treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 500
[sfrench/cifs-2.6.git] / arch / arm / mm / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/mm/mmu.c
4  *
5  *  Copyright (C) 1995-2005 Russell King
6  */
7 #include <linux/module.h>
8 #include <linux/kernel.h>
9 #include <linux/errno.h>
10 #include <linux/init.h>
11 #include <linux/mman.h>
12 #include <linux/nodemask.h>
13 #include <linux/memblock.h>
14 #include <linux/fs.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sizes.h>
17
18 #include <asm/cp15.h>
19 #include <asm/cputype.h>
20 #include <asm/sections.h>
21 #include <asm/cachetype.h>
22 #include <asm/fixmap.h>
23 #include <asm/sections.h>
24 #include <asm/setup.h>
25 #include <asm/smp_plat.h>
26 #include <asm/tlb.h>
27 #include <asm/highmem.h>
28 #include <asm/system_info.h>
29 #include <asm/traps.h>
30 #include <asm/procinfo.h>
31 #include <asm/memory.h>
32
33 #include <asm/mach/arch.h>
34 #include <asm/mach/map.h>
35 #include <asm/mach/pci.h>
36 #include <asm/fixmap.h>
37
38 #include "fault.h"
39 #include "mm.h"
40 #include "tcm.h"
41
42 /*
43  * empty_zero_page is a special page that is used for
44  * zero-initialized data and COW.
45  */
46 struct page *empty_zero_page;
47 EXPORT_SYMBOL(empty_zero_page);
48
49 /*
50  * The pmd table for the upper-most set of pages.
51  */
52 pmd_t *top_pmd;
53
54 pmdval_t user_pmd_table = _PAGE_USER_TABLE;
55
56 #define CPOLICY_UNCACHED        0
57 #define CPOLICY_BUFFERED        1
58 #define CPOLICY_WRITETHROUGH    2
59 #define CPOLICY_WRITEBACK       3
60 #define CPOLICY_WRITEALLOC      4
61
62 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
63 static unsigned int ecc_mask __initdata = 0;
64 pgprot_t pgprot_user;
65 pgprot_t pgprot_kernel;
66 pgprot_t pgprot_hyp_device;
67 pgprot_t pgprot_s2;
68 pgprot_t pgprot_s2_device;
69
70 EXPORT_SYMBOL(pgprot_user);
71 EXPORT_SYMBOL(pgprot_kernel);
72
73 struct cachepolicy {
74         const char      policy[16];
75         unsigned int    cr_mask;
76         pmdval_t        pmd;
77         pteval_t        pte;
78         pteval_t        pte_s2;
79 };
80
81 #ifdef CONFIG_ARM_LPAE
82 #define s2_policy(policy)       policy
83 #else
84 #define s2_policy(policy)       0
85 #endif
86
87 unsigned long kimage_voffset __ro_after_init;
88
89 static struct cachepolicy cache_policies[] __initdata = {
90         {
91                 .policy         = "uncached",
92                 .cr_mask        = CR_W|CR_C,
93                 .pmd            = PMD_SECT_UNCACHED,
94                 .pte            = L_PTE_MT_UNCACHED,
95                 .pte_s2         = s2_policy(L_PTE_S2_MT_UNCACHED),
96         }, {
97                 .policy         = "buffered",
98                 .cr_mask        = CR_C,
99                 .pmd            = PMD_SECT_BUFFERED,
100                 .pte            = L_PTE_MT_BUFFERABLE,
101                 .pte_s2         = s2_policy(L_PTE_S2_MT_UNCACHED),
102         }, {
103                 .policy         = "writethrough",
104                 .cr_mask        = 0,
105                 .pmd            = PMD_SECT_WT,
106                 .pte            = L_PTE_MT_WRITETHROUGH,
107                 .pte_s2         = s2_policy(L_PTE_S2_MT_WRITETHROUGH),
108         }, {
109                 .policy         = "writeback",
110                 .cr_mask        = 0,
111                 .pmd            = PMD_SECT_WB,
112                 .pte            = L_PTE_MT_WRITEBACK,
113                 .pte_s2         = s2_policy(L_PTE_S2_MT_WRITEBACK),
114         }, {
115                 .policy         = "writealloc",
116                 .cr_mask        = 0,
117                 .pmd            = PMD_SECT_WBWA,
118                 .pte            = L_PTE_MT_WRITEALLOC,
119                 .pte_s2         = s2_policy(L_PTE_S2_MT_WRITEBACK),
120         }
121 };
122
123 #ifdef CONFIG_CPU_CP15
124 static unsigned long initial_pmd_value __initdata = 0;
125
126 /*
127  * Initialise the cache_policy variable with the initial state specified
128  * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
129  * the C code sets the page tables up with the same policy as the head
130  * assembly code, which avoids an illegal state where the TLBs can get
131  * confused.  See comments in early_cachepolicy() for more information.
132  */
133 void __init init_default_cache_policy(unsigned long pmd)
134 {
135         int i;
136
137         initial_pmd_value = pmd;
138
139         pmd &= PMD_SECT_CACHE_MASK;
140
141         for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
142                 if (cache_policies[i].pmd == pmd) {
143                         cachepolicy = i;
144                         break;
145                 }
146
147         if (i == ARRAY_SIZE(cache_policies))
148                 pr_err("ERROR: could not find cache policy\n");
149 }
150
151 /*
152  * These are useful for identifying cache coherency problems by allowing
153  * the cache or the cache and writebuffer to be turned off.  (Note: the
154  * write buffer should not be on and the cache off).
155  */
156 static int __init early_cachepolicy(char *p)
157 {
158         int i, selected = -1;
159
160         for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
161                 int len = strlen(cache_policies[i].policy);
162
163                 if (memcmp(p, cache_policies[i].policy, len) == 0) {
164                         selected = i;
165                         break;
166                 }
167         }
168
169         if (selected == -1)
170                 pr_err("ERROR: unknown or unsupported cache policy\n");
171
172         /*
173          * This restriction is partly to do with the way we boot; it is
174          * unpredictable to have memory mapped using two different sets of
175          * memory attributes (shared, type, and cache attribs).  We can not
176          * change these attributes once the initial assembly has setup the
177          * page tables.
