Merge tag 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm
[sfrench/cifs-2.6.git] / arch / arm / kernel / smp.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/kernel/smp.c
4  *
5  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
6  */
7 #include <linux/module.h>
8 #include <linux/delay.h>
9 #include <linux/init.h>
10 #include <linux/spinlock.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/interrupt.h>
15 #include <linux/cache.h>
16 #include <linux/profile.h>
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/err.h>
20 #include <linux/cpu.h>
21 #include <linux/seq_file.h>
22 #include <linux/irq.h>
23 #include <linux/nmi.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28 #include <linux/irq_work.h>
29 #include <linux/kernel_stat.h>
30
31 #include <linux/atomic.h>
32 #include <asm/bugs.h>
33 #include <asm/smp.h>
34 #include <asm/cacheflush.h>
35 #include <asm/cpu.h>
36 #include <asm/cputype.h>
37 #include <asm/exception.h>
38 #include <asm/idmap.h>
39 #include <asm/topology.h>
40 #include <asm/mmu_context.h>
41 #include <asm/procinfo.h>
42 #include <asm/processor.h>
43 #include <asm/sections.h>
44 #include <asm/tlbflush.h>
45 #include <asm/ptrace.h>
46 #include <asm/smp_plat.h>
47 #include <asm/virt.h>
48 #include <asm/mach/arch.h>
49 #include <asm/mpu.h>
50
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/ipi.h>
53
54 /*
55  * as from 2.5, kernels no longer have an init_tasks structure
56  * so we need some other way of telling a new secondary core
57  * where to place its SVC stack
58  */
59 struct secondary_data secondary_data;
60
61 enum ipi_msg_type {
62         IPI_WAKEUP,
63         IPI_TIMER,
64         IPI_RESCHEDULE,
65         IPI_CALL_FUNC,
66         IPI_CPU_STOP,
67         IPI_IRQ_WORK,
68         IPI_COMPLETION,
69         NR_IPI,
70         /*
71          * CPU_BACKTRACE is special and not included in NR_IPI
72          * or tracable with trace_ipi_*
73          */
74         IPI_CPU_BACKTRACE = NR_IPI,
75         /*
76          * SGI8-15 can be reserved by secure firmware, and thus may
77          * not be usable by the kernel. Please keep the above limited
78          * to at most 8 entries.
79          */
80         MAX_IPI
81 };
82
83 static int ipi_irq_base __read_mostly;
84 static int nr_ipi __read_mostly = NR_IPI;
85 static struct irq_desc *ipi_desc[MAX_IPI] __read_mostly;
86
87 static void ipi_setup(int cpu);
88
89 static DECLARE_COMPLETION(cpu_running);
90
91 static struct smp_operations smp_ops __ro_after_init;
92
93 void __init smp_set_ops(const struct smp_operations *ops)
94 {
95         if (ops)
96                 smp_ops = *ops;
97 };
98
99 static unsigned long get_arch_pgd(pgd_t *pgd)
100 {
101 #ifdef CONFIG_ARM_LPAE
102         return __phys_to_pfn(virt_to_phys(pgd));
103 #else
104         return virt_to_phys(pgd);
105 #endif
106 }
107
108 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
109 static int secondary_biglittle_prepare(unsigned int cpu)
110 {
111         if (!cpu_vtable[cpu])
112                 cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL);
113
114         return cpu_vtable[cpu] ? 0 : -ENOMEM;
115 }
116
117 static void secondary_biglittle_init(void)
118 {
119         init_proc_vtable(lookup_processor(read_cpuid_id())->proc);
120 }
121 #else
122 static int secondary_biglittle_prepare(unsigned int cpu)
123 {
124         return 0;
125 }
126
127 static void secondary_biglittle_init(void)
128 {
129 }
130 #endif
131
132 int __cpu_up(unsigned int cpu, struct task_struct *idle)
133 {
134         int ret;
135
136         if (!smp_ops.smp_boot_secondary)
137                 return -ENOSYS;
138
139         ret = secondary_biglittle_prepare(cpu);
140         if (ret)
141                 return ret;
142
143         /*
144          * We need to tell the secondary core where to find
145          * its stack and the page tables.
