From: Linus Torvalds Date: Sat, 25 Aug 2007 15:01:06 +0000 (-0700) Subject: Merge branch 'drm-patches' of git://git.kernel.org/pub/scm/linux/kernel/git/airlied... X-Git-Tag: v2.6.23-rc4~14 X-Git-Url: http://git.samba.org/samba.git/?p=sfrench%2Fcifs-2.6.git;a=commitdiff_plain;h=6869ce1c145aaea9f9f8eb8623a261d316b0cd19;hp=0769d39c993145754852b517ddd9c11586f0a014 Merge branch 'drm-patches' of git://git./linux/kernel/git/airlied/drm-2.6 * 'drm-patches' of git://git.kernel.org/pub/scm/linux/kernel/git/airlied/drm-2.6: drm: ioremap return value checks drm/via: Fix dmablit when blit queue is full drm_rmmap_ioctl(): remove dead code --- diff --git a/.gitignore b/.gitignore index a232295b99ac..27c3e839b54e 100644 --- a/.gitignore +++ b/.gitignore @@ -7,6 +7,7 @@ # .* *.o +*.o.* *.a *.s *.ko diff --git a/CREDITS b/CREDITS index 10c214dc95e7..832436e1dd91 100644 --- a/CREDITS +++ b/CREDITS @@ -966,6 +966,7 @@ N: Pekka Enberg E: penberg@cs.helsinki.fi W: http://www.cs.helsinki.fi/u/penberg/ D: Various kernel hacks, fixes, and cleanups. +D: Slab allocators S: Finland N: David Engebretsen @@ -1939,8 +1940,8 @@ D: for Menuconfig's lxdialog. N: Christoph Lameter E: christoph@lameter.com D: Digiboard PC/Xe and PC/Xi, Digiboard EPCA -D: Early protocol filter for bridging code -D: Bug fixes +D: NUMA support, Slab allocators, Page migration +D: Scalability, Time subsystem N: Paul Laufer E: paul@laufernet.com diff --git a/Documentation/Changes b/Documentation/Changes index 73a8617f1861..cb2b141b1c3e 100644 --- a/Documentation/Changes +++ b/Documentation/Changes @@ -45,6 +45,7 @@ o nfs-utils 1.0.5 # showmount --version o procps 3.2.0 # ps --version o oprofile 0.9 # oprofiled --version o udev 081 # udevinfo -V +o grub 0.93 # grub --version Kernel compilation ================== diff --git a/Documentation/DMA-API.txt b/Documentation/DMA-API.txt index 805db4b2cba6..cc7a8c39fb6f 100644 --- a/Documentation/DMA-API.txt +++ b/Documentation/DMA-API.txt @@ -26,7 +26,7 @@ Part Ia - Using large dma-coherent buffers void * dma_alloc_coherent(struct device *dev, size_t size, - dma_addr_t *dma_handle, int flag) + dma_addr_t *dma_handle, gfp_t flag) void * pci_alloc_consistent(struct pci_dev *dev, size_t size, dma_addr_t *dma_handle) @@ -38,7 +38,7 @@ to make sure to flush the processor's write buffers before telling devices to read that memory.) This routine allocates a region of bytes of consistent memory. -it also returns a which may be cast to an unsigned +It also returns a which may be cast to an unsigned integer the same width as the bus and used as the physical address base of the region. @@ -52,21 +52,21 @@ The simplest way to do that is to use the dma_pool calls (see below). The flag parameter (dma_alloc_coherent only) allows the caller to specify the GFP_ flags (see kmalloc) for the allocation (the -implementation may chose to ignore flags that affect the location of +implementation may choose to ignore flags that affect the location of the returned memory, like GFP_DMA). For pci_alloc_consistent, you must assume GFP_ATOMIC behaviour. void -dma_free_coherent(struct device *dev, size_t size, void *cpu_addr +dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_handle) void -pci_free_consistent(struct pci_dev *dev, size_t size, void *cpu_addr +pci_free_consistent(struct pci_dev *dev, size_t size, void *cpu_addr, dma_addr_t dma_handle) Free the region of consistent memory you previously allocated. dev, size and dma_handle must all be the same as those passed into the consistent allocate. cpu_addr must be the virtual address returned by -the consistent allocate +the consistent allocate. Part Ib - Using small dma-coherent buffers @@ -77,9 +77,9 @@ To get this part of the dma_ API, you must #include Many drivers need lots of small dma-coherent memory regions for DMA descriptors or I/O buffers. Rather than allocating in units of a page or more using dma_alloc_coherent(), you can use DMA pools. These work -much like a struct kmem_cache, except that they use the dma-coherent allocator +much like a struct kmem_cache, except that they use the dma-coherent allocator, not __get_free_pages(). Also, they understand common hardware constraints -for alignment, like queue heads needing to be aligned on N byte boundaries. +for alignment, like queue heads needing to be aligned on N-byte boundaries. struct dma_pool * @@ -102,15 +102,15 @@ crossing restrictions, pass 0 for alloc; passing 4096 says memory allocated from this pool must not cross 4KByte boundaries. - void *dma_pool_alloc(struct dma_pool *pool, int gfp_flags, + void *dma_pool_alloc(struct dma_pool *pool, gfp_t gfp_flags, dma_addr_t *dma_handle); - void *pci_pool_alloc(struct pci_pool *pool, int gfp_flags, + void *pci_pool_alloc(struct pci_pool *pool, gfp_t gfp_flags, dma_addr_t *dma_handle); This allocates memory from the pool; the returned memory will meet the size and alignment requirements specified at creation time. Pass GFP_ATOMIC to -prevent blocking, or if it's permitted (not in_interrupt, not holding SMP locks) +prevent blocking, or if it's permitted (not in_interrupt, not holding SMP locks), pass GFP_KERNEL to allow blocking. Like dma_alloc_coherent(), this returns two values: an address usable by the cpu, and the dma address usable by the pool's device. @@ -123,7 +123,7 @@ pool's device. dma_addr_t addr); This puts memory back into the pool. The pool is what was passed to -the pool allocation routine; the cpu and dma addresses are what +the pool allocation routine; the cpu (vaddr) and dma addresses are what were returned when that routine allocated the memory being freed. @@ -209,18 +209,18 @@ Notes: Not all memory regions in a machine can be mapped by this API. Further, regions that appear to be physically contiguous in kernel virtual space may not be contiguous as physical memory. Since this API does not provide any scatter/gather capability, it will fail -if the user tries to map a non physically contiguous piece of memory. +if the user tries to map a non-physically contiguous piece of memory. For this reason, it is recommended that memory mapped by this API be -obtained only from sources which guarantee to be physically contiguous +obtained only from sources which guarantee it to be physically contiguous (like kmalloc). Further, the physical address of the memory must be within the dma_mask of the device (the dma_mask represents a bit mask of the -addressable region for the device. i.e. if the physical address of +addressable region for the device. I.e., if the physical address of the memory anded with the dma_mask is still equal to the physical address, then the device can perform DMA to the memory). In order to ensure that the memory allocated by kmalloc is within the dma_mask, -the driver may specify various platform dependent flags to restrict +the driver may specify various platform-dependent flags to restrict the physical memory range of the allocation (e.g. on x86, GFP_DMA guarantees to be within the first 16Mb of available physical memory, as required by ISA devices). @@ -244,14 +244,14 @@ are guaranteed also to be cache line boundaries). DMA_TO_DEVICE synchronisation must be done after the last modification of the memory region by the software and before it is handed off to -the driver. Once this primitive is used. Memory covered by this -primitive should be treated as read only by the device. If the device +the driver. Once this primitive is used, memory covered by this +primitive should be treated as read-only by the device. If the device may write to it at any point, it should be DMA_BIDIRECTIONAL (see below). DMA_FROM_DEVICE synchronisation must be done before the driver accesses data that may be changed by the device. This memory should -be treated as read only by the driver. If the driver needs to write +be treated as read-only by the driver. If the driver needs to write to it at any point, it should be DMA_BIDIRECTIONAL (see below). DMA_BIDIRECTIONAL requires special handling: it means that the driver @@ -261,7 +261,7 @@ you must always sync bidirectional memory twice: once before the memory is handed off to the device (to make sure all memory changes are flushed from the processor) and once before the data may be accessed after being used by the device (to make sure any processor -cache lines are updated with data that the device may have changed. +cache lines are updated with data that the device may have changed). void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size, @@ -302,8 +302,8 @@ pci_dma_mapping_error(dma_addr_t dma_addr) In some circumstances dma_map_single and dma_map_page will fail to create a mapping. A driver can check for these errors by testing the returned -dma address with dma_mapping_error(). A non zero return value means the mapping -could not be created and the driver should take appropriate action (eg +dma address with dma_mapping_error(). A non-zero return value means the mapping +could not be created and the driver should take appropriate action (e.g. reduce current DMA mapping usage or delay and try again later). int @@ -315,7 +315,7 @@ reduce current DMA mapping usage or delay and try again later). Maps a scatter gather list from the block layer. -Returns: the number of physical segments mapped (this may be shorted +Returns: the number of physical segments mapped (this may be shorter than passed in if the block layer determines that some elements of the scatter/gather list are physically adjacent and thus may be mapped with a single entry). @@ -357,7 +357,7 @@ accessed sg->address and sg->length as shown above. pci_unmap_sg(struct pci_dev *hwdev, struct scatterlist *sg, int nents, int direction) -unmap the previously mapped scatter/gather list. All the parameters +Unmap the previously mapped scatter/gather list. All the parameters must be the same as those and passed in to the scatter/gather mapping API. @@ -377,7 +377,7 @@ void pci_dma_sync_sg(struct pci_dev *hwdev, struct scatterlist *sg, int nelems, int direction) -synchronise a single contiguous or scatter/gather mapping. All the +Synchronise a single contiguous or scatter/gather mapping. All the parameters must be the same as those passed into the single mapping API. @@ -406,7 +406,7 @@ API at all. void * dma_alloc_noncoherent(struct device *dev, size_t size, - dma_addr_t *dma_handle, int flag) + dma_addr_t *dma_handle, gfp_t flag) Identical to dma_alloc_coherent() except that the platform will choose to return either consistent or non-consistent memory as it sees @@ -426,34 +426,34 @@ void dma_free_noncoherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_handle) -free memory allocated by the nonconsistent API. All parameters must +Free memory allocated by the nonconsistent API. All parameters must be identical to those passed in (and returned by dma_alloc_noncoherent()). int dma_is_consistent(struct device *dev, dma_addr_t dma_handle) -returns true if the device dev is performing consistent DMA on the memory +Returns true if the device dev is performing consistent DMA on the memory area pointed to by the dma_handle. int dma_get_cache_alignment(void) -returns the processor cache alignment. This is the absolute minimum +Returns the processor cache alignment. This is the absolute minimum alignment *and* width that you must observe when either mapping memory or doing partial flushes. Notes: This API may return a number *larger* than the actual cache line, but it will guarantee that one or more cache lines fit exactly into the width returned by this call. It will also always be a power -of two for easy alignment +of two for easy alignment. void dma_sync_single_range(struct device *dev, dma_addr_t dma_handle, unsigned long offset, size_t size, enum dma_data_direction direction) -does a partial sync. starting at offset and continuing for size. You +Does a partial sync, starting at offset and continuing for size. You must be careful to observe the cache alignment and width when doing anything like this. You must also be extra careful about accessing memory you intend to sync partially. @@ -472,21 +472,20 @@ dma_declare_coherent_memory(struct device *dev, dma_addr_t bus_addr, dma_addr_t device_addr, size_t size, int flags) - Declare region of memory to be handed out by dma_alloc_coherent when it's asked for coherent memory for this device. bus_addr is the physical address to which the memory is currently assigned in the bus responding region (this will be used by the -platform to perform the mapping) +platform to perform the mapping). device_addr is the physical address the device needs to be programmed with actually to address this memory (this will be handed out as the -dma_addr_t in dma_alloc_coherent()) +dma_addr_t in dma_alloc_coherent()). size is the size of the area (must be multiples of PAGE_SIZE). -flags can be or'd together and are +flags can be or'd together and are: DMA_MEMORY_MAP - request that the memory returned from dma_alloc_coherent() be directly writable. @@ -494,7 +493,7 @@ dma_alloc_coherent() be directly writable. DMA_MEMORY_IO - request that the memory returned from dma_alloc_coherent() be addressable using read/write/memcpy_toio etc. -One or both of these flags must be present +One or both of these flags must be present. DMA_MEMORY_INCLUDES_CHILDREN - make the declared memory be allocated by dma_alloc_coherent of any child devices of this one (for memory residing @@ -528,7 +527,7 @@ dma_release_declared_memory(struct device *dev) Remove the memory region previously declared from the system. This API performs *no* in-use checking for this region and will return unconditionally having removed all the required structures. It is the -drivers job to ensure that no parts of this memory region are +driver's job to ensure that no parts of this memory region are currently in use. void * @@ -538,12 +537,10 @@ dma_mark_declared_memory_occupied(struct device *dev, This is used to occupy specific regions of the declared space (dma_alloc_coherent() will hand out the first free region it finds). -device_addr is the *device* address of the region requested +device_addr is the *device* address of the region requested. -size is the size (and should be a page sized multiple). +size is the size (and should be a page-sized multiple). The return value will be either a pointer to the processor virtual address of the memory, or an error (via PTR_ERR()) if any part of the region is occupied. - - diff --git a/Documentation/DocBook/deviceiobook.tmpl b/Documentation/DocBook/deviceiobook.tmpl index 90ed23df1f68..c917de681ccd 100644 --- a/Documentation/DocBook/deviceiobook.tmpl +++ b/Documentation/DocBook/deviceiobook.tmpl @@ -316,7 +316,8 @@ CPU B: spin_unlock_irqrestore(&dev_lock, flags) Public Functions Provided -!Einclude/asm-i386/io.h +!Iinclude/asm-i386/io.h +!Elib/iomap.c diff --git a/Documentation/DocBook/kernel-api.tmpl b/Documentation/DocBook/kernel-api.tmpl index eb42bf9847cb..b886f52a9aac 100644 --- a/Documentation/DocBook/kernel-api.tmpl +++ b/Documentation/DocBook/kernel-api.tmpl @@ -380,7 +380,6 @@ X!Edrivers/base/interface.c !Edrivers/base/bus.c Device Drivers Power Management -!Edrivers/base/power/main.c !Edrivers/base/power/resume.c !Edrivers/base/power/suspend.c @@ -398,12 +397,12 @@ X!Edrivers/acpi/pci_bind.c --> Device drivers PnP support -!Edrivers/pnp/core.c +!Idrivers/pnp/core.c !Edrivers/pnp/card.c -!Edrivers/pnp/driver.c +!Idrivers/pnp/driver.c !Edrivers/pnp/manager.c !Edrivers/pnp/support.c @@ -704,14 +703,22 @@ X!Idrivers/video/console/fonts.c splice API - ) + splice is a method for moving blocks of data around inside the - kernel, without continually transferring it between the kernel + kernel, without continually transferring them between the kernel and user space. -!Iinclude/linux/splice.h !Ffs/splice.c + + pipes API + + Pipe interfaces are all for in-kernel (builtin image) use. + They are not exported for use by modules. + +!Iinclude/linux/pipe_fs_i.h +!Ffs/pipe.c + diff --git a/Documentation/DocBook/uio-howto.tmpl b/Documentation/DocBook/uio-howto.tmpl index e3bb29a8d8dd..c119484258b8 100644 --- a/Documentation/DocBook/uio-howto.tmpl +++ b/Documentation/DocBook/uio-howto.tmpl @@ -133,10 +133,6 @@ interested in translating it, please email me updates of your driver can take place without recompiling the kernel. - - if you need to keep some parts of your driver closed source, - you can do so without violating the GPL license on the kernel. - diff --git a/Documentation/HOWTO b/Documentation/HOWTO index f8cc3f8ed152..c64e969dc33b 100644 --- a/Documentation/HOWTO +++ b/Documentation/HOWTO @@ -208,7 +208,7 @@ tools. One such tool that is particularly recommended is the Linux Cross-Reference project, which is able to present source code in a self-referential, indexed webpage format. An excellent up-to-date repository of the kernel code may be found at: - http://sosdg.org/~coywolf/lxr/ + http://users.sosdg.org/~qiyong/lxr/ The development process @@ -384,7 +384,7 @@ One of the best ways to put into practice your hacking skills is by fixing bugs reported by other people. Not only you will help to make the kernel more stable, you'll learn to fix real world problems and you will improve your skills, and other developers will be aware of your presence. Fixing -bugs is one of the best ways to earn merit amongst the developers, because +bugs is one of the best ways to get merits among other developers, because not many people like wasting time fixing other people's bugs. To work in the already reported bug reports, go to http://bugzilla.kernel.org. diff --git a/Documentation/SubmittingPatches b/Documentation/SubmittingPatches index d6b45a9b29b4..397575880dc4 100644 --- a/Documentation/SubmittingPatches +++ b/Documentation/SubmittingPatches @@ -560,7 +560,7 @@ NO!!!! No more huge patch bombs to linux-kernel@vger.kernel.org people! Kernel Documentation/CodingStyle: - + Linus Torvalds's mail on the canonical patch format: diff --git a/Documentation/accounting/getdelays.c b/Documentation/accounting/getdelays.c index 24c5aade8998..cbee3a27f768 100644 --- a/Documentation/accounting/getdelays.c +++ b/Documentation/accounting/getdelays.c @@ -196,7 +196,7 @@ void print_delayacct(struct taskstats *t) "IO %15s%15s\n" " %15llu%15llu\n" "MEM %15s%15s\n" - " %15llu%15llu\n" + " %15llu%15llu\n", "count", "real total", "virtual total", "delay total", t->cpu_count, t->cpu_run_real_total, t->cpu_run_virtual_total, t->cpu_delay_total, diff --git a/Documentation/block/barrier.txt b/Documentation/block/barrier.txt index 7d279f2f5bb2..2c2f24f634e4 100644 --- a/Documentation/block/barrier.txt +++ b/Documentation/block/barrier.txt @@ -79,9 +79,9 @@ and how to prepare flush requests. Note that the term 'ordered' is used to indicate the whole sequence of performing barrier requests including draining and flushing. -typedef void (prepare_flush_fn)(request_queue_t *q, struct request *rq); +typedef void (prepare_flush_fn)(struct request_queue *q, struct request *rq); -int blk_queue_ordered(request_queue_t *q, unsigned ordered, +int blk_queue_ordered(struct request_queue *q, unsigned ordered, prepare_flush_fn *prepare_flush_fn); @q : the queue in question @@ -92,7 +92,7 @@ int blk_queue_ordered(request_queue_t *q, unsigned ordered, For example, SCSI disk driver's prepare_flush_fn looks like the following. -static void sd_prepare_flush(request_queue_t *q, struct request *rq) +static void sd_prepare_flush(struct request_queue *q, struct request *rq) { memset(rq->cmd, 0, sizeof(rq->cmd)); rq->cmd_type = REQ_TYPE_BLOCK_PC; diff --git a/Documentation/block/biodoc.txt b/Documentation/block/biodoc.txt index 3adaace328a6..8af392fc6ef0 100644 --- a/Documentation/block/biodoc.txt +++ b/Documentation/block/biodoc.txt @@ -740,12 +740,12 @@ Block now offers some simple generic functionality to help support command queueing (typically known as tagged command queueing), ie manage more than one outstanding command on a queue at any given time. - blk_queue_init_tags(request_queue_t *q, int depth) + blk_queue_init_tags(struct request_queue *q, int depth) Initialize internal command tagging structures for a maximum depth of 'depth'. - blk_queue_free_tags((request_queue_t *q) + blk_queue_free_tags((struct request_queue *q) Teardown tag info associated with the queue. This will be done automatically by block if blk_queue_cleanup() is called on a queue @@ -754,7 +754,7 @@ one outstanding command on a queue at any given time. The above are initialization and exit management, the main helpers during normal operations are: - blk_queue_start_tag(request_queue_t *q, struct request *rq) + blk_queue_start_tag(struct request_queue *q, struct request *rq) Start tagged operation for this request. A free tag number between 0 and 'depth' is assigned to the request (rq->tag holds this number), @@ -762,7 +762,7 @@ normal operations are: for this queue is already achieved (or if the tag wasn't started for some other reason), 1 is returned. Otherwise 0 is returned. - blk_queue_end_tag(request_queue_t *q, struct request *rq) + blk_queue_end_tag(struct request_queue *q, struct request *rq) End tagged operation on this request. 'rq' is removed from the internal book keeping structures. @@ -781,7 +781,7 @@ queue. For instance, on IDE any tagged request error needs to clear both the hardware and software block queue and enable the driver to sanely restart all the outstanding requests. There's a third helper to do that: - blk_queue_invalidate_tags(request_queue_t *q) + blk_queue_invalidate_tags(struct request_queue *q) Clear the internal block tag queue and re-add all the pending requests to the request queue. The driver will receive them again on the diff --git a/Documentation/block/request.txt b/Documentation/block/request.txt index 75924e2a6975..fff58acb40a3 100644 --- a/Documentation/block/request.txt +++ b/Documentation/block/request.txt @@ -83,6 +83,6 @@ struct bio *bio DBI First bio in request struct bio *biotail DBI Last bio in request -request_queue_t *q DB Request queue this request belongs to +struct request_queue *q DB Request queue this request belongs to struct request_list *rl B Request list this request came from diff --git a/Documentation/dontdiff b/Documentation/dontdiff index 595a5ea4c690..7b9551fc6fe3 100644 --- a/Documentation/dontdiff +++ b/Documentation/dontdiff @@ -18,6 +18,7 @@ *.moc *.mod.c *.o +*.o.* *.orig *.out *.pdf @@ -163,6 +164,8 @@ raid6tables.c relocs series setup +setup.bin +setup.elf sim710_d.h* sImage sm_tbl* diff --git a/Documentation/dvb/get_dvb_firmware b/Documentation/dvb/get_dvb_firmware index b4d306ae9234..f2e908d7f90d 100644 --- a/Documentation/dvb/get_dvb_firmware +++ b/Documentation/dvb/get_dvb_firmware @@ -111,21 +111,21 @@ sub tda10045 { } sub tda10046 { - my $sourcefile = "tt_budget_217g.zip"; - my $url = "http://www.technotrend.de/new/217g/$sourcefile"; - my $hash = "6a7e1e2f2644b162ff0502367553c72d"; - my $outfile = "dvb-fe-tda10046.fw"; - my $tmpdir = tempdir(DIR => "/tmp", CLEANUP => 1); + my $sourcefile = "TT_PCI_2.19h_28_11_2006.zip"; + my $url = "http://technotrend-online.com/download/software/219/$sourcefile"; + my $hash = "6a7e1e2f2644b162ff0502367553c72d"; + my $outfile = "dvb-fe-tda10046.fw"; + my $tmpdir = tempdir(DIR => "/tmp", CLEANUP => 1); - checkstandard(); + checkstandard(); - wgetfile($sourcefile, $url); - unzip($sourcefile, $tmpdir); - extract("$tmpdir/software/OEM/PCI/App/ttlcdacc.dll", 0x3f731, 24478, "$tmpdir/fwtmp"); - verify("$tmpdir/fwtmp", $hash); - copy("$tmpdir/fwtmp", $outfile); + wgetfile($sourcefile, $url); + unzip($sourcefile, $tmpdir); + extract("$tmpdir/TT_PCI_2.19h_28_11_2006/software/OEM/PCI/App/ttlcdacc.dll", 0x65389, 24478, "$tmpdir/fwtmp"); + verify("$tmpdir/fwtmp", $hash); + copy("$tmpdir/fwtmp", $outfile); - $outfile; + $outfile; } sub tda10046lifeview { diff --git a/Documentation/fb/pvr2fb.txt b/Documentation/fb/pvr2fb.txt index 2bf6c2321c2d..36bdeff585e2 100644 --- a/Documentation/fb/pvr2fb.txt +++ b/Documentation/fb/pvr2fb.txt @@ -9,14 +9,13 @@ one found in the Dreamcast. Advantages: * It provides a nice large console (128 cols + 48 lines with 1024x768) - without using tiny, unreadable fonts. + without using tiny, unreadable fonts (NOT on the Dreamcast) * You can run XF86_FBDev on top of /dev/fb0 * Most important: boot logo :-) Disadvantages: - * Driver is currently limited to the Dreamcast PowerVR 2 implementation - at the time of this writing. + * Driver is largely untested on non-Dreamcast systems. Configuration ============= @@ -29,11 +28,16 @@ Accepted options: font:X - default font to use. All fonts are supported, including the SUN12x22 font which is very nice at high resolutions. -mode:X - default video mode. The following video modes are supported: - 640x240-60, 640x480-60. +mode:X - default video mode with format [xres]x[yres]-@ + The following video modes are supported: + 640x640-16@60, 640x480-24@60, 640x480-32@60. The Dreamcast + defaults to 640x480-16@60. At the time of writing the + 24bpp and 32bpp modes function poorly. Work to fix that is + ongoing + Note: the 640x240 mode is currently broken, and should not be - used for any reason. It is only mentioned as a reference. + used for any reason. It is only mentioned here as a reference. inverse - invert colors on screen (for LCD displays) @@ -52,10 +56,10 @@ output:X - output type. This can be any of the following: pal, ntsc, and X11 === -XF86_FBDev should work, in theory. At the time of this writing it is -totally untested and may or may not even portray the beginnings of -working. If you end up testing this, please let me know! +XF86_FBDev has been shown to work on the Dreamcast in the past - though not yet +on any 2.6 series kernel. -- Paul Mundt +Updated by Adrian McMenamin diff --git a/Documentation/feature-removal-schedule.txt b/Documentation/feature-removal-schedule.txt index c175eedadb5f..b9a3fdc1cc5a 100644 --- a/Documentation/feature-removal-schedule.txt +++ b/Documentation/feature-removal-schedule.txt @@ -197,6 +197,14 @@ Who: Len Brown --------------------------- +What: /proc/acpi/event +When: February 2008 +Why: /proc/acpi/event has been replaced by events via the input layer + and netlink since 2.6.23. +Who: Len Brown + +--------------------------- + What: Compaq touchscreen device emulation When: Oct 2007 Files: drivers/input/tsdev.c @@ -211,22 +219,6 @@ Who: Richard Purdie --------------------------- -What: read_dev_chars(), read_conf_data{,_lpm}() (s390 common I/O layer) -When: December 2007 -Why: These functions are a leftover from 2.4 times. They have several - problems: - - Duplication of checks that are done in the device driver's - interrupt handler - - common I/O layer can't do device specific error recovery - - device driver can't be notified for conditions happening during - execution of the function - Device drivers should issue the read device characteristics and read - configuration data ccws and do the appropriate error handling - themselves. -Who: Cornelia Huck - ---------------------------- - What: i2c-ixp2000, i2c-ixp4xx and scx200_i2c drivers When: September 2007 Why: Obsolete. The new i2c-gpio driver replaces all hardware-specific diff --git a/Documentation/filesystems/9p.txt b/Documentation/filesystems/9p.txt index bbd8b28c13de..cda6905cbe49 100644 --- a/Documentation/filesystems/9p.txt +++ b/Documentation/filesystems/9p.txt @@ -6,12 +6,26 @@ ABOUT v9fs is a Unix implementation of the Plan 9 9p remote filesystem protocol. -This software was originally developed by Ron Minnich -and Maya Gokhale . Additional development by Greg Watson +This software was originally developed by Ron Minnich +and Maya Gokhale. Additional development by Greg Watson and most recently Eric Van Hensbergen , Latchesar Ionkov and Russ Cox . +The best detailed explanation of the Linux implementation and applications of +the 9p client is available in the form of a USENIX paper: + http://www.usenix.org/events/usenix05/tech/freenix/hensbergen.html + +Other applications are described in the following papers: + * XCPU & Clustering + http://www.xcpu.org/xcpu-talk.pdf + * KVMFS: control file system for KVM + http://www.xcpu.org/kvmfs.pdf + * CellFS: A New ProgrammingModel for the Cell BE + http://www.xcpu.org/cellfs-talk.pdf + * PROSE I/O: Using 9p to enable Application Partitions + http://plan9.escet.urjc.es/iwp9/cready/PROSE_iwp9_2006.pdf + USAGE ===== @@ -90,9 +104,9 @@ subset of the namespace by extending the path: '#U*'/tmp would just export and export. A Linux version of the 9p server is now maintained under the npfs project -on sourceforge (http://sourceforge.net/projects/npfs). There is also a -more stable single-threaded version of the server (named spfs) available from -the same CVS repository. +on sourceforge (http://sourceforge.net/projects/npfs). The currently +maintained version is the single-threaded version of the server (named spfs) +available from the same CVS repository. There are user and developer mailing lists available through the v9fs project on sourceforge (http://sourceforge.net/projects/v9fs). diff --git a/Documentation/filesystems/hfsplus.txt b/Documentation/filesystems/hfsplus.txt new file mode 100644 index 000000000000..af1628a1061c --- /dev/null +++ b/Documentation/filesystems/hfsplus.txt @@ -0,0 +1,59 @@ + +Macintosh HFSPlus Filesystem for Linux +====================================== + +HFSPlus is a filesystem first introduced in MacOS 8.1. +HFSPlus has several extensions to HFS, including 32-bit allocation +blocks, 255-character unicode filenames, and file sizes of 2^63 bytes. + + +Mount options +============= + +When mounting an HFSPlus filesystem, the following options are accepted: + + creator=cccc, type=cccc + Specifies the creator/type values as shown by the MacOS finder + used for creating new files. Default values: '????'