178          */
179         if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
180                 pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
181                         cache_policies[cachepolicy].policy);
182                 return 0;
183         }
184
185         if (selected != cachepolicy) {
186                 unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
187                 cachepolicy = selected;
188                 flush_cache_all();
189                 set_cr(cr);
190         }
191         return 0;
192 }
193 early_param("cachepolicy", early_cachepolicy);
194
195 static int __init early_nocache(char *__unused)
196 {
197         char *p = "buffered";
198         pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
199         early_cachepolicy(p);
200         return 0;
201 }
202 early_param("nocache", early_nocache);
203
204 static int __init early_nowrite(char *__unused)
205 {
206         char *p = "uncached";
207         pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
208         early_cachepolicy(p);
209         return 0;
210 }
211 early_param("nowb", early_nowrite);
212
213 #ifndef CONFIG_ARM_LPAE
214 static int __init early_ecc(char *p)
215 {
216         if (memcmp(p, "on", 2) == 0)
217                 ecc_mask = PMD_PROTECTION;
218         else if (memcmp(p, "off", 3) == 0)
219                 ecc_mask = 0;
220         return 0;
221 }
222 early_param("ecc", early_ecc);
223 #endif
224
225 #else /* ifdef CONFIG_CPU_CP15 */
226
227 static int __init early_cachepolicy(char *p)
228 {
229         pr_warn("cachepolicy kernel parameter not supported without cp15\n");
230 }
231 early_param("cachepolicy", early_cachepolicy);
232
233 static int __init noalign_setup(char *__unused)
234 {
235         pr_warn("noalign kernel parameter not supported without cp15\n");
236 }
237 __setup("noalign", noalign_setup);
238
239 #endif /* ifdef CONFIG_CPU_CP15 / else */
240
241 #define PROT_PTE_DEVICE         L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
242 #define PROT_PTE_S2_DEVICE      PROT_PTE_DEVICE
243 #define PROT_SECT_DEVICE        PMD_TYPE_SECT|PMD_SECT_AP_WRITE
244
245 static struct mem_type mem_types[] __ro_after_init = {
246         [MT_DEVICE] = {           /* Strongly ordered / ARMv6 shared device */
247                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
248                                   L_PTE_SHARED,
249                 .prot_pte_s2    = s2_policy(PROT_PTE_S2_DEVICE) |
250                                   s2_policy(L_PTE_S2_MT_DEV_SHARED) |
251                                   L_PTE_SHARED,
252                 .prot_l1        = PMD_TYPE_TABLE,
253                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_S,
254                 .domain         = DOMAIN_IO,
255         },
256         [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
257                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
258                 .prot_l1        = PMD_TYPE_TABLE,
259                 .prot_sect      = PROT_SECT_DEVICE,
260                 .domain         = DOMAIN_IO,
261         },
262         [MT_DEVICE_CACHED] = {    /* ioremap_cached */
263                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
264                 .prot_l1        = PMD_TYPE_TABLE,
265                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_WB,
266                 .domain         = DOMAIN_IO,
267         },
268         [MT_DEVICE_WC] = {      /* ioremap_wc */
269                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
270                 .prot_l1        = PMD_TYPE_TABLE,
271                 .prot_sect      = PROT_SECT_DEVICE,
272                 .domain         = DOMAIN_IO,
273         },
274         [MT_UNCACHED] = {
275                 .prot_pte       = PROT_PTE_DEVICE,
276                 .prot_l1        = PMD_TYPE_TABLE,
277                 .prot_sect      = PMD_TYPE_SECT | PMD_SECT_XN,
278                 .domain         = DOMAIN_IO,
279         },
280         [MT_CACHECLEAN] = {
281                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
282                 .domain    = DOMAIN_KERNEL,
283         },
284 #ifndef CONFIG_ARM_LPAE
285         [MT_MINICLEAN] = {
286                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
287                 .domain    = DOMAIN_KERNEL,
288         },
289 #endif
290         [MT_LOW_VECTORS] = {
291                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
292                                 L_PTE_RDONLY,
293                 .prot_l1   = PMD_TYPE_TABLE,
294                 .domain    = DOMAIN_VECTORS,
295         },
296         [MT_HIGH_VECTORS] = {
297                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
298                                 L_PTE_USER | L_PTE_RDONLY,
299                 .prot_l1   = PMD_TYPE_TABLE,
300                 .domain    = DOMAIN_VECTORS,
301         },
302         [MT_MEMORY_RWX] = {
303                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
304                 .prot_l1   = PMD_TYPE_TABLE,
305                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
306                 .domain    = DOMAIN_KERNEL,
307         },
308         [MT_MEMORY_RW] = {
309                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
310                              L_PTE_XN,
311                 .prot_l1   = PMD_TYPE_TABLE,
312                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
313                 .domain    = DOMAIN_KERNEL,
314         },
315         [MT_ROM] = {
316                 .prot_sect = PMD_TYPE_SECT,
317                 .domain    = DOMAIN_KERNEL,
318         },
319         [MT_MEMORY_RWX_NONCACHED] = {
320                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
321                                 L_PTE_MT_BUFFERABLE,
322                 .prot_l1   = PMD_TYPE_TABLE,
323                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
324                 .domain    = DOMAIN_KERNEL,
325         },
326         [MT_MEMORY_RW_DTCM] = {
327                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
328                                 L_PTE_XN,
329                 .prot_l1   = PMD_TYPE_TABLE,
330                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
331                 .domain    = DOMAIN_KERNEL,
332         },
333         [MT_MEMORY_RWX_ITCM] = {
334                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
335                 .prot_l1   = PMD_TYPE_TABLE,
336                 .domain    = DOMAIN_KERNEL,
337         },
338         [MT_MEMORY_RW_SO] = {
339                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
340                                 L_PTE_MT_UNCACHED | L_PTE_XN,
341                 .prot_l1   = PMD_TYPE_TABLE,
342                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
343                                 PMD_SECT_UNCACHED | PMD_SECT_XN,
344                 .domain    = DOMAIN_KERNEL,
345         },
346         [MT_MEMORY_DMA_READY] = {
347                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
348                                 L_PTE_XN,
349                 .prot_l1   = PMD_TYPE_TABLE,
350                 .domain    = DOMAIN_KERNEL,
351         },
352 };
353
354 const struct mem_type *get_mem_type(unsigned int type)
355 {
356         return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
357 }
358 EXPORT_SYMBOL(get_mem_type);
359
360 static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
361
362 static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
363         __aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
364
365 static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
366 {
367         return &bm_pte[pte_index(addr)];
368 }
369
370 static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
371 {
372         return pte_offset_kernel(dir, addr);
373 }
374
375 static inline pmd_t * __init fixmap_pmd(unsigned long addr)
376 {
377         pgd_t *pgd = pgd_offset_k(addr);
378         pud_t *pud = pud_offset(pgd, addr);
379         pmd_t *pmd = pmd_offset(pud, addr);
380
381         return pmd;
382 }
383
384 void __init early_fixmap_init(void)
385 {
386         pmd_t *pmd;
387
388         /*
389          * The early fixmap range spans multiple pmds, for which
390          * we are not prepared:
391          */
392         BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
393                      != FIXADDR_TOP >> PMD_SHIFT);
394
395         pmd = fixmap_pmd(FIXADDR_TOP);
396         pmd_populate_kernel(&init_mm, pmd, bm_pte);
397
398         pte_offset_fixmap = pte_offset_early_fixmap;
399 }
400
401 /*
402  * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
403  * As a result, this can only be called with preemption disabled, as under
404  * stop_machine().
