Merge branch 'kvm-tsx-ctrl' into HEAD
[sfrench/cifs-2.6.git] / arch / arm / mm / ioremap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/mm/ioremap.c
4  *
5  * Re-map IO memory to kernel address space so that we can access it.
6  *
7  * (C) Copyright 1995 1996 Linus Torvalds
8  *
9  * Hacked for ARM by Phil Blundell <philb@gnu.org>
10  * Hacked to allow all architectures to build, and various cleanups
11  * by Russell King
12  *
13  * This allows a driver to remap an arbitrary region of bus memory into
14  * virtual space.  One should *only* use readl, writel, memcpy_toio and
15  * so on with such remapped areas.
16  *
17  * Because the ARM only has a 32-bit address space we can't address the
18  * whole of the (physical) PCI space at once.  PCI huge-mode addressing
19  * allows us to circumvent this restriction by splitting PCI space into
20  * two 2GB chunks and mapping only one at a time into processor memory.
21  * We use MMU protection domains to trap any attempt to access the bank
22  * that is not currently mapped.  (This isn't fully implemented yet.)
23  */
24 #include <linux/module.h>
25 #include <linux/errno.h>
26 #include <linux/mm.h>
27 #include <linux/vmalloc.h>
28 #include <linux/io.h>
29 #include <linux/sizes.h>
30
31 #include <asm/cp15.h>
32 #include <asm/cputype.h>
33 #include <asm/cacheflush.h>
34 #include <asm/early_ioremap.h>
35 #include <asm/mmu_context.h>
36 #include <asm/pgalloc.h>
37 #include <asm/tlbflush.h>
38 #include <asm/system_info.h>
39
40 #include <asm/mach/map.h>
41 #include <asm/mach/pci.h>
42 #include "mm.h"
43
44
45 LIST_HEAD(static_vmlist);
46
47 static struct static_vm *find_static_vm_paddr(phys_addr_t paddr,
48                         size_t size, unsigned int mtype)
49 {
50         struct static_vm *svm;
51         struct vm_struct *vm;
52
53         list_for_each_entry(svm, &static_vmlist, list) {
54                 vm = &svm->vm;
55                 if (!(vm->flags & VM_ARM_STATIC_MAPPING))
56                         continue;
57                 if ((vm->flags & VM_ARM_MTYPE_MASK) != VM_ARM_MTYPE(mtype))
58                         continue;
59
60                 if (vm->phys_addr > paddr ||
61                         paddr + size - 1 > vm->phys_addr + vm->size - 1)
62                         continue;
63
64                 return svm;
65         }
66
67         return NULL;
68 }
69
70 struct static_vm *find_static_vm_vaddr(void *vaddr)
71 {
72         struct static_vm *svm;
73         struct vm_struct *vm;
74
75         list_for_each_entry(svm, &static_vmlist, list) {
76                 vm = &svm->vm;
77
78                 /* static_vmlist is ascending order */
79                 if (vm->addr > vaddr)
80                         break;
81
82                 if (vm->addr <= vaddr && vm->addr + vm->size > vaddr)
83                         return svm;
84         }
85
86         return NULL;
87 }
88
89 void __init add_static_vm_early(struct static_vm *svm)
90 {
91         struct static_vm *curr_svm;
92         struct vm_struct *vm;
93         void *vaddr;
94
95         vm = &svm->vm;
96         vm_area_add_early(vm);
97         vaddr = vm->addr;
98
99         list_for_each_entry(curr_svm, &static_vmlist, list) {
100                 vm = &curr_svm->vm;
101
102                 if (vm->addr > vaddr)
103                         break;
104         }
105         list_add_tail(&svm->list, &curr_svm->list);
106 }
107
108 int ioremap_page(unsigned long virt, unsigned long phys,
109                  const struct mem_type *mtype)
110 {
111         return ioremap_page_range(virt, virt + PAGE_SIZE, phys,
112                                   __pgprot(mtype->prot_pte));
113 }
114 EXPORT_SYMBOL(ioremap_page);
115
116 void __check_vmalloc_seq(struct mm_struct *mm)
117 {
118         unsigned int seq;
119
120         do {
121                 seq = init_mm.context.vmalloc_seq;
122                 memcpy(pgd_offset(mm, VMALLOC_START),
123                        pgd_offset_k(VMALLOC_START),
124                        sizeof(pgd_t) * (pgd_index(VMALLOC_END) -
125                                         pgd_index(VMALLOC_START)));
126                 mm->context.vmalloc_seq = seq;
127         } while (seq != init_mm.context.vmalloc_seq);
128 }
129
130 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
131 /*
132  * Section support is unsafe on SMP - If you iounmap and ioremap a region,
133  * the other CPUs will not see this change until their next context switch.