146          */
147         secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
148 #ifdef CONFIG_ARM_MPU
149         secondary_data.mpu_rgn_info = &mpu_rgn_info;
150 #endif
151
152 #ifdef CONFIG_MMU
153         secondary_data.pgdir = virt_to_phys(idmap_pgd);
154         secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
155 #endif
156         secondary_data.task = idle;
157         sync_cache_w(&secondary_data);
158
159         /*
160          * Now bring the CPU into our world.
161          */
162         ret = smp_ops.smp_boot_secondary(cpu, idle);
163         if (ret == 0) {
164                 /*
165                  * CPU was successfully started, wait for it
166                  * to come online or time out.
167                  */
168                 wait_for_completion_timeout(&cpu_running,
169                                                  msecs_to_jiffies(1000));
170
171                 if (!cpu_online(cpu)) {
172                         pr_crit("CPU%u: failed to come online\n", cpu);
173                         ret = -EIO;
174                 }
175         } else {
176                 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
177         }
178
179
180         memset(&secondary_data, 0, sizeof(secondary_data));
181         return ret;
182 }
183
184 /* platform specific SMP operations */
185 void __init smp_init_cpus(void)
186 {
187         if (smp_ops.smp_init_cpus)
188                 smp_ops.smp_init_cpus();
189 }
190
191 int platform_can_secondary_boot(void)
192 {
193         return !!smp_ops.smp_boot_secondary;
194 }
195
196 int platform_can_cpu_hotplug(void)
197 {
198 #ifdef CONFIG_HOTPLUG_CPU
199         if (smp_ops.cpu_kill)
200                 return 1;
201 #endif
202
203         return 0;
204 }
205
206 #ifdef CONFIG_HOTPLUG_CPU
207 static int platform_cpu_kill(unsigned int cpu)
208 {
209         if (smp_ops.cpu_kill)
210                 return smp_ops.cpu_kill(cpu);
211         return 1;
212 }
213
214 static int platform_cpu_disable(unsigned int cpu)
215 {
216         if (smp_ops.cpu_disable)
217                 return smp_ops.cpu_disable(cpu);
218
219         return 0;
220 }
221
222 int platform_can_hotplug_cpu(unsigned int cpu)
223 {
224         /* cpu_die must be specified to support hotplug */
225         if (!smp_ops.cpu_die)
226                 return 0;
227
228         if (smp_ops.cpu_can_disable)
229                 return smp_ops.cpu_can_disable(cpu);
230
231         /*
232          * By default, allow disabling all CPUs except the first one,
233          * since this is special on a lot of platforms, e.g. because
234          * of clock tick interrupts.
235          */
236         return cpu != 0;
237 }
238
239 static void ipi_teardown(int cpu)
240 {
241         int i;
242
243         if (WARN_ON_ONCE(!ipi_irq_base))
244                 return;
245
246         for (i = 0; i < nr_ipi; i++)
247                 disable_percpu_irq(ipi_irq_base + i);
248 }
249
250 /*
251  * __cpu_disable runs on the processor to be shutdown.
252  */
253 int __cpu_disable(void)
254 {
255         unsigned int cpu = smp_processor_id();
256         int ret;
257
258         ret = platform_cpu_disable(cpu);
259         if (ret)
260                 return ret;
261
262 #ifdef CONFIG_GENERIC_ARCH_TOPOLOGY
263         remove_cpu_topology(cpu);
264 #endif
265
266         /*
267          * Take this CPU offline.  Once we clear this, we can't return,
268          * and we must not schedule until we're ready to give up the cpu.
269          */
270         set_cpu_online(cpu, false);
271         ipi_teardown(cpu);
272
273         /*
274          * OK - migrate IRQs away from this CPU
275          */
276         irq_migrate_all_off_this_cpu();
277
278         /*
279          * Flush user cache and TLB mappings, and then remove this CPU
280          * from the vm mask set of all processes.
281          *
282          * Caches are flushed to the Level of Unification Inner Shareable
283          * to write-back dirty lines to unified caches shared by all CPUs.
284          */
285         flush_cache_louis();
286         local_flush_tlb_all();
287
288         return 0;
289 }
290
291 /*
292  * called on the thread which is asking for a CPU to be shutdown -
293  * waits until shutdown has completed, or it is timed out.