405  */
406 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
407 {
408         unsigned long vaddr = __fix_to_virt(idx);
409         pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
410
411         /* Make sure fixmap region does not exceed available allocation. */
412         BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) >
413                      FIXADDR_END);
414         BUG_ON(idx >= __end_of_fixed_addresses);
415
416         /* we only support device mappings until pgprot_kernel has been set */
417         if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) &&
418                     pgprot_val(pgprot_kernel) == 0))
419                 return;
420
421         if (pgprot_val(prot))
422                 set_pte_at(NULL, vaddr, pte,
423                         pfn_pte(phys >> PAGE_SHIFT, prot));
424         else
425                 pte_clear(NULL, vaddr, pte);
426         local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
427 }
428
429 /*
430  * Adjust the PMD section entries according to the CPU in use.
431  */
432 static void __init build_mem_type_table(void)
433 {
434         struct cachepolicy *cp;
435         unsigned int cr = get_cr();
436         pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
437         pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
438         int cpu_arch = cpu_architecture();
439         int i;
440
441         if (cpu_arch < CPU_ARCH_ARMv6) {
442 #if defined(CONFIG_CPU_DCACHE_DISABLE)
443                 if (cachepolicy > CPOLICY_BUFFERED)
444                         cachepolicy = CPOLICY_BUFFERED;
445 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
446                 if (cachepolicy > CPOLICY_WRITETHROUGH)
447                         cachepolicy = CPOLICY_WRITETHROUGH;
448 #endif
449         }
450         if (cpu_arch < CPU_ARCH_ARMv5) {
451                 if (cachepolicy >= CPOLICY_WRITEALLOC)
452                         cachepolicy = CPOLICY_WRITEBACK;
453                 ecc_mask = 0;
454         }
455
456         if (is_smp()) {
457                 if (cachepolicy != CPOLICY_WRITEALLOC) {
458                         pr_warn("Forcing write-allocate cache policy for SMP\n");
459                         cachepolicy = CPOLICY_WRITEALLOC;
460                 }
461                 if (!(initial_pmd_value & PMD_SECT_S)) {
462                         pr_warn("Forcing shared mappings for SMP\n");
463                         initial_pmd_value |= PMD_SECT_S;
464                 }
465         }
466
467         /*
468          * Strip out features not present on earlier architectures.
469          * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
470          * without extended page tables don't have the 'Shared' bit.
471          */
472         if (cpu_arch < CPU_ARCH_ARMv5)
473                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
474                         mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
475         if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
476                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
477                         mem_types[i].prot_sect &= ~PMD_SECT_S;
478
479         /*
480          * ARMv5 and lower, bit 4 must be set for page tables (was: cache
481          * "update-able on write" bit on ARM610).  However, Xscale and
482          * Xscale3 require this bit to be cleared.
483          */
484         if (cpu_is_xscale_family()) {
485                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
486                         mem_types[i].prot_sect &= ~PMD_BIT4;
487                         mem_types[i].prot_l1 &= ~PMD_BIT4;
488                 }
489         } else if (cpu_arch < CPU_ARCH_ARMv6) {
490                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
491                         if (mem_types[i].prot_l1)
492                                 mem_types[i].prot_l1 |= PMD_BIT4;
493                         if (mem_types[i].prot_sect)
494                                 mem_types[i].prot_sect |= PMD_BIT4;
495                 }
496         }
497
498         /*
499          * Mark the device areas according to the CPU/architecture.
500          */
501         if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
502                 if (!cpu_is_xsc3()) {
503                         /*
504                          * Mark device regions on ARMv6+ as execute-never
505                          * to prevent speculative instruction fetches.
506                          */
507                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
508                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
509                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
510                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
511
512                         /* Also setup NX memory mapping */
513                         mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
514                 }
515                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
516                         /*
517                          * For ARMv7 with TEX remapping,
518                          * - shared device is SXCB=1100
519                          * - nonshared device is SXCB=0100
520                          * - write combine device mem is SXCB=0001
521                          * (Uncached Normal memory)
522                          */
523                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
524                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
525                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
526                 } else if (cpu_is_xsc3()) {
527                         /*
528                          * For Xscale3,
529                          * - shared device is TEXCB=00101
530                          * - nonshared device is TEXCB=01000
531                          * - write combine device mem is TEXCB=00100
532                          * (Inner/Outer Uncacheable in xsc3 parlance)
533                          */
534                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
535                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
536                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
537                 } else {
538                         /*
539                          * For ARMv6 and ARMv7 without TEX remapping,
540                          * - shared device is TEXCB=00001
541                          * - nonshared device is TEXCB=01000
542                          * - write combine device mem is TEXCB=00100
543                          * (Uncached Normal in ARMv6 parlance).
544                          */
545                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
546                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
547                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
548                 }
549         } else {
550                 /*
551                  * On others, write combining is "Uncached/Buffered"
552                  */
553                 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
554         }
555
556         /*
557          * Now deal with the memory-type mappings
558          */
559         cp = &cache_policies[cachepolicy];
560         vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
561         s2_pgprot = cp->pte_s2;
562         hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
563         s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
564
565 #ifndef CONFIG_ARM_LPAE
566         /*
567          * We don't use domains on ARMv6 (since this causes problems with
568          * v6/v7 kernels), so we must use a separate memory type for user
569          * r/o, kernel r/w to map the vectors page.
570          */
571         if (cpu_arch == CPU_ARCH_ARMv6)
572                 vecs_pgprot |= L_PTE_MT_VECTORS;
573
574         /*
575          * Check is it with support for the PXN bit
576          * in the Short-descriptor translation table format descriptors.
577          */
578         if (cpu_arch == CPU_ARCH_ARMv7 &&
579                 (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
580                 user_pmd_table |= PMD_PXNTABLE;
581         }
582 #endif
583
584         /*
585          * ARMv6 and above have extended page tables.
586          */
587         if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
588 #ifndef CONFIG_ARM_LPAE
589                 /*
590                  * Mark cache clean areas and XIP ROM read only
591                  * from SVC mode and no access from userspace.
592                  */
593                 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
594                 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
595                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
596 #endif
597
598                 /*
599                  * If the initial page tables were created with the S bit
600                  * set, then we need to do the same here for the same
601                  * reasons given in early_cachepolicy().