134  * Meanwhile, (eg) if an interrupt comes in on one of those other CPUs
135  * which requires the new ioremap'd region to be referenced, the CPU will
136  * reference the _old_ region.
137  *
138  * Note that get_vm_area_caller() allocates a guard 4K page, so we need to
139  * mask the size back to 1MB aligned or we will overflow in the loop below.
140  */
141 static void unmap_area_sections(unsigned long virt, unsigned long size)
142 {
143         unsigned long addr = virt, end = virt + (size & ~(SZ_1M - 1));
144         pgd_t *pgd;
145         pud_t *pud;
146         pmd_t *pmdp;
147
148         flush_cache_vunmap(addr, end);
149         pgd = pgd_offset_k(addr);
150         pud = pud_offset(pgd, addr);
151         pmdp = pmd_offset(pud, addr);
152         do {
153                 pmd_t pmd = *pmdp;
154
155                 if (!pmd_none(pmd)) {
156                         /*
157                          * Clear the PMD from the page table, and
158                          * increment the vmalloc sequence so others
159                          * notice this change.
160                          *
161                          * Note: this is still racy on SMP machines.
162                          */
163                         pmd_clear(pmdp);
164                         init_mm.context.vmalloc_seq++;
165
166                         /*
167                          * Free the page table, if there was one.
168                          */
169                         if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE)
170                                 pte_free_kernel(&init_mm, pmd_page_vaddr(pmd));
171                 }
172
173                 addr += PMD_SIZE;
174                 pmdp += 2;
175         } while (addr < end);
176
177         /*
178          * Ensure that the active_mm is up to date - we want to
179          * catch any use-after-iounmap cases.
180          */
181         if (current->active_mm->context.vmalloc_seq != init_mm.context.vmalloc_seq)
182                 __check_vmalloc_seq(current->active_mm);
183
184         flush_tlb_kernel_range(virt, end);
185 }
186
187 static int
188 remap_area_sections(unsigned long virt, unsigned long pfn,
189                     size_t size, const struct mem_type *type)
190 {
191         unsigned long addr = virt, end = virt + size;
192         pgd_t *pgd;
193         pud_t *pud;
194         pmd_t *pmd;
195
196         /*
197          * Remove and free any PTE-based mapping, and
198          * sync the current kernel mapping.
199          */
200         unmap_area_sections(virt, size);
201
202         pgd = pgd_offset_k(addr);
203         pud = pud_offset(pgd, addr);
204         pmd = pmd_offset(pud, addr);
205         do {
206                 pmd[0] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
207                 pfn += SZ_1M >> PAGE_SHIFT;
208                 pmd[1] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
209                 pfn += SZ_1M >> PAGE_SHIFT;
210                 flush_pmd_entry(pmd);
211
212                 addr += PMD_SIZE;
213                 pmd += 2;
214         } while (addr < end);
215
216         return 0;
217 }
218
219 static int
220 remap_area_supersections(unsigned long virt, unsigned long pfn,
221                          size_t size, const struct mem_type *type)
222 {
223         unsigned long addr = virt, end = virt + size;
224         pgd_t *pgd;
225         pud_t *pud;
226         pmd_t *pmd;
227
228         /*
229          * Remove and free any PTE-based mapping, and
230          * sync the current kernel mapping.