. + + uid=n, gid=n + Specifies the user/group that owns all files on the filesystem + that have uninitialized permissions structures. + Default: user/group id of the mounting process. + + umask=n + Specifies the umask (in octal) used for files and directories + that have uninitialized permissions structures. + Default: umask of the mounting process. + + session=n + Select the CDROM session to mount as HFSPlus filesystem. Defaults to + leaving that decision to the CDROM driver. This option will fail + with anything but a CDROM as underlying devices. + + part=n + Select partition number n from the devices. This option only makes + sense for CDROMs because they can't be partitioned under Linux. + For disk devices the generic partition parsing code does this + for us. Defaults to not parsing the partition table at all. + + decompose + Decompose file name characters. + + nodecompose + Do not decompose file name characters. + + force + Used to force write access to volumes that are marked as journalled + or locked. Use at your own risk. + + nls=cccc + Encoding to use when presenting file names. + + +References +========== + +kernel source: + +Apple Technote 1150 http://developer.apple.com/technotes/tn/tn1150.html diff --git a/Documentation/gpio.txt b/Documentation/gpio.txt index 218a8650f48d..6bc2ba215df9 100644 --- a/Documentation/gpio.txt +++ b/Documentation/gpio.txt @@ -148,7 +148,7 @@ pin ... that won't always match the specified output value, because of issues including wire-OR and output latencies. The get/set calls have no error returns because "invalid GPIO" should have -been reported earlier in gpio_set_direction(). However, note that not all +been reported earlier from gpio_direction_*(). However, note that not all platforms can read the value of output pins; those that can't should always return zero. Also, using these calls for GPIOs that can't safely be accessed without sleeping (see below) is an error. @@ -239,7 +239,7 @@ map between them using calls like: Those return either the corresponding number in the other namespace, or else a negative errno code if the mapping can't be done. (For example, some GPIOs can't used as IRQs.) It is an unchecked error to use a GPIO -number that hasn't been marked as an input using gpio_set_direction(), or +number that wasn't set up as an input using gpio_direction_input(), or to use an IRQ number that didn't originally come from gpio_to_irq(). These two mapping calls are expected to cost on the order of a single diff --git a/Documentation/hpet.txt b/Documentation/hpet.txt index b7a3dc38dd52..6ad52d9dad6c 100644 --- a/Documentation/hpet.txt +++ b/Documentation/hpet.txt @@ -5,7 +5,7 @@ for the 8254 and Real Time Clock (RTC) periodic timer functionality. Each HPET can have up to 32 timers. It is possible to configure the first two timers as legacy replacements for 8254 and RTC periodic timers. A specification done by Intel and Microsoft can be found at -. +. The driver supports detection of HPET driver allocation and initialization of the HPET before the driver module_init routine is called. This enables diff --git a/Documentation/hwmon/adm1031 b/Documentation/hwmon/adm1031 index 130a38382b98..be92a77da1d5 100644 --- a/Documentation/hwmon/adm1031 +++ b/Documentation/hwmon/adm1031 @@ -6,13 +6,13 @@ Supported chips: Prefix: 'adm1030' Addresses scanned: I2C 0x2c to 0x2e Datasheet: Publicly available at the Analog Devices website - http://products.analog.com/products/info.asp?product=ADM1030 + http://www.analog.com/en/prod/0%2C2877%2CADM1030%2C00.html * Analog Devices ADM1031 Prefix: 'adm1031' Addresses scanned: I2C 0x2c to 0x2e Datasheet: Publicly available at the Analog Devices website - http://products.analog.com/products/info.asp?product=ADM1031 + http://www.analog.com/en/prod/0%2C2877%2CADM1031%2C00.html Authors: Alexandre d'Alton diff --git a/Documentation/hwmon/thmc50 b/Documentation/hwmon/thmc50 new file mode 100644 index 000000000000..9639ca93d559 --- /dev/null +++ b/Documentation/hwmon/thmc50 @@ -0,0 +1,74 @@ +Kernel driver thmc50 +===================== + +Supported chips: + * Analog Devices ADM1022 + Prefix: 'adm1022' + Addresses scanned: I2C 0x2c - 0x2e + Datasheet: http://www.analog.com/en/prod/0,2877,ADM1022,00.html + * Texas Instruments THMC50 + Prefix: 'thmc50' + Addresses scanned: I2C 0x2c - 0x2e + Datasheet: http://focus.ti.com/docs/prod/folders/print/thmc50.html + +Author: Krzysztof Helt + +This driver was derived from the 2.4 kernel thmc50.c source file. + +Credits: + thmc50.c (2.4 kernel): + Frodo Looijaard + Philip Edelbrock + +Module Parameters +----------------- + +* adm1022_temp3: short array + List of adapter,address pairs to force chips into ADM1022 mode with + second remote temperature. This does not work for original THMC50 chips. + +Description +----------- + +The THMC50 implements: an internal temperature sensor, support for an +external diode-type temperature sensor (compatible w/ the diode sensor inside +many processors), and a controllable fan/analog_out DAC. For the temperature +sensors, limits can be set through the appropriate Overtemperature Shutdown +register and Hysteresis register. Each value can be set and read to half-degree +accuracy. An alarm is issued (usually to a connected LM78) when the +temperature gets higher then the Overtemperature Shutdown value; it stays on +until the temperature falls below the Hysteresis value. All temperatures are in +degrees Celsius, and are guaranteed within a range of -55 to +125 degrees. + +The THMC50 only updates its values each 1.5 seconds; reading it more often +will do no harm, but will return 'old' values. + +The THMC50 is usually used in combination with LM78-like chips, to measure +the temperature of the processor(s). + +The ADM1022 works the same as THMC50 but it is faster (5 Hz instead of +1 Hz for THMC50). It can be also put in a new mode to handle additional +remote temperature sensor. The driver use the mode set by BIOS by default. + +In case the BIOS is broken and the mode is set incorrectly, you can force +the mode with additional remote temperature with adm1022_temp3 parameter. +A typical symptom of wrong setting is a fan forced to full speed. + +Driver Features +--------------- + +The driver provides up to three temperatures: + +temp1 -- internal +temp2 -- remote +temp3 -- 2nd remote only for ADM1022 + +pwm1 -- fan speed (0 = stop, 255 = full) +pwm1_mode -- always 0 (DC mode) + +The value of 0 for pwm1 also forces FAN_OFF signal from the chip, +so it stops fans even if the value 0 into the ANALOG_OUT register does not. + +The driver was tested on Compaq AP550 with two ADM1022 chips (one works +in the temp3 mode), five temperature readings and two fans. + diff --git a/Documentation/i386/zero-page.txt b/Documentation/i386/zero-page.txt index 75b3680c41eb..6c0817c45683 100644 --- a/Documentation/i386/zero-page.txt +++ b/Documentation/i386/zero-page.txt @@ -1,3 +1,13 @@ +--------------------------------------------------------------------------- +!!!!!!!!!!!!!!!WARNING!!!!!!!! +The zero page is a kernel internal data structure, not a stable ABI. It might change +without warning and the kernel has no way to detect old version of it. +If you're writing some external code like a boot loader you should only use +the stable versioned real mode boot protocol described in boot.txt. Otherwise the kernel +might break you at any time. +!!!!!!!!!!!!!WARNING!!!!!!!!!!! +---------------------------------------------------------------------------- + Summary of boot_params layout (kernel point of view) ( collected by Hans Lermen and Martin Mares ) diff --git a/Documentation/iostats.txt b/Documentation/iostats.txt index 09a1bafe2528..b963c3b4afa5 100644 --- a/Documentation/iostats.txt +++ b/Documentation/iostats.txt @@ -79,7 +79,7 @@ Field 8 -- # of milliseconds spent writing measured from __make_request() to end_that_request_last()). Field 9 -- # of I/Os currently in progress The only field that should go to zero. Incremented as requests are - given to appropriate request_queue_t and decremented as they finish. + given to appropriate struct request_queue and decremented as they finish. Field 10 -- # of milliseconds spent doing I/Os This field is increases so long as field 9 is nonzero. Field 11 -- weighted # of milliseconds spent doing I/Os diff --git a/Documentation/ja_JP/HOWTO b/Documentation/ja_JP/HOWTO index b2446a090870..9f08dab1e75b 100644 --- a/Documentation/ja_JP/HOWTO +++ b/Documentation/ja_JP/HOWTO @@ -1,23 +1,24 @@ -NOTE: -This is Japanese translated version of "Documentation/HOWTO". -This one is maintained by Tsugikazu Shibata -and JF Project team . -If you find difference with original file or problem in translation, -please contact maintainer of this file or JF project. - -Please also note that purpose of this file is easier to read for non -English natives and not to be intended to fork. So, if you have any -comments or updates of this file, please try to update Original(English) -file at first. - -Last Updated: 2007/06/04 +NOTE: +This is a version of Documentation/HOWTO translated into Japanese. +This document is maintained by Tsugikazu Shibata +and the JF Project team . +If you find any difference between this document and the original file +or a problem with the translation, +please contact the maintainer of this file or JF project. + +Please also note that the purpose of this file is to be easier to read +for non English (read: Japanese) speakers and is not intended as a +fork. So if you have any comments or updates for this file, please try +to update the original English file first. + +Last Updated: 2007/07/18 ================================== これは、 -linux-2.6.21/Documentation/HOWTO +linux-2.6.22/Documentation/HOWTO の和訳です。 翻訳団体: JF プロジェクト < http://www.linux.or.jp/JF/ > -翻訳日: 2007/06/04 +翻訳日: 2007/07/16 翻訳者: Tsugikazu Shibata 校正者: 松倉さん 小林 雅典さん (Masanori Kobayasi) @@ -52,6 +53,7 @@ Linux カーネル開発コミュニティと共に活動するやり方を学 また、このコミュニティがなぜ今うまくまわっているのかという理由の一部も 説明しようと試みています。 + カーネルは 少量のアーキテクチャ依存部分がアセンブリ言語で書かれている 以外は大部分は C 言語で書かれています。C言語をよく理解していることはカー ネル開発者には必要です。アーキテクチャ向けの低レベル部分の開発をするの @@ -141,6 +143,7 @@ Linux カーネルソースツリーは幅広い範囲のドキュメントを これらのルールに従えばうまくいくことを保証することではありません が (すべてのパッチは内容とスタイルについて精査を受けるので)、 ルールに従わなければ間違いなくうまくいかないでしょう。 + この他にパッチを作る方法についてのよくできた記述は- "The Perfect Patch" @@ -360,44 +363,42 @@ linux-kernel メーリングリストで収集された多数のパッチと同 git ツリー- - Kbuild の開発ツリー、Sam Ravnborg - kernel.org:/pub/scm/linux/kernel/git/sam/kbuild.git + git.kernel.org:/pub/scm/linux/kernel/git/sam/kbuild.git - ACPI の開発ツリー、 Len Brown - kernel.org:/pub/scm/linux/kernel/git/lenb/linux-acpi-2.6.git + git.kernel.org:/pub/scm/linux/kernel/git/lenb/linux-acpi-2.6.git - Block の開発ツリー、Jens Axboe - kernel.org:/pub/scm/linux/kernel/git/axboe/linux-2.6-block.git + git.kernel.org:/pub/scm/linux/kernel/git/axboe/linux-2.6-block.git - DRM の開発ツリー、Dave Airlie - kernel.org:/pub/scm/linux/kernel/git/airlied/drm-2.6.git + git.kernel.org:/pub/scm/linux/kernel/git/airlied/drm-2.6.git - ia64 の開発ツリー、Tony Luck - kernel.org:/pub/scm/linux/kernel/git/aegl/linux-2.6.git - - - ieee1394 の開発ツリー、Jody McIntyre - kernel.org:/pub/scm/linux/kernel/git/scjody/ieee1394.git + git.kernel.org:/pub/scm/linux/kernel/git/aegl/linux-2.6.git - infiniband, Roland Dreier - kernel.org:/pub/scm/linux/kernel/git/roland/infiniband.git + git.kernel.org:/pub/scm/linux/kernel/git/roland/infiniband.git - libata, Jeff Garzik - kernel.org:/pub/scm/linux/kernel/git/jgarzik/libata-dev.git + git.kernel.org:/pub/scm/linux/kernel/git/jgarzik/libata-dev.git - ネットワークドライバ, Jeff Garzik - kernel.org:/pub/scm/linux/kernel/git/jgarzik/netdev-2.6.git + git.kernel.org:/pub/scm/linux/kernel/git/jgarzik/netdev-2.6.git - pcmcia, Dominik Brodowski - kernel.org:/pub/scm/linux/kernel/git/brodo/pcmcia-2.6.git + git.kernel.org:/pub/scm/linux/kernel/git/brodo/pcmcia-2.6.git - SCSI, James Bottomley - kernel.org:/pub/scm/linux/kernel/git/jejb/scsi-misc-2.6.git - - その他の git カーネルツリーは http://kernel.org/git に一覧表がありま - す。 + git.kernel.org:/pub/scm/linux/kernel/git/jejb/scsi-misc-2.6.git quilt ツリー- - USB, PCI ドライバコアと I2C, Greg Kroah-Hartman kernel.org/pub/linux/kernel/people/gregkh/gregkh-2.6/ + - x86-64 と i386 の仲間 Andi Kleen + + その他のカーネルツリーは http://git.kernel.org/ と MAINTAINERS ファ + イルに一覧表があります。 バグレポート ------------- @@ -508,6 +509,7 @@ MAINTAINERS ファイルにリストがありますので参照してくださ せん*。単に自分のパッチに対して指摘された問題を全て修正して再送すれば いいのです。 + カーネルコミュニティと企業組織のちがい ----------------------------------------------------------------- @@ -577,6 +579,7 @@ Linux カーネルコミュニティは、一度に大量のコードの塊を かし、500行のパッチは、正しいことをレビューするのに数時間かかるかも しれません(時間はパッチのサイズなどにより指数関数に比例してかかりま す) + 小さいパッチは何かあったときにデバッグもとても簡単になります。パッ チを1個1個取り除くのは、とても大きなパッチを当てた後に(かつ、何かお かしくなった後で)解剖するのに比べればとても簡単です。 @@ -591,6 +594,7 @@ Linux カーネルコミュニティは、一度に大量のコードの塊を う。先生は簡潔な最高の解をみたいのです。良い生徒はこれを知って おり、そして最終解の前の中間作業を提出することは決してないので す" + カーネル開発でもこれは同じです。メンテナー達とレビューア達は、 問題を解決する解の背後になる思考プロセスをみたいとは思いません。 彼らは単純であざやかな解決方法をみたいのです。 diff --git a/Documentation/ja_JP/stable_api_nonsense.txt b/Documentation/ja_JP/stable_api_nonsense.txt index b3f2b27f0881..7653b5cbfed2 100644 --- a/Documentation/ja_JP/stable_api_nonsense.txt +++ b/Documentation/ja_JP/stable_api_nonsense.txt @@ -1,17 +1,17 @@ NOTE: -This is a Japanese translated version of -"Documentation/stable_api_nonsense.txt". -This one is maintained by -IKEDA, Munehiro -and JF Project team . -If you find difference with original file or problem in translation, +This is a version of Documentation/stable_api_nonsense.txt into Japanese. +This document is maintained by IKEDA, Munehiro +and the JF Project team . +If you find any difference between this document and the original file +or a problem with the translation, please contact the maintainer of this file or JF project. -Please also note that purpose of this file is easier to read for non -English natives and not to be intended to fork. So, if you have any -comments or updates of this file, please try to update -Original(English) file at first. +Please also note that the purpose of this file is to be easier to read +for non English (read: Japanese) speakers and is not intended as a +fork. So if you have any comments or updates of this file, please try +to update the original English file first. +Last Updated: 2007/07/18 ================================== これは、 linux-2.6.22-rc4/Documentation/stable_api_nonsense.txt の和訳 diff --git a/Documentation/kbuild/kconfig-language.txt b/Documentation/kbuild/kconfig-language.txt index 536d5bfbdb8d..fe8b0c4892cf 100644 --- a/Documentation/kbuild/kconfig-language.txt +++ b/Documentation/kbuild/kconfig-language.txt @@ -98,6 +98,15 @@ applicable everywhere (see syntax). times, the limit is set to the largest selection. Reverse dependencies can only be used with boolean or tristate symbols. + Note: + select is evil.... select will by brute force set a symbol + equal to 'y' without visiting the dependencies. So abusing + select you are able to select a symbol FOO even if FOO depends + on BAR that is not set. In general use select only for + non-visible symbols (no promts anywhere) and for symbols with + no dependencies. That will limit the usefulness but on the + other hand avoid the illegal configurations all over. kconfig + should one day warn about such things. - numerical ranges: "range" ["if" ] This allows to limit the range of possible input values for int diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt index fb80e9ffea68..b41cde31d112 100644 --- a/Documentation/kernel-parameters.txt +++ b/Documentation/kernel-parameters.txt @@ -30,6 +30,7 @@ the beginning of each description states the restrictions within which a parameter is applicable: ACPI ACPI support is enabled. + AGP AGP (Accelerated Graphics Port) is enabled. ALSA ALSA sound support is enabled. APIC APIC support is enabled. APM Advanced Power Management support is enabled. @@ -40,7 +41,6 @@ parameter is applicable: EIDE EIDE/ATAPI support is enabled. FB The frame buffer device is enabled. HW Appropriate hardware is enabled. - IA-32 IA-32 aka i386 architecture is enabled. IA-64 IA-64 architecture is enabled. IOSCHED More than one I/O scheduler is enabled. IP_PNP IP DHCP, BOOTP, or RARP is enabled. @@ -57,14 +57,14 @@ parameter is applicable: MDA MDA console support is enabled. MOUSE Appropriate mouse support is enabled. MSI Message Signaled Interrupts (PCI). - MTD MTD support is enabled. + MTD MTD (Memory Technology Device) support is enabled. NET Appropriate network support is enabled. NUMA NUMA support is enabled. GENERIC_TIME The generic timeofday code is enabled. NFS Appropriate NFS support is enabled. OSS OSS sound support is enabled. - PV_OPS A paravirtualized kernel - PARIDE The ParIDE subsystem is enabled. + PV_OPS A paravirtualized kernel is enabled. + PARIDE The ParIDE (parallel port IDE) subsystem is enabled. PARISC The PA-RISC architecture is enabled. PCI PCI bus support is enabled. PCMCIA The PCMCIA subsystem is enabled. @@ -91,6 +91,7 @@ parameter is applicable: VT Virtual terminal support is enabled. WDT Watchdog support is enabled. XT IBM PC/XT MFM hard disk support is enabled. + X86-32 X86-32, aka i386 architecture is enabled. X86-64 X86-64 architecture is enabled. More X86-64 boot options can be found in Documentation/x86_64/boot-options.txt . @@ -122,10 +123,6 @@ and is between 256 and 4096 characters. It is defined in the file ./include/asm/setup.h as COMMAND_LINE_SIZE. - 53c7xx= [HW,SCSI] Amiga SCSI controllers - See header of drivers/scsi/53c7xx.c. - See also Documentation/scsi/ncr53c7xx.txt. - acpi= [HW,ACPI,X86-64,i386] Advanced Configuration and Power Interface Format: { force | off | ht | strict | noirq } @@ -166,6 +163,8 @@ and is between 256 and 4096 characters. It is defined in the file acpi_irq_isa= [HW,ACPI] If irq_balance, mark listed IRQs used by ISA Format: ,... + acpi_no_auto_ssdt [HW,ACPI] Disable automatic loading of SSDT + acpi_os_name= [HW,ACPI] Tell ACPI BIOS the name of the OS Format: To spoof as Windows 98: ="Microsoft Windows" @@ -222,11 +221,17 @@ and is between 256 and 4096 characters. It is defined in the file acpi_fake_ecdt [HW,ACPI] Workaround failure due to BIOS lacking ECDT - acpi_pm_good [IA-32,X86-64] + acpi_pm_good [X86-32,X86-64] Override the pmtimer bug detection: force the kernel to assume that this machine's pmtimer latches its value and always returns good values. + agp= [AGP] + { off | try_unsupported } + off: disable AGP support + try_unsupported: try to drive unsupported chipsets + (may crash computer or cause data corruption) + enable_timer_pin_1 [i386,x86-64] Enable PIN 1 of APIC timer Can be useful to work around chipset bugs @@ -279,7 +284,8 @@ and is between 256 and 4096 characters. It is defined in the file not play well with APC CPU idle - disable it if you have APC and your system crashes randomly. - apic= [APIC,i386] Change the output verbosity whilst booting + apic= [APIC,i386] Advanced Programmable Interrupt Controller + Change the output verbosity whilst booting Format: { quiet (default) | verbose | debug } Change the amount of debugging information output when initialising the APIC and IO-APIC components. @@ -353,7 +359,7 @@ and is between 256 and 4096 characters. It is defined in the file c101= [NET] Moxa C101 synchronous serial card - cachesize= [BUGS=IA-32] Override level 2 CPU cache size detection. + cachesize= [BUGS=X86-32] Override level 2 CPU cache size detection. Sometimes CPU hardware bugs make them report the cache size incorrectly. The kernel will attempt work arounds to fix known problems, but for some CPUs it is not @@ -372,7 +378,7 @@ and is between 256 and 4096 characters. It is defined in the file Value can be changed at runtime via /selinux/checkreqprot. - clock= [BUGS=IA-32, HW] gettimeofday clocksource override. + clock= [BUGS=X86-32, HW] gettimeofday clocksource override. [Deprecated] Forces specified clocksource (if available) to be used when calculating gettimeofday(). If specified @@ -390,7 +396,7 @@ and is between 256 and 4096 characters. It is defined in the file [ARM] imx_timer1,OSTS,netx_timer,mpu_timer2, pxa_timer,timer3,32k_counter,timer0_1 [AVR32] avr32 - [IA-32] pit,hpet,tsc,vmi-timer; + [X86-32] pit,hpet,tsc,vmi-timer; scx200_hrt on Geode; cyclone on IBM x440 [MIPS] MIPS [PARISC] cr16 @@ -410,7 +416,7 @@ and is between 256 and 4096 characters. It is defined in the file over the 8254 in addition to over the IO-APIC. The kernel tries to set a sensible default. - hpet= [IA-32,HPET] option to disable HPET and use PIT. + hpet= [X86-32,HPET] option to disable HPET and use PIT. Format: disable com20020= [HW,NET] ARCnet - COM20020 chipset @@ -547,7 +553,7 @@ and is between 256 and 4096 characters. It is defined in the file dtc3181e= [HW,SCSI] - earlyprintk= [IA-32,X86-64,SH] + earlyprintk= [X86-32,X86-64,SH] earlyprintk=vga earlyprintk=serial[,ttySn[,baudrate]] @@ -585,7 +591,7 @@ and is between 256 and 4096 characters. It is defined in the file eisa_irq_edge= [PARISC,HW] See header of drivers/parisc/eisa.c. - elanfreq= [IA-32] + elanfreq= [X86-32] See comment before function elanfreq_setup() in arch/i386/kernel/cpu/cpufreq/elanfreq.c. @@ -594,7 +600,7 @@ and is between 256 and 4096 characters. It is defined in the file See Documentation/block/as-iosched.txt and Documentation/block/deadline-iosched.txt for details. - elfcorehdr= [IA-32, X86_64] + elfcorehdr= [X86-32, X86_64] Specifies physical address of start of kernel core image elf header. Generally kexec loader will pass this option to capture kernel. @@ -676,7 +682,7 @@ and is between 256 and 4096 characters. It is defined in the file hisax= [HW,ISDN] See Documentation/isdn/README.HiSax. - hugepages= [HW,IA-32,IA-64] Maximal number of HugeTLB pages. + hugepages= [HW,X86-32,IA-64] Maximal number of HugeTLB pages. i8042.direct [HW] Put keyboard port into non-translated mode i8042.dumbkbd [HW] Pretend that controller can only read data from @@ -768,7 +774,8 @@ and is between 256 and 4096 characters. It is defined in the file See Documentation/nfsroot.txt. ip2= [HW] Set IO/IRQ pairs for up to 4 IntelliPort boards - See comment before ip2_setup() in drivers/char/ip2.c. + See comment before ip2_setup() in + drivers/char/ip2/ip2base.c. ips= [HW,SCSI] Adaptec / IBM ServeRAID controller See header of drivers/scsi/ips.c. @@ -817,7 +824,7 @@ and is between 256 and 4096 characters. It is defined in the file js= [HW,JOY] Analog joystick See Documentation/input/joystick.txt. - kernelcore=nn[KMG] [KNL,IA-32,IA-64,PPC,X86-64] This parameter + kernelcore=nn[KMG] [KNL,X86-32,IA-64,PPC,X86-64] This parameter specifies the amount of memory usable by the kernel for non-movable allocations. The requested amount is spread evenly throughout all nodes in the system. The @@ -833,7 +840,7 @@ and is between 256 and 4096 characters. It is defined in the file use the HighMem zone if it exists, and the Normal zone if it does not. - movablecore=nn[KMG] [KNL,IA-32,IA-64,PPC,X86-64] This parameter + movablecore=nn[KMG] [KNL,X86-32,IA-64,PPC,X86-64] This parameter is similar to kernelcore except it specifies the amount of memory used for migratable allocations. If both kernelcore and movablecore is specified, @@ -845,28 +852,20 @@ and is between 256 and 4096 characters. It is defined in the file keepinitrd [HW,ARM] - kstack=N [IA-32,X86-64] Print N words from the kernel stack + kstack=N [X86-32,X86-64] Print N words from the kernel stack in oops dumps. l2cr= [PPC] - lapic [IA-32,APIC] Enable the local APIC even if BIOS + lapic [X86-32,APIC] Enable the local APIC even if BIOS disabled it. - lapic_timer_c2_ok [IA-32,x86-64,APIC] trust the local apic timer in + lapic_timer_c2_ok [X86-32,x86-64,APIC] trust the local apic timer in C2 power state. lasi= [HW,SCSI] PARISC LASI driver for the 53c700 chip Format: addr:,irq: - legacy_serial.force [HW,IA-32,X86-64] - Probe for COM ports at legacy addresses even - if PNPBIOS or ACPI should describe them. This - is for working around firmware defects. - - llsc*= [IA64] See function print_params() in - arch/ia64/sn/kernel/llsc4.c. - load_ramdisk= [RAM] List of ramdisks to load from floppy See Documentation/ramdisk.txt. @@ -953,14 +952,10 @@ and is between 256 and 4096 characters. It is defined in the file Format: <1-256> maxcpus= [SMP] Maximum number of processors that an SMP kernel - should make use of. - Using "nosmp" or "maxcpus=0" will disable SMP - entirely (the MPS table probe still happens, though). - A command-line option of "maxcpus=", where - is an integer greater than 0, limits the maximum number - of CPUs activated in SMP mode to . - Using "maxcpus=1" on an SMP kernel is the trivial - case of an SMP kernel with only one CPU. + should make use of. maxcpus=n : n >= 0 limits the + kernel to using 'n' processors. n=0 is a special case, + it is equivalent to "nosmp", which also disables + the IO APIC. max_addr=[KMG] [KNL,BOOT,ia64] All physical memory greater than or equal to this physical address is ignored. @@ -972,11 +967,11 @@ and is between 256 and 4096 characters. It is defined in the file [SCSI] Maximum number of LUNs received. Should be between 1 and 16384. - mca-pentium [BUGS=IA-32] + mca-pentium [BUGS=X86-32] mcatest= [IA-64] - mce [IA-32] Machine Check Exception + mce [X86-32] Machine Check Exception md= [HW] RAID subsystems devices and level See Documentation/md.txt. @@ -988,14 +983,14 @@ and is between 256 and 4096 characters. It is defined in the file mem=nn[KMG] [KNL,BOOT] Force usage of a specific amount of memory Amount of memory to be used when the kernel is not able to see the whole system memory or for test. - [IA-32] Use together with memmap= to avoid physical + [X86-32] Use together with memmap= to avoid physical address space collisions. Without memmap= PCI devices could be placed at addresses belonging to unused RAM. - mem=nopentium [BUGS=IA-32] Disable usage of 4MB pages for kernel + mem=nopentium [BUGS=X86-32] Disable usage of 4MB pages for kernel memory. - memmap=exactmap [KNL,IA-32,X86_64] Enable setting of an