602                  */
603                 if (initial_pmd_value & PMD_SECT_S) {
604                         user_pgprot |= L_PTE_SHARED;
605                         kern_pgprot |= L_PTE_SHARED;
606                         vecs_pgprot |= L_PTE_SHARED;
607                         s2_pgprot |= L_PTE_SHARED;
608                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
609                         mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
610                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
611                         mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
612                         mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
613                         mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
614                         mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
615                         mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
616                         mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
617                         mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
618                         mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
619                 }
620         }
621
622         /*
623          * Non-cacheable Normal - intended for memory areas that must
624          * not cause dirty cache line writebacks when used
625          */
626         if (cpu_arch >= CPU_ARCH_ARMv6) {
627                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
628                         /* Non-cacheable Normal is XCB = 001 */
629                         mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
630                                 PMD_SECT_BUFFERED;
631                 } else {
632                         /* For both ARMv6 and non-TEX-remapping ARMv7 */
633                         mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
634                                 PMD_SECT_TEX(1);
635                 }
636         } else {
637                 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
638         }
639
640 #ifdef CONFIG_ARM_LPAE
641         /*
642          * Do not generate access flag faults for the kernel mappings.
643          */
644         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
645                 mem_types[i].prot_pte |= PTE_EXT_AF;
646                 if (mem_types[i].prot_sect)
647                         mem_types[i].prot_sect |= PMD_SECT_AF;
648         }
649         kern_pgprot |= PTE_EXT_AF;
650         vecs_pgprot |= PTE_EXT_AF;
651
652         /*
653          * Set PXN for user mappings
654          */
655         user_pgprot |= PTE_EXT_PXN;
656 #endif
657
658         for (i = 0; i < 16; i++) {
659                 pteval_t v = pgprot_val(protection_map[i]);
660                 protection_map[i] = __pgprot(v | user_pgprot);
661         }
662
663         mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
664         mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
665
666         pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
667         pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
668                                  L_PTE_DIRTY | kern_pgprot);
669         pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
670         pgprot_s2_device  = __pgprot(s2_device_pgprot);
671         pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
672
673         mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
674         mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
675         mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
676         mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
677         mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
678         mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
679         mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
680         mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
681         mem_types[MT_ROM].prot_sect |= cp->pmd;
682
683         switch (cp->pmd) {
684         case PMD_SECT_WT:
685                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
686                 break;
687         case PMD_SECT_WB:
688         case PMD_SECT_WBWA:
689                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
690                 break;
691         }
692         pr_info("Memory policy: %sData cache %s\n",
693                 ecc_mask ? "ECC enabled, " : "", cp->policy);
694
695         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
696                 struct mem_type *t = &mem_types[i];
697                 if (t->prot_l1)
698                         t->prot_l1 |= PMD_DOMAIN(t->domain);
699                 if (t->prot_sect)
700                         t->prot_sect |= PMD_DOMAIN(t->domain);
701         }
702 }
703
704 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
705 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
706                               unsigned long size, pgprot_t vma_prot)
707 {
708         if (!pfn_valid(pfn))
709                 return pgprot_noncached(vma_prot);
710         else if (file->f_flags & O_SYNC)
711                 return pgprot_writecombine(vma_prot);
712         return vma_prot;
713 }
714 EXPORT_SYMBOL(phys_mem_access_prot);
715 #endif
716
717 #define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
718
719 static void __init *early_alloc(unsigned long sz)
720 {
721         void *ptr = memblock_alloc(sz, sz);
722
723         if (!ptr)
724                 panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
725                       __func__, sz, sz);
726
727         return ptr;
728 }
729
730 static void *__init late_alloc(unsigned long sz)
731 {
732         void *ptr = (void *)__get_free_pages(PGALLOC_GFP, get_order(sz));
733
734         if (!ptr || !pgtable_page_ctor(virt_to_page(ptr)))
735                 BUG();
736         return ptr;
737 }
738
739 static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
740                                 unsigned long prot,
741                                 void *(*alloc)(unsigned long sz))
742 {
743         if (pmd_none(*pmd)) {
744                 pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
745                 __pmd_populate(pmd, __pa(pte), prot);
746         }
747         BUG_ON(pmd_bad(*pmd));
748         return pte_offset_kernel(pmd, addr);
749 }
750
751 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
752                                       unsigned long prot)
753 {
754         return arm_pte_alloc(pmd, addr, prot, early_alloc);
755 }
756
757 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
758                                   unsigned long end, unsigned long pfn,
759                                   const struct mem_type *type,
760                                   void *(*alloc)(unsigned long sz),
761                                   bool ng)
762 {
763         pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
764         do {
765                 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
766                             ng ? PTE_EXT_NG : 0);
767                 pfn++;
768         } while (pte++, addr += PAGE_SIZE, addr != end);
769 }
770
771 static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
772                         unsigned long end, phys_addr_t phys,
773                         const struct mem_type *type, bool ng)
774 {
775         pmd_t *p = pmd;
776
777 #ifndef CONFIG_ARM_LPAE
778         /*
779          * In classic MMU format, puds and pmds are folded in to
780          * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
781          * group of L1 entries making up one logical pointer to
782          * an L2 table (2MB), where as PMDs refer to the individual
783          * L1 entries (1MB). Hence increment to get the correct
784          * offset for odd 1MB sections.
785          * (See arch/arm/include/asm/pgtable-2level.h)
786          */
787         if (addr & SECTION_SIZE)
788                 pmd++;
789 #endif
790         do {
791                 *pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
792                 phys += SECTION_SIZE;
793         } while (pmd++, addr += SECTION_SIZE, addr != end);
794
795         flush_pmd_entry(p);
796 }
797
798 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
799                                       unsigned long end, phys_addr_t phys,
800                                       const struct mem_type *type,
801                                       void *(*alloc)(unsigned long sz), bool ng)
802 {
803         pmd_t *pmd = pmd_offset(pud, addr);
804         unsigned long next;
805
806         do {
807                 /*
808                  * With LPAE, we must loop over to map
809                  * all the pmds for the given range.
810                  */
811                 next = pmd_addr_end(addr, end);
812
813                 /*
814                  * Try a section mapping - addr, next and phys must all be
815                  * aligned to a section boundary.
