treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 500
[sfrench/cifs-2.6.git] / arch / arm / common / mcpm_entry.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * arch/arm/common/mcpm_entry.c -- entry point for multi-cluster PM
4  *
5  * Created by:  Nicolas Pitre, March 2012
6  * Copyright:   (C) 2012-2013  Linaro Limited
7  */
8
9 #include <linux/export.h>
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/irqflags.h>
13 #include <linux/cpu_pm.h>
14
15 #include <asm/mcpm.h>
16 #include <asm/cacheflush.h>
17 #include <asm/idmap.h>
18 #include <asm/cputype.h>
19 #include <asm/suspend.h>
20
21 /*
22  * The public API for this code is documented in arch/arm/include/asm/mcpm.h.
23  * For a comprehensive description of the main algorithm used here, please
24  * see Documentation/arm/cluster-pm-race-avoidance.txt.
25  */
26
27 struct sync_struct mcpm_sync;
28
29 /*
30  * __mcpm_cpu_going_down: Indicates that the cpu is being torn down.
31  *    This must be called at the point of committing to teardown of a CPU.
32  *    The CPU cache (SCTRL.C bit) is expected to still be active.
33  */
34 static void __mcpm_cpu_going_down(unsigned int cpu, unsigned int cluster)
35 {
36         mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_GOING_DOWN;
37         sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu);
38 }
39
40 /*
41  * __mcpm_cpu_down: Indicates that cpu teardown is complete and that the
42  *    cluster can be torn down without disrupting this CPU.
43  *    To avoid deadlocks, this must be called before a CPU is powered down.
44  *    The CPU cache (SCTRL.C bit) is expected to be off.
45  *    However L2 cache might or might not be active.
46  */
47 static void __mcpm_cpu_down(unsigned int cpu, unsigned int cluster)
48 {
49         dmb();
50         mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_DOWN;
51         sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu);
52         sev();
53 }
54
55 /*
56  * __mcpm_outbound_leave_critical: Leave the cluster teardown critical section.
57  * @state: the final state of the cluster:
58  *     CLUSTER_UP: no destructive teardown was done and the cluster has been
59  *         restored to the previous state (CPU cache still active); or
60  *     CLUSTER_DOWN: the cluster has been torn-down, ready for power-off
61  *         (CPU cache disabled, L2 cache either enabled or disabled).
62  */
63 static void __mcpm_outbound_leave_critical(unsigned int cluster, int state)
64 {
65         dmb();
66         mcpm_sync.clusters[cluster].cluster = state;
67         sync_cache_w(&mcpm_sync.clusters[cluster].cluster);
68         sev();
69 }
70
71 /*
72  * __mcpm_outbound_enter_critical: Enter the cluster teardown critical section.
73  * This function should be called by the last man, after local CPU teardown
74  * is complete.  CPU cache expected to be active.
75  *
76  * Returns:
77  *     false: the critical section was not entered because an inbound CPU was
78  *         observed, or the cluster is already being set up;
79  *     true: the critical section was entered: it is now safe to tear down the
80  *         cluster.
81  */
82 static bool __mcpm_outbound_enter_critical(unsigned int cpu, unsigned int cluster)
83 {
84         unsigned int i;
85         struct mcpm_sync_struct *c = &mcpm_sync.clusters[cluster];
86
87         /* Warn inbound CPUs that the cluster is being torn down: */
88         c->cluster = CLUSTER_GOING_DOWN;
89         sync_cache_w(&c->cluster);
90
91         /* Back out if the inbound cluster is already in the critical region: */
92         sync_cache_r(&c->inbound);
93         if (c->inbound == INBOUND_COMING_UP)
94                 goto abort;
95
96         /*
97          * Wait for all CPUs to get out of the GOING_DOWN state, so that local
98          * teardown is complete on each CPU before tearing down the cluster.
99          *
100          * If any CPU has been woken up again from the DOWN state, then we
101          * shouldn't be taking the cluster down at all: abort in that case.
