_flags = regs->r0;
148         newsp = regs->r1;
149         if (!newsp)
150                 newsp = rdusp();
151         else
152                 newsp -= 12;
153         return do_fork(clone_flags, newsp, regs, 0, NULL, NULL);
154 }
155
156 int
157 copy_thread(unsigned long clone_flags,
158             unsigned long usp, unsigned long topstk,
159             struct task_struct *p, struct pt_regs *regs)
160 {
161         struct pt_regs *childregs;
162         unsigned long *v;
163
164         childregs = (struct pt_regs *) (task_stack_page(p) + THREAD_SIZE) - 1;
165         v = ((unsigned long *)childregs) - 2;
166         if (unlikely(!regs)) {
167                 memset(childregs, 0, sizeof(struct pt_regs));
168                 v[0] = usp;
169                 v[1] = topstk;
170                 childregs->orig_p0 = -1;
171                 childregs->ipend = 0x8000;
172                 __asm__ __volatile__("%0 = syscfg;":"=da"(childregs->syscfg):);
173                 p->thread.usp = 0;
174         } else {
175                 *childregs = *regs;
176                 childregs->r0 = 0;
177                 p->thread.usp = usp;
178                 v[0] = v[1] = 0;
179         }
180
181         p->thread.ksp = (unsigned long)v;
182         p->thread.pc = (unsigned long)ret_from_fork;
183
184         return 0;
185 }
186
187 unsigned long get_wchan(struct task_struct *p)
188 {
189         unsigned long fp, pc;
190         unsigned long stack_page;
191         int count = 0;
192         if (!p || p == current || p->state == TASK_RUNNING)
193                 return 0;
194
195         stack_page = (unsigned long)p;
196         fp = p->thread.usp;
197         do {
198                 if (fp < stack_page + sizeof(struct thread_info) ||
199                     fp >= 8184 + stack_page)
200                         return 0;
201                 pc = ((unsigned long *)fp)[1];
202                 if (!in_sched_functions(pc))
203                         return pc;
204                 fp = *(unsigned long *)fp;
205         }
206         while (count++ < 16);
207         return 0;
208 }
209
210 void finish_atomic_sections (struct pt_regs *regs)
211 {
212         int __user *up0 = (int __user *)regs->p0;
213
214         switch (regs->pc) {
215         default:
216                 /* not in middle of an atomic step, so resume like normal */
217                 return;
218
219         case ATOMIC_XCHG32 + 2:
220                 put_user(regs->r1, up0);
221                 break;
222
223         case ATOMIC_CAS32 + 2:
224         case ATOMIC_CAS32 + 4:
225                 if (regs->r0 == regs->r1)
226         case ATOMIC_CAS32 + 6:
227                         put_user(regs->r2, up0);
228                 break;
229
230         case ATOMIC_ADD32 + 2:
231                 regs->r0 = regs->r1 + regs->r0;
232                 /* fall through */
233         case ATOMIC_ADD32 + 4:
234                 put_user(regs->r0, up0);
235                 break;
236
237         case ATOMIC_SUB32 + 2:
238                 regs->r0 = regs->r1 - regs->r0;
239                 /* fall through */
240         case ATOMIC_SUB32 + 4:
241                 put_user(regs->r0, up0);
242                 break;
243
244         case ATOMIC_IOR32 + 2:
245                 regs->r0 = regs->r1 | regs->r0;
246                 /* fall through */
247         case ATOMIC_IOR32 + 4:
248                 put_user(regs->r0, up0);
249                 break;
250
251         case ATOMIC_AND32 + 2:
252                 regs->r0 = regs->r1 & regs->r0;
253                 /* fall through */
254         case ATOMIC_AND32 + 4:
255                 put_user(regs->r0, up0);
256                 break;
257
258         case ATOMIC_XOR32 + 2:
259                 regs->r0 = regs->r1 ^ regs->r0;
260                 /* fall through */
261         case ATOMIC_XOR32 + 4:
262                 put_user(regs->r0, up0);
263                 break;
264         }
265
266         /*
267          * We've finished the atomic section, and the only thing left for
268          * userspace is to do a RTS, so we might as well handle that too
269          * since we need to update the PC anyways.