294  */
295 void __cpu_die(unsigned int cpu)
296 {
297         if (!cpu_wait_death(cpu, 5)) {
298                 pr_err("CPU%u: cpu didn't die\n", cpu);
299                 return;
300         }
301         pr_debug("CPU%u: shutdown\n", cpu);
302
303         clear_tasks_mm_cpumask(cpu);
304         /*
305          * platform_cpu_kill() is generally expected to do the powering off
306          * and/or cutting of clocks to the dying CPU.  Optionally, this may
307          * be done by the CPU which is dying in preference to supporting
308          * this call, but that means there is _no_ synchronisation between
309          * the requesting CPU and the dying CPU actually losing power.
310          */
311         if (!platform_cpu_kill(cpu))
312                 pr_err("CPU%u: unable to kill\n", cpu);
313 }
314
315 /*
316  * Called from the idle thread for the CPU which has been shutdown.
317  *
318  * Note that we disable IRQs here, but do not re-enable them
319  * before returning to the caller. This is also the behaviour
320  * of the other hotplug-cpu capable cores, so presumably coming
321  * out of idle fixes this.
322  */
323 void arch_cpu_idle_dead(void)
324 {
325         unsigned int cpu = smp_processor_id();
326
327         idle_task_exit();
328
329         local_irq_disable();
330
331         /*
332          * Flush the data out of the L1 cache for this CPU.  This must be
333          * before the completion to ensure that data is safely written out
334          * before platform_cpu_kill() gets called - which may disable
335          * *this* CPU and power down its cache.
336          */
337         flush_cache_louis();
338
339         /*
340          * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
341          * this returns, power and/or clocks can be removed at any point
342          * from this CPU and its cache by platform_cpu_kill().
343          */
344         (void)cpu_report_death();
345
346         /*
347          * Ensure that the cache lines associated with that completion are
348          * written out.  This covers the case where _this_ CPU is doing the
349          * powering down, to ensure that the completion is visible to the
350          * CPU waiting for this one.
351          */
352         flush_cache_louis();
353
354         /*
355          * The actual CPU shutdown procedure is at least platform (if not
356          * CPU) specific.  This may remove power, or it may simply spin.
357          *
358          * Platforms are generally expected *NOT* to return from this call,
359          * although there are some which do because they have no way to
360          * power down the CPU.  These platforms are the _only_ reason we
361          * have a return path which uses the fragment of assembly below.
362          *
363          * The return path should not be used for platforms which can
364          * power off the CPU.
365          */
366         if (smp_ops.cpu_die)
367                 smp_ops.cpu_die(cpu);
368
369         pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
370                 cpu);
371
372         /*
373          * Do not return to the idle loop - jump back to the secondary
374          * cpu initialisation.  There's some initialisation which needs
375          * to be repeated to undo the effects of taking the CPU offline.
376          */
377         __asm__("mov    sp, %0\n"
378         "       mov     fp, #0\n"
379         "       mov     r0, %1\n"
380         "       b       secondary_start_kernel"
381                 :
382                 : "r" (task_stack_page(current) + THREAD_SIZE - 8),
383                   "r" (current)
384                 : "r0");
385 }
386 #endif /* CONFIG_HOTPLUG_CPU */
387
388 /*
389  * Called by both boot and secondaries to move global data into
390  * per-processor storage.
391  */
392 static void smp_store_cpu_info(unsigned int cpuid)
393 {
394         struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
395
396         cpu_info->loops_per_jiffy = loops_per_jiffy;
397         cpu_info->cpuid = read_cpuid_id();
398
399         store_cpu_topology(cpuid);
400         check_cpu_icache_size(cpuid);
401 }
402
403 static void set_current(struct task_struct *cur)
404 {
405         /* Set TPIDRURO */
406         asm("mcr p15, 0, %0, c13, c0, 3" :: "r"(cur) : "memory");
407 }
408
409 /*
410  * This is the secondary CPU boot entry.  We're using this CPUs
411  * idle thread stack, but a set of temporary page tables.
412  */
413 asmlinkage void secondary_start_kernel(struct task_struct *task)
414 {
415         struct mm_struct *mm = &init_mm;
416         unsigned int cpu;
417
418         set_current(task);
419
420         secondary_biglittle_init();
421
422         /*
423          * The identity mapping is uncached (strongly ordered), so
424          * switch away from it before attempting any exclusive accesses.
425          */
426         cpu_switch_mm(mm->pgd, mm);
427         local_flush_bp_all();
428         enter_lazy_tlb(mm, current);
429         local_flush_tlb_all();
430
431         /*
432          * All kernel threads share the same mm context; grab a
433          * reference and switch to it.
