treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 500
[sfrench/cifs-2.6.git] / arch / arm64 / crypto / ghash-ce-glue.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Accelerated GHASH implementation with ARMv8 PMULL instructions.
4  *
5  * Copyright (C) 2014 - 2018 Linaro Ltd. <ard.biesheuvel@linaro.org>
6  */
7
8 #include <asm/neon.h>
9 #include <asm/simd.h>
10 #include <asm/unaligned.h>
11 #include <crypto/aes.h>
12 #include <crypto/algapi.h>
13 #include <crypto/b128ops.h>
14 #include <crypto/gf128mul.h>
15 #include <crypto/internal/aead.h>
16 #include <crypto/internal/hash.h>
17 #include <crypto/internal/simd.h>
18 #include <crypto/internal/skcipher.h>
19 #include <crypto/scatterwalk.h>
20 #include <linux/cpufeature.h>
21 #include <linux/crypto.h>
22 #include <linux/module.h>
23
24 MODULE_DESCRIPTION("GHASH and AES-GCM using ARMv8 Crypto Extensions");
25 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
26 MODULE_LICENSE("GPL v2");
27 MODULE_ALIAS_CRYPTO("ghash");
28
29 #define GHASH_BLOCK_SIZE        16
30 #define GHASH_DIGEST_SIZE       16
31 #define GCM_IV_SIZE             12
32
33 struct ghash_key {
34         u64                     h[2];
35         u64                     h2[2];
36         u64                     h3[2];
37         u64                     h4[2];
38
39         be128                   k;
40 };
41
42 struct ghash_desc_ctx {
43         u64 digest[GHASH_DIGEST_SIZE/sizeof(u64)];
44         u8 buf[GHASH_BLOCK_SIZE];
45         u32 count;
46 };
47
48 struct gcm_aes_ctx {
49         struct crypto_aes_ctx   aes_key;
50         struct ghash_key        ghash_key;
51 };
52
53 asmlinkage void pmull_ghash_update_p64(int blocks, u64 dg[], const char *src,
54                                        struct ghash_key const *k,
55                                        const char *head);
56
57 asmlinkage void pmull_ghash_update_p8(int blocks, u64 dg[], const char *src,
58                                       struct ghash_key const *k,
59                                       const char *head);
60
61 asmlinkage void pmull_gcm_encrypt(int blocks, u64 dg[], u8 dst[],
62                                   const u8 src[], struct ghash_key const *k,
63                                   u8 ctr[], u32 const rk[], int rounds,
64                                   u8 ks[]);
65
66 asmlinkage void pmull_gcm_decrypt(int blocks, u64 dg[], u8 dst[],
67                                   const u8 src[], struct ghash_key const *k,
68                                   u8 ctr[], u32 const rk[], int rounds);
69
70 asmlinkage void pmull_gcm_encrypt_block(u8 dst[], u8 const src[],
71                                         u32 const rk[], int rounds);
72
73 asmlinkage void __aes_arm64_encrypt(u32 *rk, u8 *out, const u8 *in, int rounds);
74
75 static int ghash_init(struct shash_desc *desc)
76 {
77         struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
78
79         *ctx = (struct ghash_desc_ctx){};
80         return 0;
81 }
82
83 static void ghash_do_update(int blocks, u64 dg[], const char *src,
84                             struct ghash_key *key, const char *head,
85                             void (*simd_update)(int blocks, u64 dg[],
86                                                 const char *src,
87                                                 struct ghash_key const *k,
88                                                 const char *head))
89 {
90         if (likely(crypto_simd_usable())) {
91                 kernel_neon_begin();
92                 simd_update(blocks, dg, src, key, head);
93                 kernel_neon_end();
94         } else {
95                 be128 dst = { cpu_to_be64(dg[1]), cpu_to_be64(dg[0]) };
96
97                 do {
98                         const u8 *in = src;
99
100                         if (head) {
101                                 in = head;
102                                 blocks++;
103                                 head = NULL;
104                         } else {
105                                 src += GHASH_BLOCK_SIZE;
106                         }
107
108                         crypto_xor((u8 *)&dst, in, GHASH_BLOCK_SIZE);
