r2070: Let's try to overload srnlen and strndup for AIX where they are natly broken.
[tprouty/samba.git] / source / lib / md5.c
1 /*
2  * This code implements the MD5 message-digest algorithm.
3  * The algorithm is due to Ron Rivest.  This code was
4  * written by Colin Plumb in 1993, no copyright is claimed.
5  * This code is in the public domain; do with it what you wish.
6  *
7  * Equivalent code is available from RSA Data Security, Inc.
8  * This code has been tested against that, and is equivalent,
9  * except that you don't need to include two pages of legalese
10  * with every copy.
11  *
12  * To compute the message digest of a chunk of bytes, declare an
13  * MD5Context structure, pass it to MD5Init, call MD5Update as
14  * needed on buffers full of bytes, and then call MD5Final, which
15  * will fill a supplied 16-byte array with the digest.
16  */
17
18 /* This code slightly modified to fit into Samba by 
19    abartlet@samba.org Jun 2001 */
20
21 #include "includes.h"
22
23 #include "md5.h"
24
25 static void MD5Transform(uint32 buf[4], uint32 const in[16]);
26
27 /*
28  * Note: this code is harmless on little-endian machines.
29  */
30 static void byteReverse(unsigned char *buf, unsigned longs)
31 {
32     uint32 t;
33     do {
34         t = (uint32) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
35             ((unsigned) buf[1] << 8 | buf[0]);
36         *(uint32 *) buf = t;
37         buf += 4;
38     } while (--longs);
39 }
40
41 /*
42  * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
43  * initialization constants.
44  */
45 void MD5Init(struct MD5Context *ctx)
46 {
47     ctx->buf[0] = 0x67452301;
48     ctx->buf[1] = 0xefcdab89;
49     ctx->buf[2] = 0x98badcfe;
50     ctx->buf[3] = 0x10325476;
51
52     ctx->bits[0] = 0;
53     ctx->bits[1] = 0;
54 }
55
56 /*
57  * Update context to reflect the concatenation of another buffer full
58  * of bytes.
59  */
60 void MD5Update(struct MD5Context *ctx, unsigned char const *buf, unsigned len)
61 {
62     register uint32 t;
63
64     /* Update bitcount */
65
66     t = ctx->bits[0];
67     if ((ctx->bits[0] = t + ((uint32) len << 3)) < t)
68         ctx->bits[1]++;         /* Carry from low to high */
69     ctx->bits[1] += len >> 29;
70
71     t = (t >> 3) & 0x3f;        /* Bytes already in shsInfo->data */
72
73     /* Handle any leading odd-sized chunks */
74
75     if (t) {
76         unsigned char *p = (unsigned char *) ctx->in + t;
77
78         t = 64 - t;
79         if (len < t) {
80             memmove(p, buf, len);
81             return;
82         }
83         memmove(p, buf, t);
84         byteReverse(ctx->in, 16);
85         MD5Transform(ctx->buf, (uint32 *) ctx->in);
86         buf += t;
87         len -= t;
88     }
89     /* Process data in 64-byte chunks */
90
91     while (len >= 64) {
92         memmove(ctx->in, buf, 64);
93         byteReverse(ctx->in, 16);
94         MD5Transform(ctx->buf, (uint32 *) ctx->in);
95         buf += 64;
96         len -= 64;
97     }
98
99     /* Handle any remaining bytes of data. */
100
101     memmove(ctx->in, buf, len);
102 }
103
104 /*
105  * Final wrapup - pad to 64-byte boundary with the bit pattern 
106  * 1 0* (64-bit count of bits processed, MSB-first)
107  */
108 void MD5Final(unsigned char digest[16], struct MD5Context *ctx)
109 {
110     unsigned int count;
111     unsigned char *p;
112
113     /* Compute number of bytes mod 64 */
114     count = (ctx->bits[0] >> 3) & 0x3F;
115
116     /* Set the first char of padding to 0x80.  This is safe since there is
117        always at least one byte free */
118     p = ctx->in + count;
119     *p++ = 0x80;
120
121     /* Bytes of padding needed to make 64 bytes */
122     count = 64 - 1 - count;
123
124     /* Pad out to 56 mod 64 */
125     if (count < 8) {
126         /* Two lots of padding:  Pad the first block to 64 bytes */
127         memset(p, 0, count);
128         byteReverse(ctx->in, 16);
129         MD5Transform(ctx->buf, (uint32 *) ctx->in);
130
131         /* Now fill the next block with 56 bytes */
132         memset(ctx->in, 0, 56);
133     } else {
134         /* Pad block to 56 bytes */
135         memset(p, 0, count - 8);
136     }
137     byteReverse(ctx->in, 14);
138
139     /* Append length in bits and transform */
140     ((uint32 *) ctx->in)[14] = ctx->bits[0];
141     ((uint32 *) ctx->in)[15] = ctx->bits[1];
142
143     MD5Transform(ctx->buf, (uint32 *) ctx->in);
144     byteReverse((unsigned char *) ctx->buf, 4);
145     memmove(digest, ctx->buf, 16);
146     memset(ctx, 0, sizeof(ctx));        /* In case it's sensitive */
147 }
148
149 /* The four core functions - F1 is optimized somewhat */
150
151 /* #define F1(x, y, z) (x & y | ~x & z) */
152 #define F1(x, y, z) (z ^ (x & (y ^ z)))
153 #define F2(x, y, z) F1(z, x, y)
154 #define F3(x, y, z) (x ^ y ^ z)
155 #define F4(x, y, z) (y ^ (x | ~z))
156
157 /* This is the central step in the MD5 algorithm. */
158 #define MD5STEP(f, w, x, y, z, data, s) \
159         ( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )
160
161 /*
162  * The core of the MD5 algorithm, this alters an existing MD5 hash to
163  * reflect the addition of 16 longwords of new data.  MD5Update blocks
164  * the data and converts bytes into longwords for this routine.
165  */
166 static void MD5Transform(uint32 buf[4], uint32 const in[16])
167 {
168     register uint32 a, b, c, d;
169
170     a = buf[0];
171     b = buf[1];
172     c = buf[2];
173     d = buf[3];
174
175     MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
176     MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
177     MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
178     MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
179     MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
180     MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
181     MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
182     MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
183     MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
184     MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
185     MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
186     MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
187     MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
188     MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
189     MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
190     MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
191
192     MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
193     MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
194     MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
195     MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
196     MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
197     MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
198     MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
199     MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
200     MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
201     MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
202     MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
203     MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
204     MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
205     MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
206     MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
207     MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
208
209     MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
210     MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
211     MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
212     MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
213     MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
214     MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
215     MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
216     MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
217     MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
218     MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
219     MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
220     MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
221     MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
222     MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
223     MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
224     MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
225
226     MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
227     MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
228     MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
229     MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
230     MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
231     MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
232     MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
233     MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
234     MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
235     MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
236     MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
237     MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
238     MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
239     MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
240     MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
241     MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
242
243     buf[0] += a;
244     buf[1] += b;
245     buf[2] += c;
246     buf[3] += d;
247 }