exact + memmap=exactmap [KNL,X86-32,X86_64] Enable setting of an exact E820 memory map, as specified by the user. Such memmap=exactmap lines can be constructed based on BIOS output or other requirements. See the memmap=nn@ss @@ -1039,7 +1034,7 @@ and is between 256 and 4096 characters. It is defined in the file ,[,,,,] mtdparts= [MTD] - See drivers/mtd/cmdline.c. + See drivers/mtd/cmdlinepart.c. mtouchusb.raw_coordinates= [HW] Make the MicroTouch USB driver use raw coordinates @@ -1081,9 +1076,9 @@ and is between 256 and 4096 characters. It is defined in the file [NFS] set the maximum lifetime for idmapper cache entries. - nmi_watchdog= [KNL,BUGS=IA-32] Debugging features for SMP kernels + nmi_watchdog= [KNL,BUGS=X86-32] Debugging features for SMP kernels - no387 [BUGS=IA-32] Tells the kernel to use the 387 maths + no387 [BUGS=X86-32] Tells the kernel to use the 387 maths emulation library even if a 387 maths coprocessor is present. @@ -1114,17 +1109,17 @@ and is between 256 and 4096 characters. It is defined in the file noexec [IA-64] - noexec [IA-32,X86-64] + noexec [X86-32,X86-64] noexec=on: enable non-executable mappings (default) noexec=off: disable nn-executable mappings - nofxsr [BUGS=IA-32] Disables x86 floating point extended + nofxsr [BUGS=X86-32] Disables x86 floating point extended register save and restore. The kernel will only save legacy floating-point registers on task switch. nohlt [BUGS=ARM] - no-hlt [BUGS=IA-32] Tells the kernel that the hlt + no-hlt [BUGS=X86-32] Tells the kernel that the hlt instruction doesn't work correctly and not to use it. @@ -1139,12 +1134,12 @@ and is between 256 and 4096 characters. It is defined in the file Valid arguments: on, off Default: on - noirqbalance [IA-32,SMP,KNL] Disable kernel irq balancing + noirqbalance [X86-32,SMP,KNL] Disable kernel irq balancing - noirqdebug [IA-32] Disables the code which attempts to detect and + noirqdebug [X86-32] Disables the code which attempts to detect and disable unhandled interrupt sources. - no_timer_check [IA-32,X86_64,APIC] Disables the code which tests for + no_timer_check [X86-32,X86_64,APIC] Disables the code which tests for broken timer IRQ sources. noisapnp [ISAPNP] Disables ISA PnP code. @@ -1156,20 +1151,20 @@ and is between 256 and 4096 characters. It is defined in the file nojitter [IA64] Disables jitter checking for ITC timers. - nolapic [IA-32,APIC] Do not enable or use the local APIC. + nolapic [X86-32,APIC] Do not enable or use the local APIC. - nolapic_timer [IA-32,APIC] Do not use the local APIC timer. + nolapic_timer [X86-32,APIC] Do not use the local APIC timer. noltlbs [PPC] Do not use large page/tlb entries for kernel lowmem mapping on PPC40x. nomca [IA-64] Disable machine check abort handling - nomce [IA-32] Machine Check Exception + nomce [X86-32] Machine Check Exception - noreplace-paravirt [IA-32,PV_OPS] Don't patch paravirt_ops + noreplace-paravirt [X86-32,PV_OPS] Don't patch paravirt_ops - noreplace-smp [IA-32,SMP] Don't replace SMP instructions + noreplace-smp [X86-32,SMP] Don't replace SMP instructions with UP alternatives noresidual [PPC] Don't use residual data on PReP machines. @@ -1183,15 +1178,16 @@ and is between 256 and 4096 characters. It is defined in the file nosbagart [IA-64] - nosep [BUGS=IA-32] Disables x86 SYSENTER/SYSEXIT support. + nosep [BUGS=X86-32] Disables x86 SYSENTER/SYSEXIT support. - nosmp [SMP] Tells an SMP kernel to act as a UP kernel. + nosmp [SMP] Tells an SMP kernel to act as a UP kernel, + and disable the IO APIC. legacy for "maxcpus=0". nosoftlockup [KNL] Disable the soft-lockup detector. nosync [HW,M68K] Disables sync negotiation for all devices. - notsc [BUGS=IA-32] Disable Time Stamp Counter + notsc [BUGS=X86-32] Disable Time Stamp Counter nousb [USB] Disable the USB subsystem @@ -1264,28 +1260,28 @@ and is between 256 and 4096 characters. It is defined in the file See also Documentation/paride.txt. pci=option[,option...] [PCI] various PCI subsystem options: - off [IA-32] don't probe for the PCI bus - bios [IA-32] force use of PCI BIOS, don't access + off [X86-32] don't probe for the PCI bus + bios [X86-32] force use of PCI BIOS, don't access the hardware directly. Use this if your machine has a non-standard PCI host bridge. - nobios [IA-32] disallow use of PCI BIOS, only direct + nobios [X86-32] disallow use of PCI BIOS, only direct hardware access methods are allowed. Use this if you experience crashes upon bootup and you suspect they are caused by the BIOS. - conf1 [IA-32] Force use of PCI Configuration + conf1 [X86-32] Force use of PCI Configuration Mechanism 1. - conf2 [IA-32] Force use of PCI Configuration + conf2 [X86-32] Force use of PCI Configuration Mechanism 2. - nommconf [IA-32,X86_64] Disable use of MMCONFIG for PCI + nommconf [X86-32,X86_64] Disable use of MMCONFIG for PCI Configuration nomsi [MSI] If the PCI_MSI kernel config parameter is enabled, this kernel boot option can be used to disable the use of MSI interrupts system-wide. - nosort [IA-32] Don't sort PCI devices according to + nosort [X86-32] Don't sort PCI devices according to order given by the PCI BIOS. This sorting is done to get a device order compatible with older kernels. - biosirq [IA-32] Use PCI BIOS calls to get the interrupt + biosirq [X86-32] Use PCI BIOS calls to get the interrupt routing table. These calls are known to be buggy on several machines and they hang the machine when used, but on other computers it's the only @@ -1293,32 +1289,32 @@ and is between 256 and 4096 characters. It is defined in the file this option if the kernel is unable to allocate IRQs or discover secondary PCI buses on your motherboard. - rom [IA-32] Assign address space to expansion ROMs. + rom [X86-32] Assign address space to expansion ROMs. Use with caution as certain devices share address decoders between ROMs and other resources. - irqmask=0xMMMM [IA-32] Set a bit mask of IRQs allowed to be + irqmask=0xMMMM [X86-32] Set a bit mask of IRQs allowed to be assigned automatically to PCI devices. You can make the kernel exclude IRQs of your ISA cards this way. - pirqaddr=0xAAAAA [IA-32] Specify the physical address + pirqaddr=0xAAAAA [X86-32] Specify the physical address of the PIRQ table (normally generated by the BIOS) if it is outside the F0000h-100000h range. - lastbus=N [IA-32] Scan all buses thru bus #N. Can be + lastbus=N [X86-32] Scan all buses thru bus #N. Can be useful if the kernel is unable to find your secondary buses and you want to tell it explicitly which ones they are. - assign-busses [IA-32] Always assign all PCI bus + assign-busses [X86-32] Always assign all PCI bus numbers ourselves, overriding whatever the firmware may have done. - usepirqmask [IA-32] Honor the possible IRQ mask stored + usepirqmask [X86-32] Honor the possible IRQ mask stored in the BIOS $PIR table. This is needed on some systems with broken BIOSes, notably some HP Pavilion N5400 and Omnibook XE3 notebooks. This will have no effect if ACPI IRQ routing is enabled. - noacpi [IA-32] Do not use ACPI for IRQ routing + noacpi [X86-32] Do not use ACPI for IRQ routing or for PCI scanning. routeirq Do IRQ routing for all PCI devices. This is normally done in pci_enable_device(), @@ -1467,13 +1463,13 @@ and is between 256 and 4096 characters. It is defined in the file Run specified binary instead of /init from the ramdisk, used for early userspace startup. See initrd. - reboot= [BUGS=IA-32,BUGS=ARM,BUGS=IA-64] Rebooting mode + reboot= [BUGS=X86-32,BUGS=ARM,BUGS=IA-64] Rebooting mode Format: [,[,...]] See arch/*/kernel/reboot.c or arch/*/kernel/process.c reserve= [KNL,BUGS] Force the kernel to ignore some iomem area - reservetop= [IA-32] + reservetop= [X86-32] Format: nn[KMG] Reserves a hole at the top of the kernel virtual address space. @@ -1564,7 +1560,7 @@ and is between 256 and 4096 characters. It is defined in the file Value can be changed at runtime via /selinux/compat_net. - serialnumber [BUGS=IA-32] + serialnumber [BUGS=X86-32] sg_def_reserved_size= [SCSI] @@ -1617,7 +1613,7 @@ and is between 256 and 4096 characters. It is defined in the file smart2= [HW] Format: [,[,...,]] - smp-alt-once [IA-32,SMP] On a hotplug CPU system, only + smp-alt-once [X86-32,SMP] On a hotplug CPU system, only attempt to substitute SMP alternatives once at boot. smsc-ircc2.nopnp [HW] Don't use PNP to discover SMC devices @@ -1823,6 +1819,30 @@ and is between 256 and 4096 characters. It is defined in the file thash_entries= [KNL,NET] Set number of hash buckets for TCP connection + thermal.act= [HW,ACPI] + -1: disable all active trip points in all thermal zones + : override all lowest active trip points + + thermal.crt= [HW,ACPI] + -1: disable all critical trip points in all thermal zones + : lower all critical trip points + + thermal.nocrt= [HW,ACPI] + Set to disable actions on ACPI thermal zone + critical and hot trip points. + + thermal.off= [HW,ACPI] + 1: disable ACPI thermal control + + thermal.psv= [HW,ACPI] + -1: disable all passive trip points + : override all passive trip points to this value + + thermal.tzp= [HW,ACPI] + Specify global default ACPI thermal zone polling rate + : poll all this frequency + 0: no polling (default) + time Show timing data prefixed to each printk message line [deprecated, see 'printk.time'] @@ -1882,7 +1902,7 @@ and is between 256 and 4096 characters. It is defined in the file usbhid.mousepoll= [USBHID] The interval which mice are to be polled at. - vdso= [IA-32,SH,x86-64] + vdso= [X86-32,SH,x86-64] vdso=2: enable compat VDSO (default with COMPAT_VDSO) vdso=1: enable VDSO (default) vdso=0: disable VDSO mapping @@ -1893,7 +1913,7 @@ and is between 256 and 4096 characters. It is defined in the file video= [FB] Frame buffer configuration See Documentation/fb/modedb.txt. - vga= [BOOT,IA-32] Select a particular video mode + vga= [BOOT,X86-32] Select a particular video mode See Documentation/i386/boot.txt and Documentation/svga.txt. Use vga=ask for menu. @@ -1925,7 +1945,7 @@ and is between 256 and 4096 characters. It is defined in the file See header of drivers/scsi/wd7000.c. wdt= [WDT] Watchdog - See Documentation/watchdog/watchdog.txt. + See Documentation/watchdog/wdt.txt. xd= [HW,XT] Original XT pre-IDE (RLL encoded) disks. xd_geo= See header of drivers/block/xd.c. diff --git a/Documentation/keys.txt b/Documentation/keys.txt index 81d9aa097298..947d57d53453 100644 --- a/Documentation/keys.txt +++ b/Documentation/keys.txt @@ -859,9 +859,8 @@ payload contents" for more information. void unregister_key_type(struct key_type *type); -Under some circumstances, it may be desirable to desirable to deal with a -bundle of keys. The facility provides access to the keyring type for managing -such a bundle: +Under some circumstances, it may be desirable to deal with a bundle of keys. +The facility provides access to the keyring type for managing such a bundle: struct key_type key_type_keyring; diff --git a/Documentation/ko_KR/HOWTO b/Documentation/ko_KR/HOWTO new file mode 100644 index 000000000000..b51d7ca842ba --- /dev/null +++ b/Documentation/ko_KR/HOWTO @@ -0,0 +1,623 @@ +NOTE: +This is a version of Documentation/HOWTO translated into korean +This document is maintained by minchan Kim < minchan.kim@gmail.com> +If you find any difference between this document and the original file or +a problem with the translation, please contact the maintainer of this file. + +Please also note that the purpose of this file is to be easier to +read for non English (read: korean) speakers and is not intended as +a fork. So if you have any comments or updates for this file please +try to update the original English file first. + +================================== +이 문서는 +Documentation/HOWTO +의 한글 번역입니다. + +역자: 김민찬 +감수: 이제이미 +================================== + +어떻게 리눅스 커널 개발을 하는가 +--------------------------------- + +이 문서는 커널 개발에 있어 가장 중요한 문서이다. 이 문서는 +리눅스 커널 개발자가 되는 법과 리눅스 커널 개발 커뮤니티와 일하는 +법을 담고있다. 커널 프로그래밍의기술적인 측면과 관련된 내용들은 +포함하지 않으려고 하였지만 올바으로 여러분을 안내하는 데 도움이 +될 것이다. + +이 문서에서 오래된 것을 발견하면 문서의 아래쪽에 나열된 메인트너에게 +패치를 보내달라. + + +소개 +---- + +자, 여러분은 리눅스 커널 개발자가 되는 법을 배우고 싶은가? 아니면 +상사로부터"이 장치를 위한 리눅스 드라이버를 작성하시오"라는 말을 +들었는가? 이 문서는 여러분이 겪게 될 과정과 커뮤니티와 일하는 법을 +조언하여 여러분의 목적을 달성하기 위해 필요한 것 모두를 알려주는 +것이다. + +커널은 대부분은 C로 작성되었어고 몇몇 아키텍쳐의 의존적인 부분은 +어셈블리로 작성되었다. 커널 개발을 위해 C를 잘 이해하고 있어야 한다. +여러분이 특정 아키텍쳐의 low-level 개발을 할 것이 아니라면 +어셈블리(특정 아키텍쳐)는 잘 알아야 할 필요는 없다. +다음의 참고서적들은 기본에 충실한 C 교육이나 수년간의 경험에 견주지는 +못하지만 적어도 참고 용도로는 좋을 것이다 + - "The C Programming Language" by Kernighan and Ritchie [Prentice Hall] + - "Practical C Programming" by Steve Oualline [O'Reilly] + - "C: A Reference Manual" by Harbison and Steele [Prentice Hall] + +커널은 GNU C와 GNU 툴체인을 사용하여 작성되었다. 이 툴들은 ISO C89 표준을 +따르는 반면 표준에 있지 않은 많은 확장기능도 가지고 있다. 커널은 표준 C +라이브러리와는 관계없이 freestanding C 환경이어서 C 표준의 일부는 +지원되지 않는다. 임의의 long long 나누기나 floating point는 지원되지 않는다. +때론 이런 이유로 커널이 그런 확장 기능을 가진 툴체인을 가지고 만들어졌다는 +것이 이해하기 어려울 수도 있고 게다가 불행하게도 그런 것을 정확하게 설명하는 +어떤 참고문서도 있지 않다. 정보를 얻기 위해서는 gcc info (`info gcc`)페이지를 +살펴보라. + +여러분은 기존의 개발 커뮤니티와 일하는 법을 배우려고 하고 있다는 것을 +기억하라. 코딩, 스타일, 절차에 관한 훌륭한 표준을 가진 사람들이 모인 +다양한 그룹이 있다. 이 표준들은 오랜동안 크고 지역적으로 분산된 팀들에 +의해 가장 좋은 방법으로 일하기위하여 찾은 것을 기초로 만들어져왔다. +그 표준들은 문서화가 잘 되어 있기 때문에 가능한한 미리 많은 표준들에 +관하여 배우려고 시도하라. 다른 사람들은 여러분이나 여러분의 회사가 +일하는 방식에 적응하는 것을 원하지는 않는다. + + +법적 문제 +--------- + +리눅스 커널 소스 코드는 GPL로 배포(release)되었다. 소스트리의 메인 +디렉토리에 있는 라이센스에 관하여 상세하게 쓰여 있는 COPYING이라는 +파일을 봐라.여러분이 라이센스에 관한 더 깊은 문제를 가지고 있다면 +리눅스 커널 메일링 리스트에 묻지말고 변호사와 연락하라. 메일링 +리스트들에 있는 사람들은 변호사가 아니기 때문에 법적 문제에 관하여 +그들의 말에 의지해서는 안된다. + +GPL에 관한 잦은 질문들과 답변들은 다음을 참조하라. + http://www.gnu.org/licenses/gpl-faq.html + + +문서 +---- + +리눅스 커널 소스 트리는 커널 커뮤니티와 일하는 법을 배우기 위한 많은 +귀중한 문서들을 가지고 있다. 새로운 기능들이 커널에 들어가게 될 때, +그 기능을 어떻게 사용하는지에 관한 설명을 위하여 새로운 문서 파일을 +추가하는 것을 권장한다. 커널이 유저스페이스로 노출하는 인터페이스를 +변경하게 되면 변경을 설명하는 메뉴얼 페이지들에 대한 패치나 정보를 +mtk-manpages@gmx.net의 메인트너에게 보낼 것을 권장한다. + +다음은 커널 소스 트리에 있는 읽어야 할 파일들의 리스트이다. + README + 이 파일은 리눅스 커널에 관하여 간단한 배경 설명과 커널을 설정하고 + 빌드하기 위해 필요한 것을 설명한다. 커널에 입문하는 사람들은 여기서 + 시작해야 한다. + + Documentation/Changes + 이 파일은 커널을 성공적으로 빌드하고 실행시키기 위해 필요한 다양한 + 소프트웨어 패키지들의 최소 버젼을 나열한다. + + Documentation/CodingStyle + 이 문서는 리눅스 커널 코딩 스타일과 그렇게 한 몇몇 이유를 설명한다. + 모든 새로운 코드는 이 문서에 가이드라인들을 따라야 한다. 대부분의 + 메인트너들은 이 규칙을 따르는 패치들만을 받아들일 것이고 많은 사람들이 + 그 패치가 올바른 스타일일 경우만 코드를 검토할 것이다. + + Documentation/SubmittingPatches + Documentation/SubmittingDrivers + 이 파일들은 성공적으로 패치를 만들고 보내는 법을 다음의 내용들로 + 굉장히 상세히 설명하고 있다(그러나 다음으로 한정되진 않는다). + - Email 내용들 + - Email 양식 + - 그것을 누구에게 보낼지 + 이러한 규칙들을 따르는 것이 성공을 보장하진 않는다(왜냐하면 모든 + 패치들은 내용과 스타일에 관하여 면밀히 검토되기 때문이다). + 그러나 규칙을 따르지 않는다면 거의 성공하지도 못할 것이다. + + 올바른 패치들을 만드는 법에 관한 훌륭한 다른 문서들이 있다. + "The Perfect Patch" + http://www.zip.com.au/~akpm/linux/patches/stuff/tpp.txt + "Linux kernel patch submission format" + http://linux.yyz.us/patch-format.html + + Documentation/stable_api_nonsense.txt + 이 문서는 의도적으로 커널이 변하지 않는 API를 갖지 않도록 결정한 + 이유를 설명하며 다음과 같은 것들을 포함한다. + - 서브시스템 shim-layer(호환성을 위해?) + - 운영 체제들 간의 드라이버 이식성 + - 커널 소스 트리내에 빠른 변화를 늦추는 것(또는 빠른 변화를 막는 것) + 이 문서는 리눅스 개발 철학을 이해하는데 필수적이며 다른 운영체제에서 + 리눅스로 옮겨오는 사람들에게는 매우 중요하다. + + + Documentation/SecurityBugs + 여러분들이 리눅스 커널의 보안 문제를 발견했다고 생각한다면 이 문서에 + 나온 단계에 따라서 커널 개발자들에게 알리고 그 문제를 해결할 수 있도록 + 도와 달라. + + Documentation/ManagementStyle + 이 문서는 리눅스 커널 메인트너들이 어떻게 그들의 방법론의 정신을 + 어떻게 공유하고 운영하는지를 설명한다. 이것은 커널 개발에 입문하는 + 모든 사람들(또는 커널 개발에 작은 호기심이라도 있는 사람들)이 + 읽어야 할 중요한 문서이다. 왜냐하면 이 문서는 커널 메인트너들의 + 독특한 행동에 관하여 흔히 있는 오해들과 혼란들을 해소하고 있기 + 때문이다. + + Documentation/stable_kernel_rules.txt + 이 문서는 안정적인 커널 배포가 이루어지는 규칙을 설명하고 있으며 + 여러분들이 이러한 배포들 중 하나에 변경을 하길 원한다면 + 무엇을 해야 하는지를 설명한다. + + Documentation/kernel-docs.txt + 커널 개발에 관계된 외부 문서의 리스트이다. 커널 내의 포함된 문서들 + 중에 여러분이 찾고 싶은 문서를 발견하지 못할 경우 이 리스트를 + 살펴보라. + + Documentation/applying-patches.txt + 패치가 무엇이며 그것을 커널의 다른 개발 브랜치들에 어떻게 + 적용하는지에 관하여 자세히 설명 하고 있는 좋은 입문서이다. + +커널은 소스 코드 그 자체에서 자동적으로 만들어질 수 있는 많은 문서들을 +가지고 있다. 이것은 커널 내의 API에 대한 모든 설명, 그리고 락킹을 +올바르게 처리하는 법에 관한 규칙을 포함하고 있다. 이 문서는 +Documentation/DocBook/ 디렉토리 내에서 만들어지며 PDF, Postscript, HTML, +그리고 man 페이지들로 다음과 같이 실행하여 만들어 진다. + make pdfdocs + make psdocs + make htmldocs + make mandocs +각각의 명령을 메인 커널 소스 디렉토리로부터 실행한다. + + +커널 개발자가 되는 것 +--------------------- + +여러분이 리눅스 커널 개발에 관하여 아무것도 모른다면 Linux KernelNewbies +프로젝트를 봐야 한다. + http://kernelnewbies.org +그곳은 거의 모든 종류의 기본적인 커널 개발 질문들(질문하기 전에 먼저 +아카이브를 찾아봐라. 과거에 이미 답변되었을 수도 있다)을 할수있는 도움이 +될만한 메일링 리스트가 있다. 또한 실시간으로 질문 할수 있는 IRC 채널도 +가지고 있으며 리눅스 커널 개발을 배우는 데 유용한 문서들을 보유하고 있다. + +웹사이트는 코드구성, 서브시스템들, 그리고 현재 프로젝트들 +(트리 내, 외부에 존재하는)에 관한 기본적인 정보들을 가지고 있다. 또한 +그곳은 커널 컴파일이나 패치를 하는 법과 같은 기본적인 것들을 설명한다. + +여러분이 어디서 시작해야 할진 모르지만 커널 개발 커뮤니티에 참여할 수 +있는 일들을 찾길 원한다면 리눅스 커널 Janitor 프로젝트를 살펴봐라. + http://janitor.kernelnewbies.org/ +그곳은 시작하기에 아주 딱 좋은 곳이다. 그곳은 리눅스 커널 소스 트리내에 +간단히 정리되고 수정될 수 있는 문제들에 관하여 설명한다. 여러분은 이 +프로젝트를 대표하는 개발자들과 일하면서 자신의 패치를 리눅스 커널 트리에 +반영하기 위한 기본적인 것들을 배우게 될것이며 여러분이 아직 아이디어를 +가지고 있지 않다면 다음에 무엇을 해야할지에 관한 방향을 배울 수 있을 +것이다. + +여러분들이 이미 커널 트리에 반영하길 원하는 코드 묶음을 가지고 있지만 +올바른 포맷으로 포장하는데 도움이 필요하다면 그러한 문제를 돕기 위해 +만들어진 kernel-mentors 프로젝트가 있다. 그곳은 메일링 리스트이며 +다음에서 참조할 수 있다. + http://selenic.com/mailman/listinfo/kernel-mentors + +리눅스 커널 코드에 실제 변경을 하기 전에 반드시 그 코드가 어떻게 +동작하는지 이해하고 있어야 한다. 코드를 분석하기 위하여 특정한 툴의 +도움을 빌려서라도 코드를 직접 읽는 것보다 좋은 것은 없다(대부분의 +자잘한 부분들은 잘 코멘트되어 있다). 그런 툴들 중에 특히 추천할만한 +것은 Linux Cross-Reference project이며 그것은 자기 참조 방식이며 +소스코드를 인덱스된 웹 페이지들의 형태로 보여준다. 최신의 멋진 커널 +코드 저장소는 다음을 통하여 참조할 수 있다. + http://sosdg.org/~coywolf/lxr/ + + +개발 프로세스 +------------- + +리눅스 커널 개발 프로세스는 현재 몇몇 다른 메인 커널 "브랜치들"과 +서브시스템에 특화된 커널 브랜치들로 구성된다. 몇몇 다른 메인 +브랜치들은 다음과 같다. + - main 2.6.x 커널 트리 + - 2.6.x.y - 안정된 커널 트리 + - 2.6.x -git 커널 패치들 + - 2.6.x -mm 커널 패치들 + - 서브시스템을 위한 커널 트리들과 패치들 + +2.6.x 커널 트리 +--------------- + +2.6.x 커널들은 Linux Torvalds가 관리하며 kernel.org의 pub/linux/kernel/v2.6/ +디렉토리에서 참조될 수 있다.개발 프로세스는 다음과 같다. + - 새로운 커널이 배포되자마자 2주의 시간이 주어진다. 이 기간동은 + 메인트너들은 큰 diff들을 Linus에게 제출할 수 있다. 대개 이 패치들은 + 몇 주 동안 -mm 커널내에 이미 있었던 것들이다. 큰 변경들을 제출하는 데 + 선호되는 방법은 git(커널의 소스 관리 툴, 더 많은 정보들은 http://git.or.cz/ + 에서 참조할 수 있다)를 사용하는 것이지만 순수한 패치파일의 형식으로 보내도 + 것도 무관하다. + - 2주 후에 -rc1 커널이 배포되며 지금부터는 전체 커널의 안정성에 영향을 + 미칠수 있는 새로운 기능들을 포함하지 않는 패치들만을 추가될 수 있다. + 완전히 새로운 드라이버(혹은 파일시스템)는 -rc1 이후에만 받아들여진다는 + 것을 기억해라. 왜냐하면 변경이 자체내에서만 발생하고 추가된 코드가 + 드라이버 외부의 다른 부분에는 영향을 주지 않으므로 그런 변경은 + 퇴보(regression)를 일으킬 만한 위험을 가지고 있지 않기 때문이다. -rc1이 + 배포된 이후에 git를 사용하여 패치들을 Linus에게 보낼수 있지만 패치들은 + 공식적인 메일링 리스트로 보내서 검토를 받을 필요가 있다. + - 새로운 -rc는 Linus는 현재 git tree가 테스트 하기에 충분히 안정된 상태에 + 있다고 판단될 때마다 배포된다. 목표는 새로운 -rc 커널을 매주 배포하는 + 것이다. + - 이러한 프로세스는 커널이 "준비"되었다고 여겨질때까지 계속된다. + 프로세스는 대체로 6주간 지속된다. + - 각 -rc 배포에 있는 알려진 퇴보의 목록들은 다음 URI에 남겨진다. + http://kernelnewbies.org/known_regressions + +커널 배포에 있어서 언급할만한 가치가 있는 리눅스 커널 메일링 리스트의 +Andrew Morton의 글이 있다. + "커널이 언제 배포될지는 아무로 모른다. 왜냐하면 배포는 알려진 + 버그의 상황에 따라 배포되는 것이지 미리정해 놓은 시간에 따라 + 배포되는 것은 아니기 때문이다." + +2.6.x.y - 안정 커널 트리 +------------------------ + +4 자리 숫자로 이루어진 버젼의 커널들은 -stable 커널들이다. 그것들은 2.6.x +커널에서 발견된 큰 퇴보들이나 보안 문제들 중 비교적 작고 중요한 수정들을 +포함한다. + +이것은 가장 최근의 안정적인 커널을 원하는 사용자에게 추천되는 브랜치이며, +개발/실험적 버젼을 테스트하는 것을 돕는데는 별로 관심이 없다. + +어떤 2.6.x.y 커널도 사용가능하지 않다면 그때는 가장 높은 숫자의 2.6.x +커널이 현재의 안정 커널이다. + +2.6.x.y는 "stable" 팀에 의해 관리되며 거의 매번 격주로 +배포된다. + +커널 트리 문서들 내에 Documentation/stable_kernel_rules.txt 파일은 어떤 +종류의 변경들이 -stable 트리로 들어왔는지와 배포 프로세스가 어떻게 +진행되는지를 설명한다. + + +2.6.x -git 패치들 +------------------ +git 저장소(그러므로 -git이라는 이름이 붙음)에는 날마다 관리되는 Linus의 +커널 트리의 snapshot 들이 있다. 이 패치들은 일반적으로 날마다 배포되며 +Linus의 트리의 현재 상태를 나타낸다. 이 패치들은 정상적인지 조금도 +살펴보지 않고 자동적으로 생성된 것이므로 -rc 커널들 보다도 더 실험적이다. + +2.6.x -mm 커널 패치들 +--------------------- +Andrew Morton에 의해 배포된 실험적인 커널 패치들이다. Andrew는 모든 다른 +서브시스템 커널 트리와 패치들을 가져와서 리눅스 커널 메일링 리스트로 +온 많은 패치들과 한데 묶는다. 이 트리는 새로운 기능들과 패치들을 위한 +장소를 제공하는 역할을 한다. 하나의 패치가 -mm에 한동안 있으면서 그 가치가 +증명되게 되면 Andrew나 서브시스템 메인트너는 그것을 메인라인에 포함시키기 +위하여 Linus에게 보낸다. + +커널 트리에 포함하고 싶은 모든 새로운 패치들은 Linus에게 보내지기 전에 +-mm 트리에서 테스트를 하는 것을 적극 추천한다. + +이 커널들은 안정되게 사용할 시스템에서에 실행하는 것은 적합하지 않으며 +다른 브랜치들의 어떤 것들보다 위험하다. + +여러분이 커널 개발 프로세스를 돕길 원한다면 이 커널 배포들을 사용하고 +테스트한 후 어떤 문제를 발견하거나 또는 모든 것이 잘 동작한다면 리눅스 +커널 메일링 리스트로 피드백을 해달라. + +이 커널들은 일반적으로 모든 다른 실험적인 패치들과 배포될 당시의 +사용가능한 메인라인 -git 커널들의 몇몇 변경을 포함한다. + +-mm 커널들은 정해진 일정대로 배포되지 않는다. 하지만 대개 몇몇 -mm 커널들은 +각 -rc 커널(1부터 3이 흔함) 사이에서 배포된다. + +서브시스템 커널 트리들과 패치들 +------------------------------- +많은 다른 커널 서브시스템 개발자들은 커널의 다른 부분들에서 무슨 일이 +일어나고 있는지를 볼수 있도록 그들의 개발 트리를 공개한다. 이 트리들은 +위에서 설명하였던 것 처럼 -mm 커널 배포들로 합쳐진다. + +다음은 활용가능한 커널 트리들을 나열한다. + git trees: + - Kbuild development tree, Sam Ravnborg < sam@ravnborg.org> + git.kernel.org:/pub/scm/linux/kernel/git/sam/kbuild.git + + - ACPI development tree, Len Brown + git.kernel.org:/pub/scm/linux/kernel/git/lenb/linux-acpi-2.6.git + + - Block development tree, Jens Axboe + git.kernel.org:/pub/scm/linux/kernel/git/axboe/linux-2.6-block.git + + - DRM development tree, Dave Airlie + git.kernel.org:/pub/scm/linux/kernel/git/airlied/drm-2.6.git + + - ia64 development tree, Tony Luck < tony.luck@intel.com> + git.kernel.org:/pub/scm/linux/kernel/git/aegl/linux-2.6.git + + - infiniband, Roland Dreier + git.kernel.org:/pub/scm/linux/kernel/git/roland/infiniband.git + + - libata, Jeff Garzik + git.kernel.org:/pub/scm/linux/kernel/git/jgarzik/libata-dev.git + + - network drivers, Jeff Garzik + git.kernel.org:/pub/scm/linux/kernel/git/jgarzik/netdev-2.6.git + + - pcmcia, Dominik Brodowski < linux@dominikbrodowski.net> + git.kernel.org:/pub/scm/linux/kernel/git/brodo/pcmcia-2.6.git + + - SCSI, James Bottomley < James.Bottomley@SteelEye.com> + git.kernel.org:/pub/scm/linux/kernel/git/jejb/scsi-misc-2.6.git + + quilt trees: + - USB, PCI, Driver Core, and I2C, Greg Kroah-Hartman < gregkh@suse.de> + kernel.org/pub/linux/kernel/people/gregkh/gregkh-2.6/ + - x86-64, partly i386, Andi Kleen < ak@suse.de> + ftp.firstfloor.org:/pub/ak/x86_64/quilt/ + + 다른 커널 트리들은 http://kernel.org/git와 MAINTAINERS 파일에서 참조할 수 + 있다. + +버그 보고 +--------- +bugzilla.kernel.org는 리눅스 커널 개발자들이 커널의 버그를 추적하는 곳이다. +사용자들은 발견한 모든 버그들을 보고하기 위하여 이 툴을 사용할 것을 권장한다. +kernel bugzilla를 사용하는 자세한 방법은 다음을 참조하라. + http://test.kernel.org/bugzilla/faq.html + +메인 커널 소스 디렉토리에 있는 REPORTING-BUGS 파일은 커널 버그일 것 같은 +것을 보고하는는 법에 관한 좋은 템플릿이고 문제를 추적하기 위해서 커널 +개발자들이 필요로 하는 정보가 무엇들인지를 상세히 설명하고 있다. + + +버그 리포트들의 관리 +-------------------- + +여러분의 해킹 기술을 연습하는 가장 좋은 방법 중의 하는 다른 사람들이 +보고한 버그들을 수정하는 것이다. 여러분은 커널을 더욱 안정화시키는데 +도움을 줄 뿐만이 아니라 실제있는 문제들을 수정하는 법을 배우게 되고 +그와 함께 여러분들의 기술은 향상될 것이며 다른 개발자들이 여러분의 +존재에 대해 알게 될 것이다. 버그를 수정하는 것은 개발자들 사이에서 +점수를 얻을 수 있는 가장 좋은 방법중의 하나이다. 왜냐하면 많은 사람들은 +다른 사람들의 버그들을 수정하기 위하여 시간을 낭비하지 않기 때문이다. + +이미 보고된 버그 리포트들을 가지고 작업하기 위해서 http://bugzilla.kernelorg를 +참조하라. 여러분이 앞으로 생겨날 버그 리포트들의 조언자가 되길 원한다면 +bugme-new 메일링 리스트나(새로운 버그 리포트들만이 이곳에서 메일로 전해진다) +bugme-janitor 메일링 리스트(bugzilla에 모든 변화들이 여기서 메일로 전해진다) +에 등록하면 된다. + + http://lists.osdl.org/mailman/listinfo/bugme-new + http://lists.osdl.org/mailman/listinfo/bugme-janitors + + + +메일링 리스트들 +--------------- + +위의 몇몇 문서들이 설명하였지만 핵심 커널 개발자들의 대다수는 +리눅스 커널 메일링 리스트에 참여하고 있다. 리스트에 등록하고 해지하는 +방법에 관한 자세한 사항은 다음에서 참조할 수 있다. + http://vger.kernel.org/vger-lists.html#linux-kernel +웹상의 많은 다른 곳에도 메일링 리스트의 아카이브들이 있다. +이러한 아카이브들을 찾으려면 검색 엔진을 사용하라. 예를 들어: + http://dir.gmane.org/gmane.linux.kernel +여러분이 새로운 문제에 관해 리스트에 올리기 전에 말하고 싶은 주제에 대한 +것을 아카이브에서 먼저 찾기를 강력히 권장한다. 이미 상세하게 토론된 많은 +것들이 메일링 리스트의 아카이브에 기록되어 있다. + +각각의 커널 서브시스템들의 대부분은 자신들의 개발에 관한 노력들로 이루어진 +분리된 메일링 리스트를 따로 가지고 있다. 다른 그룹들이 무슨 리스트를 가지고 +있는지는 MAINTAINERS 파일을 참조하라. + +많은 리스트들은 kernel.org에서 호스트되고 있다. 그 정보들은 다음에서 참조될 수 있다. + http://vger.kernel.org/vger-lists.html + +리스트들을 사용할 때는 올바른 예절을 따를 것을 유념해라. +대단하진 않지만 다음 URL은 리스트(혹은 모든 리스트)와 대화하는 몇몇 간단한 +가이드라인을 가지고 있다. + http://www.albion.com/netiquette/ + +여러 사람들이 여러분의 메일에 응답한다면 CC: 즉 수신 리스트는 꽤 커지게 +될 것이다. 아무 이유없이 CC에서 어떤 사람도 제거하거나 리스트 주소로만 +회신하지 마라. 메일을 보낸 사람으로서 하나를 받고 리스트로부터 또 +하나를 받아 두번 받는 것에 익숙하여 있으니 mail-header를 조작하려고 하지 +말아라. 사람들은 그런 것을 좋아하지 않을 것이다. + +여러분의 회신의 문맥을 원래대로 유지해야 한다. 여러분들의 회신의 윗부분에 +"John 커널해커는 작성했다...."를 유지하며 여러분들의 의견을 그 메일의 윗부분에 +작성하지 말고 각 인용한 단락들 사이에 넣어라. + +여러분들이 패치들을 메일에 넣는다면 그것들은 Documentation/SubmittingPatches에 +나와있는데로 명백히(plain) 읽을 수 있는 텍스트여야 한다. 커널 개발자들은 +첨부파일이나 압축된 패치들을 원하지 않는다. 그들은 여러분들의 패치의 +각 라인 단위로 코멘트를 하길 원하며 압축하거나 첨부하지 않고 보내는 것이 +그렇게 할 수 있는 유일한 방법이다. 여러분들이 사용하는 메일 프로그램이 +스페이스나 탭 문자들을 조작하지 않는지 확인하라. 가장 좋은 첫 테스트는 +메일을 자신에게 보내보고 스스로 그 패치를 적용해보라. 그것이 동작하지 +않는다면 여러분의 메일 프로그램을 고치던가 제대로 동작하는 프로그램으로 +바꾸어라. + +무엇보다도 메일링 리스트의 다른 구독자들에게 보여주려 한다는 것을 기억하라. + + +커뮤니티와 일하는 법 +-------------------- + +커널 커뮤니티의 목적은 가능한한 가장 좋은 커널을 제공하는 것이다. 여러분이 +받아들여질 패치를 제출하게 되면 그 패치의 기술적인 이점으로 검토될 것이다. +그럼 여러분들은 무엇을 기대하고 있어야 하는가? + - 비판 + - 의견 + - 변경을 위한 요구 + - 당위성을 위한 요구 + - 고요 + +기억하라. 이것들은 여러분의 패치가 커널로 들어가기 위한 과정이다. 여러분의 +패치들은 비판과 다른 의견을 받을 수 있고 그것들을 기술적인 레벨로 평가하고 +재작업하거나 또는 왜 수정하면 안되는지에 관하여 명료하고 간결한 이유를 +말할 수 있어야 한다. 여러분이 제출한 것에 어떤 응답도 있지 않다면 몇 일을 +기다려보고 다시 시도해라. 때론 너무 많은 메일들 속에 묻혀버리기도 한다. + +여러분은 무엇을 해서는 안되는가? + - 여러분의 패치가 아무 질문 없이 받아들여지기를 기대하는 것 + - 방어적이 되는 것 + - 의견을 무시하는 것 + - 요청된 변경을 하지 않고 패치를 다시 제출하는 것 + +가능한한 가장 좋은 기술적인 해답을 찾고 있는 커뮤니티에서는 항상 +어떤 패치가 얼마나 좋은지에 관하여 다른 의견들이 있을 수 있다. 여러분은 +협조적이어야 하고 기꺼이 여러분의 생각을 커널 내에 맞추어야 한다. 아니면 +적어도 여러분의 것이 가치있다는 것을 중명하여야 한다. 잘못된 것도 여러분이 +올바른 방향의 해결책으로 이끌어갈 의지가 있다면 받아들여질 것이라는 점을 +기억하라. + +여러분의 첫 패치에 여러분이 수정해야하는 십여개 정도의 회신이 오는 +경우도 흔하다. 이것은 여러분의 패치가 받아들여지지 않을 것이라는 것을 +의미하는 것이 아니고 개인적으로 여러분에게 감정이 있어서 그러는 것도 +아니다. 간단히 여러분의 패치에 제기된 문제들을 수정하고 그것을 다시 +보내라. + + +커널 커뮤니티와 기업 조직간의 차이점 +----------------------------------------------------------------- +커널 커뮤니티는 가장 전통적인 회사의 개발 환경과는 다르다. 여기에 여러분들의 +문제를 피하기 위한 목록이 있다. + 여러분들이 제안한 변경들에 관하여 말할 때 좋은 것들 : + - " 이것은 여러 문제들을 해겹합니다." + - "이것은 2000 라인의 코드를 제거합니다." + - "이것은 내가 말하려는 것에 관해 설명하는 패치입니다." + - "나는 5개의 다른 아키텍쳐에서 그것을 테스트했슴으로..." + - "여기에 일련의 작은 패치들이 있습음로..." + - "이것은 일반적인 머신에서 성능을 향상시키므로..." + + 여러분들이 말할 때 피해야 할 좋지 않은 것들 : + - "우리를 그것을 AIT/ptx/Solaris에서 이러한 방법으로 했다. 그러므로 그것은 좋은 것임에 틀립없다..." + - "나는 20년동안 이것을 해왔다. 그러므로..." + - "이것은 돈을 벌기위해 나의 회사가 필요로 하는 것이다." + - "이것은 우리의 엔터프라이즈 상품 라인을 위한 것이다." + - "여기에 나의 생각을 말하고 있는 1000 페이지 설계 문서가 있다." + - "나는 6달동안 이것을 했으니..." + - "여기세 5000라인 짜리 패치가 있으니..." + - "나는 현재 뒤죽박죽인 것을 재작성했다. 그리고 여기에..." + - "나는 마감시한을 가지고 있으므로 이 패치는 지금 적용될 필요가 있다." + +커널 커뮤니티가 전통적인 소프트웨어 엔지니어링 개발 환경들과 +또 다른 점은 얼굴을 보지 않고 일한다는 점이다. 이메일과 irc를 대화의 +주요수단으로 사용하는 것의 한가지 장점은 성별이나 인종의 차별이 +없다는 것이다. 리눅스 커널의 작업 환경에서는 단지 이메일 주소만 +알수 있기 때문에 여성과 소수 민족들도 모두 받아들여진다. 국제적으로 +일하게 되는 측면은 사람의 이름에 근거하여 성별을 추측할 수 없게 +하기때문에 차별을 없애는 데 도움을 준다. Andrea라는 이름을 가진 남자와 +Pat이라는 이름을 가진 여자가 있을 수도 있는 것이다. 리눅스 커널에서 +작업하며 생각을 표현해왔던 대부분의 여성들은 긍정적인 경험을 가지고 +있다. + +언어 장벽은 영어에 익숙하지 않은 몇몇 사람들에게 문제가 될 수도 있다. + 언어의 훌륭한 구사는 메일링 리스트에서 올바르게 자신의 생각을 +표현하기 위하여 필요하다. 그래서 여러분은 이메일을 보내기 전에 +영어를 올바르게 사용하고 있는지를 체크하는 것이 바람직하다. + + +여러분의 변경을 나누어라 +------------------------ + +리눅스 커널 커뮤니티는 한꺼번에 굉장히 큰 코드의 묶음을 쉽게 +받아들이지 않는다. 변경은 적절하게 소개되고, 검토되고, 각각의 +부분으로 작게 나누어져야 한다. 이것은 회사에서 하는 것과는 정확히 +반대되는 것이다. 여러분들의 제안은 개발 초기에 일찍이 소개되야 한다. +그래서 여러분들은 자신이 하고 있는 것에 관하여 피드백을 받을 수 있게 +된다. 커뮤니티가 여러분들이 커뮤니티와 함께 일하고 있다는 것을 +느끼도록 만들고 커뮤니티가 여러분의 기능을 위한 쓰레기 장으로서 +사용되지 않고 있다는 것을 느끼게 하자. 그러나 메일링 리스트에 한번에 +50개의 이메일을 보내지는 말아라. 여러분들의 일련의 패치들은 항상 +더 작아야 한다. + +패치를 나누는 이유는 다음과 같다. + +1) 작은 패치들은 여러분의 패치들이 적용될 수 있는 확률을 높여준다. + 왜냐하면 다른 사람들은 정확성을 검증하기 위하여 많은 시간과 노력을 + 들이기를 원하지 않는다. 5줄의 패치는 메인트너가 거의 몇 초간 힐끗 + 보면 적용될 수 있다. 그러나 500 줄의 패치는 정확성을 검토하기 위하여 + 몇시간이 걸릴 수도 있다(걸리는 시간은 패치의 크기 혹은 다른 것에 + 비례하여 기하급수적으로 늘어난다). + + 패치를 작게 만드는 것은 무엇인가 잘못되었을 때 디버그하는 것을 + 쉽게 만든다. 즉, 그렇게 만드는 것은 매우 큰 패치를 적용한 후에 + 조사하는 것 보다 작은 패치를 적용한 후에 (그리고 몇몇의 것이 + 깨졌을 때) 하나씩 패치들을 제거해가며 디버그 하기 쉽도록 만들어 준다. + +2) 작은 패치들을 보내는 것뿐만 아니라 패치들을 제출하기전에 재작성하고 + 간단하게(혹은 간단한게 재배치하여) 하는 것도 중요하다. + +여기에 커널 개발자 Al Viro의 이야기가 있다. + "학생의 수학 숙제를 채점하는 선생님을 생각해보라. 선생님은 학생들이 + 답을 얻을때까지 겪은 시행착오를 보길 원하지 않는다. 선생님들은 + 간결하고 가장 뛰어난 답을 보길 원한다. 훌륭한 학생은 이것을 알고 + 마지막으로 답을 얻기 전 중간 과정들을 제출하진 않는다. + + 커널 개발도 마찬가지이다. 메인트너들과 검토하는 사람들은 문제를 + 풀어나가는 과정속에 숨겨진 과정을 보길 원하진 않는다. 그들은 + 간결하고 멋진 답을 보길 원한다." + +커뮤니티와 함께 일하며 뛰어난 답을 찾고 여러분들의 완성되지 않은 일들 +사이에 균형을 유지해야 하는 어려움이 있을 수 있다. 그러므로 프로세스의 +초반에 여러분의 일을 향상시키기위한 피드백을 얻는 것 뿐만 아니라 +여러분들의 변경들을 작은 묶음으로 유지해서 심지어는 여러분의 작업의 +모든 부분이 지금은 포함될 준비가 되어있지 않지만 작은 부분은 이미 +받아들여질 수 있도록 유지하는 것이 바람직하다. + +또한 완성되지 않았고 "나중에 수정될 것이다." 