270          */
271         regs->pc = regs->rets;
272 }
273
274 static inline
275 int in_mem(unsigned long addr, unsigned long size,
276            unsigned long start, unsigned long end)
277 {
278         return addr >= start && addr + size <= end;
279 }
280 static inline
281 int in_mem_const_off(unsigned long addr, unsigned long size, unsigned long off,
282                      unsigned long const_addr, unsigned long const_size)
283 {
284         return const_size &&
285                in_mem(addr, size, const_addr + off, const_addr + const_size);
286 }
287 static inline
288 int in_mem_const(unsigned long addr, unsigned long size,
289                  unsigned long const_addr, unsigned long const_size)
290 {
291         return in_mem_const_off(addr, size, 0, const_addr, const_size);
292 }
293 #ifdef CONFIG_BF60x
294 #define ASYNC_ENABLED(bnum, bctlnum)    1
295 #else
296 #define ASYNC_ENABLED(bnum, bctlnum) \
297 ({ \
298         (bfin_read_EBIU_AMGCTL() & 0xe) < ((bnum + 1) << 1) ? 0 : \
299         bfin_read_EBIU_AMBCTL##bctlnum() & B##bnum##RDYEN ? 0 : \
300         1; \
301 })
302 #endif
303 /*
304  * We can't read EBIU banks that aren't enabled or we end up hanging
305  * on the access to the async space.  Make sure we validate accesses
306  * that cross async banks too.
307  *      0 - found, but unusable
308  *      1 - found & usable
309  *      2 - not found
310  */
311 static
312 int in_async(unsigned long addr, unsigned long size)
313 {
314         if (addr >= ASYNC_BANK0_BASE && addr < ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE) {
315                 if (!ASYNC_ENABLED(0, 0))
316                         return 0;
317                 if (addr + size <= ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE)
318                         return 1;
319                 size -= ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE - addr;
320                 addr = ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE;
321         }
322         if (addr >= ASYNC_BANK1_BASE && addr < ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE) {
323                 if (!ASYNC_ENABLED(1, 0))
324                         return 0;
325                 if (addr + size <= ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE)
326                         return 1;
327                 size -= ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE - addr;
328                 addr = ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE;
329         }
330         if (addr >= ASYNC_BANK2_BASE && addr < ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE) {
331                 if (!ASYNC_ENABLED(2, 1))
332                         return 0;
333                 if (addr + size <= ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE)
334                         return 1;
335                 size -= ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE - addr;
336                 addr = ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE;
337         }
338         if (addr >= ASYNC_BANK3_BASE && addr < ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE) {
339                 if (ASYNC_ENABLED(3, 1))
340                         return 0;
341                 if (addr + size <= ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE)
342                         return 1;
343                 return 0;
344         }
345
346         /* not within async bounds */
347         return 2;
348 }
349
350 int bfin_mem_access_type(unsigned long addr, unsigned long size)
351 {
352         int cpu = raw_smp_processor_id();
353
354         /* Check that things do not wrap around */
355         if (addr > ULONG_MAX - size)
356                 return -EFAULT;
357
358         if (in_mem(addr, size, FIXED_CODE_START, physical_mem_end))
359                 return BFIN_MEM_ACCESS_CORE;
360
361         if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
362                 return cpu == 0 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
363         if (in_mem_const(addr, size, L1_SCRATCH_START, L1_SCRATCH_LENGTH))
364                 return cpu == 0 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
365         if (in_mem_const(addr, size, L1_DATA_A_START, L1_DATA_A_LENGTH))
366                 return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
367         if (in_mem_const(addr, size, L1_DATA_B_START, L1_DATA_B_LENGTH))