231          */
232         unmap_area_sections(virt, size);
233
234         pgd = pgd_offset_k(virt);
235         pud = pud_offset(pgd, addr);
236         pmd = pmd_offset(pud, addr);
237         do {
238                 unsigned long super_pmd_val, i;
239
240                 super_pmd_val = __pfn_to_phys(pfn) | type->prot_sect |
241                                 PMD_SECT_SUPER;
242                 super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20;
243
244                 for (i = 0; i < 8; i++) {
245                         pmd[0] = __pmd(super_pmd_val);
246                         pmd[1] = __pmd(super_pmd_val);
247                         flush_pmd_entry(pmd);
248
249                         addr += PMD_SIZE;
250                         pmd += 2;
251                 }
252
253                 pfn += SUPERSECTION_SIZE >> PAGE_SHIFT;
254         } while (addr < end);
255
256         return 0;
257 }
258 #endif
259
260 static void __iomem * __arm_ioremap_pfn_caller(unsigned long pfn,
261         unsigned long offset, size_t size, unsigned int mtype, void *caller)
262 {
263         const struct mem_type *type;
264         int err;
265         unsigned long addr;
266         struct vm_struct *area;
267         phys_addr_t paddr = __pfn_to_phys(pfn);
268
269 #ifndef CONFIG_ARM_LPAE
270         /*
271          * High mappings must be supersection aligned
272          */
273         if (pfn >= 0x100000 && (paddr & ~SUPERSECTION_MASK))
274                 return NULL;
275 #endif
276
277         type = get_mem_type(mtype);
278         if (!type)
279                 return NULL;
280
281         /*
282          * Page align the mapping size, taking account of any offset.
283          */
284         size = PAGE_ALIGN(offset + size);
285
286         /*
287          * Try to reuse one of the static mapping whenever possible.
288          */
289         if (size && !(sizeof(phys_addr_t) == 4 && pfn >= 0x100000)) {
290                 struct static_vm *svm;
291
292                 svm = find_static_vm_paddr(paddr, size, mtype);
293                 if (svm) {
294                         addr = (unsigned long)svm->vm.addr;
295                         addr += paddr - svm->vm.phys_addr;
296                         return (void __iomem *) (offset + addr);
297                 }
298         }
299
300         /*
301          * Don't allow RAM to be mapped with mismatched attributes - this
302          * causes problems with ARMv6+
303          */
304         if (WARN_ON(pfn_valid(pfn) && mtype != MT_MEMORY_RW))
305                 return NULL;
306
307         area = get_vm_area_caller(size, VM_IOREMAP, caller);
308         if (!area)
309                 return NULL;
310         addr = (unsigned long)area->addr;
311         area->phys_addr = paddr;
312
313 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
314         if (DOMAIN_IO == 0 &&
315             (((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) ||
316                cpu_is_xsc3()) && pfn >= 0x100000 &&
317                !((paddr | size | addr) & ~SUPERSECTION_MASK)) {
318                 area->flags |= VM_ARM_SECTION_MAPPING;
319                 err = remap_area_supersections(addr, pfn, size, type);
320         } else if (!((paddr | size | addr) & ~PMD_MASK)) {
321                 area->flags |= VM_ARM_SECTION_MAPPING;
322                 err = remap_area_sections(addr, pfn, size, type);
323         } else
324 #endif
325                 err = ioremap_page_range(addr, addr + size, paddr,
326                                          __pgprot(type->prot_pte));
327
328         if (err) {
329                 vunmap((void *)addr);
330                 return NULL;
331         }
332
333         flush_cache_vmap(addr, addr + size);
334         return (void __iomem *) (offset + addr);
335 }
336
337 void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
338         unsigned int mtype, void *caller)
339 {
340         phys_addr_t last_addr;
341         unsigned long offset = phys_addr & ~PAGE_MASK;
342         unsigned long pfn = __phys_to_pfn(phys_addr);
343
344         /*
345          * Don't allow wraparound or zero size
346          */
347         last_addr = phys_addr + size - 1;
348         if (!size || last_addr < phys_addr)
349                 return NULL;
350
351         return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
352                         caller);
353 }
354
355 /*
356  * Remap an arbitrary physical address space into the kernel virtual
357  * address space. Needed when the kernel wants to access high addresses
358  * directly.
359  *
360  * NOTE! We need to allow non-page-aligned mappings too: we will obviously
361  * have to convert them into an offset in a page-aligned mapping, but the
362  * caller shouldn't need to know that small detail.