와 같은 것들은 포함하는 +패치들은 받아들여지지 않을 것이라는 점을 유념하라. + +변경을 정당화해라 +----------------- + +여러분들의 나누어진 패치들을 리눅스 커뮤니티가 왜 반영해야 하는지를 +알도록 하는 것은 매우 중요하다. 새로운 기능들이 필요하고 유용하다는 +것은 반드시 그에 맞는 이유가 있어야 한다. + + +변경을 문서화해라 +----------------- + +여러분이 패치를 보내려 할때는 여러분이 무엇을 말하려고 하는지를 충분히 +생각하여 이메일을 작성해야 한다. 이 정보는 패치를 위한 ChangeLog가 될 +것이다. 그리고 항상 그 내용을 보길 원하는 모든 사람들을 위해 보존될 +것이다. 패치는 완벽하게 다음과 같은 내용들을 포함하여 설명해야 한다. + - 변경이 왜 필요한지 + - 패치에 관한 전체 설계 어프로치 + - 구현 상세들 + - 테스트 결과들 + +이것이 무엇인지 더 자세한 것을 알고 싶다면 다음 문서의 ChageLog 항을 봐라. + "The Perfect Patch" + http://www.zip.com.au/~akpm/linux/patches/stuff/tpp.txt + + + + +이 모든 것을 하는 것은 매우 어려운 일이다. 완벽히 소화하는 데는 적어도 몇년이 +걸릴 수도 있다. 많은 인내와 결의가 필요한 계속되는 개선의 과정이다. 그러나 +가능한한 포기하지 말라. 많은 사람들은 이전부터 해왔던 것이고 그 사람들도 +정확하게 여러분들이 지금 서 있는 그 곳부터 시작했었다. + + + + +---------- +"개발 프로세스"(http://linux.tar.gz/articles/2.6-development_process) 섹션을 +작성하는데 있어 참고할 문서를 사용하도록 허락해준 Paolo Ciarrocchi에게 +감사한다. 여러분들이 말해야 할 것과 말해서는 안되는 것의 목록 중 일부를 제공해준 +Randy Dunlap과 Gerrit Huizenga에게 감사한다. 또한 검토와 의견 그리고 +공헌을 아끼지 않은 Pat Mochel, Hanna Linder, Randy Dunlap, Kay Sievers, +Vojtech Pavlik, Jan Kara, Josh Boyer, Kees Cook, Andrew Morton, Andi Kleen, +Vadim Lobanov, Jesper Juhl, Adrian Bunk, Keri Harris, Frans Pop, +David A. Wheeler, Junio Hamano, Michael Kerrisk, and Alex Shepard에게도 감사를 전한다. +그들의 도움이 없었다면 이 문서는 존재하지 않았을 것이다. + + + +메인트너: Greg Kroah-Hartman diff --git a/Documentation/kobject.txt b/Documentation/kobject.txt index e44855513b3d..8ee49ee7c963 100644 --- a/Documentation/kobject.txt +++ b/Documentation/kobject.txt @@ -27,7 +27,6 @@ in detail, and briefly here: - kobjects a simple object. - kset a set of objects of a certain type. - ktype a set of helpers for objects of a common type. -- subsystem a controlling object for a number of ksets. The kobject infrastructure maintains a close relationship with the @@ -54,13 +53,15 @@ embedded in larger data structures and replace fields they duplicate. 1.2 Definition struct kobject { + const char * k_name; char name[KOBJ_NAME_LEN]; - atomic_t refcount; + struct kref kref; struct list_head entry; struct kobject * parent; struct kset * kset; struct kobj_type * ktype; - struct dentry * dentry; + struct sysfs_dirent * sd; + wait_queue_head_t poll; }; void kobject_init(struct kobject *); @@ -137,8 +138,7 @@ If a kobject does not have a parent when it is registered, its parent becomes its dominant kset. If a kobject does not have a parent nor a dominant kset, its directory -is created at the top-level of the sysfs partition. This should only -happen for kobjects that are embedded in a struct subsystem. +is created at the top-level of the sysfs partition. @@ -150,10 +150,10 @@ A kset is a set of kobjects that are embedded in the same type. struct kset { - struct subsystem * subsys; struct kobj_type * ktype; struct list_head list; struct kobject kobj; + struct kset_uevent_ops * uevent_ops; }; @@ -169,8 +169,7 @@ struct kobject * kset_find_obj(struct kset *, char *); The type that the kobjects are embedded in is described by the ktype -pointer. The subsystem that the kobject belongs to is pointed to by the -subsys pointer. +pointer. A kset contains a kobject itself, meaning that it may be registered in the kobject hierarchy and exported via sysfs. More importantly, the @@ -209,6 +208,58 @@ the hierarchy. kset_find_obj() may be used to locate a kobject with a particular name. The kobject, if found, is returned. +There are also some helper functions which names point to the formerly +existing "struct subsystem", whose functions have been taken over by +ksets. + + +decl_subsys(name,type,uevent_ops) + +Declares a kset named '_subsys' of type with +uevent_ops . For example, + +decl_subsys(devices, &ktype_device, &device_uevent_ops); + +is equivalent to doing: + +struct kset devices_subsys = { + .kobj = { + .name = "devices", + }, + .ktype = &ktype_devices, + .uevent_ops = &device_uevent_ops, +}; + + +The objects that are registered with a subsystem that use the +subsystem's default list must have their kset ptr set properly. These +objects may have embedded kobjects or ksets. The +following helpers make setting the kset easier: + + +kobj_set_kset_s(obj,subsys) + +- Assumes that obj->kobj exists, and is a struct kobject. +- Sets the kset of that kobject to the kset . + + +kset_set_kset_s(obj,subsys) + +- Assumes that obj->kset exists, and is a struct kset. +- Sets the kset of the embedded kobject to the kset . + +subsys_set_kset(obj,subsys) + +- Assumes obj->subsys exists, and is a struct subsystem. +- Sets obj->subsys.kset.kobj.kset to the subsystem's embedded kset. + +void subsystem_init(struct kset *s); +int subsystem_register(struct kset *s); +void subsystem_unregister(struct kset *s); +struct kset *subsys_get(struct kset *s); +void kset_put(struct kset *s); + +These are just wrappers around the respective kset_* functions. 2.3 sysfs @@ -254,114 +305,3 @@ Instances of struct kobj_type are not registered; only referenced by the kset. A kobj_type may be referenced by an arbitrary number of ksets, as there may be disparate sets of identical objects. - - -4. subsystems - -4.1 Description - -A subsystem represents a significant entity of code that maintains an -arbitrary number of sets of objects of various types. Since the number -of ksets and the type of objects they contain are variable, a -generic representation of a subsystem is minimal. - - -struct subsystem { - struct kset kset; - struct rw_semaphore rwsem; -}; - -int subsystem_register(struct subsystem *); -void subsystem_unregister(struct subsystem *); - -struct subsystem * subsys_get(struct subsystem * s); -void subsys_put(struct subsystem * s); - - -A subsystem contains an embedded kset so: - -- It can be represented in the object hierarchy via the kset's - embedded kobject. - -- It can maintain a default list of objects of one type. - -Additional ksets may attach to the subsystem simply by referencing the -subsystem before they are registered. (This one-way reference means -that there is no way to determine the ksets that are attached to the -subsystem.) - -All ksets that are attached to a subsystem share the subsystem's R/W -semaphore. - - -4.2 subsystem Programming Interface. - -The subsystem programming interface is simple and does not offer the -flexibility that the kset and kobject programming interfaces do. They -may be registered and unregistered, as well as reference counted. Each -call forwards the calls to their embedded ksets (which forward the -calls to their embedded kobjects). - - -4.3 Helpers - -A number of macros are available to make dealing with subsystems and -their embedded objects easier. - - -decl_subsys(name,type) - -Declares a subsystem named '_subsys', with an embedded kset of -type . For example, - -decl_subsys(devices,&ktype_devices); - -is equivalent to doing: - -struct subsystem device_subsys = { - .kset = { - .kobj = { - .name = "devices", - }, - .ktype = &ktype_devices, - } -}; - - -The objects that are registered with a subsystem that use the -subsystem's default list must have their kset ptr set properly. These -objects may have embedded kobjects, ksets, or other subsystems. The -following helpers make setting the kset easier: - - -kobj_set_kset_s(obj,subsys) - -- Assumes that obj->kobj exists, and is a struct kobject. -- Sets the kset of that kobject to the subsystem's embedded kset. - - -kset_set_kset_s(obj,subsys) - -- Assumes that obj->kset exists, and is a struct kset. -- Sets the kset of the embedded kobject to the subsystem's - embedded kset. - -subsys_set_kset(obj,subsys) - -- Assumes obj->subsys exists, and is a struct subsystem. -- Sets obj->subsys.kset.kobj.kset to the subsystem's embedded kset. - - -4.4 sysfs - -subsystems are represented in sysfs via their embedded kobjects. They -follow the same rules as previously mentioned with no exceptions. They -typically receive a top-level directory in sysfs, except when their -embedded kobject is part of another kset, or the parent of the -embedded kobject is explicitly set. - -Note that the subsystem's embedded kset must be 'attached' to the -subsystem itself in order to use its rwsem. This is done after -kset_add() has been called. (Not before, because kset_add() uses its -subsystem for a default parent if it doesn't already have one). - diff --git a/Documentation/lguest/Makefile b/Documentation/lguest/Makefile index b9b9427376e9..c0b7a4556390 100644 --- a/Documentation/lguest/Makefile +++ b/Documentation/lguest/Makefile @@ -11,10 +11,11 @@ endif include $(KBUILD_OUTPUT)/.config LGUEST_GUEST_TOP := ($(CONFIG_PAGE_OFFSET) - 0x08000000) -CFLAGS:=-Wall -Wmissing-declarations -Wmissing-prototypes -O3 \ - -static -DLGUEST_GUEST_TOP="$(LGUEST_GUEST_TOP)" -Wl,-T,lguest.lds +CFLAGS:=-Wall -Wmissing-declarations -Wmissing-prototypes -O3 -Wl,-T,lguest.lds LDLIBS:=-lz - +# Removing this works for some versions of ld.so (eg. Ubuntu Feisty) and +# not others (eg. FC7). +LDFLAGS+=-static all: lguest.lds lguest # The linker script on x86 is so complex the only way of creating one diff --git a/Documentation/lguest/extract b/Documentation/lguest/extract new file mode 100644 index 000000000000..7730bb6e4b94 --- /dev/null +++ b/Documentation/lguest/extract @@ -0,0 +1,58 @@ +#! /bin/sh + +set -e + +PREFIX=$1 +shift + +trap 'rm -r $TMPDIR' 0 +TMPDIR=`mktemp -d` + +exec 3>/dev/null +for f; do + while IFS=" +" read -r LINE; do + case "$LINE" in + *$PREFIX:[0-9]*:\**) + NUM=`echo "$LINE" | sed "s/.*$PREFIX:\([0-9]*\).*/\1/"` + if [ -f $TMPDIR/$NUM ]; then + echo "$TMPDIR/$NUM already exits prior to $f" + exit 1 + fi + exec 3>>$TMPDIR/$NUM + echo $f | sed 's,\.\./,,g' > $TMPDIR/.$NUM + /bin/echo "$LINE" | sed -e "s/$PREFIX:[0-9]*//" -e "s/:\*/*/" >&3 + ;; + *$PREFIX:[0-9]*) + NUM=`echo "$LINE" | sed "s/.*$PREFIX:\([0-9]*\).*/\1/"` + if [ -f $TMPDIR/$NUM ]; then + echo "$TMPDIR/$NUM already exits prior to $f" + exit 1 + fi + exec 3>>$TMPDIR/$NUM + echo $f | sed 's,\.\./,,g' > $TMPDIR/.$NUM + /bin/echo "$LINE" | sed "s/$PREFIX:[0-9]*//" >&3 + ;; + *:\**) + /bin/echo "$LINE" | sed -e "s/:\*/*/" -e "s,/\*\*/,," >&3 + echo >&3 + exec 3>/dev/null + ;; + *) + /bin/echo "$LINE" >&3 + ;; + esac + done < $f + echo >&3 + exec 3>/dev/null +done + +LASTFILE="" +for f in $TMPDIR/*; do + if [ "$LASTFILE" != $(cat $TMPDIR/.$(basename $f) ) ]; then + LASTFILE=$(cat $TMPDIR/.$(basename $f) ) + echo "[ $LASTFILE ]" + fi + cat $f +done + diff --git a/Documentation/lguest/lguest.c b/Documentation/lguest/lguest.c index 1432b502a2d9..f7918401a007 100644 --- a/Documentation/lguest/lguest.c +++ b/Documentation/lguest/lguest.c @@ -1,5 +1,10 @@ -/* Simple program to layout "physical" memory for new lguest guest. - * Linked high to avoid likely physical memory. */ +/*P:100 This is the Launcher code, a simple program which lays out the + * "physical" memory for the new Guest by mapping the kernel image and the + * virtual devices, then reads repeatedly from /dev/lguest to run the Guest. + * + * The only trick: the Makefile links it at a high address so it will be clear + * of the guest memory region. It means that each Guest cannot have more than + * about 2.5G of memory on a normally configured Host. :*/ #define _LARGEFILE64_SOURCE #define _GNU_SOURCE #include @@ -29,12 +34,20 @@ #include #include #include +/*L:110 We can ignore the 28 include files we need for this program, but I do + * want to draw attention to the use of kernel-style types. + * + * As Linus said, "C is a Spartan language, and so should your naming be." I + * like these abbreviations and the header we need uses them, so we define them + * here. + */ typedef unsigned long long u64; typedef uint32_t u32; typedef uint16_t u16; typedef uint8_t u8; #include "../../include/linux/lguest_launcher.h" #include "../../include/asm-i386/e820.h" +/*:*/ #define PAGE_PRESENT 0x7 /* Present, RW, Execute */ #define NET_PEERNUM 1 @@ -43,31 +56,52 @@ typedef uint8_t u8; #define SIOCBRADDIF 0x89a2 /* add interface to bridge */ #endif +/*L:120 verbose is both a global flag and a macro. The C preprocessor allows + * this, and although I wouldn't recommend it, it works quite nicely here. */ static bool verbose; #define verbose(args...) \ do { if (verbose) printf(args); } while(0) +/*:*/ + +/* The pipe to send commands to the waker process */ static int waker_fd; +/* The top of guest physical memory. */ +static u32 top; +/* This is our list of devices. */ struct device_list { + /* Summary information about the devices in our list: ready to pass to + * select() to ask which need servicing.*/ fd_set infds; int max_infd; + /* The descriptor page for the devices. */ + struct lguest_device_desc *descs; + + /* A single linked list of devices. */ struct device *dev; + /* ... And an end pointer so we can easily append new devices */ struct device **lastdev; }; +/* The device structure describes a single device. */ struct device { + /* The linked-list pointer. */ struct device *next; + /* The descriptor for this device, as mapped into the Guest. */ struct lguest_device_desc *desc; + /* The memory page(s) of this device, if any. Also mapped in Guest. */ void *mem; - /* Watch this fd if handle_input non-NULL. */ + /* If handle_input is set, it wants to be called when this file + * descriptor is ready. */ int fd; bool (*handle_input)(int fd, struct device *me); - /* Watch DMA to this key if handle_input non-NULL. */ + /* If handle_output is set, it wants to be called when the Guest sends + * DMA to this key. */ unsigned long watch_key; u32 (*handle_output)(int fd, const struct iovec *iov, unsigned int num, struct device *me); @@ -76,6 +110,11 @@ struct device void *priv; }; +/*L:130 + * Loading the Kernel. + * + * We start with couple of simple helper routines. open_or_die() avoids + * error-checking code cluttering the callers: */ static int open_or_die(const char *name, int flags) { int fd = open(name, flags); @@ -84,26 +123,38 @@ static int open_or_die(const char *name, int flags) return fd; } +/* map_zeroed_pages() takes a (page-aligned) address and a number of pages. */ static void *map_zeroed_pages(unsigned long addr, unsigned int num) { + /* We cache the /dev/zero file-descriptor so we only open it once. */ static int fd = -1; if (fd == -1) fd = open_or_die("/dev/zero", O_RDONLY); + /* We use a private mapping (ie. if we write to the page, it will be + * copied), and obviously we insist that it be mapped where we ask. */ if (mmap((void *)addr, getpagesize() * num, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_FIXED|MAP_PRIVATE, fd, 0) != (void *)addr) err(1, "Mmaping %u pages of /dev/zero @%p", num, (void *)addr); + + /* Returning the address is just a courtesy: can simplify callers. */ return (void *)addr; } -/* Find magic string marking entry point, return entry point. */ +/* To find out where to start we look for the magic Guest string, which marks + * the code we see in lguest_asm.S. This is a hack which we are currently + * plotting to replace with the normal Linux entry point. */ static unsigned long entry_point(void *start, void *end, unsigned long page_offset) { void *p; + /* The scan gives us the physical starting address. We want the + * virtual address in this case, and fortunately, we already figured + * out the physical-virtual difference and passed it here in + * "page_offset". */ for (p = start; p < end; p++) if (memcmp(p, "GenuineLguest", strlen("GenuineLguest")) == 0) return (long)p + strlen("GenuineLguest") + page_offset; @@ -111,7 +162,17 @@ static unsigned long entry_point(void *start, void *end, err(1, "Is this image a genuine lguest?"); } -/* Returns the entry point */ +/* This routine takes an open vmlinux image, which is in ELF, and maps it into + * the Guest memory. ELF = Embedded Linking Format, which is the format used + * by all modern binaries on Linux including the kernel. + * + * The ELF headers give *two* addresses: a physical address, and a virtual + * address. The Guest kernel expects to be placed in memory at the physical + * address, and the page tables set up so it will correspond to that virtual + * address. We return the difference between the virtual and physical + * addresses in the "page_offset" pointer. + * + * We return the starting address. */ static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr, unsigned long *page_offset) { @@ -120,40 +181,61 @@ static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr, unsigned int i; unsigned long start = -1UL, end = 0; - /* Sanity checks. */ + /* Sanity checks on the main ELF header: an x86 executable with a + * reasonable number of correctly-sized program headers. */ if (ehdr->e_type != ET_EXEC || ehdr->e_machine != EM_386 || ehdr->e_phentsize != sizeof(Elf32_Phdr) || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr)) errx(1, "Malformed elf header"); + /* An ELF executable contains an ELF header and a number of "program" + * headers which indicate which parts ("segments") of the program to + * load where. */ + + /* We read in all the program headers at once: */ if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0) err(1, "Seeking to program headers"); if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr)) err(1, "Reading program headers"); + /* We don't know page_offset yet. */ *page_offset = 0; - /* We map the loadable segments at virtual addresses corresponding - * to their physical addresses (our virtual == guest physical). */ + + /* Try all the headers: there are usually only three. A read-only one, + * a read-write one, and a "note" section which isn't loadable. */ for (i = 0; i < ehdr->e_phnum; i++) { + /* If this isn't a loadable segment, we ignore it */ if (phdr[i].p_type != PT_LOAD) continue; verbose("Section %i: size %i addr %p\n", i, phdr[i].p_memsz, (void *)phdr[i].p_paddr); - /* We expect linear address space. */ + /* We expect a simple linear address space: every segment must + * have the same difference between virtual (p_vaddr) and + * physical (p_paddr) address. */ if (!*page_offset) *page_offset = phdr[i].p_vaddr - phdr[i].p_paddr; else if (*page_offset != phdr[i].p_vaddr - phdr[i].p_paddr) errx(1, "Page offset of section %i different", i); + /* We track the first and last address we mapped, so we can + * tell entry_point() where to scan. */ if (phdr[i].p_paddr < start) start = phdr[i].p_paddr; if (phdr[i].p_paddr + phdr[i].p_filesz > end) end = phdr[i].p_paddr + phdr[i].p_filesz; - /* We map everything private, writable. */ + /* We map this section of the file at its physical address. We + * map it read & write even if the header says this segment is + * read-only. The kernel really wants to be writable: it + * patches its own instructions which would normally be + * read-only. + * + * MAP_PRIVATE means that the page won't be copied until a + * write is done to it. This allows us to share much of the + * kernel memory between Guests. */ addr = mmap((void *)phdr[i].p_paddr, phdr[i].p_filesz, PROT_READ|PROT_WRITE|PROT_EXEC, @@ -167,7 +249,31 @@ static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr, return entry_point((void *)start, (void *)end, *page_offset); } -/* This is amazingly reliable. */ +/*L:170 Prepare to be SHOCKED and AMAZED. And possibly a trifle nauseated. + * + * We know that CONFIG_PAGE_OFFSET sets what virtual address the kernel expects + * to be. We don't know what that option was, but we can figure it out + * approximately by looking at the addresses in the code. I chose the common + * case of reading a memory location into the %eax register: + * + * movl , %eax + * + * This gets encoded as five bytes: "0xA1 <4-byte-address>". For example, + * "0xA1 0x18 0x60 0x47 0xC0" reads the address 0xC0476018 into %eax. + * + * In this example can guess that the kernel was compiled with + * CONFIG_PAGE_OFFSET set to 0xC0000000 (it's always a round number). If the + * kernel were larger than 16MB, we might see 0xC1 addresses show up, but our + * kernel isn't that bloated yet. + * + * Unfortunately, x86 has variable-length instructions, so finding this + * particular instruction properly involves writing a disassembler. Instead, + * we rely on statistics. We look for "0xA1" and tally the different bytes + * which occur 4 bytes later (the "0xC0" in our example above). When one of + * those bytes appears three times, we can be reasonably confident that it + * forms the start of CONFIG_PAGE_OFFSET. + * + * This is amazingly reliable. */ static unsigned long intuit_page_offset(unsigned char *img, unsigned long len) { unsigned int i, possibilities[256] = { 0 }; @@ -180,30 +286,52 @@ static unsigned long intuit_page_offset(unsigned char *img, unsigned long len) errx(1, "could not determine page offset"); } +/*L:160 Unfortunately the entire ELF image isn't compressed: the segments + * which need loading are extracted and compressed raw. This denies us the + * information we need to make a fully-general loader. */ static unsigned long unpack_bzimage(int fd, unsigned long *page_offset) { gzFile f; int ret, len = 0; + /* A bzImage always gets loaded at physical address 1M. This is + * actually configurable as CONFIG_PHYSICAL_START, but as the comment + * there says, "Don't change this unless you know what you are doing". + * Indeed. */ void *img = (void *)0x100000; + /* gzdopen takes our file descriptor (carefully placed at the start of + * the GZIP header we found) and returns a gzFile. */ f = gzdopen(fd, "rb"); + /* We read it into memory in 64k chunks until we hit the end. */ while ((ret = gzread(f, img + len, 65536)) > 0) len += ret; if (ret < 0) err(1, "reading image from bzImage"); verbose("Unpacked size %i addr %p\n", len, img); + + /* Without the ELF header, we can't tell virtual-physical gap. This is + * CONFIG_PAGE_OFFSET, and people do actually change it. Fortunately, + * I have a clever way of figuring it out from the code itself. */ *page_offset = intuit_page_offset(img, len); return entry_point(img, img + len, *page_offset); } +/*L:150 A bzImage, unlike an ELF file, is not meant to be loaded. You're + * supposed to jump into it and it will unpack itself. We can't do that + * because the Guest can't run the unpacking code, and adding features to + * lguest kills puppies, so we don't want to. + * + * The bzImage is formed by putting the decompressing code in front of the + * compressed kernel code. So we can simple scan through it looking for the + * first "gzip" header, and start decompressing from there. */ static unsigned long load_bzimage(int fd, unsigned long *page_offset) { unsigned char c; int state = 0; - /* Ugly brute force search for gzip header. */ + /* GZIP header is 0x1F 0x8B ... . */ while (read(fd, &c, 1) == 1) { switch (state) { case 0: @@ -220,8 +348,10 @@ static unsigned long load_bzimage(int fd, unsigned long *page_offset) state++; break; case 9: + /* Seek back to the start of the gzip header. */ lseek(fd, -10, SEEK_CUR); - if (c != 0x03) /* Compressed under UNIX. */ + /* One final check: "compressed under UNIX". */ + if (c != 0x03) state = -1; else return unpack_bzimage(fd, page_offset); @@ -230,25 +360,43 @@ static unsigned long load_bzimage(int fd, unsigned long *page_offset) errx(1, "Could not find kernel in bzImage"); } +/*L:140 Loading the kernel is easy when it's a "vmlinux", but most kernels + * come wrapped up in the self-decompressing "bzImage" format. With some funky + * coding, we can load those, too. */ static unsigned long load_kernel(int fd, unsigned long *page_offset) { Elf32_Ehdr hdr; + /* Read in the first few bytes. */ if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr)) err(1, "Reading kernel"); + /* If it's an ELF file, it starts with "\177ELF" */ if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0) return map_elf(fd, &hdr, page_offset); + /* Otherwise we assume it's a bzImage, and try to unpack it */ return load_bzimage(fd, page_offset); } +/* This is a trivial little helper to align pages. Andi Kleen hated it because + * it calls getpagesize() twice: "it's dumb code." + * + * Kernel guys get really het up about optimization, even when it's not + * necessary. I leave this code as a reaction against that. */ static inline unsigned long page_align(unsigned long addr) { + /* Add upwards and truncate downwards. */ return ((addr + getpagesize()-1) & ~(getpagesize()-1)); } -/* initrd gets loaded at top of memory: return length. */ +/*L:180 An "initial ram disk" is a disk image loaded into memory along with + * the kernel which the kernel can use to boot from without needing any + * drivers. Most distributions now use this as standard: the initrd contains + * the code to load the appropriate driver modules for the current machine. + * + * Importantly, James Morris works for RedHat, and Fedora uses initrds for its + * kernels. He sent me this (and tells me when I break it). */ static unsigned long load_initrd(const char *name, unsigned long mem) { int ifd; @@ -257,21 +405,35 @@ static unsigned long load_initrd(const char *name, unsigned long mem) void *iaddr; ifd = open_or_die(name, O_RDONLY); + /* fstat() is needed to get the file size. */ if (fstat(ifd, &st) < 0) err(1, "fstat() on initrd '%s'", name); + /* The length needs to be rounded up to a page size: mmap needs the + * address to be page aligned. */ len = page_align(st.st_size); + /* We map the initrd at the top of memory. */ iaddr = mmap((void *)mem - len, st.st_size, PROT_READ|PROT_EXEC|PROT_WRITE, MAP_FIXED|MAP_PRIVATE, ifd, 0); if (iaddr != (void *)mem - len) err(1, "Mmaping initrd '%s' returned %p not %p", name, iaddr, (void *)mem - len); + /* Once a file is mapped, you can close the file descriptor. It's a + * little odd, but quite useful. */ close(ifd); verbose("mapped initrd %s size=%lu @ %p\n", name, st.st_size, iaddr); + + /* We return the initrd size. */ return len; } +/* Once we know how much memory we have, and the address the Guest kernel + * expects, we can construct simple linear page tables which will get the Guest + * far enough into the boot to create its own. + * + * We lay them out of the way, just below the initrd (which is why we need to + * know its size). */ static unsigned long setup_pagetables(unsigned long mem, unsigned long initrd_size, unsigned long page_offset) @@ -280,23 +442,32 @@ static unsigned long setup_pagetables(unsigned long mem, unsigned int mapped_pages, i, linear_pages; unsigned int ptes_per_page = getpagesize()/sizeof(u32); - /* If we can map all of memory above page_offset, we do so. */ + /* Ideally we map all physical memory starting at page_offset. + * However, if page_offset is 0xC0000000 we can only map 1G of physical + * (0xC0000000 + 1G overflows). */ if (mem <= -page_offset) mapped_pages = mem/getpagesize(); else mapped_pages = -page_offset/getpagesize(); - /* Each linear PTE page can map ptes_per_page pages. */ + /* Each PTE page can map ptes_per_page pages: how many do we need? */ linear_pages = (mapped_pages + ptes_per_page-1)/ptes_per_page; - /* We lay out top-level then linear mapping immediately below initrd */ + /* We put the toplevel page directory page at the top of memory. */ pgdir = (void *)mem - initrd_size - getpagesize(); + + /* Now we use the next linear_pages pages as pte pages */ linear = (void *)pgdir - linear_pages*getpagesize(); + /* Linear mapping is easy: put every page's address into the mapping in + * order. PAGE_PRESENT contains the flags Present, Writable and + * Executable. */ for (i = 0; i < mapped_pages; i++) linear[i] = ((i * getpagesize()) | PAGE_PRESENT); - /* Now set up pgd so that this memory is at page_offset */ + /* The top level points to the linear page table pages above. The + * entry representing page_offset points to the first one, and they + * continue from there. */ for (i = 0; i < mapped_pages; i += ptes_per_page) { pgdir[(i + page_offset/getpagesize())/ptes_per_page] = (((u32)linear + i*sizeof(u32)) | PAGE_PRESENT); @@ -305,9 +476,13 @@ static