102          */
103         sync_cache_r(&c->cpus);
104         for (i = 0; i < MAX_CPUS_PER_CLUSTER; i++) {
105                 int cpustate;
106
107                 if (i == cpu)
108                         continue;
109
110                 while (1) {
111                         cpustate = c->cpus[i].cpu;
112                         if (cpustate != CPU_GOING_DOWN)
113                                 break;
114
115                         wfe();
116                         sync_cache_r(&c->cpus[i].cpu);
117                 }
118
119                 switch (cpustate) {
120                 case CPU_DOWN:
121                         continue;
122
123                 default:
124                         goto abort;
125                 }
126         }
127
128         return true;
129
130 abort:
131         __mcpm_outbound_leave_critical(cluster, CLUSTER_UP);
132         return false;
133 }
134
135 static int __mcpm_cluster_state(unsigned int cluster)
136 {
137         sync_cache_r(&mcpm_sync.clusters[cluster].cluster);
138         return mcpm_sync.clusters[cluster].cluster;
139 }
140
141 extern unsigned long mcpm_entry_vectors[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER];
142
143 void mcpm_set_entry_vector(unsigned cpu, unsigned cluster, void *ptr)
144 {
145         unsigned long val = ptr ? __pa_symbol(ptr) : 0;
146         mcpm_entry_vectors[cluster][cpu] = val;
147         sync_cache_w(&mcpm_entry_vectors[cluster][cpu]);
148 }
149
150 extern unsigned long mcpm_entry_early_pokes[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER][2];
151
152 void mcpm_set_early_poke(unsigned cpu, unsigned cluster,
153                          unsigned long poke_phys_addr, unsigned long poke_val)
154 {
155         unsigned long *poke = &mcpm_entry_early_pokes[cluster][cpu][0];
156         poke[0] = poke_phys_addr;
157         poke[1] = poke_val;
158         __sync_cache_range_w(poke, 2 * sizeof(*poke));
159 }
160
161 static const struct mcpm_platform_ops *platform_ops;
162
163 int __init mcpm_platform_register(const struct mcpm_platform_ops *ops)
164 {
165         if (platform_ops)
166                 return -EBUSY;
167         platform_ops = ops;
168         return 0;
169 }
170
171 bool mcpm_is_available(void)
172 {
173         return (platform_ops) ? true : false;
174 }
175 EXPORT_SYMBOL_GPL(mcpm_is_available);
176
177 /*
178  * We can't use regular spinlocks. In the switcher case, it is possible
179  * for an outbound CPU to call power_down() after its inbound counterpart
180  * is already live using the same logical CPU number which trips lockdep
181  * debugging.
182  */
183 static arch_spinlock_t mcpm_lock = __ARCH_SPIN_LOCK_UNLOCKED;
184
185 static int mcpm_cpu_use_count[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER];
186
187 static inline bool mcpm_cluster_unused(unsigned int cluster)
188 {
189         int i, cnt;
190         for (i = 0, cnt = 0; i < MAX_CPUS_PER_CLUSTER; i++)
191                 cnt |= mcpm_cpu_use_count[cluster][i];
192         return !cnt;
193 }
194
195 int mcpm_cpu_power_up(unsigned int cpu, unsigned int cluster)
196 {
197         bool cpu_is_down, cluster_is_down;
198         int ret = 0;
199
200         pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
201         if (!platform_ops)
202                 return -EUNATCH; /* try not to shadow power_up errors */
203         might_sleep();
204
205         /*
206          * Since this is called with IRQs enabled, and no arch_spin_lock_irq
207          * variant exists, we need to disable IRQs manually here.
208          */
209         local_irq_disable();
210         arch_spin_lock(&mcpm_lock);
211
212         cpu_is_down = !mcpm_cpu_use_count[cluster][cpu];
213         cluster_is_down = mcpm_cluster_unused(cluster);
214
215         mcpm_cpu_use_count[cluster][cpu]++;
216         /*
217          * The only possible values are:
218          * 0 = CPU down
219          * 1 = CPU (still) up
220          * 2 = CPU requested to be up before it had a chance
221          *     to actually make itself down.
222          * Any other value is a bug.