109                         gf128mul_lle(&dst, &key->k);
110                 } while (--blocks);
111
112                 dg[0] = be64_to_cpu(dst.b);
113                 dg[1] = be64_to_cpu(dst.a);
114         }
115 }
116
117 /* avoid hogging the CPU for too long */
118 #define MAX_BLOCKS      (SZ_64K / GHASH_BLOCK_SIZE)
119
120 static int __ghash_update(struct shash_desc *desc, const u8 *src,
121                           unsigned int len,
122                           void (*simd_update)(int blocks, u64 dg[],
123                                               const char *src,
124                                               struct ghash_key const *k,
125                                               const char *head))
126 {
127         struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
128         unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
129
130         ctx->count += len;
131
132         if ((partial + len) >= GHASH_BLOCK_SIZE) {
133                 struct ghash_key *key = crypto_shash_ctx(desc->tfm);
134                 int blocks;
135
136                 if (partial) {
137                         int p = GHASH_BLOCK_SIZE - partial;
138
139                         memcpy(ctx->buf + partial, src, p);
140                         src += p;
141                         len -= p;
142                 }
143
144                 blocks = len / GHASH_BLOCK_SIZE;
145                 len %= GHASH_BLOCK_SIZE;
146
147                 do {
148                         int chunk = min(blocks, MAX_BLOCKS);
149
150                         ghash_do_update(chunk, ctx->digest, src, key,
151                                         partial ? ctx->buf : NULL,
152                                         simd_update);
153
154                         blocks -= chunk;
155                         src += chunk * GHASH_BLOCK_SIZE;
156                         partial = 0;
157                 } while (unlikely(blocks > 0));
158         }
159         if (len)
160                 memcpy(ctx->buf + partial, src, len);
161         return 0;
162 }
163
164 static int ghash_update_p8(struct shash_desc *desc, const u8 *src,
165                            unsigned int len)
166 {
167         return __ghash_update(desc, src, len, pmull_ghash_update_p8);
168 }
169
170 static int ghash_update_p64(struct shash_desc *desc, const u8 *src,
171                             unsigned int len)
172 {
173         return __ghash_update(desc, src, len, pmull_ghash_update_p64);
174 }
175
176 static int ghash_final_p8(struct shash_desc *desc, u8 *dst)
177 {
178         struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
179         unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
180
181         if (partial) {
182                 struct ghash_key *key = crypto_shash_ctx(desc->tfm);
183
184                 memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial);
185
186                 ghash_do_update(1, ctx->digest, ctx->buf, key, NULL,
187                                 pmull_ghash_update_p8);
188         }
189         put_unaligned_be64(ctx->digest[1], dst);
190         put_unaligned_be64(ctx->digest[0], dst + 8);
191
192         *ctx = (struct ghash_desc_ctx){};
193         return 0;
194 }
195
196 static int ghash_final_p64(struct shash_desc *desc, u8 *dst)
197 {
198         struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
199         unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
200
201         if (partial) {
202                 struct ghash_key *key = crypto_shash_ctx(desc->tfm);
203
204                 memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial);
205
206                 ghash_do_update(1, ctx->digest, ctx->buf, key, NULL,
207                                 pmull_ghash_update_p64);
208         }
209         put_unaligned_be64(ctx->digest[1], dst);
210         put_unaligned_be64(ctx->digest[0], dst + 8);
211
212         *ctx = (struct ghash_desc_ctx){};
213         return 0;
214 }
215
216 static void ghash_reflect(u64 h[], const be128 *k)
217 {
218         u64 carry = be64_to_cpu(k->a) & BIT(63) ? 1 : 0;
219
220         h[0] = (be64_to_cpu(k->b) << 1) | carry;