unsigned long setup_pagetables(unsigned long mem, verbose("Linear mapping of %u pages in %u pte pages at %p\n", mapped_pages, linear_pages, linear); + /* We return the top level (guest-physical) address: the kernel needs + * to know where it is. */ return (unsigned long)pgdir; } +/* Simple routine to roll all the commandline arguments together with spaces + * between them. */ static void concat(char *dst, char *args[]) { unsigned int i, len = 0; @@ -321,18 +496,24 @@ static void concat(char *dst, char *args[]) dst[len] = '\0'; } +/* This is where we actually tell the kernel to initialize the Guest. We saw + * the arguments it expects when we looked at initialize() in lguest_user.c: + * the top physical page to allow, the top level pagetable, the entry point and + * the page_offset constant for the Guest. */ static int tell_kernel(u32 pgdir, u32 start, u32 page_offset) { u32 args[] = { LHREQ_INITIALIZE, - LGUEST_GUEST_TOP/getpagesize(), /* Just below us */ - pgdir, start, page_offset }; + top/getpagesize(), pgdir, start, page_offset }; int fd; fd = open_or_die("/dev/lguest", O_RDWR); if (write(fd, args, sizeof(args)) < 0) err(1, "Writing to /dev/lguest"); + + /* We return the /dev/lguest file descriptor to control this Guest */ return fd; } +/*:*/ static void set_fd(int fd, struct device_list *devices) { @@ -341,61 +522,108 @@ static void set_fd(int fd, struct device_list *devices) devices->max_infd = fd; } -/* When input arrives, we tell the kernel to kick lguest out with -EAGAIN. */ +/*L:200 + * The Waker. + * + * With a console and network devices, we can have lots of input which we need + * to process. We could try to tell the kernel what file descriptors to watch, + * but handing a file descriptor mask through to the kernel is fairly icky. + * + * Instead, we fork off a process which watches the file descriptors and writes + * the LHREQ_BREAK command to the /dev/lguest filedescriptor to tell the Host + * loop to stop running the Guest. This causes it to return from the + * /dev/lguest read with -EAGAIN, where it will write to /dev/lguest to reset + * the LHREQ_BREAK and wake us up again. + * + * This, of course, is merely a different *kind* of icky. + */ static void wake_parent(int pipefd, int lguest_fd, struct device_list *devices) { + /* Add the pipe from the Launcher to the fdset in the device_list, so + * we watch it, too. */ set_fd(pipefd, devices); for (;;) { fd_set rfds = devices->infds; u32 args[] = { LHREQ_BREAK, 1 }; + /* Wait until input is ready from one of the devices. */ select(devices->max_infd+1, &rfds, NULL, NULL, NULL); + /* Is it a message from the Launcher? */ if (FD_ISSET(pipefd, &rfds)) { int ignorefd; + /* If read() returns 0, it means the Launcher has + * exited. We silently follow. */ if (read(pipefd, &ignorefd, sizeof(ignorefd)) == 0) exit(0); + /* Otherwise it's telling us there's a problem with one + * of the devices, and we should ignore that file + * descriptor from now on. */ FD_CLR(ignorefd, &devices->infds); - } else + } else /* Send LHREQ_BREAK command. */ write(lguest_fd, args, sizeof(args)); } } +/* This routine just sets up a pipe to the Waker process. */ static int setup_waker(int lguest_fd, struct device_list *device_list) { int pipefd[2], child; + /* We create a pipe to talk to the waker, and also so it knows when the + * Launcher dies (and closes pipe). */ pipe(pipefd); child = fork(); if (child == -1) err(1, "forking"); if (child == 0) { + /* Close the "writing" end of our copy of the pipe */ close(pipefd[1]); wake_parent(pipefd[0], lguest_fd, device_list); } + /* Close the reading end of our copy of the pipe. */ close(pipefd[0]); + /* Here is the fd used to talk to the waker. */ return pipefd[1]; } +/*L:210 + * Device Handling. + * + * When the Guest sends DMA to us, it sends us an array of addresses and sizes. + * We need to make sure it's not trying to reach into the Launcher itself, so + * we have a convenient routine which check it and exits with an error message + * if something funny is going on: + */ static void *_check_pointer(unsigned long addr, unsigned int size, unsigned int line) { - if (addr >= LGUEST_GUEST_TOP || addr + size >= LGUEST_GUEST_TOP) + /* We have to separately check addr and addr+size, because size could + * be huge and addr + size might wrap around. */ + if (addr >= top || addr + size >= top) errx(1, "%s:%i: Invalid address %li", __FILE__, line, addr); + /* We return a pointer for the caller's convenience, now we know it's + * safe to use. */ return (void *)addr; } +/* A macro which transparently hands the line number to the real function. */ #define check_pointer(addr,size) _check_pointer(addr, size, __LINE__) -/* Returns pointer to dma->used_len */ +/* The Guest has given us the address of a "struct lguest_dma". We check it's + * OK and convert it to an iovec (which is a simple array of ptr/size + * pairs). */ static u32 *dma2iov(unsigned long dma, struct iovec iov[], unsigned *num) { unsigned int i; struct lguest_dma *udma; + /* First we make sure that the array memory itself is valid. */ udma = check_pointer(dma, sizeof(*udma)); + /* Now we check each element */ for (i = 0; i < LGUEST_MAX_DMA_SECTIONS; i++) { + /* A zero length ends the array. */ if (!udma->len[i]) break; @@ -403,9 +631,15 @@ static u32 *dma2iov(unsigned long dma, struct iovec iov[], unsigned *num) iov[i].iov_len = udma->len[i]; } *num = i; + + /* We return the pointer to where the caller should write the amount of + * the buffer used. */ return &udma->used_len; } +/* This routine gets a DMA buffer from the Guest for a given key, and converts + * it to an iovec array. It returns the interrupt the Guest wants when we're + * finished, and a pointer to the "used_len" field to fill in. */ static u32 *get_dma_buffer(int fd, void *key, struct iovec iov[], unsigned int *num, u32 *irq) { @@ -413,16 +647,21 @@ static u32 *get_dma_buffer(int fd, void *key, unsigned long udma; u32 *res; + /* Ask the kernel for a DMA buffer corresponding to this key. */ udma = write(fd, buf, sizeof(buf)); + /* They haven't registered any, or they're all used? */ if (udma == (unsigned long)-1) return NULL; - /* Kernel stashes irq in ->used_len. */ + /* Convert it into our iovec array */ res = dma2iov(udma, iov, num); + /* The kernel stashes irq in ->used_len to get it out to us. */ *irq = *res; + /* Return a pointer to ((struct lguest_dma *)udma)->used_len. */ return res; } +/* This is a convenient routine to send the Guest an interrupt. */ static void trigger_irq(int fd, u32 irq) { u32 buf[] = { LHREQ_IRQ, irq }; @@ -430,6 +669,10 @@ static void trigger_irq(int fd, u32 irq) err(1, "Triggering irq %i", irq); } +/* This simply sets up an iovec array where we can put data to be discarded. + * This happens when the Guest doesn't want or can't handle the input: we have + * to get rid of it somewhere, and if we bury it in the ceiling space it will + * start to smell after a week. */ static void discard_iovec(struct iovec *iov, unsigned int *num) { static char discard_buf[1024]; @@ -438,19 +681,24 @@ static void discard_iovec(struct iovec *iov, unsigned int *num) iov->iov_len = sizeof(discard_buf); } +/* Here is the input terminal setting we save, and the routine to restore them + * on exit so the user can see what they type next. */ static struct termios orig_term; static void restore_term(void) { tcsetattr(STDIN_FILENO, TCSANOW, &orig_term); } +/* We associate some data with the console for our exit hack. */ struct console_abort { + /* How many times have they hit ^C? */ int count; + /* When did they start? */ struct timeval start; }; -/* We DMA input to buffer bound at start of console page. */ +/* This is the routine which handles console input (ie. stdin). */ static bool handle_console_input(int fd, struct device *dev) { u32 irq = 0, *lenp; @@ -459,24 +707,38 @@ static bool handle_console_input(int fd, struct device *dev) struct iovec iov[LGUEST_MAX_DMA_SECTIONS]; struct console_abort *abort = dev->priv; + /* First we get the console buffer from the Guest. The key is dev->mem + * which was set to 0 in setup_console(). */ lenp = get_dma_buffer(fd, dev->mem, iov, &num, &irq); if (!lenp) { + /* If it's not ready for input, warn and set up to discard. */ warn("console: no dma buffer!"); discard_iovec(iov, &num); } + /* This is why we convert to iovecs: the readv() call uses them, and so + * it reads straight into the Guest's buffer. */ len = readv(dev->fd, iov, num); if (len <= 0) { + /* This implies that the console is closed, is /dev/null, or + * something went terribly wrong. We still go through the rest + * of the logic, though, especially the exit handling below. */ warnx("Failed to get console input, ignoring console."); len = 0; } + /* If we read the data into the Guest, fill in the length and send the + * interrupt. */ if (lenp) { *lenp = len; trigger_irq(fd, irq); } - /* Three ^C within one second? Exit. */ + /* Three ^C within one second? Exit. + * + * This is such a hack, but works surprisingly well. Each ^C has to be + * in a buffer by itself, so they can't be too fast. But we check that + * we get three within about a second, so they can't be too slow. */ if (len == 1 && ((char *)iov[0].iov_base)[0] == 3) { if (!abort->count++) gettimeofday(&abort->start, NULL); @@ -484,43 +746,60 @@ static bool handle_console_input(int fd, struct device *dev) struct timeval now; gettimeofday(&now, NULL); if (now.tv_sec <= abort->start.tv_sec+1) { - /* Make sure waker is not blocked in BREAK */ u32 args[] = { LHREQ_BREAK, 0 }; + /* Close the fd so Waker will know it has to + * exit. */ close(waker_fd); + /* Just in case waker is blocked in BREAK, send + * unbreak now. */ write(fd, args, sizeof(args)); exit(2); } abort->count = 0; } } else + /* Any other key resets the abort counter. */ abort->count = 0; + /* Now, if we didn't read anything, put the input terminal back and + * return failure (meaning, don't call us again). */ if (!len) { restore_term(); return false; } + /* Everything went OK! */ return true; } +/* Handling console output is much simpler than input. */ static u32 handle_console_output(int fd, const struct iovec *iov, unsigned num, struct device*dev) { + /* Whatever the Guest sends, write it to standard output. Return the + * number of bytes written. */ return writev(STDOUT_FILENO, iov, num); } +/* Guest->Host network output is also pretty easy. */ static u32 handle_tun_output(int fd, const struct iovec *iov, unsigned num, struct device *dev) { - /* Now we've seen output, we should warn if we can't get buffers. */ + /* We put a flag in the "priv" pointer of the network device, and set + * it as soon as we see output. We'll see why in handle_tun_input() */ *(bool *)dev->priv = true; + /* Whatever packet the Guest sent us, write it out to the tun + * device. */ return writev(dev->fd, iov, num); } +/* This matches the peer_key() in lguest_net.c. The key for any given slot + * is the address of the network device's page plus 4 * the slot number. */ static unsigned long peer_offset(unsigned int peernum) { return 4 * peernum; } +/* This is where we handle a packet coming in from the tun device */ static bool handle_tun_input(int fd, struct device *dev) { u32 irq = 0, *lenp; @@ -528,17 +807,28 @@ static bool handle_tun_input(int fd, struct device *dev) unsigned num; struct iovec iov[LGUEST_MAX_DMA_SECTIONS]; + /* First we get a buffer the Guest has bound to its key. */ lenp = get_dma_buffer(fd, dev->mem+peer_offset(NET_PEERNUM), iov, &num, &irq); if (!lenp) { + /* Now, it's expected that if we try to send a packet too + * early, the Guest won't be ready yet. This is why we set a + * flag when the Guest sends its first packet. If it's sent a + * packet we assume it should be ready to receive them. + * + * Actually, this is what the status bits in the descriptor are + * for: we should *use* them. FIXME! */ if (*(bool *)dev->priv) warn("network: no dma buffer!"); discard_iovec(iov, &num); } + /* Read the packet from the device directly into the Guest's buffer. */ len = readv(dev->fd, iov, num); if (len <= 0) err(1, "reading network"); + + /* Write the used_len, and trigger the interrupt for the Guest */ if (lenp) { *lenp = len; trigger_irq(fd, irq); @@ -546,9 +836,13 @@ static bool handle_tun_input(int fd, struct device *dev) verbose("tun input packet len %i [%02x %02x] (%s)\n", len, ((u8 *)iov[0].iov_base)[0], ((u8 *)iov[0].iov_base)[1], lenp ? "sent" : "discarded"); + /* All good. */ return true; } +/* The last device handling routine is block output: the Guest has sent a DMA + * to the block device. It will have placed the command it wants in the + * "struct lguest_block_page". */ static u32 handle_block_output(int fd, const struct iovec *iov, unsigned num, struct device *dev) { @@ -558,36 +852,64 @@ static u32 handle_block_output(int fd, const struct iovec *iov, struct iovec reply[LGUEST_MAX_DMA_SECTIONS]; off64_t device_len, off = (off64_t)p->sector * 512; + /* First we extract the device length from the dev->priv pointer. */ device_len = *(off64_t *)dev->priv; + /* We first check that the read or write is within the length of the + * block file. */ if (off >= device_len) err(1, "Bad offset %llu vs %llu", off, device_len); + /* Move to the right location in the block file. This shouldn't fail, + * but best to check. */ if (lseek64(dev->fd, off, SEEK_SET) != off) err(1, "Bad seek to sector %i", p->sector); verbose("Block: %s at offset %llu\n", p->type ? "WRITE" : "READ", off); + /* They were supposed to bind a reply buffer at key equal to the start + * of the block device memory. We need this to tell them when the + * request is finished. */ lenp = get_dma_buffer(fd, dev->mem, reply, &reply_num, &irq); if (!lenp) err(1, "Block request didn't give us a dma buffer"); if (p->type) { + /* A write request. The DMA they sent contained the data, so + * write it out. */ len = writev(dev->fd, iov, num); + /* Grr... Now we know how long the "struct lguest_dma" they + * sent was, we make sure they didn't try to write over the end + * of the block file (possibly extending it). */ if (off + len > device_len) { + /* Trim it back to the correct length */ ftruncate(dev->fd, device_len); + /* Die, bad Guest, die. */ errx(1, "Write past end %llu+%u", off, len); } + /* The reply length is 0: we just send back an empty DMA to + * interrupt them and tell them the write is finished. */ *lenp = 0; } else { + /* A read request. They sent an empty DMA to start the + * request, and we put the read contents into the reply + * buffer. */ len = readv(dev->fd, reply, reply_num); *lenp = len; } + /* The result is 1 (done), 2 if there was an error (short read or + * write). */ p->result = 1 + (p->bytes != len); + /* Now tell them we've used their reply buffer. */ trigger_irq(fd, irq); + + /* We're supposed to return the number of bytes of the output buffer we + * used. But the block device uses the "result" field instead, so we + * don't bother. */ return 0; } +/* This is the generic routine we call when the Guest sends some DMA out. */ static void handle_output(int fd, unsigned long dma, unsigned long key, struct device_list *devices) { @@ -596,30 +918,53 @@ static void handle_output(int fd, unsigned long dma, unsigned long key, struct iovec iov[LGUEST_MAX_DMA_SECTIONS]; unsigned num = 0; + /* Convert the "struct lguest_dma" they're sending to a "struct + * iovec". */ lenp = dma2iov(dma, iov, &num); + + /* Check each device: if they expect output to this key, tell them to + * handle it. */ for (i = devices->dev; i; i = i->next) { if (i->handle_output && key == i->watch_key) { + /* We write the result straight into the used_len field + * for them. */ *lenp = i->handle_output(fd, iov, num, i); return; } } + + /* This can happen: the kernel sends any SEND_DMA which doesn't match + * another Guest to us. It could be that another Guest just left a + * network, for example. But it's unusual. */ warnx("Pending dma %p, key %p", (void *)dma, (void *)key); } +/* This is called when the waker wakes us up: check for incoming file + * descriptors. */ static void handle_input(int fd, struct device_list *devices) { + /* select() wants a zeroed timeval to mean "don't wait". */ struct timeval poll = { .tv_sec = 0, .tv_usec = 0 }; for (;;) { struct device *i; fd_set fds = devices->infds; + /* If nothing is ready, we're done. */ if (select(devices->max_infd+1, &fds, NULL, NULL, &poll) == 0) break; + /* Otherwise, call the device(s) which have readable + * file descriptors and a method of handling them. */ for (i = devices->dev; i; i = i->next) { if (i->handle_input && FD_ISSET(i->fd, &fds)) { + /* If handle_input() returns false, it means we + * should no longer service it. + * handle_console_input() does this. */ if (!i->handle_input(fd, i)) { + /* Clear it from the set of input file + * descriptors kept at the head of the + * device list. */ FD_CLR(i->fd, &devices->infds); /* Tell waker to ignore it too... */ write(waker_fd, &i->fd, sizeof(i->fd)); @@ -629,26 +974,42 @@ static void handle_input(int fd, struct device_list *devices) } } -static struct lguest_device_desc *new_dev_desc(u16 type, u16 features, - u16 num_pages) +/*L:190 + * Device Setup + * + * All devices need a descriptor so the Guest knows it exists, and a "struct + * device" so the Launcher can keep track of it. We have common helper + * routines to allocate them. + * + * This routine allocates a new "struct lguest_device_desc" from descriptor + * table in the devices array just above the Guest's normal memory. */ +static struct lguest_device_desc * +new_dev_desc(struct lguest_device_desc *descs, + u16 type, u16 features, u16 num_pages) { - static unsigned long top = LGUEST_GUEST_TOP; - struct lguest_device_desc *desc; + unsigned int i; - desc = malloc(sizeof(*desc)); - desc->type = type; - desc->num_pages = num_pages; - desc->features = features; - desc->status = 0; - if (num_pages) { - top -= num_pages*getpagesize(); - map_zeroed_pages(top, num_pages); - desc->pfn = top / getpagesize(); - } else - desc->pfn = 0; - return desc; + for (i = 0; i < LGUEST_MAX_DEVICES; i++) { + if (!descs[i].type) { + descs[i].type = type; + descs[i].features = features; + descs[i].num_pages = num_pages; + /* If they said the device needs memory, we allocate + * that now, bumping up the top of Guest memory. */ + if (num_pages) { + map_zeroed_pages(top, num_pages); + descs[i].pfn = top/getpagesize(); + top += num_pages*getpagesize(); + } + return &descs[i]; + } + } + errx(1, "too many devices"); } +/* This monster routine does all the creation and setup of a new device, + * including caling new_dev_desc() to allocate the descriptor and device + * memory. */ static struct device *new_device(struct device_list *devices, u16 type, u16 num_pages, u16 features, int fd, @@ -661,15 +1022,21 @@ static struct device *new_device(struct device_list *devices, { struct device *dev = malloc(sizeof(*dev)); - /* Append to device list. */ + /* Append to device list. Prepending to a single-linked list is + * easier, but the user expects the devices to be arranged on the bus + * in command-line order. The first network device on the command line + * is eth0, the first block device /dev/lgba, etc. */ *devices->lastdev = dev; dev->next = NULL; devices->lastdev = &dev->next; + /* Now we populate the fields one at a time. */ dev->fd = fd; + /* If we have an input handler for this file descriptor, then we add it + * to the device_list's fdset and maxfd. */ if (handle_input) set_fd(dev->fd, devices); - dev->desc = new_dev_desc(type, features, num_pages); + dev->desc = new_dev_desc(devices->descs, type, features, num_pages); dev->mem = (void *)(dev->desc->pfn * getpagesize()); dev->handle_input = handle_input; dev->watch_key = (unsigned long)dev->mem + watch_off; @@ -677,27 +1044,37 @@ static struct device *new_device(struct device_list *devices, return dev; } +/* Our first setup routine is the console. It's a fairly simple device, but + * UNIX tty handling makes it uglier than it could be. */ static void setup_console(struct device_list *devices) { struct device *dev; + /* If we can save the initial standard input settings... */ if (tcgetattr(STDIN_FILENO, &orig_term) == 0) { struct termios term = orig_term; + /* Then we turn off echo, line buffering and ^C etc. We want a + * raw input stream to the Guest. */ term.c_lflag &= ~(ISIG|ICANON|ECHO); tcsetattr(STDIN_FILENO, TCSANOW, &term); + /* If we exit gracefully, the original settings will be + * restored so the user can see what they're typing. */ atexit(restore_term); } - /* We don't currently require a page for the console. */ + /* We don't currently require any memory for the console, so we ask for + * 0 pages. */ dev = new_device(devices, LGUEST_DEVICE_T_CONSOLE, 0, 0, STDIN_FILENO, handle_console_input, LGUEST_CONSOLE_DMA_KEY, handle_console_output); + /* We store the console state in dev->priv, and initialize it. */ dev->priv = malloc(sizeof(struct console_abort)); ((struct console_abort *)dev->priv)->count = 0; verbose("device %p: console\n", (void *)(dev->desc->pfn * getpagesize())); } +/* Setting up a block file is also fairly straightforward. */ static void setup_block_file(const char *filename, struct device_list *devices) { int fd; @@ -705,20 +1082,47 @@ static void setup_block_file(const char *filename, struct device_list *devices) off64_t *device_len; struct lguest_block_page *p; + /* We open with O_LARGEFILE because otherwise we get stuck at 2G. We + * open with O_DIRECT because otherwise our benchmarks go much too + * fast. */ fd = open_or_die(filename, O_RDWR|O_LARGEFILE|O_DIRECT); + + /* We want one page, and have no input handler (the block file never + * has anything interesting to say to us). Our timing will be quite + * random, so it should be a reasonable randomness source. */ dev = new_device(devices, LGUEST_DEVICE_T_BLOCK, 1, LGUEST_DEVICE_F_RANDOMNESS, fd, NULL, 0, handle_block_output); + + /* We store the device size in the private area */ device_len = dev->priv = malloc(sizeof(*device_len)); + /* This is the safe way of establishing the size of our device: it + * might be a normal file or an actual block device like /dev/hdb. */ *device_len = lseek64(fd, 0, SEEK_END); - p = dev->mem; + /* The device memory is a "struct lguest_block_page". It's zeroed + * already, we just need to put in the device size. Block devices + * think in sectors (ie. 512 byte chunks), so we translate here. */ + p = dev->mem; p->num_sectors = *device_len/512; verbose("device %p: block %i sectors\n", (void *)(dev->desc->pfn * getpagesize()), p->num_sectors); } -/* We use fnctl locks to reserve network slots (autocleanup!) */ +/* + * Network Devices. + * + * Setting up network devices is quite a pain, because we have three types. + * First, we have the inter-Guest network. This is a file which is mapped into + * the address space of the Guests who are on the network. Because it is a + * shared mapping, the same page underlies all the devices, and they can send + * DMA to each other. + * + * Remember from our network driver, the Guest is told what slot in the page it + * is to use. We use exclusive fnctl locks to reserve a slot. If another + * Guest is using a slot, the lock will fail and we try another. Because fnctl + * locks are cleaned up automatically when we die, this cleverly means that our + * reservation on the slot will vanish if we crash. */ static unsigned int find_slot(int netfd, const char *filename) { struct flock fl; @@ -726,26 +1130,33 @@ static unsigned int find_slot(int netfd, const char *filename) fl.l_type = F_WRLCK; fl.l_whence = SEEK_SET; fl.l_len = 1; + /* Try a 1 byte lock in each possible position number */ for (fl.l_start = 0; fl.l_start < getpagesize()/sizeof(struct lguest_net); fl.l_start++) { + /* If we succeed, return the slot number. */ if (fcntl(netfd, F_SETLK, &fl) == 0) return fl.l_start; } errx(1, "No free slots in network file %s", filename); } +/* This function sets up the network file */ static void setup_net_file(const char *filename, struct device_list *devices) { int netfd; struct device *dev; + /* We don't use open_or_die() here: for friendliness we create the file + * if it doesn't already exist. */ netfd = open(filename, O_RDWR, 0); if (netfd < 0) { if (errno == ENOENT) { netfd = open(filename, O_RDWR|O_CREAT, 0600); if (netfd >= 0) { + /* If we succeeded, initialize the file with a + * blank page. */ char page[getpagesize()]; memset(page, 0, sizeof(page)); write(netfd, page, sizeof(page)); @@ -755,11 +1166,15 @@ static void setup_net_file(const char *filename, err(1, "cannot open net file '%s'", filename); } + /* We need 1 page, and the features indicate the slot to use and that + * no checksum is needed. We never touch this device again; it's + * between the Guests on the network, so we don't register input or + * output handlers. */ dev = new_device(devices, LGUEST_DEVICE_T_NET, 1, find_slot(netfd, filename)|LGUEST_NET_F_NOCSUM, -1, NULL, 0, NULL); - /* We overwrite the /dev/zero mapping with the actual file. */ + /* Map the shared file. */ if (mmap(dev->mem, getpagesize(), PROT_READ|PROT_WRITE, MAP_FIXED|MAP_SHARED, netfd, 0) != dev->mem) err(1, "could not mmap '%s'", filename); @@ -767,6 +1182,7 @@ static void setup_net_file(const char *filename, (void *)(dev->desc->pfn * getpagesize()), filename, dev->desc->features & ~LGUEST_NET_F_NOCSUM); } +/*:*/ static u32 str2ip(const char *ipaddr) { @@ -776,7 +1192,11 @@ static u32 str2ip(const char *ipaddr) return (byte[0] << 24) | (byte[1] << 16) | (byte[2] << 8) | byte[3]; } -/* adapted from libbridge */ +/* This code is "adapted" from libbridge: it attaches the Host end of the + * network device to the bridge device specified by the command line. + * + * This is yet another James Morris contribution (I'm an IP-level guy, so I + * dislike bridging), and I just try not to break it. */ static void add_to_bridge(int fd, const char *if_name, const char *br_name) { int ifidx; @@ -795,12 +1215,16 @@ static void add_to_bridge(int fd, const char *if_name, const char *br_name) err(1, "can't add %s to bridge %s", if_name, br_name); } +/* This sets up the Host end of the network device with an IP address, brings + * it up so packets will flow, the copies the MAC address into the hwaddr + * pointer (in practice, the Host's slot in the network device's memory). */ static void configure_device(int fd, const char *devname, u32 ipaddr, unsigned char hwaddr[6]) { struct ifreq ifr; struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr; + /* Don't read these incantations. Just cut & paste them like I did! */ memset(&ifr, 0, sizeof(ifr)); strcpy(ifr.ifr_name, devname); sin->sin_family = AF_INET; @@ -811,12 +1235,19 @@ static void configure_device(int fd, const char *devname, u32 ipaddr, if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0) err(1, "Bringing interface %s up", devname); + /* SIOC stands for Socket I/O Control. G means Get (vs S for Set + * above). IF means Interface, and HWADDR is hardware address. + * Simple! */ if (ioctl(fd, SIOCGIFHWADDR, &ifr) != 0) err(1, "getting hw address for %s", devname); - memcpy(hwaddr, ifr.ifr_hwaddr.sa_data, 6); } +/*L:195 The other kind of network is a Host<->Guest network. This can either + * use briding or routing, but the principle is the same: it uses the "tun" + * device to inject packets into the Host as if they came in from a normal + * network card. We just shunt packets between the Guest and the tun + * device. */ static void setup_tun_net(const char *arg, struct device_list *devices) { struct device *dev; @@ -825,36 +1256,56 @@ static void setup_tun_net(const char *arg, struct device_list *devices) u32 ip; const char *br_name = NULL; + /* We open the /dev/net/tun device and tell it we want a tap device. A + * tap device is like a tun device, only somehow different. To tell + * the truth, I completely blundered my way