223          */
224         BUG_ON(mcpm_cpu_use_count[cluster][cpu] != 1 &&
225                mcpm_cpu_use_count[cluster][cpu] != 2);
226
227         if (cluster_is_down)
228                 ret = platform_ops->cluster_powerup(cluster);
229         if (cpu_is_down && !ret)
230                 ret = platform_ops->cpu_powerup(cpu, cluster);
231
232         arch_spin_unlock(&mcpm_lock);
233         local_irq_enable();
234         return ret;
235 }
236
237 typedef typeof(cpu_reset) phys_reset_t;
238
239 void mcpm_cpu_power_down(void)
240 {
241         unsigned int mpidr, cpu, cluster;
242         bool cpu_going_down, last_man;
243         phys_reset_t phys_reset;
244
245         mpidr = read_cpuid_mpidr();
246         cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
247         cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
248         pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
249         if (WARN_ON_ONCE(!platform_ops))
250                return;
251         BUG_ON(!irqs_disabled());
252
253         setup_mm_for_reboot();
254
255         __mcpm_cpu_going_down(cpu, cluster);
256         arch_spin_lock(&mcpm_lock);
257         BUG_ON(__mcpm_cluster_state(cluster) != CLUSTER_UP);
258
259         mcpm_cpu_use_count[cluster][cpu]--;
260         BUG_ON(mcpm_cpu_use_count[cluster][cpu] != 0 &&
261                mcpm_cpu_use_count[cluster][cpu] != 1);
262         cpu_going_down = !mcpm_cpu_use_count[cluster][cpu];
263         last_man = mcpm_cluster_unused(cluster);
264
265         if (last_man && __mcpm_outbound_enter_critical(cpu, cluster)) {
266                 platform_ops->cpu_powerdown_prepare(cpu, cluster);
267                 platform_ops->cluster_powerdown_prepare(cluster);
268                 arch_spin_unlock(&mcpm_lock);
269                 platform_ops->cluster_cache_disable();
270                 __mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN);
271         } else {
272                 if (cpu_going_down)
273                         platform_ops->cpu_powerdown_prepare(cpu, cluster);
274                 arch_spin_unlock(&mcpm_lock);
275                 /*
276                  * If cpu_going_down is false here, that means a power_up
277                  * request raced ahead of us.  Even if we do not want to
278                  * shut this CPU down, the caller still expects execution
279                  * to return through the system resume entry path, like
280                  * when the WFI is aborted due to a new IRQ or the like..
281                  * So let's continue with cache cleaning in all cases.
282                  */
283                 platform_ops->cpu_cache_disable();
284         }
285
286         __mcpm_cpu_down(cpu, cluster);
287
288         /* Now we are prepared for power-down, do it: */
289         if (cpu_going_down)
290                 wfi();
291
292         /*
293          * It is possible for a power_up request to happen concurrently
294          * with a power_down request for the same CPU. In this case the
295          * CPU might not be able to actually enter a powered down state
296          * with the WFI instruction if the power_up request has removed
297          * the required reset condition.  We must perform a re-entry in
298          * the kernel as if the power_up method just had deasserted reset
299          * on the CPU.
300          */
301         phys_reset = (phys_reset_t)(unsigned long)__pa_symbol(cpu_reset);
302         phys_reset(__pa_symbol(mcpm_entry_point), false);
303
304         /* should never get here */
305         BUG();
306 }
307
308 int mcpm_wait_for_cpu_powerdown(unsigned int cpu, unsigned int cluster)
309 {
310         int ret;
311
312         if (WARN_ON_ONCE(!platform_ops || !platform_ops->wait_for_powerdown))
313                 return -EUNATCH;
314
315         ret = platform_ops->wait_for_powerdown(cpu, cluster);
316         if (ret)
317                 pr_warn("%s: cpu %u, cluster %u failed to power down (%d)\n",
318                         __func__, cpu, cluster, ret);
319
320         return ret;
321 }
322
323 void mcpm_cpu_suspend(void)
324 {
325         if (WARN_ON_ONCE(!platform_ops))
326                 return;
327
328         /* Some platforms might have to enable special resume modes, etc. */
329         if (platform_ops->cpu_suspend_prepare) {
330                 unsigned int mpidr = read_cpuid_mpidr();
331                 unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
332                 unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); 