221         h[1] = (be64_to_cpu(k->a) << 1) | (be64_to_cpu(k->b) >> 63);
222
223         if (carry)
224                 h[1] ^= 0xc200000000000000UL;
225 }
226
227 static int __ghash_setkey(struct ghash_key *key,
228                           const u8 *inkey, unsigned int keylen)
229 {
230         be128 h;
231
232         /* needed for the fallback */
233         memcpy(&key->k, inkey, GHASH_BLOCK_SIZE);
234
235         ghash_reflect(key->h, &key->k);
236
237         h = key->k;
238         gf128mul_lle(&h, &key->k);
239         ghash_reflect(key->h2, &h);
240
241         gf128mul_lle(&h, &key->k);
242         ghash_reflect(key->h3, &h);
243
244         gf128mul_lle(&h, &key->k);
245         ghash_reflect(key->h4, &h);
246
247         return 0;
248 }
249
250 static int ghash_setkey(struct crypto_shash *tfm,
251                         const u8 *inkey, unsigned int keylen)
252 {
253         struct ghash_key *key = crypto_shash_ctx(tfm);
254
255         if (keylen != GHASH_BLOCK_SIZE) {
256                 crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
257                 return -EINVAL;
258         }
259
260         return __ghash_setkey(key, inkey, keylen);
261 }
262
263 static struct shash_alg ghash_alg[] = {{
264         .base.cra_name          = "ghash",
265         .base.cra_driver_name   = "ghash-neon",
266         .base.cra_priority      = 100,
267         .base.cra_blocksize     = GHASH_BLOCK_SIZE,
268         .base.cra_ctxsize       = sizeof(struct ghash_key),
269         .base.cra_module        = THIS_MODULE,
270
271         .digestsize             = GHASH_DIGEST_SIZE,
272         .init                   = ghash_init,
273         .update                 = ghash_update_p8,
274         .final                  = ghash_final_p8,
275         .setkey                 = ghash_setkey,
276         .descsize               = sizeof(struct ghash_desc_ctx),
277 }, {
278         .base.cra_name          = "ghash",
279         .base.cra_driver_name   = "ghash-ce",
280         .base.cra_priority      = 200,
281         .base.cra_blocksize     = GHASH_BLOCK_SIZE,
282         .base.cra_ctxsize       = sizeof(struct ghash_key),
283         .base.cra_module        = THIS_MODULE,
284
285         .digestsize             = GHASH_DIGEST_SIZE,
286         .init                   = ghash_init,
287         .update                 = ghash_update_p64,
288         .final                  = ghash_final_p64,
289         .setkey                 = ghash_setkey,
290         .descsize               = sizeof(struct ghash_desc_ctx),
291 }};
292
293 static int num_rounds(struct crypto_aes_ctx *ctx)
294 {
295         /*
296          * # of rounds specified by AES:
297          * 128 bit key          10 rounds
298          * 192 bit key          12 rounds
299          * 256 bit key          14 rounds
300          * => n byte key        => 6 + (n/4) rounds
301          */
302         return 6 + ctx->key_length / 4;
303 }
304
305 static int gcm_setkey(struct crypto_aead *tfm, const u8 *inkey,
306                       unsigned int keylen)
307 {
308         struct gcm_aes_ctx *ctx = crypto_aead_ctx(tfm);
309         u8 key[GHASH_BLOCK_SIZE];
310         int ret;
311
312         ret = crypto_aes_expand_key(&ctx->aes_key, inkey, keylen);
313         if (ret) {
314                 tfm->base.crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
315                 return -EINVAL;
316         }
317
318         __aes_arm64_encrypt(ctx->aes_key.key_enc, key, (u8[AES_BLOCK_SIZE]){},
319                             num_rounds(&ctx->aes_key));
320
321         return __ghash_setkey(&ctx->ghash_key, key, sizeof(be128));
322 }
323
324 static int gcm_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
325 {
326         switch (authsize) {
327         case 4:
328         case 8:
329         case 12 ... 16:
330                 break;
331         default:
332                 return -EINVAL;
333         }
334         return 0;
335 }
336
337 static void gcm_update_mac(u64 dg[], const u8 *src, int count, u8 buf[],
338                            int *buf_count, struct gcm_aes_ctx *ctx)
339 {