through this code, but it + * works now! */ netfd = open_or_die("/dev/net/tun", O_RDWR); memset(&ifr, 0, sizeof(ifr)); ifr.ifr_flags = IFF_TAP | IFF_NO_PI; strcpy(ifr.ifr_name, "tap%d"); if (ioctl(netfd, TUNSETIFF, &ifr) != 0) err(1, "configuring /dev/net/tun"); + /* We don't need checksums calculated for packets coming in this + * device: trust us! */ ioctl(netfd, TUNSETNOCSUM, 1); - /* You will be peer 1: we should create enough jitter to randomize */ + /* We create the net device with 1 page, using the features field of + * the descriptor to tell the Guest it is in slot 1 (NET_PEERNUM), and + * that the device has fairly random timing. We do *not* specify + * LGUEST_NET_F_NOCSUM: these packets can reach the real world. + * + * We will put our MAC address is slot 0 for the Guest to see, so + * it will send packets to us using the key "peer_offset(0)": */ dev = new_device(devices, LGUEST_DEVICE_T_NET, 1, NET_PEERNUM|LGUEST_DEVICE_F_RANDOMNESS, netfd, handle_tun_input, peer_offset(0), handle_tun_output); + + /* We keep a flag which says whether we've seen packets come out from + * this network device. */ dev->priv = malloc(sizeof(bool)); *(bool *)dev->priv = false; + /* We need a socket to perform the magic network ioctls to bring up the + * tap interface, connect to the bridge etc. Any socket will do! */ ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP); if (ipfd < 0) err(1, "opening IP socket"); + /* If the command line was --tunnet=bridge: do bridging. */ if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) { ip = INADDR_ANY; br_name = arg + strlen(BRIDGE_PFX); add_to_bridge(ipfd, ifr.ifr_name, br_name); - } else + } else /* It is an IP address to set up the device with */ ip = str2ip(arg); - /* We are peer 0, ie. first slot. */ + /* We are peer 0, ie. first slot, so we hand dev->mem to this routine + * to write the MAC address at the start of the device memory. */ configure_device(ipfd, ifr.ifr_name, ip, dev->mem); - /* Set "promisc" bit: we want every single packet. */ + /* Set "promisc" bit: we want every single packet if we're going to + * bridge to other machines (and otherwise it doesn't matter). */ *((u8 *)dev->mem) |= 0x1; close(ipfd); @@ -865,31 +1316,10 @@ static void setup_tun_net(const char *arg, struct device_list *devices) if (br_name) verbose("attached to bridge: %s\n", br_name); } +/* That's the end of device setup. */ -/* Now we know how much memory we have, we copy in device descriptors */ -static void map_device_descriptors(struct device_list *devs, unsigned long mem) -{ - struct device *i; - unsigned int num; - struct lguest_device_desc *descs; - - /* Device descriptor array sits just above top of normal memory */ - descs = map_zeroed_pages(mem, 1); - - for (i = devs->dev, num = 0; i; i = i->next, num++) { - if (num == LGUEST_MAX_DEVICES) - errx(1, "too many devices"); - verbose("Device %i: %s\n", num, - i->desc->type == LGUEST_DEVICE_T_NET ? "net" - : i->desc->type == LGUEST_DEVICE_T_CONSOLE ? "console" - : i->desc->type == LGUEST_DEVICE_T_BLOCK ? "block" - : "unknown"); - descs[num] = *i->desc; - free(i->desc); - i->desc = &descs[num]; - } -} - +/*L:220 Finally we reach the core of the Launcher, which runs the Guest, serves + * its input and output, and finally, lays it to rest. */ static void __attribute__((noreturn)) run_guest(int lguest_fd, struct device_list *device_list) { @@ -901,20 +1331,37 @@ run_guest(int lguest_fd, struct device_list *device_list) /* We read from the /dev/lguest device to run the Guest. */ readval = read(lguest_fd, arr, sizeof(arr)); + /* The read can only really return sizeof(arr) (the Guest did a + * SEND_DMA to us), or an error. */ + + /* For a successful read, arr[0] is the address of the "struct + * lguest_dma", and arr[1] is the key the Guest sent to. */ if (readval == sizeof(arr)) { handle_output(lguest_fd, arr[0], arr[1], device_list); continue; + /* ENOENT means the Guest died. Reading tells us why. */ } else if (errno == ENOENT) { char reason[1024] = { 0 }; read(lguest_fd, reason, sizeof(reason)-1); errx(1, "%s", reason); + /* EAGAIN means the waker wanted us to look at some input. + * Anything else means a bug or incompatible change. */ } else if (errno != EAGAIN) err(1, "Running guest failed"); + + /* Service input, then unset the BREAK which releases + * the Waker. */ handle_input(lguest_fd, device_list); if (write(lguest_fd, args, sizeof(args)) < 0) err(1, "Resetting break"); } } +/* + * This is the end of the Launcher. + * + * But wait! We've seen I/O from the Launcher, and we've seen I/O from the + * Drivers. If we were to see the Host kernel I/O code, our understanding + * would be complete... :*/ static struct option opts[] = { { "verbose", 0, NULL, 'v' }, @@ -932,19 +1379,59 @@ static void usage(void) " vmlinux [args...]"); } +/*L:100 The Launcher code itself takes us out into userspace, that scary place + * where pointers run wild and free! Unfortunately, like most userspace + * programs, it's quite boring (which is why everyone like to hack on the + * kernel!). Perhaps if you make up an Lguest Drinking Game at this point, it + * will get you through this section. Or, maybe not. + * + * The Launcher binary sits up high, usually starting at address 0xB8000000. + * Everything below this is the "physical" memory for the Guest. For example, + * if the Guest were to write a "1" at physical address 0, we would see a "1" + * in the Launcher at "(int *)0". Guest physical == Launcher virtual. + * + * This can be tough to get your head around, but usually it just means that we + * don't need to do any conversion when the Guest gives us it's "physical" + * addresses. + */ int main(int argc, char *argv[]) { - unsigned long mem, pgdir, start, page_offset, initrd_size = 0; - int c, lguest_fd; + /* Memory, top-level pagetable, code startpoint, PAGE_OFFSET and size + * of the (optional) initrd. */ + unsigned long mem = 0, pgdir, start, page_offset, initrd_size = 0; + /* A temporary and the /dev/lguest file descriptor. */ + int i, c, lguest_fd; + /* The list of Guest devices, based on command line arguments. */ struct device_list device_list; + /* The boot information for the Guest: at guest-physical address 0. */ void *boot = (void *)0; + /* If they specify an initrd file to load. */ const char *initrd_name = NULL; + /* First we initialize the device list. Since console and network + * device receive input from a file descriptor, we keep an fdset + * (infds) and the maximum fd number (max_infd) with the head of the + * list. We also keep a pointer to the last device, for easy appending + * to the list. */ device_list.max_infd = -1; device_list.dev = NULL; device_list.lastdev = &device_list.dev; FD_ZERO(&device_list.infds); + /* We need to know how much memory so we can set up the device + * descriptor and memory pages for the devices as we parse the command + * line. So we quickly look through the arguments to find the amount + * of memory now. */ + for (i = 1; i < argc; i++) { + if (argv[i][0] != '-') { + mem = top = atoi(argv[i]) * 1024 * 1024; + device_list.descs = map_zeroed_pages(top, 1); + top += getpagesize(); + break; + } + } + + /* The options are fairly straight-forward */ while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) { switch (c) { case 'v': @@ -967,46 +1454,71 @@ int main(int argc, char *argv[]) usage(); } } + /* After the other arguments we expect memory and kernel image name, + * followed by command line arguments for the kernel. */ if (optind + 2 > argc) usage(); - /* We need a console device */ + /* We always have a console device */ setup_console(&device_list); - /* First we map /dev/zero over all of guest-physical memory. */ - mem = atoi(argv[optind]) * 1024 * 1024; + /* We start by mapping anonymous pages over all of guest-physical + * memory range. This fills it with 0, and ensures that the Guest + * won't be killed when it tries to access it. */ map_zeroed_pages(0, mem / getpagesize()); /* Now we load the kernel */ start = load_kernel(open_or_die(argv[optind+1], O_RDONLY), &page_offset); - /* Write the device descriptors into memory. */ - map_device_descriptors(&device_list, mem); - - /* Map the initrd image if requested */ + /* Map the initrd image if requested (at top of physical memory) */ if (initrd_name) { initrd_size = load_initrd(initrd_name, mem); + /* These are the location in the Linux boot header where the + * start and size of the initrd are expected to be found. */ *(unsigned long *)(boot+0x218) = mem - initrd_size; *(unsigned long *)(boot+0x21c) = initrd_size; + /* The bootloader type 0xFF means "unknown"; that's OK. */ *(unsigned char *)(boot+0x210) = 0xFF; } - /* Set up the initial linar pagetables. */ + /* Set up the initial linear pagetables, starting below the initrd. */ pgdir = setup_pagetables(mem, initrd_size, page_offset); - /* E820 memory map: ours is a simple, single region. */ + /* The Linux boot header contains an "E820" memory map: ours is a + * simple, single region. */ *(char*)(boot+E820NR) = 1; *((struct e820entry *)(boot+E820MAP)) = ((struct e820entry) { 0, mem, E820_RAM }); - /* Command line pointer and command line (at 4096) */ + /* The boot header contains a command line pointer: we put the command + * line after the boot header (at address 4096) */ *(void **)(boot + 0x228) = boot + 4096; concat(boot + 4096, argv+optind+2); - /* Paravirt type: 1 == lguest */ + + /* The guest type value of "1" tells the Guest it's under lguest. */ *(int *)(boot + 0x23c) = 1; + /* We tell the kernel to initialize the Guest: this returns the open + * /dev/lguest file descriptor. */ lguest_fd = tell_kernel(pgdir, start, page_offset); + + /* We fork off a child process, which wakes the Launcher whenever one + * of the input file descriptors needs attention. Otherwise we would + * run the Guest until it tries to output something. */ waker_fd = setup_waker(lguest_fd, &device_list); + /* Finally, run the Guest. This doesn't return. */ run_guest(lguest_fd, &device_list); } +/*:*/ + +/*M:999 + * Mastery is done: you now know everything I do. + * + * But surely you have seen code, features and bugs in your wanderings which + * you now yearn to attack? That is the real game, and I look forward to you + * patching and forking lguest into the Your-Name-Here-visor. + * + * Farewell, and good coding! + * Rusty Russell. + */ diff --git a/Documentation/memory-hotplug.txt b/Documentation/memory-hotplug.txt new file mode 100644 index 000000000000..5fbcc22c98e9 --- /dev/null +++ b/Documentation/memory-hotplug.txt @@ -0,0 +1,322 @@ +============== +Memory Hotplug +============== + +Last Updated: Jul 28 2007 + +This document is about memory hotplug including how-to-use and current status. +Because Memory Hotplug is still under development, contents of this text will +be changed often. + +1. Introduction + 1.1 purpose of memory hotplug + 1.2. Phases of memory hotplug + 1.3. Unit of Memory online/offline operation +2. Kernel Configuration +3. sysfs files for memory hotplug +4. Physical memory hot-add phase + 4.1 Hardware(Firmware) Support + 4.2 Notify memory hot-add event by hand +5. Logical Memory hot-add phase + 5.1. State of memory + 5.2. How to online memory +6. Logical memory remove + 6.1 Memory offline and ZONE_MOVABLE + 6.2. How to offline memory +7. Physical memory remove +8. Future Work List + +Note(1): x86_64's has special implementation for memory hotplug. + This text does not describe it. +Note(2): This text assumes that sysfs is mounted at /sys. + + +--------------- +1. Introduction +--------------- + +1.1 purpose of memory hotplug +------------ +Memory Hotplug allows users to increase/decrease the amount of memory. +Generally, there are two purposes. + +(A) For changing the amount of memory. + This is to allow a feature like capacity on demand. +(B) For installing/removing DIMMs or NUMA-nodes physically. + This is to exchange DIMMs/NUMA-nodes, reduce power consumption, etc. + +(A) is required by highly virtualized environments and (B) is required by +hardware which supports memory power management. + +Linux memory hotplug is designed for both purpose. + + +1.2. Phases of memory hotplug +--------------- +There are 2 phases in Memory Hotplug. + 1) Physical Memory Hotplug phase + 2) Logical Memory Hotplug phase. + +The First phase is to communicate hardware/firmware and make/erase +environment for hotplugged memory. Basically, this phase is necessary +for the purpose (B), but this is good phase for communication between +highly virtualized environments too. + +When memory is hotplugged, the kernel recognizes new memory, makes new memory +management tables, and makes sysfs files for new memory's operation. + +If firmware supports notification of connection of new memory to OS, +this phase is triggered automatically. ACPI can notify this event. If not, +"probe" operation by system administration is used instead. +(see Section 4.). + +Logical Memory Hotplug phase is to change memory state into +avaiable/unavailable for users. Amount of memory from user's view is +changed by this phase. The kernel makes all memory in it as free pages +when a memory range is available. + +In this document, this phase is described as online/offline. + +Logical Memory Hotplug phase is triggred by write of sysfs file by system +administrator. For the hot-add case, it must be executed after Physical Hotplug +phase by hand. +(However, if you writes udev's hotplug scripts for memory hotplug, these + phases can be execute in seamless way.) + + +1.3. Unit of Memory online/offline operation +------------ +Memory hotplug uses SPARSEMEM memory model. SPARSEMEM divides the whole memory +into chunks of the same size. The chunk is called a "section". The size of +a section is architecture dependent. For example, power uses 16MiB, ia64 uses +1GiB. The unit of online/offline operation is "one section". (see Section 3.) + +To determine the size of sections, please read this file: + +/sys/devices/system/memory/block_size_bytes + +This file shows the size of sections in byte. + +----------------------- +2. Kernel Configuration +----------------------- +To use memory hotplug feature, kernel must be compiled with following +config options. + +- For all memory hotplug + Memory model -> Sparse Memory (CONFIG_SPARSEMEM) + Allow for memory hot-add (CONFIG_MEMORY_HOTPLUG) + +- To enable memory removal, the followings are also necessary + Allow for memory hot remove (CONFIG_MEMORY_HOTREMOVE) + Page Migration (CONFIG_MIGRATION) + +- For ACPI memory hotplug, the followings are also necessary + Memory hotplug (under ACPI Support menu) (CONFIG_ACPI_HOTPLUG_MEMORY) + This option can be kernel module. + +- As a related configuration, if your box has a feature of NUMA-node hotplug + via ACPI, then this option is necessary too. + ACPI0004,PNP0A05 and PNP0A06 Container Driver (under ACPI Support menu) + (CONFIG_ACPI_CONTAINER). + This option can be kernel module too. + +-------------------------------- +3 sysfs files for memory hotplug +-------------------------------- +All sections have their device information under /sys/devices/system/memory as + +/sys/devices/system/memory/memoryXXX +(XXX is section id.) + +Now, XXX is defined as start_address_of_section / section_size. + +For example, assume 1GiB section size. A device for a memory starting at +0x100000000 is /sys/device/system/memory/memory4 +(0x100000000 / 1Gib = 4) +This device covers address range [0x100000000 ... 0x140000000) + +Under each section, you can see 3 files. + +/sys/devices/system/memory/memoryXXX/phys_index +/sys/devices/system/memory/memoryXXX/phys_device +/sys/devices/system/memory/memoryXXX/state + +'phys_index' : read-only and contains section id, same as XXX. +'state' : read-write + at read: contains online/offline state of memory. + at write: user can specify "online", "offline" command +'phys_device': read-only: designed to show the name of physical memory device. + This is not well implemented now. + +NOTE: + These directories/files appear after physical memory hotplug phase. + + +-------------------------------- +4. Physical memory hot-add phase +-------------------------------- + +4.1 Hardware(Firmware) Support +------------ +On x86_64/ia64 platform, memory hotplug by ACPI is supported. + +In general, the firmware (ACPI) which supports memory hotplug defines +memory class object of _HID "PNP0C80". When a notify is asserted to PNP0C80, +Linux's ACPI handler does hot-add memory to the system and calls a hotplug udev +script. This will be done automatically. + +But scripts for memory hotplug are not contained in generic udev package(now). +You may have to write it by yourself or online/offline memory by hand. +Please see "How to online memory", "How to offline memory" in this text. + +If firmware supports NUMA-node hotplug, and defines an object _HID "ACPI0004", +"PNP0A05", or "PNP0A06", notification is asserted to it, and ACPI handler +calls hotplug code for all of objects which are defined in it. +If memory device is found, memory hotplug code will be called. + + +4.2 Notify memory hot-add event by hand +------------ +In some environments, especially virtualized environment, firmware will not +notify memory hotplug event to the kernel. For such environment, "probe" +interface is supported. This interface depends on CONFIG_ARCH_MEMORY_PROBE. + +Now, CONFIG_ARCH_MEMORY_PROBE is supported only by powerpc but it does not +contain highly architecture codes. Please add config if you need "probe" +interface. + +Probe interface is located at +/sys/devices/system/memory/probe + +You can tell the physical address of new memory to the kernel by + +% echo start_address_of_new_memory > /sys/devices/system/memory/probe + +Then, [start_address_of_new_memory, start_address_of_new_memory + section_size) +memory range is hot-added. In this case, hotplug script is not called (in +current implementation). You'll have to online memory by yourself. +Please see "How to online memory" in this text. + + + +------------------------------ +5. Logical Memory hot-add phase +------------------------------ + +5.1. State of memory +------------ +To see (online/offline) state of memory section, read 'state' file. + +% cat /sys/device/system/memory/memoryXXX/state + + +If the memory section is online, you'll read "online". +If the memory section is offline, you'll read "offline". + + +5.2. How to online memory +------------ +Even if the memory is hot-added, it is not at ready-to-use state. +For using newly added memory, you have to "online" the memory section. + +For onlining, you have to write "online" to the section's state file as: + +% echo online > /sys/devices/system/memory/memoryXXX/state + +After this, section memoryXXX's state will be 'online' and the amount of +available memory will be increased. + +Currently, newly added memory is added as ZONE_NORMAL (for powerpc, ZONE_DMA). +This may be changed in future. + + + +------------------------ +6. Logical memory remove +------------------------ + +6.1 Memory offline and ZONE_MOVABLE +------------ +Memory offlining is more complicated than memory online. Because memory offline +has to make the whole memory section be unused, memory offline can fail if +the section includes memory which cannot be freed. + +In general, memory offline can use 2 techniques. + +(1) reclaim and free all memory in the section. +(2) migrate all pages in the section. + +In the current implementation, Linux's memory offline uses method (2), freeing +all pages in the section by page migration. But not all pages are +migratable. Under current Linux, migratable pages are anonymous pages and +page caches. For offlining a section by migration, the kernel has to guarantee +that the section contains only migratable pages. + +Now, a boot option for making a section which consists of migratable pages is +supported. By specifying "kernelcore=" or "movablecore=" boot option, you can +create ZONE_MOVABLE...a zone which is just used for movable pages. +(See also Documentation/kernel-parameters.txt) + +Assume the system has "TOTAL" amount of memory at boot time, this boot option +creates ZONE_MOVABLE as following. + +1) When kernelcore=YYYY boot option is used, + Size of memory not for movable pages (not for offline) is YYYY. + Size of memory for movable pages (for offline) is TOTAL-YYYY. + +2) When movablecore=ZZZZ boot option is used, + Size of memory not for movable pages (not for offline) is TOTAL - ZZZZ. + Size of memory for movable pages (for offline) is ZZZZ. + + +Note) Unfortunately, there is no information to show which section belongs +to ZONE_MOVABLE. This is TBD. + + +6.2. How to offline memory +------------ +You can offline a section by using the same sysfs interface that was used in +memory onlining. + +% echo offline > /sys/devices/system/memory/memoryXXX/state + +If offline succeeds, the state of the memory section is changed to be "offline". +If it fails, some error core (like -EBUSY) will be returned by the kernel. +Even if a section does not belong to ZONE_MOVABLE, you can try to offline it. +If it doesn't contain 'unmovable' memory, you'll get success. + +A section under ZONE_MOVABLE is considered to be able to be offlined easily. +But under some busy state, it may return -EBUSY. Even if a memory section +cannot be offlined due to -EBUSY, you can retry offlining it and may be able to +offline it (or not). +(For example, a page is referred to by some kernel internal call and released + soon.) + +Consideration: +Memory hotplug's design direction is to make the possibility of memory offlining +higher and to guarantee unplugging memory under any situation. But it needs +more work. Returning -EBUSY under some situation may be good because the user +can decide to retry more or not by himself. Currently, memory offlining code +does some amount of retry with 120 seconds timeout. + +------------------------- +7. Physical memory remove +------------------------- +Need more implementation yet.... + - Notification completion of remove works by OS to firmware. + - Guard from remove if not yet. + +-------------- +8. Future Work +-------------- + - allowing memory hot-add to ZONE_MOVABLE. maybe we need some switch like + sysctl or new control file. + - showing memory section and physical device relationship. + - showing memory section and node relationship (maybe good for NUMA) + - showing memory section is under ZONE_MOVABLE or not + - test and make it better memory offlining. + - support HugeTLB page migration and offlining. + - memmap removing at memory offline. + - physical remove memory. + diff --git a/Documentation/sched-design-CFS.txt b/Documentation/sched-design-CFS.txt index 16feebb7bdc0..84901e7c0508 100644 --- a/Documentation/sched-design-CFS.txt +++ b/Documentation/sched-design-CFS.txt @@ -83,7 +83,7 @@ Some implementation details: CFS uses nanosecond granularity accounting and does not rely on any jiffies or other HZ detail. Thus the CFS scheduler has no notion of 'timeslices' and has no heuristics whatsoever. There is only one - central tunable: + central tunable (you have to switch on CONFIG_SCHED_DEBUG): /proc/sys/kernel/sched_granularity_ns diff --git a/Documentation/sched-nice-design.txt b/Documentation/sched-nice-design.txt new file mode 100644 index 000000000000..e2bae5a577e3 --- /dev/null +++ b/Documentation/sched-nice-design.txt @@ -0,0 +1,108 @@ +This document explains the thinking about the revamped and streamlined +nice-levels implementation in the new Linux scheduler. + +Nice levels were always pretty weak under Linux and people continuously +pestered us to make nice +19 tasks use up much less CPU time. + +Unfortunately that was not that easy to implement under the old +scheduler, (otherwise we'd have done it long ago) because nice level +support was historically coupled to timeslice length, and timeslice +units were driven by the HZ tick, so the smallest timeslice was 1/HZ. + +In the O(1) scheduler (in 2003) we changed negative nice levels to be +much stronger than they were before in 2.4 (and people were happy about +that change), and we also intentionally calibrated the linear timeslice +rule so that nice +19 level would be _exactly_ 1 jiffy. To better +understand it, the timeslice graph went like this (cheesy ASCII art +alert!): + + + A + \ | [timeslice length] + \ | + \ | + \ | + \ | + \|___100msecs + |^ . _ + | ^ . _ + | ^ . _ + -*----------------------------------*-----> [nice level] + -20 | +19 + | + | + +So that if someone wanted to really renice tasks, +19 would give a much +bigger hit than the normal linear rule would do. (The solution of +changing the ABI to extend priorities was discarded early on.) + +This approach worked to some degree for some time, but later on with +HZ=1000 it caused 1 jiffy to be 1 msec, which meant 0.1% CPU usage which +we felt to be a bit excessive. Excessive _not_ because it's too small of +a CPU utilization, but because it causes too frequent (once per +millisec) rescheduling. (and would thus trash the cache, etc. Remember, +this was long ago when hardware was weaker and caches were smaller, and +people were running number crunching apps at nice +19.) + +So for HZ=1000 we changed nice +19 to 5msecs, because that felt like the +right minimal granularity - and this translates to 5% CPU utilization. +But the fundamental HZ-sensitive property for nice+19 still remained, +and we never got a single complaint about nice +19 being too _weak_ in +terms of CPU utilization, we only got complaints about it (still) being +too _strong_ :-) + +To sum it up: we always wanted to make nice levels more consistent, but +within the constraints of HZ and jiffies and their nasty design level +coupling to timeslices and granularity it was not really viable. + +The second (less frequent but still periodically occuring) complaint +about Linux's nice level support was its assymetry around the origo +(which you can see demonstrated in the picture above), or more +accurately: the fact that nice level behavior depended on the _absolute_ +nice level as well, while the nice API itself is fundamentally +"relative": + + int nice(int inc); + + asmlinkage long sys_nice(int increment) + +(the first one is the glibc API, the second one is the syscall API.) +Note that the 'inc' is relative to the current nice level. Tools like +bash's "nice" command mirror this relative API. + +With the old scheduler, if you for example started a niced task with +1 +and another task with +2, the CPU split between the two tasks would +depend on the nice level of the parent shell - if it was at nice -10 the +CPU split was different than if it was at +5 or +10. + +A third complaint against Linux's nice level support was that negative +nice levels were not 'punchy enough', so lots of people had to resort to +run audio (and other multimedia) apps under RT priorities such as +SCHED_FIFO. But this caused other problems: SCHED_FIFO is not starvation +proof, and a buggy SCHED_FIFO app can also lock up the system for good. + +The new scheduler in v2.6.23 addresses all three types of complaints: + +To address the first complaint (of nice levels being not "punchy" +enough), the scheduler was decoupled from 'time slice' and HZ concepts +(and granularity was made a separate concept from nice levels) and thus +it was possible to implement better and more consistent nice +19 +support: with the new scheduler nice +19 tasks get a HZ-independent +1.5%, instead of the variable 3%-5%-9% range they got in the old +scheduler. + +To address the second complaint (of nice levels not being consistent), +the new scheduler makes nice(1) have the same CPU utilization effect on +tasks, regardless of their absolute nice levels. So on the new +scheduler, running a nice +10 and a nice 11 task has the same CPU +utilization "split" between them as running a nice -5 and a nice -4 +task. (one will get 55% of