368                 return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
369 #ifdef COREB_L1_CODE_START
370         if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH))
371                 return cpu == 1 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
372         if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
373                 return cpu == 1 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
374         if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH))
375                 return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
376         if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH))
377                 return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
378 #endif
379         if (in_mem_const(addr, size, L2_START, L2_LENGTH))
380                 return BFIN_MEM_ACCESS_CORE;
381
382         if (addr >= SYSMMR_BASE)
383                 return BFIN_MEM_ACCESS_CORE_ONLY;
384
385         switch (in_async(addr, size)) {
386         case 0: return -EFAULT;
387         case 1: return BFIN_MEM_ACCESS_CORE;
388         case 2: /* fall through */;
389         }
390
391         if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
392                 return BFIN_MEM_ACCESS_CORE;
393         if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
394                 return BFIN_MEM_ACCESS_DMA;
395
396         return -EFAULT;
397 }
398
399 #if defined(CONFIG_ACCESS_CHECK)
400 #ifdef CONFIG_ACCESS_OK_L1
401 __attribute__((l1_text))
402 #endif
403 /* Return 1 if access to memory range is OK, 0 otherwise */
404 int _access_ok(unsigned long addr, unsigned long size)
405 {
406         int aret;
407
408         if (size == 0)
409                 return 1;
410         /* Check that things do not wrap around */
411         if (addr > ULONG_MAX - size)
412                 return 0;
413         if (segment_eq(get_fs(), KERNEL_DS))
414                 return 1;
415 #ifdef CONFIG_MTD_UCLINUX
416         if (1)
417 #else
418         if (0)
419 #endif
420         {
421                 if (in_mem(addr, size, memory_start, memory_end))
422                         return 1;
423                 if (in_mem(addr, size, memory_mtd_end, physical_mem_end))
424                         return 1;
425 # ifndef CONFIG_ROMFS_ON_MTD
426                 if (0)
427 # endif
428                         /* For XIP, allow user space to use pointers within the ROMFS.  */
429                         if (in_mem(addr, size, memory_mtd_start, memory_mtd_end))
430                                 return 1;
431         } else {
432                 if (in_mem(addr, size, memory_start, physical_mem_end))
433                         return 1;
434         }
435
436         if (in_mem(addr, size, (unsigned long)__init_begin, (unsigned long)__init_end))
437                 return 1;
438
439         if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
440                 return 1;
441         if (in_mem_const_off(addr, size, _etext_l1 - _stext_l1, L1_CODE_START, L1_CODE_LENGTH))
442                 return 1;
443         if (in_mem_const_off(addr, size, _ebss_l1 - _sdata_l1, L1_DATA_A_START, L1_DATA_A_LENGTH))
444                 return 1;
445         if (in_mem_const_off(addr, size, _ebss_b_l1 - _sdata_b_l1, L1_DATA_B_START, L1_DATA_B_LENGTH))
446                 return 1;
447 #ifdef COREB_L1_CODE_START
448         if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH))
449                 return 1;
450         if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
451                 return 1;
452         if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH))
453                 return 1;
454         if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH))
455                 return 1;
456 #endif
457
458 #ifndef CONFIG_EXCEPTION_L1_SCRATCH
459         if (in_mem_const(addr, size, (unsigned long)l1_stack_base, l1_stack_len))
460                 return 1;
461 #endif
462
463         aret = in_async(addr, size);
464         if (aret < 2)
465                 return aret;
466
467         if (in_mem_const_off(addr, size, _ebss_l2 - _stext_l2, L2_START, L2_LENGTH))
468                 return 1;
469
470         if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
471                 return 1;
472         if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
473                 return 1;
474
475         return 0;
476 }
477 EXPORT_SYMBOL(_access_ok);
478 #endif /* CONFIG_ACCESS_CHECK */