340         if (*buf_count > 0) {
341                 int buf_added = min(count, GHASH_BLOCK_SIZE - *buf_count);
342
343                 memcpy(&buf[*buf_count], src, buf_added);
344
345                 *buf_count += buf_added;
346                 src += buf_added;
347                 count -= buf_added;
348         }
349
350         if (count >= GHASH_BLOCK_SIZE || *buf_count == GHASH_BLOCK_SIZE) {
351                 int blocks = count / GHASH_BLOCK_SIZE;
352
353                 ghash_do_update(blocks, dg, src, &ctx->ghash_key,
354                                 *buf_count ? buf : NULL,
355                                 pmull_ghash_update_p64);
356
357                 src += blocks * GHASH_BLOCK_SIZE;
358                 count %= GHASH_BLOCK_SIZE;
359                 *buf_count = 0;
360         }
361
362         if (count > 0) {
363                 memcpy(buf, src, count);
364                 *buf_count = count;
365         }
366 }
367
368 static void gcm_calculate_auth_mac(struct aead_request *req, u64 dg[])
369 {
370         struct crypto_aead *aead = crypto_aead_reqtfm(req);
371         struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
372         u8 buf[GHASH_BLOCK_SIZE];
373         struct scatter_walk walk;
374         u32 len = req->assoclen;
375         int buf_count = 0;
376
377         scatterwalk_start(&walk, req->src);
378
379         do {
380                 u32 n = scatterwalk_clamp(&walk, len);
381                 u8 *p;
382
383                 if (!n) {
384                         scatterwalk_start(&walk, sg_next(walk.sg));
385                         n = scatterwalk_clamp(&walk, len);
386                 }
387                 p = scatterwalk_map(&walk);
388
389                 gcm_update_mac(dg, p, n, buf, &buf_count, ctx);
390                 len -= n;
391
392                 scatterwalk_unmap(p);
393                 scatterwalk_advance(&walk, n);
394                 scatterwalk_done(&walk, 0, len);
395         } while (len);
396
397         if (buf_count) {
398                 memset(&buf[buf_count], 0, GHASH_BLOCK_SIZE - buf_count);
399                 ghash_do_update(1, dg, buf, &ctx->ghash_key, NULL,
400                                 pmull_ghash_update_p64);
401         }
402 }
403
404 static void gcm_final(struct aead_request *req, struct gcm_aes_ctx *ctx,
405                       u64 dg[], u8 tag[], int cryptlen)
406 {
407         u8 mac[AES_BLOCK_SIZE];
408         u128 lengths;
409
410         lengths.a = cpu_to_be64(req->assoclen * 8);
411         lengths.b = cpu_to_be64(cryptlen * 8);
412
413         ghash_do_update(1, dg, (void *)&lengths, &ctx->ghash_key, NULL,
414                         pmull_ghash_update_p64);
415
416         put_unaligned_be64(dg[1], mac);
417         put_unaligned_be64(dg[0], mac + 8);
418
419         crypto_xor(tag, mac, AES_BLOCK_SIZE);
420 }
421
422 static int gcm_encrypt(struct aead_request *req)
423 {
424         struct crypto_aead *aead = crypto_aead_reqtfm(req);
425         struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
426         struct skcipher_walk walk;
427         u8 iv[AES_BLOCK_SIZE];
428         u8 ks[2 * AES_BLOCK_SIZE];
429         u8 tag[AES_BLOCK_SIZE];
430         u64 dg[2] = {};
431         int nrounds = num_rounds(&ctx->aes_key);
432         int err;
433
434         if (req->assoclen)
435                 gcm_calculate_auth_mac(req, dg);
436
437         memcpy(iv, req->iv, GCM_IV_SIZE);
438         put_unaligned_be32(1, iv + GCM_IV_SIZE);
439
440         err = skcipher_walk_aead_encrypt(&walk, req, false);
441
442         if (likely(crypto_simd_usable() && walk.total >= 2 * AES_BLOCK_SIZE)) {
443                 u32 const *rk = NULL;
444
445                 kernel_neon_begin();
446                 pmull_gcm_encrypt_block(tag, iv, ctx->aes_key.key_enc, nrounds);
447                 put_unaligned_be32(2, iv + GCM_IV_SIZE);
448                 pmull_gcm_encrypt_block(ks, iv, NULL, nrounds);
449                 put_unaligned_be32(3, iv + GCM_IV_SIZE);
450                 pmull_gcm_encrypt_block(ks + AES_BLOCK_SIZE, iv, NULL, nrounds);
451                 put_unaligned_be32(4, iv + GCM_IV_SIZE);