816                  */
817                 if (type->prot_sect &&
818                                 ((addr | next | phys) & ~SECTION_MASK) == 0) {
819                         __map_init_section(pmd, addr, next, phys, type, ng);
820                 } else {
821                         alloc_init_pte(pmd, addr, next,
822                                        __phys_to_pfn(phys), type, alloc, ng);
823                 }
824
825                 phys += next - addr;
826
827         } while (pmd++, addr = next, addr != end);
828 }
829
830 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
831                                   unsigned long end, phys_addr_t phys,
832                                   const struct mem_type *type,
833                                   void *(*alloc)(unsigned long sz), bool ng)
834 {
835         pud_t *pud = pud_offset(pgd, addr);
836         unsigned long next;
837
838         do {
839                 next = pud_addr_end(addr, end);
840                 alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
841                 phys += next - addr;
842         } while (pud++, addr = next, addr != end);
843 }
844
845 #ifndef CONFIG_ARM_LPAE
846 static void __init create_36bit_mapping(struct mm_struct *mm,
847                                         struct map_desc *md,
848                                         const struct mem_type *type,
849                                         bool ng)
850 {
851         unsigned long addr, length, end;
852         phys_addr_t phys;
853         pgd_t *pgd;
854
855         addr = md->virtual;
856         phys = __pfn_to_phys(md->pfn);
857         length = PAGE_ALIGN(md->length);
858
859         if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
860                 pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
861                        (long long)__pfn_to_phys((u64)md->pfn), addr);
862                 return;
863         }
864
865         /* N.B. ARMv6 supersections are only defined to work with domain 0.
866          *      Since domain assignments can in fact be arbitrary, the
867          *      'domain == 0' check below is required to insure that ARMv6
868          *      supersections are only allocated for domain 0 regardless
869          *      of the actual domain assignments in use.
870          */
871         if (type->domain) {
872                 pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
873                        (long long)__pfn_to_phys((u64)md->pfn), addr);
874                 return;
875         }
876
877         if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
878                 pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
879                        (long long)__pfn_to_phys((u64)md->pfn), addr);
880                 return;
881         }
882
883         /*
884          * Shift bits [35:32] of address into bits [23:20] of PMD
885          * (See ARMv6 spec).
886          */
887         phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
888
889         pgd = pgd_offset(mm, addr);
890         end = addr + length;
891         do {
892                 pud_t *pud = pud_offset(pgd, addr);
893                 pmd_t *pmd = pmd_offset(pud, addr);
894                 int i;
895
896                 for (i = 0; i < 16; i++)
897                         *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
898                                        (ng ? PMD_SECT_nG : 0));
899
900                 addr += SUPERSECTION_SIZE;
901                 phys += SUPERSECTION_SIZE;
902                 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
903         } while (addr != end);
904 }
905 #endif  /* !CONFIG_ARM_LPAE */
906
907 static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
908                                     void *(*alloc)(unsigned long sz),
909                                     bool ng)
910 {
911         unsigned long addr, length, end;
912         phys_addr_t phys;
913         const struct mem_type *type;
914         pgd_t *pgd;
915
916         type = &mem_types[md->type];
917
918 #ifndef CONFIG_ARM_LPAE
919         /*
920          * Catch 36-bit addresses
921          */
922         if (md->pfn >= 0x100000) {
923                 create_36bit_mapping(mm, md, type, ng);
924                 return;
925         }
926 #endif
927
928         addr = md->virtual & PAGE_MASK;
929         phys = __pfn_to_phys(md->pfn);
930         length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
931
932         if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
933                 pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
934                         (long long)__pfn_to_phys(md->pfn), addr);
935                 return;
936         }
937
938         pgd = pgd_offset(mm, addr);
939         end = addr + length;
940         do {
941                 unsigned long next = pgd_addr_end(addr, end);
942
943                 alloc_init_pud(pgd, addr, next, phys, type, alloc, ng);
944
945                 phys += next - addr;
946                 addr = next;
947         } while (pgd++, addr != end);
948 }
949
950 /*
951  * Create the page directory entries and any necessary
952  * page tables for the mapping specified by `md'.  We
953  * are able to cope here with varying sizes and address
954  * offsets, and we take full advantage of sections and
955  * supersections.
956  */
957 static void __init create_mapping(struct map_desc *md)
958 {
959         if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
960                 pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
961                         (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
962                 return;
963         }
964
965         if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
966             md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
967             (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
968                 pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
969                         (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
970         }
971
972         __create_mapping(&init_mm, md, early_alloc, false);
973 }
974
975 void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
976                                 bool ng)
977 {
978 #ifdef CONFIG_ARM_LPAE
979         pud_t *pud = pud_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
980         if (WARN_ON(!pud))
981                 return;
982         pmd_alloc(mm, pud, 0);
983 #endif
984         __create_mapping(mm, md, late_alloc, ng);
985 }
986
987 /*
988  * Create the architecture specific mappings
989  */
990 void __init iotable_init(struct map_desc *io_desc, int nr)
991 {
992         struct map_desc *md;
993         struct vm_struct *vm;
994         struct static_vm *svm;
995
996         if (!nr)
997                 return;
998
999         svm = memblock_alloc(sizeof(*svm) * nr, __alignof__(*svm));
1000         if (!svm)
1001                 panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1002                       __func__, sizeof(*svm) * nr, __alignof__(*svm));
1003
1004         for (md = io_desc; nr; md++, nr--) {
1005                 create_mapping(md);
1006
1007                 vm = &svm->vm;
1008                 vm->addr = (void *)(md->virtual & PAGE_MASK);
1009                 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
1010                 vm->phys_addr = __pfn_to_phys(md->pfn);
1011                 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
1012                 vm->flags |= VM_ARM_MTYPE(md->type);
1013                 vm->caller = iotable_init;
1014                 add_static_vm_early(svm++);
1015         }
1016 }
1017
1018 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
1019                                   void *caller)
1020 {
1021         struct vm_struct *vm;
1022         struct static_vm *svm;
1023
1024         svm = memblock_alloc(sizeof(*svm), __alignof__(*svm));
1025         if (!svm)
1026                 panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1027                       __func__, sizeof(*svm), __alignof__(*svm));
1028
1029         vm = &svm->vm;
1030         vm->addr = (void *)addr;
1031         vm->size = size;
1032         vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
1033         vm->caller = caller;
1034         add_static_vm_early(svm);
1035 }
1036
1037 #ifndef CONFIG_ARM_LPAE
1038
1039 /*
1040  * The Linux PMD is made of two consecutive section entries covering 2MB
1041  * (see definition in include/asm/pgtable-2level.h).  However a call to
1042  * create_mapping() may optimize static mappings by using individual
1043  * 1MB section mappings.  This leaves the actual PMD potentially half
1044  * initialized if the top or bottom section entry isn't used, leaving it
1045  * open to problems if a subsequent ioremap() or vmalloc() tries to use
1046  * the virtual space left free by that unused section entry.
1047  *
1048  * Let's avoid the issue by inserting dummy vm entries covering the unused
1049  * PMD halves once the static mappings are in place.
1050  */
1051
1052 static void __init pmd_empty_section_gap(unsigned long addr)
1053 {
1054         vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1055 }
1056
1057 static void __init fill_pmd_gaps(void)
1058 {
1059         struct static_vm *svm;
1060         struct vm_struct *vm;
1061         unsigned long addr, next = 0;
1062         pmd_t *pmd;
1063
1064         list_for_each_entry(svm, &static_vmlist, list) {
1065                 vm = &svm->vm;
1066                 addr = (unsigned long)vm->addr;
1067                 if (addr < next)
1068                         continue;
1069
1070                 /*
1071                  * Check if this vm starts on an odd section boundary.