the CPU, the other 45%.) That is why nice +levels were changed to be "multiplicative" (or exponential) - that way +it does not matter which nice level you start out from, the 'relative +result' will always be the same. + +The third complaint (of negative nice levels not being "punchy" enough +and forcing audio apps to run under the more dangerous SCHED_FIFO +scheduling policy) is addressed by the new scheduler almost +automatically: stronger negative nice levels are an automatic +side-effect of the recalibrated dynamic range of nice levels. diff --git a/Documentation/sched-stats.txt b/Documentation/sched-stats.txt index 6f72021aae51..442e14d35dea 100644 --- a/Documentation/sched-stats.txt +++ b/Documentation/sched-stats.txt @@ -1,10 +1,11 @@ -Version 10 of schedstats includes support for sched_domains, which -hit the mainline kernel in 2.6.7. Some counters make more sense to be -per-runqueue; other to be per-domain. Note that domains (and their associated -information) will only be pertinent and available on machines utilizing -CONFIG_SMP. - -In version 10 of schedstat, there is at least one level of domain +Version 14 of schedstats includes support for sched_domains, which hit the +mainline kernel in 2.6.20 although it is identical to the stats from version +12 which was in the kernel from 2.6.13-2.6.19 (version 13 never saw a kernel +release). Some counters make more sense to be per-runqueue; other to be +per-domain. Note that domains (and their associated information) will only +be pertinent and available on machines utilizing CONFIG_SMP. + +In version 14 of schedstat, there is at least one level of domain statistics for each cpu listed, and there may well be more than one domain. Domains have no particular names in this implementation, but the highest numbered one typically arbitrates balancing across all the @@ -27,7 +28,7 @@ to write their own scripts, the fields are described here. CPU statistics -------------- -cpu 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 +cpu 1 2 3 4 5 6 7 8 9 10 11 12 NOTE: In the sched_yield() statistics, the active queue is considered empty if it has only one process in it, since obviously the process calling @@ -39,48 +40,20 @@ First four fields are sched_yield() statistics: 3) # of times just the expired queue was empty 4) # of times sched_yield() was called -Next four are schedule() statistics: - 5) # of times the active queue had at least one other process on it - 6) # of times we switched to the expired queue and reused it - 7) # of times schedule() was called - 8) # of times schedule() left the processor idle - -Next four are active_load_balance() statistics: - 9) # of times active_load_balance() was called - 10) # of times active_load_balance() caused this cpu to gain a task - 11) # of times active_load_balance() caused this cpu to lose a task - 12) # of times active_load_balance() tried to move a task and failed - -Next three are try_to_wake_up() statistics: - 13) # of times try_to_wake_up() was called - 14) # of times try_to_wake_up() successfully moved the awakening task - 15) # of times try_to_wake_up() attempted to move the awakening task - -Next two are wake_up_new_task() statistics: - 16) # of times wake_up_new_task() was called - 17) # of times wake_up_new_task() successfully moved the new task - -Next one is a sched_migrate_task() statistic: - 18) # of times sched_migrate_task() was called +Next three are schedule() statistics: + 5) # of times we switched to the expired queue and reused it + 6) # of times schedule() was called + 7) # of times schedule() left the processor idle -Next one is a sched_balance_exec() statistic: - 19) # of times sched_balance_exec() was called +Next two are try_to_wake_up() statistics: + 8) # of times try_to_wake_up() was called + 9) # of times try_to_wake_up() was called to wake up the local cpu Next three are statistics describing scheduling latency: - 20) sum of all time spent running by tasks on this processor (in ms) - 21) sum of all time spent waiting to run by tasks on this processor (in ms) - 22) # of tasks (not necessarily unique) given to the processor - -The last six are statistics dealing with pull_task(): - 23) # of times pull_task() moved a task to this cpu when newly idle - 24) # of times pull_task() stole a task from this cpu when another cpu - was newly idle - 25) # of times pull_task() moved a task to this cpu when idle - 26) # of times pull_task() stole a task from this cpu when another cpu - was idle - 27) # of times pull_task() moved a task to this cpu when busy - 28) # of times pull_task() stole a task from this cpu when another cpu - was busy + 10) sum of all time spent running by tasks on this processor (in jiffies) + 11) sum of all time spent waiting to run by tasks on this processor (in + jiffies) + 12) # of timeslices run on this cpu Domain statistics @@ -89,65 +62,95 @@ One of these is produced per domain for each cpu described. (Note that if CONFIG_SMP is not defined, *no* domains are utilized and these lines will not appear in the output.) -domain 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 +domain 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 The first field is a bit mask indicating what cpus this domain operates over. -The next fifteen are a variety of load_balance() statistics: - - 1) # of times in this domain load_balance() was called when the cpu - was idle - 2) # of times in this domain load_balance() was called when the cpu - was busy - 3) # of times in this domain load_balance() was called when the cpu - was just becoming idle - 4) # of times in this domain load_balance() tried to move one or more - tasks and failed, when the cpu was idle - 5) # of times in this domain load_balance() tried to move one or more - tasks and failed, when the cpu was busy - 6) # of times in this domain load_balance() tried to move one or more - tasks and failed, when the cpu was just becoming idle - 7) sum of imbalances discovered (if any) with each call to - load_balance() in this domain when the cpu was idle - 8) sum of imbalances discovered (if any) with each call to - load_balance() in this domain when the cpu was busy - 9) sum of imbalances discovered (if any) with each call to - load_balance() in this domain when the cpu was just becoming idle - 10) # of times in this domain load_balance() was called but did not find - a busier queue while the cpu was idle - 11) # of times in this domain load_balance() was called but did not find - a busier queue while the cpu was busy - 12) # of times in this domain load_balance() was called but did not find - a busier queue while the cpu was just becoming idle - 13) # of times in this domain a busier queue was found while the cpu was - idle but no busier group was found - 14) # of times in this domain a busier queue was found while the cpu was - busy but no busier group was found - 15) # of times in this domain a busier queue was found while the cpu was - just becoming idle but no busier group was found - -Next two are sched_balance_exec() statistics: - 17) # of times in this domain sched_balance_exec() successfully pushed - a task to a new cpu - 18) # of times in this domain sched_balance_exec() tried but failed to - push a task to a new cpu - -Next two are try_to_wake_up() statistics: - 19) # of times in this domain try_to_wake_up() tried to move a task based - on affinity and cache warmth - 20) # of times in this domain try_to_wake_up() tried to move a task based - on load balancing - +The next 24 are a variety of load_balance() statistics in grouped into types +of idleness (idle, busy, and newly idle): + + 1) # of times in this domain load_balance() was called when the + cpu was idle + 2) # of times in this domain load_balance() checked but found + the load did not require balancing when the cpu was idle + 3) # of times in this domain load_balance() tried to move one or + more tasks and failed, when the cpu was idle + 4) sum of imbalances discovered (if any) with each call to + load_balance() in this domain when the cpu was idle + 5) # of times in this domain pull_task() was called when the cpu + was idle + 6) # of times in this domain pull_task() was called even though + the target task was cache-hot when idle + 7) # of times in this domain load_balance() was called but did + not find a busier queue while the cpu was idle + 8) # of times in this domain a busier queue was found while the + cpu was idle but no busier group was found + + 9) # of times in this domain load_balance() was called when the + cpu was busy + 10) # of times in this domain load_balance() checked but found the + load did not require balancing when busy + 11) # of times in this domain load_balance() tried to move one or + more tasks and failed, when the cpu was busy + 12) sum of imbalances discovered (if any) with each call to + load_balance() in this domain when the cpu was busy + 13) # of times in this domain pull_task() was called when busy + 14) # of times in this domain pull_task() was called even though the + target task was cache-hot when busy + 15) # of times in this domain load_balance() was called but did not + find a busier queue while the cpu was busy + 16) # of times in this domain a busier queue was found while the cpu + was busy but no busier group was found + + 17) # of times in this domain load_balance() was called when the + cpu was just becoming idle + 18) # of times in this domain load_balance() checked but found the + load did not require balancing when the cpu was just becoming idle + 19) # of times in this domain load_balance() tried to move one or more + tasks and failed, when the cpu was just becoming idle + 20) sum of imbalances discovered (if any) with each call to + load_balance() in this domain when the cpu was just becoming idle + 21) # of times in this domain pull_task() was called when newly idle + 22) # of times in this domain pull_task() was called even though the + target task was cache-hot when just becoming idle + 23) # of times in this domain load_balance() was called but did not + find a busier queue while the cpu was just becoming idle + 24) # of times in this domain a busier queue was found while the cpu + was just becoming idle but no busier group was found + + Next three are active_load_balance() statistics: + 25) # of times active_load_balance() was called + 26) # of times active_load_balance() tried to move a task and failed + 27) # of times active_load_balance() successfully moved a task + + Next three are sched_balance_exec() statistics: + 28) sbe_cnt is not used + 29) sbe_balanced is not used + 30) sbe_pushed is not used + + Next three are sched_balance_fork() statistics: + 31) sbf_cnt is not used + 32) sbf_balanced is not used + 33) sbf_pushed is not used + + Next three are try_to_wake_up() statistics: + 34) # of times in this domain try_to_wake_up() awoke a task that + last ran on a different cpu in this domain + 35) # of times in this domain try_to_wake_up() moved a task to the + waking cpu because it was cache-cold on its own cpu anyway + 36) # of times in this domain try_to_wake_up() started passive balancing /proc//schedstat ---------------- schedstats also adds a new /proc/ + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License. + * + * Cross-compile with cross-gcc -I/path/to/cross-kernel/include + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0])) + +static void pabort(const char *s) +{ + perror(s); + abort(); +} + +static char *device = "/dev/spidev1.1"; +static uint8_t mode; +static uint8_t bits = 8; +static uint32_t speed = 500000; +static uint16_t delay; + +static void transfer(int fd) +{ + int ret; + uint8_t tx[] = { + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, + 0x40, 0x00, 0x00, 0x00, 0x00, 0x95, + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, + 0xDE, 0xAD, 0xBE, 0xEF, 0xBA, 0xAD, + 0xF0, 0x0D, + }; + uint8_t rx[ARRAY_SIZE(tx)] = {0, }; + struct spi_ioc_transfer tr = { + .tx_buf = (unsigned long)tx, + .rx_buf = (unsigned long)rx, + .len = ARRAY_SIZE(tx), + .delay_usecs = delay, + .speed_hz = speed, + .bits_per_word = bits, + }; + + ret = ioctl(fd, SPI_IOC_MESSAGE(1), &tr); + if (ret == 1) + pabort("can't send spi message"); + + for (ret = 0; ret < ARRAY_SIZE(tx); ret++) { + if (!(ret % 6)) + puts(""); + printf("%.2X ", rx[ret]); + } + puts(""); +} + +void print_usage(char *prog) +{ + printf("Usage: %s [-DsbdlHOLC3]\n", prog); + puts(" -D --device device to use (default /dev/spidev1.1)\n" + " -s --speed max speed (Hz)\n" + " -d --delay delay (usec)\n" + " -b --bpw bits per word \n" + " -l --loop loopback\n" + " -H --cpha clock phase\n" + " -O --cpol clock polarity\n" + " -L --lsb least significant bit first\n" + " -C --cs-high chip select active high\n" + " -3 --3wire SI/SO signals shared\n"); + exit(1); +} + +void parse_opts(int argc, char *argv[]) +{ + while (1) { + static struct option lopts[] = { + { "device", 1, 0, 'D' }, + { "speed", 1, 0, 's' }, + { "delay", 1, 0, 'd' }, + { "bpw", 1, 0, 'b' }, + { "loop", 0, 0, 'l' }, + { "cpha", 0, 0, 'H' }, + { "cpol", 0, 0, 'O' }, + { "lsb", 0, 0, 'L' }, + { "cs-high", 0, 0, 'C' }, + { "3wire", 0, 0, '3' }, + { NULL, 0, 0, 0 }, + }; + int c; + + c = getopt_long(argc, argv, "D:s:d:b:lHOLC3", lopts, NULL); + + if (c == -1) + break; + + switch (c) { + case 'D': + device = optarg; + break; + case 's': + speed = atoi(optarg); + break; + case 'd': + delay = atoi(optarg); + break; + case 'b': + bits = atoi(optarg); + break; + case 'l': + mode |= SPI_LOOP; + break; + case 'H': + mode |= SPI_CPHA; + break; + case 'O': + mode |= SPI_CPOL; + break; + case 'L': + mode |= SPI_LSB_FIRST; + break; + case 'C': + mode |= SPI_CS_HIGH; + break; + case '3': + mode |= SPI_3WIRE; + break; + default: + print_usage(argv[0]); + break; + } + } +} + +int main(int argc, char *argv[]) +{ + int ret = 0; + int fd; + + parse_opts(argc, argv); + + fd = open(device, O_RDWR); + if (fd < 0) + pabort("can't open device"); + + /* + * spi mode + */ + ret = ioctl(fd, SPI_IOC_WR_MODE, &mode); + if (ret == -1) + pabort("can't set spi mode"); + + ret = ioctl(fd, SPI_IOC_RD_MODE, &mode); + if (ret == -1) + pabort("can't get spi mode"); + + /* + * bits per word + */ + ret = ioctl(fd, SPI_IOC_WR_BITS_PER_WORD, &bits); + if (ret == -1) + pabort("can't set bits per word"); + + ret = ioctl(fd, SPI_IOC_RD_BITS_PER_WORD, &bits); + if (ret == -1) + pabort("can't get bits per word"); + + /* + * max speed hz + */ + ret = ioctl(fd, SPI_IOC_WR_MAX_SPEED_HZ, &speed); + if (ret == -1) + pabort("can't set max speed hz"); + + ret = ioctl(fd, SPI_IOC_RD_MAX_SPEED_HZ, &speed); + if (ret == -1) + pabort("can't get max speed hz"); + + printf("spi mode: %d\n", mode); + printf("bits per word: %d\n", bits); + printf("max speed: %d Hz (%d KHz)\n", speed, speed/1000); + + transfer(fd); + + close(fd); + + return ret; +} diff --git a/Documentation/stable_api_nonsense.txt b/Documentation/stable_api_nonsense.txt index a2afca3b2bab..847b342b7b20 100644 --- a/Documentation/stable_api_nonsense.txt +++ b/Documentation/stable_api_nonsense.txt @@ -10,7 +10,7 @@ kernel to userspace interfaces. The kernel to userspace interface is the one that application programs use, the syscall interface. That interface is _very_ stable over time, and will not break. I have old programs that were built on a pre 0.9something kernel that still work -just fine on the latest 2.6 kernel release. This interface is the one +just fine on the latest 2.6 kernel release. That interface is the one that users and application programmers can count on being stable. diff --git a/Documentation/sysfs-rules.txt b/Documentation/sysfs-rules.txt index 42861bb0bc9b..80ef562160bb 100644 --- a/Documentation/sysfs-rules.txt +++ b/Documentation/sysfs-rules.txt @@ -1,19 +1,18 @@ Rules on how to access information in the Linux kernel sysfs -The kernel exported sysfs exports internal kernel implementation-details +The kernel-exported sysfs exports internal kernel implementation details and depends on internal kernel structures and layout. It is agreed upon by the kernel developers that the Linux kernel does not provide a stable internal API. As sysfs is a direct export of kernel internal -structures, the sysfs interface can not provide a stable interface eighter, +structures, the sysfs interface cannot provide a stable interface either; it may always change along with internal kernel changes. To minimize the risk of breaking users of sysfs, which are in most cases low-level userspace applications, with a new kernel release, the users -of sysfs must follow some rules to use an as abstract-as-possible way to +of sysfs must follow some rules to use an as-abstract-as-possible way to access this filesystem. The current udev and HAL programs already implement this and users are encouraged to plug, if possible, into the -abstractions these programs provide instead of accessing sysfs -directly. +abstractions these programs provide instead of accessing sysfs directly. But if you really do want or need to access sysfs directly, please follow the following rules and then your programs should work with future @@ -25,22 +24,22 @@ versions of the sysfs interface. implementation details in its own API. Therefore it is not better than reading directories and opening the files yourself. Also, it is not actively maintained, in the sense of reflecting the - current kernel-development. The goal of providing a stable interface - to sysfs has failed, it causes more problems, than it solves. It + current kernel development. The goal of providing a stable interface + to sysfs has failed; it causes more problems than it solves. It violates many of the rules in this document. - sysfs is always at /sys Parsing /proc/mounts is a waste of time. Other mount points are a system configuration bug you should not try to solve. For test cases, possibly support a SYSFS_PATH environment variable to overwrite the - applications behavior, but never try to search for sysfs. Never try + application's behavior, but never try to search for sysfs. Never try to mount it, if you are not an early boot script. - devices are only "devices" There is no such thing like class-, bus-, physical devices, interfaces, and such that you can rely on in userspace. Everything is just simply a "device". Class-, bus-, physical, ... types are just - kernel implementation details, which should not be expected by + kernel implementation details which should not be expected by applications that look for devices in sysfs. The properties of a device are: @@ -48,11 +47,11 @@ versions of the sysfs interface. - identical to the DEVPATH value in the event sent from the kernel at device creation and removal - the unique key to the device at that point in time - - the kernels path to the device-directory without the leading + - the kernel's path to the device directory without the leading /sys, and always starting with with a slash - all elements of a devpath must be real directories. Symlinks pointing to /sys/devices must always be resolved to their real - target, and the target path must be used to access the device. + target and the target path must be used to access the device. That way the devpath to the device matches the devpath of the kernel used at event time. - using or exposing symlink values as elements in a devpath string @@ -73,17 +72,17 @@ versions of the sysfs interface. link - it is retrieved by reading the "driver"-link and using only the last element of the target path - - devices which do not have "driver"-link, just do not have a - driver; copying the driver value in a child device context, is a + - devices which do not have "driver"-link just do not have a + driver; copying the driver value in a child device context is a bug in the application o attributes - - the files in the device directory or files below a subdirectories + - the files in the device directory or files below subdirectories of the same device directory - accessing attributes reached by a symlink pointing to another device, like the "device"-link, is a bug in the application - Everything else is just a kernel driver-core implementation detail, + Everything else is just a kernel driver-core implementation detail that should not be assumed to be stable across kernel releases. - Properties of parent devices never belong into a child device. @@ -91,25 +90,25 @@ versions of the sysfs interface. context properties. If the device 'eth0' or 'sda' does not have a "driver"-link, then this device does not have a driver. Its value is empty. Never copy any property of the parent-device into a child-device. Parent - device-properties may change dynamically without any notice to the + device properties may change dynamically without any notice to the child device. -- Hierarchy in a single device-tree +- Hierarchy in a single device tree There is only one valid place in sysfs where hierarchy can be examined and this is below: /sys/devices. - It is planned, that all device directories will end up in the tree + It is planned that all device directories will end up in the tree below this directory. - Classification by subsystem There are currently three places for classification of devices: /sys/block, /sys/class and /sys/bus. It is planned that these will - not contain any device-directories themselves, but only flat lists of + not contain any device directories themselves, but only flat lists of symlinks pointing to the unified /sys/devices tree. All three places have completely different rules on how to access device information. It is planned to merge all three - classification-directories into one place at /sys/subsystem, - following the layout of the bus-directories. All buses and - classes, including the converted block-subsystem, will show up + classification directories into one place at /sys/subsystem, + following the layout of the bus directories. All buses and + classes, including the converted block subsystem, will show up there. The devices belonging to a subsystem will create a symlink in the "devices" directory at /sys/subsystem//devices. @@ -121,38 +120,38 @@ versions of the sysfs interface. subsystem name. Assuming /sys/class/ and /sys/bus/, or - /sys/block and /sys/class/block are not interchangeable, is a bug in + /sys/block and /sys/class/block are not interchangeable is a bug in the application. - Block - The converted block-subsystem at /sys/class/block, or + The converted block subsystem at /sys/class/block or /sys/subsystem/block will contain the links for disks and partitions - at the same level, never in a hierarchy. Assuming the block-subsytem to - contain only disks and not partition-devices in the same flat list is + at the same level, never in a hierarchy. Assuming the block subsytem to + contain only disks and not partition devices in the same flat list is a bug in the application. - "device"-link and :-links Never depend on the "device"-link. The "device"-link is a workaround - for the old layout, where class-devices are not created in - /sys/devices/ like the bus-devices. If the link-resolving of a - device-directory does not end in /sys/devices/, you can use the + for the old layout, where class devices are not created in + /sys/devices/ like the bus devices. If the link-resolving of a + device directory does not end in /sys/devices/, you can use the "device"-link to find the parent devices in /sys/devices/. That is the - single valid use of the "device"-link, it must never appear in any + single valid use of the "device"-link; it must never appear in any path as an element. Assuming the existence of the "device"-link for a device in /sys/devices/ is a bug in the application. Accessing /sys/class/net/eth0/device is a bug in the application. Never depend on the class-specific links back to the /sys/class directory. These links are also a workaround for the design mistake - that class-devices are not created in /sys/devices. If a device + that class devices are not created in /sys/devices. If a device directory does not contain directories for child devices, these links may be used to find the child devices in /sys/class. That is the single - valid use of these links, they must never appear in any path as an + valid use of these links; they must never appear in any path as an element. Assuming the existence of these links for devices which are - real child device directories in the /sys/devices tree, is a bug in + real child device directories in the /sys/devices tree is a bug in the application. - It is planned to remove all these links when when all class-device + It is planned to remove all these links when all class device directories live in /sys/devices. - Position of devices along device chain can change. @@ -161,6 +160,5 @@ versions of the sysfs interface. the chain. You must always request the parent device you are looking for by its subsystem value. You need to walk up the chain until you find the device that matches the expected subsystem. Depending on a specific - position of a parent device, or exposing relative paths, using "../" to - access the chain of parents, is a bug in the application. - + position of a parent device or exposing relative paths using "../" to + access the chain of parents is a bug in the application. diff --git a/Documentation/sysrq.txt b/Documentation/sysrq.txt index ba328f255417..ef19142896ca 100644 --- a/Documentation/sysrq.txt +++ b/Documentation/sysrq.txt @@ -1,6 +1,6 @@ Linux Magic System Request Key Hacks Documentation for sysrq.c -Last update: 2007-MAR-14 +Last update: 2007-AUG-04 * What is the magic SysRq key? ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ @@ -78,7 +78,7 @@ On all - write a character to /proc/sysrq-trigger. e.g.: 'g' - Used by kgdb on ppc and sh platforms. 