452
453                 do {
454                         int blocks = walk.nbytes / (2 * AES_BLOCK_SIZE) * 2;
455
456                         if (rk)
457                                 kernel_neon_begin();
458
459                         pmull_gcm_encrypt(blocks, dg, walk.dst.virt.addr,
460                                           walk.src.virt.addr, &ctx->ghash_key,
461                                           iv, rk, nrounds, ks);
462                         kernel_neon_end();
463
464                         err = skcipher_walk_done(&walk,
465                                         walk.nbytes % (2 * AES_BLOCK_SIZE));
466
467                         rk = ctx->aes_key.key_enc;
468                 } while (walk.nbytes >= 2 * AES_BLOCK_SIZE);
469         } else {
470                 __aes_arm64_encrypt(ctx->aes_key.key_enc, tag, iv, nrounds);
471                 put_unaligned_be32(2, iv + GCM_IV_SIZE);
472
473                 while (walk.nbytes >= (2 * AES_BLOCK_SIZE)) {
474                         const int blocks =
475                                 walk.nbytes / (2 * AES_BLOCK_SIZE) * 2;
476                         u8 *dst = walk.dst.virt.addr;
477                         u8 *src = walk.src.virt.addr;
478                         int remaining = blocks;
479
480                         do {
481                                 __aes_arm64_encrypt(ctx->aes_key.key_enc,
482                                                     ks, iv, nrounds);
483                                 crypto_xor_cpy(dst, src, ks, AES_BLOCK_SIZE);
484                                 crypto_inc(iv, AES_BLOCK_SIZE);
485
486                                 dst += AES_BLOCK_SIZE;
487                                 src += AES_BLOCK_SIZE;
488                         } while (--remaining > 0);
489
490                         ghash_do_update(blocks, dg,
491                                         walk.dst.virt.addr, &ctx->ghash_key,
492                                         NULL, pmull_ghash_update_p64);
493
494                         err = skcipher_walk_done(&walk,
495                                                  walk.nbytes % (2 * AES_BLOCK_SIZE));
496                 }
497                 if (walk.nbytes) {
498                         __aes_arm64_encrypt(ctx->aes_key.key_enc, ks, iv,
499                                             nrounds);
500                         if (walk.nbytes > AES_BLOCK_SIZE) {
501                                 crypto_inc(iv, AES_BLOCK_SIZE);
502                                 __aes_arm64_encrypt(ctx->aes_key.key_enc,
503                                                     ks + AES_BLOCK_SIZE, iv,
504                                                     nrounds);
505                         }
506                 }
507         }
508
509         /* handle the tail */
510         if (walk.nbytes) {
511                 u8 buf[GHASH_BLOCK_SIZE];
512                 unsigned int nbytes = walk.nbytes;
513                 u8 *dst = walk.dst.virt.addr;
514                 u8 *head = NULL;
515
516                 crypto_xor_cpy(walk.dst.virt.addr, walk.src.virt.addr, ks,
517                                walk.nbytes);
518
519                 if (walk.nbytes > GHASH_BLOCK_SIZE) {
520                         head = dst;
521                         dst += GHASH_BLOCK_SIZE;
522                         nbytes %= GHASH_BLOCK_SIZE;
523                 }
524
525                 memcpy(buf, dst, nbytes);
526                 memset(buf + nbytes, 0, GHASH_BLOCK_SIZE - nbytes);
527                 ghash_do_update(!!nbytes, dg, buf, &ctx->ghash_key, head,
528                                 pmull_ghash_update_p64);
529
530                 err = skcipher_walk_done(&walk, 0);
531         }
532
533         if (err)
534                 return err;
535
536         gcm_final(req, ctx, dg, tag, req->cryptlen);
537
538         /* copy authtag to end of dst */
539         scatterwalk_map_and_copy(tag, req->dst, req->assoclen + req->cryptlen,
540                                  crypto_aead_authsize(aead), 1);
541
542         return 0;
543 }
544
545 static int gcm_decrypt(struct aead_request *req)