363  */
364 void __iomem *
365 __arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size,
366                   unsigned int mtype)
367 {
368         return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
369                                         __builtin_return_address(0));
370 }
371 EXPORT_SYMBOL(__arm_ioremap_pfn);
372
373 void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t,
374                                       unsigned int, void *) =
375         __arm_ioremap_caller;
376
377 void __iomem *ioremap(resource_size_t res_cookie, size_t size)
378 {
379         return arch_ioremap_caller(res_cookie, size, MT_DEVICE,
380                                    __builtin_return_address(0));
381 }
382 EXPORT_SYMBOL(ioremap);
383
384 void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size)
385         __alias(ioremap_cached);
386
387 void __iomem *ioremap_cached(resource_size_t res_cookie, size_t size)
388 {
389         return arch_ioremap_caller(res_cookie, size, MT_DEVICE_CACHED,
390                                    __builtin_return_address(0));
391 }
392 EXPORT_SYMBOL(ioremap_cache);
393 EXPORT_SYMBOL(ioremap_cached);
394
395 void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size)
396 {
397         return arch_ioremap_caller(res_cookie, size, MT_DEVICE_WC,
398                                    __builtin_return_address(0));
399 }
400 EXPORT_SYMBOL(ioremap_wc);
401
402 /*
403  * Remap an arbitrary physical address space into the kernel virtual
404  * address space as memory. Needed when the kernel wants to execute
405  * code in external memory. This is needed for reprogramming source
406  * clocks that would affect normal memory for example. Please see
407  * CONFIG_GENERIC_ALLOCATOR for allocating external memory.
408  */
409 void __iomem *
410 __arm_ioremap_exec(phys_addr_t phys_addr, size_t size, bool cached)
411 {
412         unsigned int mtype;
413
414         if (cached)
415                 mtype = MT_MEMORY_RWX;
416         else
417                 mtype = MT_MEMORY_RWX_NONCACHED;
418
419         return __arm_ioremap_caller(phys_addr, size, mtype,
420                         __builtin_return_address(0));
421 }
422
423 void *arch_memremap_wb(phys_addr_t phys_addr, size_t size)
424 {
425         return (__force void *)arch_ioremap_caller(phys_addr, size,
426                                                    MT_MEMORY_RW,
427                                                    __builtin_return_address(0));
428 }
429
430 void __iounmap(volatile void __iomem *io_addr)
431 {
432         void *addr = (void *)(PAGE_MASK & (unsigned long)io_addr);
433         struct static_vm *svm;
434
435         /* If this is a static mapping, we must leave it alone */
436         svm = find_static_vm_vaddr(addr);
437         if (svm)
438                 return;
439
440 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
441         {
442                 struct vm_struct *vm;
443
444                 vm = find_vm_area(addr);
445
446                 /*
447                  * If this is a section based mapping we need to handle it
448                  * specially as the VM subsystem does not know how to handle
449                  * such a beast.
450                  */
451                 if (vm && (vm->flags & VM_ARM_SECTION_MAPPING))
452                         unmap_area_sections((unsigned long)vm->addr, vm->size);
453         }
454 #endif
455
456         vunmap(addr);
457 }
458
459 void (*arch_iounmap)(volatile void __iomem *) = __iounmap;
460
461 void iounmap(volatile void __iomem *cookie)
462 {
463         arch_iounmap(cookie);
464 }
465 EXPORT_SYMBOL(iounmap);
466
467 #ifdef CONFIG_PCI
468 static int pci_ioremap_mem_type = MT_DEVICE;
469
470 void pci_ioremap_set_mem_type(int mem_type)
471 {
472         pci_ioremap_mem_type = mem_type;
473 }
474
475 int pci_ioremap_io(unsigned int offset, phys_addr_t phys_addr)
476 {
477         BUG_ON(offset + SZ_64K - 1 > IO_SPACE_LIMIT);
478
479         return ioremap_page_range(PCI_IO_VIRT_BASE + offset,
480                                   PCI_IO_VIRT_BASE + offset + SZ_64K,
481                                   phys_addr,
482                                   __pgprot(get_mem_type(pci_ioremap_mem_type)->prot_pte));
483 }
484 EXPORT_SYMBOL_GPL(pci_ioremap_io);
485
486 void __iomem *pci_remap_cfgspace(resource_size_t res_cookie, size_t size)
487 {
488         return arch_ioremap_caller(res_cookie, size, MT_UNCACHED,
489                                    __builtin_return_address(0));
490 }
491 EXPORT_SYMBOL_GPL(pci_remap_cfgspace);
492 #endif
493
494 /*
495  * Must be called after early_fixmap_init
496  */
497 void __init early_ioremap_init(void)
498 {
499         early_ioremap_setup();
500 }