434          */
435         cpu = smp_processor_id();
436         mmgrab(mm);
437         current->active_mm = mm;
438         cpumask_set_cpu(cpu, mm_cpumask(mm));
439
440         cpu_init();
441
442 #ifndef CONFIG_MMU
443         setup_vectors_base();
444 #endif
445         pr_debug("CPU%u: Booted secondary processor\n", cpu);
446
447         trace_hardirqs_off();
448
449         /*
450          * Give the platform a chance to do its own initialisation.
451          */
452         if (smp_ops.smp_secondary_init)
453                 smp_ops.smp_secondary_init(cpu);
454
455         notify_cpu_starting(cpu);
456
457         ipi_setup(cpu);
458
459         calibrate_delay();
460
461         smp_store_cpu_info(cpu);
462
463         /*
464          * OK, now it's safe to let the boot CPU continue.  Wait for
465          * the CPU migration code to notice that the CPU is online
466          * before we continue - which happens after __cpu_up returns.
467          */
468         set_cpu_online(cpu, true);
469
470         check_other_bugs();
471
472         complete(&cpu_running);
473
474         local_irq_enable();
475         local_fiq_enable();
476         local_abt_enable();
477
478         /*
479          * OK, it's off to the idle thread for us
480          */
481         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
482 }
483
484 void __init smp_cpus_done(unsigned int max_cpus)
485 {
486         int cpu;
487         unsigned long bogosum = 0;
488
489         for_each_online_cpu(cpu)
490                 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
491
492         printk(KERN_INFO "SMP: Total of %d processors activated "
493                "(%lu.%02lu BogoMIPS).\n",
494                num_online_cpus(),
495                bogosum / (500000/HZ),
496                (bogosum / (5000/HZ)) % 100);
497
498         hyp_mode_check();
499 }
500
501 void __init smp_prepare_boot_cpu(void)
502 {
503         set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
504 }
505
506 void __init smp_prepare_cpus(unsigned int max_cpus)
507 {
508         unsigned int ncores = num_possible_cpus();
509
510         init_cpu_topology();
511
512         smp_store_cpu_info(smp_processor_id());
513
514         /*
515          * are we trying to boot more cores than exist?
516          */
517         if (max_cpus > ncores)
518                 max_cpus = ncores;
519         if (ncores > 1 && max_cpus) {
520                 /*
521                  * Initialise the present map, which describes the set of CPUs
522                  * actually populated at the present time. A platform should
523                  * re-initialize the map in the platforms smp_prepare_cpus()
524                  * if present != possible (e.g. physical hotplug).
525                  */
526                 init_cpu_present(cpu_possible_mask);
527
528                 /*
529                  * Initialise the SCU if there are more than one CPU
530                  * and let them know where to start.
531                  */
532                 if (smp_ops.smp_prepare_cpus)
533                         smp_ops.smp_prepare_cpus(max_cpus);
534         }
535 }
536
537 static const char *ipi_types[NR_IPI] __tracepoint_string = {
538         [IPI_WAKEUP]            = "CPU wakeup interrupts",
539         [IPI_TIMER]             = "Timer broadcast interrupts",
540         [IPI_RESCHEDULE]        = "Rescheduling interrupts",
541         [IPI_CALL_FUNC]         = "Function call interrupts",
542         [IPI_CPU_STOP]          = "CPU stop interrupts",
543         [IPI_IRQ_WORK]          = "IRQ work interrupts",
544         [IPI_COMPLETION]        = "completion interrupts",
545 };
546
547 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr);
548
549 void show_ipi_list(struct seq_file *p, int prec)
550 {
551         unsigned int cpu, i;
552
553         for (i = 0; i < NR_IPI; i++) {
554                 if (!ipi_desc[i])
555                         continue;
556
557                 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
558
559                 for_each_online_cpu(cpu)
560                         seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu));
561
562                 seq_printf(p, " %s\n", ipi_types[i]);
563         }
564 }
565
566 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
567 {
568         smp_cross_call(mask, IPI_CALL_FUNC);
569 }
570
571 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