1072                  * If so and the first section entry for this PMD is free
1073                  * then we block the corresponding virtual address.
1074                  */
1075                 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1076                         pmd = pmd_off_k(addr);
1077                         if (pmd_none(*pmd))
1078                                 pmd_empty_section_gap(addr & PMD_MASK);
1079                 }
1080
1081                 /*
1082                  * Then check if this vm ends on an odd section boundary.
1083                  * If so and the second section entry for this PMD is empty
1084                  * then we block the corresponding virtual address.
1085                  */
1086                 addr += vm->size;
1087                 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1088                         pmd = pmd_off_k(addr) + 1;
1089                         if (pmd_none(*pmd))
1090                                 pmd_empty_section_gap(addr);
1091                 }
1092
1093                 /* no need to look at any vm entry until we hit the next PMD */
1094                 next = (addr + PMD_SIZE - 1) & PMD_MASK;
1095         }
1096 }
1097
1098 #else
1099 #define fill_pmd_gaps() do { } while (0)
1100 #endif
1101
1102 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1103 static void __init pci_reserve_io(void)
1104 {
1105         struct static_vm *svm;
1106
1107         svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1108         if (svm)
1109                 return;
1110
1111         vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1112 }
1113 #else
1114 #define pci_reserve_io() do { } while (0)
1115 #endif
1116
1117 #ifdef CONFIG_DEBUG_LL
1118 void __init debug_ll_io_init(void)
1119 {
1120         struct map_desc map;
1121
1122         debug_ll_addr(&map.pfn, &map.virtual);
1123         if (!map.pfn || !map.virtual)
1124                 return;
1125         map.pfn = __phys_to_pfn(map.pfn);
1126         map.virtual &= PAGE_MASK;
1127         map.length = PAGE_SIZE;
1128         map.type = MT_DEVICE;
1129         iotable_init(&map, 1);
1130 }
1131 #endif
1132
1133 static void * __initdata vmalloc_min =
1134         (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1135
1136 /*
1137  * vmalloc=size forces the vmalloc area to be exactly 'size'
1138  * bytes. This can be used to increase (or decrease) the vmalloc
1139  * area - the default is 240m.
1140  */
1141 static int __init early_vmalloc(char *arg)
1142 {
1143         unsigned long vmalloc_reserve = memparse(arg, NULL);
1144
1145         if (vmalloc_reserve < SZ_16M) {
1146                 vmalloc_reserve = SZ_16M;
1147                 pr_warn("vmalloc area too small, limiting to %luMB\n",
1148                         vmalloc_reserve >> 20);
1149         }
1150
1151         if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1152                 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
1153                 pr_warn("vmalloc area is too big, limiting to %luMB\n",
1154                         vmalloc_reserve >> 20);
1155         }
1156
1157         vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1158         return 0;
1159 }
1160 early_param("vmalloc", early_vmalloc);
1161
1162 phys_addr_t arm_lowmem_limit __initdata = 0;
1163
1164 void __init adjust_lowmem_bounds(void)
1165 {
1166         phys_addr_t memblock_limit = 0;
1167         u64 vmalloc_limit;
1168         struct memblock_region *reg;
1169         phys_addr_t lowmem_limit = 0;
1170
1171         /*
1172          * Let's use our own (unoptimized) equivalent of __pa() that is
1173          * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1174          * The result is used as the upper bound on physical memory address
1175          * and may itself be outside the valid range for which phys_addr_t
1176          * and therefore __pa() is defined.
1177          */
1178         vmalloc_limit = (u64)(uintptr_t)vmalloc_min - PAGE_OFFSET + PHYS_OFFSET;
1179
1180         for_each_memblock(memory, reg) {
1181                 phys_addr_t block_start = reg->base;
1182                 phys_addr_t block_end = reg->base + reg->size;
1183
1184                 if (reg->base < vmalloc_limit) {
1185                         if (block_end > lowmem_limit)
1186                                 /*
1187                                  * Compare as u64 to ensure vmalloc_limit does
1188                                  * not get truncated. block_end should always
1189                                  * fit in phys_addr_t so there should be no
1190                                  * issue with assignment.
1191                                  */
1192                                 lowmem_limit = min_t(u64,
1193                                                          vmalloc_limit,
1194                                                          block_end);
1195
1196                         /*
1197                          * Find the first non-pmd-aligned page, and point
1198                          * memblock_limit at it. This relies on rounding the
1199                          * limit down to be pmd-aligned, which happens at the
1200                          * end of this function.
1201                          *
1202                          * With this algorithm, the start or end of almost any
1203                          * bank can be non-pmd-aligned. The only exception is
1204                          * that the start of the bank 0 must be section-
1205                          * aligned, since otherwise memory would need to be
1206                          * allocated when mapping the start of bank 0, which
1207                          * occurs before any free memory is mapped.
1208                          */
1209                         if (!memblock_limit) {
1210                                 if (!IS_ALIGNED(block_start, PMD_SIZE))
1211                                         memblock_limit = block_start;
1212                                 else if (!IS_ALIGNED(block_end, PMD_SIZE))
1213                                         memblock_limit = lowmem_limit;
1214                         }
1215
1216                 }
1217         }
1218
1219         arm_lowmem_limit = lowmem_limit;
1220
1221         high_memory = __va(arm_lowmem_limit - 1) + 1;
1222
1223         if (!memblock_limit)
1224                 memblock_limit = arm_lowmem_limit;
1225
1226         /*
1227          * Round the memblock limit down to a pmd size.  This
1228          * helps to ensure that we will allocate memory from the
1229          * last full pmd, which should be mapped.
1230          */
1231         memblock_limit = round_down(memblock_limit, PMD_SIZE);
1232
1233         if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1234                 if (memblock_end_of_DRAM() > arm_lowmem_limit) {
1235                         phys_addr_t end = memblock_end_of_DRAM();
1236
1237                         pr_notice("Ignoring RAM at %pa-%pa\n",
1238                                   &memblock_limit, &end);
1239                         pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1240
1241                         memblock_remove(memblock_limit, end - memblock_limit);
1242                 }
1243         }
1244
1245         memblock_set_current_limit(memblock_limit);
1246 }
1247
1248 static inline void prepare_page_table(void)
1249 {
1250         unsigned long addr;
1251         phys_addr_t end;
1252
1253         /*
1254          * Clear out all the mappings below the kernel image.