546 {
547         struct crypto_aead *aead = crypto_aead_reqtfm(req);
548         struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
549         unsigned int authsize = crypto_aead_authsize(aead);
550         struct skcipher_walk walk;
551         u8 iv[2 * AES_BLOCK_SIZE];
552         u8 tag[AES_BLOCK_SIZE];
553         u8 buf[2 * GHASH_BLOCK_SIZE];
554         u64 dg[2] = {};
555         int nrounds = num_rounds(&ctx->aes_key);
556         int err;
557
558         if (req->assoclen)
559                 gcm_calculate_auth_mac(req, dg);
560
561         memcpy(iv, req->iv, GCM_IV_SIZE);
562         put_unaligned_be32(1, iv + GCM_IV_SIZE);
563
564         err = skcipher_walk_aead_decrypt(&walk, req, false);
565
566         if (likely(crypto_simd_usable() && walk.total >= 2 * AES_BLOCK_SIZE)) {
567                 u32 const *rk = NULL;
568
569                 kernel_neon_begin();
570                 pmull_gcm_encrypt_block(tag, iv, ctx->aes_key.key_enc, nrounds);
571                 put_unaligned_be32(2, iv + GCM_IV_SIZE);
572
573                 do {
574                         int blocks = walk.nbytes / (2 * AES_BLOCK_SIZE) * 2;
575                         int rem = walk.total - blocks * AES_BLOCK_SIZE;
576
577                         if (rk)
578                                 kernel_neon_begin();
579
580                         pmull_gcm_decrypt(blocks, dg, walk.dst.virt.addr,
581                                           walk.src.virt.addr, &ctx->ghash_key,
582                                           iv, rk, nrounds);
583
584                         /* check if this is the final iteration of the loop */
585                         if (rem < (2 * AES_BLOCK_SIZE)) {
586                                 u8 *iv2 = iv + AES_BLOCK_SIZE;
587
588                                 if (rem > AES_BLOCK_SIZE) {
589                                         memcpy(iv2, iv, AES_BLOCK_SIZE);
590                                         crypto_inc(iv2, AES_BLOCK_SIZE);
591                                 }
592
593                                 pmull_gcm_encrypt_block(iv, iv, NULL, nrounds);
594
595                                 if (rem > AES_BLOCK_SIZE)
596                                         pmull_gcm_encrypt_block(iv2, iv2, NULL,
597                                                                 nrounds);
598                         }
599
600                         kernel_neon_end();
601
602                         err = skcipher_walk_done(&walk,
603                                         walk.nbytes % (2 * AES_BLOCK_SIZE));
604
605                         rk = ctx->aes_key.key_enc;
606                 } while (walk.nbytes >= 2 * AES_BLOCK_SIZE);
607         } else {
608                 __aes_arm64_encrypt(ctx->aes_key.key_enc, tag, iv, nrounds);
609                 put_unaligned_be32(2, iv + GCM_IV_SIZE);
610
611                 while (walk.nbytes >= (2 * AES_BLOCK_SIZE)) {
612                         int blocks = walk.nbytes / (2 * AES_BLOCK_SIZE) * 2;
613                         u8 *dst = walk.dst.virt.addr;
614                         u8 *src = walk.src.virt.addr;
615
616                         ghash_do_update(blocks, dg, walk.src.virt.addr,
617                                         &ctx->ghash_key, NULL,
618                                         pmull_ghash_update_p64);
619
620                         do {
621                                 __aes_arm64_encrypt(ctx->aes_key.key_enc,
622                                                     buf, iv, nrounds);
623                                 crypto_xor_cpy(dst, src, buf, AES_BLOCK_SIZE);
624                                 crypto_inc(iv, AES_BLOCK_SIZE);
625
626                                 dst += AES_BLOCK_SIZE;
627                                 src += AES_BLOCK_SIZE;
628                         } while (--blocks > 0);
629
630                         err = skcipher_walk_done(&walk,
631                                                  walk.nbytes % (2 * AES_BLOCK_SIZE));
632                 }
633                 if (walk.nbytes) {
634                         if (walk.nbytes > AES_BLOCK_SIZE) {