572 {
573         smp_cross_call(mask, IPI_WAKEUP);
574 }
575
576 void arch_send_call_function_single_ipi(int cpu)
577 {
578         smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
579 }
580
581 #ifdef CONFIG_IRQ_WORK
582 void arch_irq_work_raise(void)
583 {
584         if (arch_irq_work_has_interrupt())
585                 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
586 }
587 #endif
588
589 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
590 void tick_broadcast(const struct cpumask *mask)
591 {
592         smp_cross_call(mask, IPI_TIMER);
593 }
594 #endif
595
596 static DEFINE_RAW_SPINLOCK(stop_lock);
597
598 /*
599  * ipi_cpu_stop - handle IPI from smp_send_stop()
600  */
601 static void ipi_cpu_stop(unsigned int cpu)
602 {
603         if (system_state <= SYSTEM_RUNNING) {
604                 raw_spin_lock(&stop_lock);
605                 pr_crit("CPU%u: stopping\n", cpu);
606                 dump_stack();
607                 raw_spin_unlock(&stop_lock);
608         }
609
610         set_cpu_online(cpu, false);
611
612         local_fiq_disable();
613         local_irq_disable();
614
615         while (1) {
616                 cpu_relax();
617                 wfe();
618         }
619 }
620
621 static DEFINE_PER_CPU(struct completion *, cpu_completion);
622
623 int register_ipi_completion(struct completion *completion, int cpu)
624 {
625         per_cpu(cpu_completion, cpu) = completion;
626         return IPI_COMPLETION;
627 }
628
629 static void ipi_complete(unsigned int cpu)
630 {
631         complete(per_cpu(cpu_completion, cpu));
632 }
633
634 /*
635  * Main handler for inter-processor interrupts
636  */
637 static void do_handle_IPI(int ipinr)
638 {
639         unsigned int cpu = smp_processor_id();
640
641         if ((unsigned)ipinr < NR_IPI)
642                 trace_ipi_entry_rcuidle(ipi_types[ipinr]);
643
644         switch (ipinr) {
645         case IPI_WAKEUP:
646                 break;
647
648 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
649         case IPI_TIMER:
650                 tick_receive_broadcast();
651                 break;
652 #endif
653
654         case IPI_RESCHEDULE:
655                 scheduler_ipi();
656                 break;
657
658         case IPI_CALL_FUNC:
659                 generic_smp_call_function_interrupt();
660                 break;
661
662         case IPI_CPU_STOP:
663                 ipi_cpu_stop(cpu);
664                 break;
665
666 #ifdef CONFIG_IRQ_WORK
667         case IPI_IRQ_WORK:
668                 irq_work_run();
669                 break;
670 #endif
671
672         case IPI_COMPLETION:
673                 ipi_complete(cpu);
674                 break;
675
676         case IPI_CPU_BACKTRACE:
677                 printk_deferred_enter();
678                 nmi_cpu_backtrace(get_irq_regs());
679                 printk_deferred_exit();
680                 break;
681
682         default:
683                 pr_crit("CPU%u: Unknown IPI message 0x%x\n",
684                         cpu, ipinr);
685                 break;
686         }
687
688         if ((unsigned)ipinr < NR_IPI)
689                 trace_ipi_exit_rcuidle(ipi_types[ipinr]);
690 }
691
692 /* Legacy version, should go away once all irqchips have been converted */
693 void handle_IPI(int ipinr, struct pt_regs *regs)
694 {
695         struct pt_regs *old_regs = set_irq_regs(regs);
696
697         irq_enter();
698         do_handle_IPI(ipinr);
699         irq_exit();
700
701         set_irq_regs(old_regs);
702 }
703
704 static irqreturn_t ipi_handler(int irq, void *data)
705 {
706         do_handle_IPI(irq - ipi_irq_base);
707         return IRQ_HANDLED;
708 }
709
710 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
711 {
712         trace_ipi_raise_rcuidle(target, ipi_types[ipinr]);
713         __ipi_send_mask(ipi_desc[ipinr], target);
714 }
715
716 static void ipi_setup(int cpu)
717 {
718         int i;
719
720         if (WARN_ON_ONCE(!ipi_irq_base))
721                 return;
722
723         for (i = 0; i < nr_ipi; i++)
724                 enable_percpu_irq(ipi_irq_base + i, 0);
725 }
726
727 void __init set_smp_ipi_range(int ipi_base, int n)
728 {
729         int i;
730
731         WARN_ON(n < MAX_IPI);
732         nr_ipi = min(n, MAX_IPI);
733
734         for (i = 0; i < nr_ipi; i++) {
735                 int err;
736
737                 err = request_percpu_irq(ipi_base + i, ipi_handler,