1255          */
1256         for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1257                 pmd_clear(pmd_off_k(addr));
1258
1259 #ifdef CONFIG_XIP_KERNEL
1260         /* The XIP kernel is mapped in the module area -- skip over it */
1261         addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
1262 #endif
1263         for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1264                 pmd_clear(pmd_off_k(addr));
1265
1266         /*
1267          * Find the end of the first block of lowmem.
1268          */
1269         end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1270         if (end >= arm_lowmem_limit)
1271                 end = arm_lowmem_limit;
1272
1273         /*
1274          * Clear out all the kernel space mappings, except for the first
1275          * memory bank, up to the vmalloc region.
1276          */
1277         for (addr = __phys_to_virt(end);
1278              addr < VMALLOC_START; addr += PMD_SIZE)
1279                 pmd_clear(pmd_off_k(addr));
1280 }
1281
1282 #ifdef CONFIG_ARM_LPAE
1283 /* the first page is reserved for pgd */
1284 #define SWAPPER_PG_DIR_SIZE     (PAGE_SIZE + \
1285                                  PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1286 #else
1287 #define SWAPPER_PG_DIR_SIZE     (PTRS_PER_PGD * sizeof(pgd_t))
1288 #endif
1289
1290 /*
1291  * Reserve the special regions of memory
1292  */
1293 void __init arm_mm_memblock_reserve(void)
1294 {
1295         /*
1296          * Reserve the page tables.  These are already in use,
1297          * and can only be in node 0.
1298          */
1299         memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1300
1301 #ifdef CONFIG_SA1111
1302         /*
1303          * Because of the SA1111 DMA bug, we want to preserve our
1304          * precious DMA-able memory...
1305          */
1306         memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1307 #endif
1308 }
1309
1310 /*
1311  * Set up the device mappings.  Since we clear out the page tables for all
1312  * mappings above VMALLOC_START, except early fixmap, we might remove debug
1313  * device mappings.  This means earlycon can be used to debug this function
1314  * Any other function or debugging method which may touch any device _will_
1315  * crash the kernel.
1316  */
1317 static void __init devicemaps_init(const struct machine_desc *mdesc)
1318 {
1319         struct map_desc map;
1320         unsigned long addr;
1321         void *vectors;
1322
1323         /*
1324          * Allocate the vector page early.
1325          */
1326         vectors = early_alloc(PAGE_SIZE * 2);
1327
1328         early_trap_init(vectors);
1329
1330         /*
1331          * Clear page table except top pmd used by early fixmaps
1332          */
1333         for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1334                 pmd_clear(pmd_off_k(addr));
1335
1336         /*
1337          * Map the kernel if it is XIP.
1338          * It is always first in the modulearea.
1339          */
1340 #ifdef CONFIG_XIP_KERNEL
1341         map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1342         map.virtual = MODULES_VADDR;
1343         map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1344         map.type = MT_ROM;
1345         create_mapping(&map);
1346 #endif
1347
1348         /*
1349          * Map the cache flushing regions.
1350          */
1351 #ifdef FLUSH_BASE
1352         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1353         map.virtual = FLUSH_BASE;
1354         map.length = SZ_1M;
1355         map.type = MT_CACHECLEAN;
1356         create_mapping(&map);
1357 #endif
1358 #ifdef FLUSH_BASE_MINICACHE
1359         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1360         map.virtual = FLUSH_BASE_MINICACHE;
1361         map.length = SZ_1M;
1362         map.type = MT_MINICLEAN;
1363         create_mapping(&map);
1364 #endif
1365
1366         /*
1367          * Create a mapping for the machine vectors at the high-vectors
1368          * location (0xffff0000).  If we aren't using high-vectors, also
1369          * create a mapping at the low-vectors virtual address.
1370          */
1371         map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1372         map.virtual = 0xffff0000;
1373         map.length = PAGE_SIZE;
1374 #ifdef CONFIG_KUSER_HELPERS
1375         map.type = MT_HIGH_VECTORS;
1376 #else
1377         map.type = MT_LOW_VECTORS;
1378 #endif
1379         create_mapping(&map);
1380
1381         if (!vectors_high()) {
1382                 map.virtual = 0;
1383                 map.length = PAGE_SIZE * 2;
1384                 map.type = MT_LOW_VECTORS;
1385                 create_mapping(&map);
1386         }
1387
1388         /* Now create a kernel read-only mapping */
1389         map.pfn += 1;
1390         map.virtual = 0xffff0000 + PAGE_SIZE;
1391         map.length = PAGE_SIZE;
1392         map.type = MT_LOW_VECTORS;
1393         create_mapping(&map);
1394
1395         /*
1396          * Ask the machine support to map in the statically mapped devices.
1397          */
1398         if (mdesc->map_io)
1399                 mdesc->map_io();
1400         else
1401                 debug_ll_io_init();
1402         fill_pmd_gaps();
1403
1404         /* Reserve fixed i/o space in VMALLOC region */
1405         pci_reserve_io();
1406
1407         /*
1408          * Finally flush the caches and tlb to ensure that we're in a
1409          * consistent state wrt the writebuffer.  This also ensures that
1410          * any write-allocated cache lines in the vector page are written
1411          * back.  After this point, we can start to touch devices again.