635                                 u8 *iv2 = iv + AES_BLOCK_SIZE;
636
637                                 memcpy(iv2, iv, AES_BLOCK_SIZE);
638                                 crypto_inc(iv2, AES_BLOCK_SIZE);
639
640                                 __aes_arm64_encrypt(ctx->aes_key.key_enc, iv2,
641                                                     iv2, nrounds);
642                         }
643                         __aes_arm64_encrypt(ctx->aes_key.key_enc, iv, iv,
644                                             nrounds);
645                 }
646         }
647
648         /* handle the tail */
649         if (walk.nbytes) {
650                 const u8 *src = walk.src.virt.addr;
651                 const u8 *head = NULL;
652                 unsigned int nbytes = walk.nbytes;
653
654                 if (walk.nbytes > GHASH_BLOCK_SIZE) {
655                         head = src;
656                         src += GHASH_BLOCK_SIZE;
657                         nbytes %= GHASH_BLOCK_SIZE;
658                 }
659
660                 memcpy(buf, src, nbytes);
661                 memset(buf + nbytes, 0, GHASH_BLOCK_SIZE - nbytes);
662                 ghash_do_update(!!nbytes, dg, buf, &ctx->ghash_key, head,
663                                 pmull_ghash_update_p64);
664
665                 crypto_xor_cpy(walk.dst.virt.addr, walk.src.virt.addr, iv,
666                                walk.nbytes);
667
668                 err = skcipher_walk_done(&walk, 0);
669         }
670
671         if (err)
672                 return err;
673
674         gcm_final(req, ctx, dg, tag, req->cryptlen - authsize);
675
676         /* compare calculated auth tag with the stored one */
677         scatterwalk_map_and_copy(buf, req->src,
678                                  req->assoclen + req->cryptlen - authsize,
679                                  authsize, 0);
680
681         if (crypto_memneq(tag, buf, authsize))
682                 return -EBADMSG;
683         return 0;
684 }
685
686 static struct aead_alg gcm_aes_alg = {
687         .ivsize                 = GCM_IV_SIZE,
688         .chunksize              = 2 * AES_BLOCK_SIZE,
689         .maxauthsize            = AES_BLOCK_SIZE,
690         .setkey                 = gcm_setkey,
691         .setauthsize            = gcm_setauthsize,
692         .encrypt                = gcm_encrypt,
693         .decrypt                = gcm_decrypt,
694
695         .base.cra_name          = "gcm(aes)",
696         .base.cra_driver_name   = "gcm-aes-ce",
697         .base.cra_priority      = 300,
698         .base.cra_blocksize     = 1,
699         .base.cra_ctxsize       = sizeof(struct gcm_aes_ctx),
700         .base.cra_module        = THIS_MODULE,
701 };
702
703 static int __init ghash_ce_mod_init(void)
704 {
705         int ret;
706
707         if (!cpu_have_named_feature(ASIMD))
708                 return -ENODEV;
709
710         if (cpu_have_named_feature(PMULL))
711                 ret = crypto_register_shashes(ghash_alg,
712                                               ARRAY_SIZE(ghash_alg));
713         else
714                 /* only register the first array element */
715                 ret = crypto_register_shash(ghash_alg);
716
717         if (ret)
718                 return ret;
719
720         if (cpu_have_named_feature(PMULL)) {
721                 ret = crypto_register_aead(&gcm_aes_alg);
722                 if (ret)
723                         crypto_unregister_shashes(ghash_alg,
724                                                   ARRAY_SIZE(ghash_alg));
725         }
726         return ret;
727 }
728
729 static void __exit ghash_ce_mod_exit(void)
730 {
731         if (cpu_have_named_feature(PMULL))
732                 crypto_unregister_shashes(ghash_alg, ARRAY_SIZE(ghash_alg));
733         else
734                 crypto_unregister_shash(ghash_alg);
735         crypto_unregister_aead(&gcm_aes_alg);
736 }
737
738 static const struct cpu_feature ghash_cpu_feature[] = {
739         { cpu_feature(PMULL) }, { }
740 };
741 MODULE_DEVICE_TABLE(cpu, ghash_cpu_feature);
742
743 module_init(ghash_ce_mod_init);
744 module_exit(ghash_ce_mod_exit);