738                                          "IPI", &irq_stat);
739                 WARN_ON(err);
740
741                 ipi_desc[i] = irq_to_desc(ipi_base + i);
742                 irq_set_status_flags(ipi_base + i, IRQ_HIDDEN);
743         }
744
745         ipi_irq_base = ipi_base;
746
747         /* Setup the boot CPU immediately */
748         ipi_setup(smp_processor_id());
749 }
750
751 void smp_send_reschedule(int cpu)
752 {
753         smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
754 }
755
756 void smp_send_stop(void)
757 {
758         unsigned long timeout;
759         struct cpumask mask;
760
761         cpumask_copy(&mask, cpu_online_mask);
762         cpumask_clear_cpu(smp_processor_id(), &mask);
763         if (!cpumask_empty(&mask))
764                 smp_cross_call(&mask, IPI_CPU_STOP);
765
766         /* Wait up to one second for other CPUs to stop */
767         timeout = USEC_PER_SEC;
768         while (num_online_cpus() > 1 && timeout--)
769                 udelay(1);
770
771         if (num_online_cpus() > 1)
772                 pr_warn("SMP: failed to stop secondary CPUs\n");
773 }
774
775 /* In case panic() and panic() called at the same time on CPU1 and CPU2,
776  * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop()
777  * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online,
778  * kdump fails. So split out the panic_smp_self_stop() and add
779  * set_cpu_online(smp_processor_id(), false).
780  */
781 void panic_smp_self_stop(void)
782 {
783         pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n",
784                  smp_processor_id());
785         set_cpu_online(smp_processor_id(), false);
786         while (1)
787                 cpu_relax();
788 }
789
790 /*
791  * not supported here
792  */
793 int setup_profiling_timer(unsigned int multiplier)
794 {
795         return -EINVAL;
796 }
797
798 #ifdef CONFIG_CPU_FREQ
799
800 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
801 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
802 static unsigned long global_l_p_j_ref;
803 static unsigned long global_l_p_j_ref_freq;
804
805 static int cpufreq_callback(struct notifier_block *nb,
806                                         unsigned long val, void *data)
807 {
808         struct cpufreq_freqs *freq = data;
809         struct cpumask *cpus = freq->policy->cpus;
810         int cpu, first = cpumask_first(cpus);
811         unsigned int lpj;
812
813         if (freq->flags & CPUFREQ_CONST_LOOPS)
814                 return NOTIFY_OK;
815
816         if (!per_cpu(l_p_j_ref, first)) {
817                 for_each_cpu(cpu, cpus) {
818                         per_cpu(l_p_j_ref, cpu) =
819                                 per_cpu(cpu_data, cpu).loops_per_jiffy;
820                         per_cpu(l_p_j_ref_freq, cpu) = freq->old;
821                 }
822
823                 if (!global_l_p_j_ref) {
824                         global_l_p_j_ref = loops_per_jiffy;
825                         global_l_p_j_ref_freq = freq->old;
826                 }
827         }
828
829         if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
830             (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
831                 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
832                                                 global_l_p_j_ref_freq,
833                                                 freq->new);
834
835                 lpj = cpufreq_scale(per_cpu(l_p_j_ref, first),
836                                     per_cpu(l_p_j_ref_freq, first), freq->new);
837                 for_each_cpu(cpu, cpus)
838                         per_cpu(cpu_data, cpu).loops_per_jiffy = lpj;
839         }
840         return NOTIFY_OK;
841 }
842
843 static struct notifier_block cpufreq_notifier = {
844         .notifier_call  = cpufreq_callback,
845 };
846
847 static int __init register_cpufreq_notifier(void)
848 {
849         return cpufreq_register_notifier(&cpufreq_notifier,
850                                                 CPUFREQ_TRANSITION_NOTIFIER);
851 }
852 core_initcall(register_cpufreq_notifier);
853
854 #endif
855
856 static void raise_nmi(cpumask_t *mask)
857 {
858         __ipi_send_mask(ipi_desc[IPI_CPU_BACKTRACE], mask);
859 }
860
861 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
862 {
863         nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi);
864 }