1412          */
1413         local_flush_tlb_all();
1414         flush_cache_all();
1415
1416         /* Enable asynchronous aborts */
1417         early_abt_enable();
1418 }
1419
1420 static void __init kmap_init(void)
1421 {
1422 #ifdef CONFIG_HIGHMEM
1423         pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1424                 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1425 #endif
1426
1427         early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1428                         _PAGE_KERNEL_TABLE);
1429 }
1430
1431 static void __init map_lowmem(void)
1432 {
1433         struct memblock_region *reg;
1434         phys_addr_t kernel_x_start = round_down(__pa(KERNEL_START), SECTION_SIZE);
1435         phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1436
1437         /* Map all the lowmem memory banks. */
1438         for_each_memblock(memory, reg) {
1439                 phys_addr_t start = reg->base;
1440                 phys_addr_t end = start + reg->size;
1441                 struct map_desc map;
1442
1443                 if (memblock_is_nomap(reg))
1444                         continue;
1445
1446                 if (end > arm_lowmem_limit)
1447                         end = arm_lowmem_limit;
1448                 if (start >= end)
1449                         break;
1450
1451                 if (end < kernel_x_start) {
1452                         map.pfn = __phys_to_pfn(start);
1453                         map.virtual = __phys_to_virt(start);
1454                         map.length = end - start;
1455                         map.type = MT_MEMORY_RWX;
1456
1457                         create_mapping(&map);
1458                 } else if (start >= kernel_x_end) {
1459                         map.pfn = __phys_to_pfn(start);
1460                         map.virtual = __phys_to_virt(start);
1461                         map.length = end - start;
1462                         map.type = MT_MEMORY_RW;
1463
1464                         create_mapping(&map);
1465                 } else {
1466                         /* This better cover the entire kernel */
1467                         if (start < kernel_x_start) {
1468                                 map.pfn = __phys_to_pfn(start);
1469                                 map.virtual = __phys_to_virt(start);
1470                                 map.length = kernel_x_start - start;
1471                                 map.type = MT_MEMORY_RW;
1472
1473                                 create_mapping(&map);
1474                         }
1475
1476                         map.pfn = __phys_to_pfn(kernel_x_start);
1477                         map.virtual = __phys_to_virt(kernel_x_start);
1478                         map.length = kernel_x_end - kernel_x_start;
1479                         map.type = MT_MEMORY_RWX;
1480
1481                         create_mapping(&map);
1482
1483                         if (kernel_x_end < end) {
1484                                 map.pfn = __phys_to_pfn(kernel_x_end);
1485                                 map.virtual = __phys_to_virt(kernel_x_end);
1486                                 map.length = end - kernel_x_end;
1487                                 map.type = MT_MEMORY_RW;
1488
1489                                 create_mapping(&map);
1490                         }
1491                 }
1492         }
1493 }
1494
1495 #ifdef CONFIG_ARM_PV_FIXUP
1496 extern unsigned long __atags_pointer;
1497 typedef void pgtables_remap(long long offset, unsigned long pgd, void *bdata);
1498 pgtables_remap lpae_pgtables_remap_asm;
1499
1500 /*
1501  * early_paging_init() recreates boot time page table setup, allowing machines
1502  * to switch over to a high (>4G) address space on LPAE systems
1503  */
1504 static void __init early_paging_init(const struct machine_desc *mdesc)
1505 {
1506         pgtables_remap *lpae_pgtables_remap;
1507         unsigned long pa_pgd;
1508         unsigned int cr, ttbcr;
1509         long long offset;
1510         void *boot_data;
1511
1512         if (!mdesc->pv_fixup)
1513                 return;
1514
1515         offset = mdesc->pv_fixup();
1516         if (offset == 0)
1517                 return;
1518
1519         /*
1520          * Get the address of the remap function in the 1:1 identity
1521          * mapping setup by the early page table assembly code.  We
1522          * must get this prior to the pv update.  The following barrier
1523          * ensures that this is complete before we fixup any P:V offsets.
1524          */
1525         lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1526         pa_pgd = __pa(swapper_pg_dir);
1527         boot_data = __va(__atags_pointer);
1528         barrier();
1529
1530         pr_info("Switching physical address space to 0x%08llx\n",
1531                 (u64)PHYS_OFFSET + offset);
1532
1533         /* Re-set the phys pfn offset, and the pv offset */
1534         __pv_offset += offset;
1535         __pv_phys_pfn_offset += PFN_DOWN(offset);
1536
1537         /* Run the patch stub to update the constants */
1538         fixup_pv_table(&__pv_table_begin,
1539                 (&__pv_table_end - &__pv_table_begin) << 2);
1540
1541         /*
1542          * We changing not only the virtual to physical mapping, but also
1543          * the physical addresses used to access memory.  We need to flush
1544          * all levels of cache in the system with caching disabled to
1545          * ensure that all data is written back, and nothing is prefetched
1546          * into the caches.  We also need to prevent the TLB walkers
1547          * allocating into the caches too.  Note that this is ARMv7 LPAE
1548          * specific.
1549          */
1550         cr = get_cr();
1551         set_cr(cr & ~(CR_I | CR_C));
1552         asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1553         asm volatile("mcr p15, 0, %0, c2, c0, 2"
1554                 : : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1555         flush_cache_all();
1556
1557         /*
1558          * Fixup the page tables - this must be in the idmap region as
1559          * we need to disable the MMU to do this safely, and hence it
1560          * needs to be assembly.  It's fairly simple, as we're using the
1561          * temporary tables setup by the initial assembly code.
1562          */
1563         lpae_pgtables_remap(offset, pa_pgd, boot_data);
1564
1565         /* Re-enable the caches and cacheable TLB walks */
1566         asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1567         set_cr(cr);
1568 }
1569
1570 #else
1571
1572 static void __init early_paging_init(const struct machine_desc *mdesc)
1573 {
1574         long long offset;
1575
1576         if (!mdesc->pv_fixup)
1577                 return;
1578
1579         offset = mdesc->pv_fixup();
1580         if (offset == 0)
1581                 return;
1582
1583         pr_crit("Physical address space modification is only to support Keystone2.\n");
1584         pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1585         pr_crit("feature. Your kernel may crash now, have a good day.\n");
1586         add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1587 }
1588
1589 #endif
1590
1591 static void __init early_fixmap_shutdown(void)
1592 {
1593         int i;
1594         unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1595
1596         pte_offset_fixmap = pte_offset_late_fixmap;
1597         pmd_clear(fixmap_pmd(va));
1598         local_flush_tlb_kernel_page(va);
1599
1600         for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1601                 pte_t *pte;
1602                 struct map_desc map;
1603
1604                 map.virtual = fix_to_virt(i);
1605                 pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1606
1607                 /* Only i/o device mappings are supported ATM */
1608                 if (pte_none(*pte) ||
1609                     (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1610                         continue;
1611
1612                 map.pfn = pte_pfn(*pte);
1613                 map.type = MT_DEVICE;
1614                 map.length = PAGE_SIZE;
1615
1616                 create_mapping(&map);
1617         }
1618 }
1619
1620 /*
1621  * paging_init() sets up the page tables, initialises the zone memory
1622  * maps, and sets up the zero page, bad page and bad page tables.
1623  */
1624 void __init paging_init(const struct machine_desc *mdesc)
1625 {
1626         void *zero_page;
1627
1628         prepare_page_table();
1629         map_lowmem();
1630         memblock_set_current_limit(arm_lowmem_limit);
1631         dma_contiguous_remap();
1632         early_fixmap_shutdown();
1633         devicemaps_init(mdesc);
1634         kmap_init();
1635         tcm_init();
1636
1637         top_pmd = pmd_off_k(0xffff0000);
1638
1639         /* allocate the zero page. */
1640         zero_page = early_alloc(PAGE_SIZE);
1641
1642         bootmem_init();
1643
1644         empty_zero_page = virt_to_page(zero_page);
1645         __flush_dcache_page(NULL, empty_zero_page);
1646
1647         /* Compute the virt/idmap offset, mostly for the sake of KVM */
1648         kimage_voffset = (unsigned long)&kimage_voffset - virt_to_idmap(&kimage_voffset);
1649 }
1650
1651 void __init early_mm_init(const struct machine_desc *mdesc)
1652 {
1653         build_mem_type_table();
1654         early_paging_init(mdesc);
1655 }