333                 arch_spin_lock(&mcpm_lock);
334                 platform_ops->cpu_suspend_prepare(cpu, cluster);
335                 arch_spin_unlock(&mcpm_lock);
336         }
337         mcpm_cpu_power_down();
338 }
339
340 int mcpm_cpu_powered_up(void)
341 {
342         unsigned int mpidr, cpu, cluster;
343         bool cpu_was_down, first_man;
344         unsigned long flags;
345
346         if (!platform_ops)
347                 return -EUNATCH;
348
349         mpidr = read_cpuid_mpidr();
350         cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
351         cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
352         local_irq_save(flags);
353         arch_spin_lock(&mcpm_lock);
354
355         cpu_was_down = !mcpm_cpu_use_count[cluster][cpu];
356         first_man = mcpm_cluster_unused(cluster);
357
358         if (first_man && platform_ops->cluster_is_up)
359                 platform_ops->cluster_is_up(cluster);
360         if (cpu_was_down)
361                 mcpm_cpu_use_count[cluster][cpu] = 1;
362         if (platform_ops->cpu_is_up)
363                 platform_ops->cpu_is_up(cpu, cluster);
364
365         arch_spin_unlock(&mcpm_lock);
366         local_irq_restore(flags);
367
368         return 0;
369 }
370
371 #ifdef CONFIG_ARM_CPU_SUSPEND
372
373 static int __init nocache_trampoline(unsigned long _arg)
374 {
375         void (*cache_disable)(void) = (void *)_arg;
376         unsigned int mpidr = read_cpuid_mpidr();
377         unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
378         unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
379         phys_reset_t phys_reset;
380
381         mcpm_set_entry_vector(cpu, cluster, cpu_resume_no_hyp);
382         setup_mm_for_reboot();
383
384         __mcpm_cpu_going_down(cpu, cluster);
385         BUG_ON(!__mcpm_outbound_enter_critical(cpu, cluster));
386         cache_disable();
387         __mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN);
388         __mcpm_cpu_down(cpu, cluster);
389
390         phys_reset = (phys_reset_t)(unsigned long)__pa_symbol(cpu_reset);
391         phys_reset(__pa_symbol(mcpm_entry_point), false);
392         BUG();
393 }
394
395 int __init mcpm_loopback(void (*cache_disable)(void))
396 {
397         int ret;
398
399         /*
400          * We're going to soft-restart the current CPU through the
401          * low-level MCPM code by leveraging the suspend/resume
402          * infrastructure. Let's play it safe by using cpu_pm_enter()
403          * in case the CPU init code path resets the VFP or similar.
404          */
405         local_irq_disable();
406         local_fiq_disable();
407         ret = cpu_pm_enter();
408         if (!ret) {
409                 ret = cpu_suspend((unsigned long)cache_disable, nocache_trampoline);
410                 cpu_pm_exit();
411         }
412         local_fiq_enable();
413         local_irq_enable();
414         if (ret)
415                 pr_err("%s returned %d\n", __func__, ret);
416         return ret;
417 }
418
419 #endif
420
421 extern unsigned long mcpm_power_up_setup_phys;
422
423 int __init mcpm_sync_init(
424         void (*power_up_setup)(unsigned int affinity_level))
425 {
426         unsigned int i, j, mpidr, this_cluster;
427
428         BUILD_BUG_ON(MCPM_SYNC_CLUSTER_SIZE * MAX_NR_CLUSTERS != sizeof mcpm_sync);
429         BUG_ON((unsigned long)&mcpm_sync & (__CACHE_WRITEBACK_GRANULE - 1));
430
431         /*
432          * Set initial CPU and cluster states.
433          * Only one cluster is assumed to be active at this point.
434          */
435         for (i = 0; i < MAX_NR_CLUSTERS; i++) {
436                 mcpm_sync.clusters[i].cluster = CLUSTER_DOWN;
437                 mcpm_sync.clusters[i].inbound = INBOUND_NOT_COMING_UP;
438                 for (j = 0; j < MAX_CPUS_PER_CLUSTER; j++)
439                         mcpm_sync.clusters[i].cpus[j].cpu = CPU_DOWN;
440         }
441         mpidr = read_cpuid_mpidr();
442         this_cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
443         for_each_online_cpu(i) {
444                 mcpm_cpu_use_count[this_cluster][i] = 1;
445                 mcpm_sync.clusters[this_cluster].cpus[i].cpu = CPU_UP;
446         }
447         mcpm_sync.clusters[this_cluster].cluster = CLUSTER_UP;
448         sync_cache_w(&mcpm_sync);
449
450         if (power_up_setup) {
451                 mcpm_power_up_setup_phys = __pa_symbol(power_up_setup);
452                 sync_cache_w(&mcpm_power_up_setup_phys);
453         }
454
455         return 0;
456 }