'h' - Will display help (actually any other key than those listed - above will display help. but 'h' is easy to remember :-) + here will display help. but 'h' is easy to remember :-) 'i' - Send a SIGKILL to all processes, except for init. diff --git a/Documentation/thinkpad-acpi.txt b/Documentation/thinkpad-acpi.txt index 6711fbcf4080..eb2f5986e1eb 100644 --- a/Documentation/thinkpad-acpi.txt +++ b/Documentation/thinkpad-acpi.txt @@ -105,10 +105,10 @@ The version of thinkpad-acpi's sysfs interface is exported by the driver as a driver attribute (see below). Sysfs driver attributes are on the driver's sysfs attribute space, -for 2.6.20 this is /sys/bus/platform/drivers/thinkpad-acpi/. +for 2.6.20 this is /sys/bus/platform/drivers/thinkpad_acpi/. Sysfs device attributes are on the driver's sysfs attribute space, -for 2.6.20 this is /sys/devices/platform/thinkpad-acpi/. +for 2.6.20 this is /sys/devices/platform/thinkpad_acpi/. Driver version -------------- diff --git a/Documentation/vm/numa_memory_policy.txt b/Documentation/vm/numa_memory_policy.txt new file mode 100644 index 000000000000..8242f52d0f22 --- /dev/null +++ b/Documentation/vm/numa_memory_policy.txt @@ -0,0 +1,332 @@ + +What is Linux Memory Policy? + +In the Linux kernel, "memory policy" determines from which node the kernel will +allocate memory in a NUMA system or in an emulated NUMA system. Linux has +supported platforms with Non-Uniform Memory Access architectures since 2.4.?. +The current memory policy support was added to Linux 2.6 around May 2004. This +document attempts to describe the concepts and APIs of the 2.6 memory policy +support. + +Memory policies should not be confused with cpusets (Documentation/cpusets.txt) +which is an administrative mechanism for restricting the nodes from which +memory may be allocated by a set of processes. Memory policies are a +programming interface that a NUMA-aware application can take advantage of. When +both cpusets and policies are applied to a task, the restrictions of the cpuset +takes priority. See "MEMORY POLICIES AND CPUSETS" below for more details. + +MEMORY POLICY CONCEPTS + +Scope of Memory Policies + +The Linux kernel supports _scopes_ of memory policy, described here from +most general to most specific: + + System Default Policy: this policy is "hard coded" into the kernel. It + is the policy that governs all page allocations that aren't controlled + by one of the more specific policy scopes discussed below. When the + system is "up and running", the system default policy will use "local + allocation" described below. However, during boot up, the system + default policy will be set to interleave allocations across all nodes + with "sufficient" memory, so as not to overload the initial boot node + with boot-time allocations. + + Task/Process Policy: this is an optional, per-task policy. When defined + for a specific task, this policy controls all page allocations made by or + on behalf of the task that aren't controlled by a more specific scope. + If a task does not define a task policy, then all page allocations that + would have been controlled by the task policy "fall back" to the System + Default Policy. + + The task policy applies to the entire address space of a task. Thus, + it is inheritable, and indeed is inherited, across both fork() + [clone() w/o the CLONE_VM flag] and exec*(). This allows a parent task + to establish the task policy for a child task exec()'d from an + executable image that has no awareness of memory policy. See the + MEMORY POLICY APIS section, below, for an overview of the system call + that a task may use to set/change it's task/process policy. + + In a multi-threaded task, task policies apply only to the thread + [Linux kernel task] that installs the policy and any threads + subsequently created by that thread. Any sibling threads existing + at the time a new task policy is installed retain their current + policy. + + A task policy applies only to pages allocated after the policy is + installed. Any pages already faulted in by the task when the task + changes its task policy remain where they were allocated based on + the policy at the time they were allocated. + + VMA Policy: A "VMA" or "Virtual Memory Area" refers to a range of a task's + virtual adddress space. A task may define a specific policy for a range + of its virtual address space. See the MEMORY POLICIES APIS section, + below, for an overview of the mbind() system call used to set a VMA + policy. + + A VMA policy will govern the allocation of pages that back this region of + the address space. Any regions of the task's address space that don't + have an explicit VMA policy will fall back to the task policy, which may + itself fall back to the System Default Policy. + + VMA policies have a few complicating details: + + VMA policy applies ONLY to anonymous pages. These include pages + allocated for anonymous segments, such as the task stack and heap, and + any regions of the address space mmap()ed with the MAP_ANONYMOUS flag. + If a VMA policy is applied to a file mapping, it will be ignored if + the mapping used the MAP_SHARED flag. If the file mapping used the + MAP_PRIVATE flag, the VMA policy will only be applied when an + anonymous page is allocated on an attempt to write to the mapping-- + i.e., at Copy-On-Write. + + VMA policies are shared between all tasks that share a virtual address + space--a.k.a. threads--independent of when the policy is installed; and + they are inherited across fork(). However, because VMA policies refer + to a specific region of a task's address space, and because the address + space is discarded and recreated on exec*(), VMA policies are NOT + inheritable across exec(). Thus, only NUMA-aware applications may + use VMA policies. + + A task may install a new VMA policy on a sub-range of a previously + mmap()ed region. When this happens, Linux splits the existing virtual + memory area into 2 or 3 VMAs, each with it's own policy. + + By default, VMA policy applies only to pages allocated after the policy + is installed. Any pages already faulted into the VMA range remain + where they were allocated based on the policy at the time they were + allocated. However, since 2.6.16, Linux supports page migration via + the mbind() system call, so that page contents can be moved to match + a newly installed policy. + + Shared Policy: Conceptually, shared policies apply to "memory objects" + mapped shared into one or more tasks' distinct address spaces. An + application installs a shared policies the same way as VMA policies--using + the mbind() system call specifying a range of virtual addresses that map + the shared object. However, unlike VMA policies, which can be considered + to be an attribute of a range of a task's address space, shared policies + apply directly to the shared object. Thus, all tasks that attach to the + object share the policy, and all pages allocated for the shared object, + by any task, will obey the shared policy. + + As of 2.6.22, only shared memory segments, created by shmget() or + mmap(MAP_ANONYMOUS|MAP_SHARED), support shared policy. When shared + policy support was added to Linux, the associated data structures were + added to hugetlbfs shmem segments. At the time, hugetlbfs did not + support allocation at fault time--a.k.a lazy allocation--so hugetlbfs + shmem segments were never "hooked up" to the shared policy support. + Although hugetlbfs segments now support lazy allocation, their support + for shared policy has not been completed. + + As mentioned above [re: VMA policies], allocations of page cache + pages for regular files mmap()ed with MAP_SHARED ignore any VMA + policy installed on the virtual address range backed by the shared + file mapping. Rather, shared page cache pages, including pages backing + private mappings that have not yet been written by the task, follow + task policy, if any, else System Default Policy. + + The shared policy infrastructure supports different policies on subset + ranges of the shared object. However, Linux still splits the VMA of + the task that installs the policy for each range of distinct policy. + Thus, different tasks that attach to a shared memory segment can have + different VMA configurations mapping that one shared object. This + can be seen by examining the /proc//numa_maps of tasks sharing + a shared memory region, when one task has installed shared policy on + one or more ranges of the region. + +Components of Memory Policies + + A Linux memory policy is a tuple consisting of a "mode" and an optional set + of nodes. The mode determine the behavior of the policy, while the + optional set of nodes can be viewed as the arguments to the behavior. + + Internally, memory policies are implemented by a reference counted + structure, struct mempolicy. Details of this structure will be discussed + in context, below, as required to explain the behavior. + + Note: in some functions AND in the struct mempolicy itself, the mode + is called "policy". However, to avoid confusion with the policy tuple, + this document will continue to use the term "mode". + + Linux memory policy supports the following 4 behavioral modes: + + Default Mode--MPOL_DEFAULT: The behavior specified by this mode is + context or scope dependent. + + As mentioned in the Policy Scope section above, during normal + system operation, the System Default Policy is hard coded to + contain the Default mode. + + In this context, default mode means "local" allocation--that is + attempt to allocate the page from the node associated with the cpu + where the fault occurs. If the "local" node has no memory, or the + node's memory can be exhausted [no free pages available], local + allocation will "fallback to"--attempt to allocate pages from-- + "nearby" nodes, in order of increasing "distance". + + Implementation detail -- subject to change: "Fallback" uses + a per node list of sibling nodes--called zonelists--built at + boot time, or when nodes or memory are added or removed from + the system [memory hotplug]. These per node zonelist are + constructed with nodes in order of increasing distance based + on information provided by the platform firmware. + + When a task/process policy or a shared policy contains the Default + mode, this also means "local allocation", as described above. + + In the context of a VMA, Default mode means "fall back to task + policy"--which may or may not specify Default mode. Thus, Default + mode can not be counted on to mean local allocation when used + on a non-shared region of the address space. However, see + MPOL_PREFERRED below. + + The Default mode does not use the optional set of nodes. + + MPOL_BIND: This mode specifies that memory must come from the + set of nodes specified by the policy. + + The memory policy APIs do not specify an order in which the nodes + will be searched. However, unlike "local allocation", the Bind + policy does not consider the distance between the nodes. Rather, + allocations will fallback to the nodes specified by the policy in + order of numeric node id. Like everything in Linux, this is subject + to change. + + MPOL_PREFERRED: This mode specifies that the allocation should be + attempted from the single node specified in the policy. If that + allocation fails, the kernel will search other nodes, exactly as + it would for a local allocation that started at the preferred node + in increasing distance from the preferred node. "Local" allocation + policy can be viewed as a Preferred policy that starts at the node + containing the cpu where the allocation takes place. + + Internally, the Preferred policy uses a single node--the + preferred_node member of struct mempolicy. A "distinguished + value of this preferred_node, currently '-1', is interpreted + as "the node containing the cpu where the allocation takes + place"--local allocation. This is the way to specify + local allocation for a specific range of addresses--i.e. for + VMA policies. + + MPOL_INTERLEAVED: This mode specifies that page allocations be + interleaved, on a page granularity, across the nodes specified in + the policy. This mode also behaves slightly differently, based on + the context where it is used: + + For allocation of anonymous pages and shared memory pages, + Interleave mode indexes the set of nodes specified by the policy + using the page offset of the faulting address into the segment + [VMA] containing the address modulo the number of nodes specified + by the policy. It then attempts to allocate a page, starting at + the selected node, as if the node had been specified by a Preferred + policy or had been selected by a local allocation. That is, + allocation will follow the per node zonelist. + + For allocation of page cache pages, Interleave mode indexes the set + of nodes specified by the policy using a node counter maintained + per task. This counter wraps around to the lowest specified node + after it reaches the highest specified node. This will tend to + spread the pages out over the nodes specified by the policy based + on the order in which they are allocated, rather than based on any + page offset into an address range or file. During system boot up, + the temporary interleaved system default policy works in this + mode. + +MEMORY POLICY APIs + +Linux supports 3 system calls for controlling memory policy. These APIS +always affect only the calling task, the calling task's address space, or +some shared object mapped into the calling task's address space. + + Note: the headers that define these APIs and the parameter data types + for user space applications reside in a package that is not part of + the Linux kernel. The kernel system call interfaces, with the 'sys_' + prefix, are defined in ; the mode and flag + definitions are defined in . + +Set [Task] Memory Policy: + + long set_mempolicy(int mode, const unsigned long *nmask, + unsigned long maxnode); + + Set's the calling task's "task/process memory policy" to mode + specified by the 'mode' argument and the set of nodes defined + by 'nmask'. 'nmask' points to a bit mask of node ids containing + at least 'maxnode' ids. + + See the set_mempolicy(2) man page for more details + + +Get [Task] Memory Policy or Related Information + + long get_mempolicy(int *mode, + const unsigned long *nmask, unsigned long maxnode, + void *addr, int flags); + + Queries the "task/process memory policy" of the calling task, or + the policy or location of a specified virtual address, depending + on the 'flags' argument. + + See the get_mempolicy(2) man page for more details + + +Install VMA/Shared Policy for a Range of Task's Address Space + + long mbind(void *start, unsigned long len, int mode, + const unsigned long *nmask, unsigned long maxnode, + unsigned flags); + + mbind() installs the policy specified by (mode, nmask, maxnodes) as + a VMA policy for the range of the calling task's address space + specified by the 'start' and 'len' arguments. Additional actions + may be requested via the 'flags' argument. + + See the mbind(2) man page for more details. + +MEMORY POLICY COMMAND LINE INTERFACE + +Although not strictly part of the Linux implementation of memory policy, +a command line tool, numactl(8), exists that allows one to: + ++ set the task policy for a specified program via set_mempolicy(2), fork(2) and + exec(2) + ++ set the shared policy for a shared memory segment via mbind(2) + +The numactl(8) tool is packages with the run-time version of the library +containing the memory policy system call wrappers. Some distributions +package the headers and compile-time libraries in a separate development +package. + + +MEMORY POLICIES AND CPUSETS + +Memory policies work within cpusets as described above. For memory policies +that require a node or set of nodes, the nodes are restricted to the set of +nodes whose memories are allowed by the cpuset constraints. If the +intersection of the set of nodes specified for the policy and the set of nodes +allowed by the cpuset is the empty set, the policy is considered invalid and +cannot be installed. + +The interaction of memory policies and cpusets can be problematic for a +couple of reasons: + +1) the memory policy APIs take physical node id's as arguments. However, the + memory policy APIs do not provide a way to determine what nodes are valid + in the context where the application is running. An application MAY consult + the cpuset file system [directly or via an out of tree, and not generally + available, libcpuset API] to obtain this information, but then the + application must be aware that it is running in a cpuset and use what are + intended primarily as administrative APIs. + + However, as long as the policy specifies at least one node that is valid + in the controlling cpuset, the policy can be used. + +2) when tasks in two cpusets share access to a memory region, such as shared + memory segments created by shmget() of mmap() with the MAP_ANONYMOUS and + MAP_SHARED flags, and any of the tasks install shared policy on the region, + only nodes whose memories are allowed in both cpusets may be used in the + policies. Again, obtaining this information requires "stepping outside" + the memory policy APIs, as well as knowing in what cpusets other task might + be attaching to the shared region, to use the cpuset information. + Furthermore, if the cpusets' allowed memory sets are disjoint, "local" + allocation is the only valid policy. diff --git a/Documentation/vm/slabinfo.c b/Documentation/vm/slabinfo.c index d4f21ffd1404..1af7bd5a2183 100644 --- a/Documentation/vm/slabinfo.c +++ b/Documentation/vm/slabinfo.c @@ -396,7 +396,7 @@ void report(struct slabinfo *s) if (strcmp(s->name, "*") == 0) return; - printf("\nSlabcache: %-20s Aliases: %2d Order : %2d Objects: %d\n", + printf("\nSlabcache: %-20s Aliases: %2d Order : %2d Objects: %lu\n", s->name, s->aliases, s->order, s->objects); if (s->hwcache_align) printf("** Hardware cacheline aligned\n"); diff --git a/Documentation/watchdog/00-INDEX b/Documentation/watchdog/00-INDEX new file mode 100644 index 000000000000..c3ea47e507fe --- /dev/null +++ b/Documentation/watchdog/00-INDEX @@ -0,0 +1,10 @@ +00-INDEX + - this file. +pcwd-watchdog.txt + - documentation for Berkshire Products PC Watchdog ISA cards. +src/ + - directory holding watchdog related example programs. +watchdog-api.txt + - description of the Linux Watchdog driver API. +wdt.txt + - description of the Watchdog Timer Interfaces for Linux. diff --git a/MAINTAINERS b/MAINTAINERS index 01f222e51871..10a6f57776b2 100644 --- a/MAINTAINERS +++ b/MAINTAINERS @@ -97,6 +97,12 @@ M: philb@gnu.org L: netdev@vger.kernel.org S: Maintained +3C59X NETWORK DRIVER +P: Steffen Klassert +M: klassert@mathematik.tu-chemnitz.de +L: netdev@vger.kernel.org +S: Maintained + 3CR990 NETWORK DRIVER P: David Dillow M: dave@thedillows.org @@ -161,11 +167,11 @@ S: Maintained P: Eric Van Hensbergen M: ericvh@gmail.com P: Ron Minnich -M: rminnich@lanl.gov +M: rminnich@sandia.gov P: Latchesar Ionkov M: lucho@ionkov.net L: v9fs-developer@lists.sourceforge.net -W: http://v9fs.sf.net +W: http://swik.net/v9fs T: git kernel.org:/pub/scm/linux/kernel/ericvh/v9fs.git S: Maintained @@ -387,21 +393,6 @@ P: Jaya Kumar M: jayalk@intworks.biz S: Maintained -ARM26 ARCHITECTURE -P: Ian Molton -M: spyro@f2s.com -S: Maintained - -ARM26/ARCHIMEDES -P: Ian Molton -M: spyro@f2s.com -S: Maintained - -ARM26/A5000 -P: John Appleby -M: john@dnsworld.co.uk -S: Maintained - ARM MFM AND FLOPPY DRIVERS P: Ian Molton M: spyro@f2s.com @@ -627,6 +618,15 @@ W: http://sourceforge.net/projects/acpi4asus W: http://xf.iksaif.net/acpi4asus S: Maintained +ASYNCHRONOUS TRANSFERS/TRANSFORMS API +P: Dan Williams +M: dan.j.williams@intel.com +P: Shannon Nelson +M: shannon.nelson@intel.com +L: linux-kernel@vger.kernel.org +W: http://sourceforge.net/projects/xscaleiop +S: Supported + ATA OVER ETHERNET DRIVER P: Ed L. Cashin M: ecashin@coraid.com @@ -679,7 +679,7 @@ S: Maintained AUDIT SUBSYSTEM P: David Woodhouse M: dwmw2@infradead.org -L: linux-audit@redhat.com +L: linux-audit@redhat.com (subscribers-only) W: http://people.redhat.com/sgrubb/audit/ T: git kernel.org:/pub/scm/linux/kernel/git/dwmw2/audit-2.6.git S: Maintained @@ -771,6 +771,14 @@ L: uclinux-dist-devel@blackfin.uclinux.org (subscribers-only) W: http://blackfin.uclinux.org S: Supported +BLACKFIN WATCHDOG DRIVER +P: Mike Frysinger +M: michael.frysinger@analog.com +M: vapier.adi@gmail.com +L: uclinux-dist-devel@blackfin.uclinux.org (subscribers-only) +W: http://blackfin.uclinux.org +S: Supported + BAYCOM/HDLCDRV DRIVERS FOR AX.25 P: Thomas Sailer M: t.sailer@alumni.ethz.ch @@ -1001,7 +1009,7 @@ P: Steve French M: sfrench@samba.org L: linux-cifs-client@lists.samba.org L: samba-technical@lists.samba.org -W: http://us1.samba.org/samba/Linux_CIFS_client.html +W: http://linux-cifs.samba.org/ T: git kernel.org:/pub/scm/linux/kernel/git/sfrench/cifs-2.6.git S: Supported @@ -1284,11 +1292,13 @@ M: tori@unhappy.mine.nu L: netdev@vger.kernel.org S: Maintained -DMA GENERIC MEMCPY SUBSYSTEM +DMA GENERIC OFFLOAD ENGINE SUBSYSTEM P: Shannon Nelson M: shannon.nelson@intel.com +P: Dan Williams +M: dan.j.williams@intel.com L: linux-kernel@vger.kernel.org -S: Maintained +S: Supported DME1737 HARDWARE MONITOR DRIVER P: Juerg Haefliger @@ -1965,6 +1975,12 @@ M: shannon.nelson@intel.com L: linux-kernel@vger.kernel.org S: Supported +INTEL IOP-ADMA DMA DRIVER +P: Dan Williams +M: dan.j.williams@intel.com +L: linux-kernel@vger.kernel.org +S: Supported + INTEL IXP4XX RANDOM NUMBER GENERATOR SUPPORT P: Deepak Saxena M: dsaxena@plexity.net @@ -2171,6 +2187,8 @@ W: http://www.kerneljanitors.org/ S: Maintained KERNEL NFSD +P: J. Bruce Fields +M: bfields@fieldses.org P: Neil Brown M: neilb@suse.de L: nfs@lists.sourceforge.net @@ -3339,6 +3357,14 @@ M: thomas@winischhofer.net W: http://www.winischhofer.at/linuxsisusbvga.shtml S: Maintained +SLAB ALLOCATOR +P: Christoph Lameter +M: clameter@sgi.com +P: Pekka Enberg +M: penberg@cs.helsinki.fi +L: linux-mm@kvack.org +S: Maintained + SMC91x ETHERNET DRIVER P: Nicolas Pitre M: nico@cam.org @@ -3426,7 +3452,7 @@ S: Maintained TPM DEVICE DRIVER P: Kylene Hall -M: kjhall@us.ibm.com +M: tpmdd-devel@lists.sourceforge.net W: http://tpmdd.sourceforge.net P: Marcel Selhorst M: tpm@selhorst.net @@ -3666,11 +3692,9 @@ W: http://www.auk.cx/tms380tr/ S: Maintained TULIP NETWORK DRIVER -P: Valerie Henson -M: val@nmt.edu L: tulip-users@lists.sourceforge.net W: http://sourceforge.net/projects/tulip/ -S: Maintained +S: Orphan TUN/TAP driver P: Maxim Krasnyansky @@ -3753,7 +3777,7 @@ L: linux-usb-devel@lists.sourceforge.net W: http://www.linux-usb.org/gadget S: Maintained -USB HID/HIDBP DRIVERS +USB HID/HIDBP DRIVERS (USB KEYBOARDS, MICE, REMOTE CONTROLS, ...) P: Jiri Kosina M: jkosina@suse.cz L: linux-usb-devel@lists.sourceforge.net diff --git a/Makefile b/Makefile index 23f81c9f698e..f3229a4945bf 100644 --- a/Makefile +++ b/Makefile @@ -1,7 +1,7 @@ VERSION = 2 PATCHLEVEL = 6 SUBLEVEL = 23 -EXTRAVERSION =-rc1 +EXTRAVERSION =-rc3 NAME = Holy Dancing Manatees, Batman! # *DOCUMENTATION* @@ -299,7 +299,7 @@ CHECKFLAGS := -D__linux__ -Dlinux -D__STDC__ -Dunix -D__unix__ -Wbitwise $(C MODFLAGS = -DMODULE CFLAGS_MODULE = $(MODFLAGS) AFLAGS_MODULE = $(MODFLAGS) -LDFLAGS_MODULE = -r +LDFLAGS_MODULE = CFLAGS_KERNEL = AFLAGS_KERNEL = diff --git a/arch/alpha/boot/Makefile b/arch/alpha/boot/Makefile index e1ae14cd2b4e..cd143887380a 100644 --- a/arch/alpha/boot/Makefile +++ b/arch/alpha/boot/Makefile @@ -104,7 +104,7 @@ OBJ_bootlx := $(obj)/head.o $(obj)/main.o OBJ_bootph := $(obj)/head.o $(obj)/bootp.o OBJ_bootpzh := $(obj)/head.o $(obj)/bootpz.o $(obj)/misc.o -$(obj)/bootloader: $(obj)/bootloader.lds $(OBJ_bootlx) FORCE +$(obj)/bootloader: $(obj)/bootloader.lds $(OBJ_bootlx) $(LIBS_Y) FORCE $(call if_changed,ld) $(obj)/bootpheader: $(obj)/bootloader.lds $(OBJ_bootph) $(LIBS_Y) FORCE diff --git a/arch/alpha/boot/main.c b/arch/alpha/boot/main.c index 90ed55b662a8..89f3be071ae5 100644 --- a/arch/alpha/boot/main.c +++ b/arch/alpha/boot/main.c @@ -132,7 +132,7 @@ static inline long load(long dev, unsigned long addr, unsigned long count) if (result) srm_printk("Boot file specification (%s) not implemented\n", bootfile); - return callback_read(dev, count, addr, boot_size/512 + 1); + return callback_read(dev, count, (void *)addr, boot_size/512 + 1); } /* diff --git a/arch/alpha/boot/tools/mkbb.c b/arch/alpha/boot/tools/mkbb.c index 632a7fd6d7dc..1185778e6a1e 100644 --- a/arch/alpha/boot/tools/mkbb.c +++ b/arch/alpha/boot/tools/mkbb.c @@ -11,6 +11,7 @@ #include #include +#include #include /* Minimal definition of disklabel, so we don't have to include @@ -114,7 +115,7 @@ int main(int argc, char ** argv) nread = read(fd, &bootloader_image, sizeof(bootblock)); if(nread != sizeof(bootblock)) { perror("lxboot read"); - fprintf(stderr, "expected %d, got %d\n", sizeof(bootblock), nread); + fprintf(stderr, "expected %zd, got %d\n", sizeof(bootblock), nread); exit(0); } @@ -122,7 +123,7 @@ int main(int argc, char ** argv) nread = read(dev, &bootblock_from_disk, sizeof(bootblock)); if(nread != sizeof(bootblock)) { perror("bootblock read"); - fprintf(stderr, "expected %d, got %d\n", sizeof(bootblock), nread); + fprintf(stderr, "expected %zd, got %d\n", sizeof(bootblock), nread); exit(0); } diff --git a/arch/alpha/boot/tools/objstrip.c b/arch/alpha/boot/tools/objstrip.c index 96154e768a20..ef1838230291 100644 --- a/arch/alpha/boot/tools/objstrip.c +++ b/arch/alpha/boot/tools/objstrip.c @@ -144,7 +144,7 @@ main (int argc, char *argv[]) #ifdef __ELF__ elf = (struct elfhdr *) buf; - if (elf->e_ident[0] == 0x7f && strncmp(elf->e_ident + 1, "ELF", 3) == 0) { + if (elf->e_ident[0] == 0x7f && strncmp((char *)elf->e_ident + 1, "ELF", 3) == 0) { if (elf->e_type != ET_EXEC) { fprintf(stderr, "%s: %s is not an ELF executable\n", prog_name, inname); diff --git a/arch/alpha/kernel/head.S b/arch/alpha/kernel/head.S index e27d23c74ba8..7ac1f1372c36 100644 --- a/arch/alpha/kernel/head.S +++ b/arch/alpha/kernel/head.S @@ -10,6 +10,7 @@ #include #include +.section .text.head, "ax" .globl swapper_pg_dir .globl _stext swapper_pg_dir=SWAPPER_PGD diff --git a/arch/alpha/kernel/pci.c b/arch/alpha/kernel/pci.c index ab642a4f08de..9dc1cee43265 100644 --- a/arch/alpha/kernel/pci.c +++ b/arch/alpha/kernel/pci.c @@ -195,7 +195,7 @@ pcibios_init(void) subsys_initcall(pcibios_init); -char * __init +char * __devinit pcibios_setup(char *str) { return str; @@ -204,7 +204,7 @@ pcibios_setup(char *str) #ifdef ALPHA_RESTORE_SRM_SETUP static struct pdev_srm_saved_conf *srm_saved_configs; -void __init +void __devinit pdev_save_srm_config(struct pci_dev *dev) { struct pdev_srm_saved_conf *tmp; @@ -247,14 +247,14 @@ pci_restore_srm_config(void) } #endif -void __init +void __devinit pcibios_fixup_resource(struct resource *res, struct resource *root) { res->start += root->start; res->end += root->start; } -void __init +void __devinit pcibios_fixup_device_resources(struct pci_dev *dev, struct pci_bus *bus) { /* Update device resources. */ @@ -273,7 +273,7 @@ pcibios_fixup_device_resources(struct pci_dev *dev, struct pci_bus *bus) } } -void __init +void __devinit pcibios_fixup_bus(struct pci_bus *bus) { /* Propagate hose info into the subordinate devices. */ diff --git a/arch/alpha/kernel/pci_iommu.c b/arch/alpha/kernel/pci_iommu.c index 6b07f89a72c7..e1c470752ebc 100644 --- a/arch/alpha/kernel/pci_iommu.c +++ b/arch/alpha/kernel/pci_iommu.c @@ -58,7 +58,7 @@ size_for_memory(unsigned long max) return max; } -struct pci_iommu_arena * +struct pci_iommu_arena * __init iommu_arena_new_node(int nid, struct pci_controller *hose, dma_addr_t base, unsigned long window_size, unsigned long align) { @@ -117,7 +117,7 @@ iommu_arena_new_node(int nid, struct pci_controller *hose, dma_addr_t base, return arena; } -struct pci_iommu_arena * +struct pci_iommu_arena * __init iommu_arena_new(struct pci_controller *hose, dma_addr_t base, unsigned long window_size, unsigned long align) { diff --git a/arch/alpha/kernel/smp.c b/arch/alpha/kernel/smp.c index b28731437c31..ad176441be55 100644 --- a/arch/alpha/kernel/smp.c +++ b/arch/alpha/kernel/smp.c @@ -16,6 +16,7 @@ #include #include #include +#include #include #include #include @@ -358,7 +359,7 @@ secondary_cpu_start(int cpuid, struct task_struct *idle) /* * Bring one cpu online. */ -static int __devinit +static int __cpuinit smp_boot_one_cpu(int cpuid) { struct task_struct *idle; @@ -487,7 +488,7 @@ smp_prepare_boot_cpu(void) { } -int __devinit +int __cpuinit __cpu_up(unsigned int cpu) { smp_boot_one_cpu(cpu); @@ -541,7 +542,7 @@ smp_percpu_timer_interrupt(struct pt_regs *regs) set_irq_regs(old_regs); } -int __init +int setup_profiling_timer(unsigned int multiplier) { return -EINVAL; diff --git a/arch/alpha/kernel/sys_titan.c b/arch/alpha/kernel/sys_titan.c index 1d3c1398c428..52c91ccc1648 100644 --- a/arch/alpha/kernel/sys_titan.c +++ b/arch/alpha/kernel/sys_titan.c @@ -270,6 +270,19 @@ titan_dispatch_irqs(u64 mask) /* * Titan Family */ +static void __init +titan_request_irq(unsigned int irq, irq_handler_t handler, + unsigned long irqflags, const char *devname, + void *dev_id) +{ + int err; + err = request_irq(irq, handler, irqflags, devname, dev_id); + if (err) { + printk("titan_request_irq for IRQ %d returned %d; ignoring\n", + irq, err); + } +} + static void __init titan_late_init(void) { @@ -278,15 +291,15 @@ titan_late_init(void) * all reported to the kernel as machine checks, so the handler * is a nop so it can be called to count the individual events. */ - request_irq(63+16, titan_intr_nop, IRQF_DISABLED, + titan_request_irq(63+16, titan_intr_nop, IRQF_DISABLED, "CChip Error", NULL); - request_irq(62+16, titan_intr_nop, IRQF_DISABLED, + titan_request_irq(62+16, titan_intr_nop, IRQF_DISABLED, "PChip 0 H_Error", NULL); - request_irq(61+16, titan_intr_nop, IRQF_DISABLED, + titan_request_irq(61+16, titan_intr_nop, IRQF_DISABLED, "PChip 1 H_Error", NULL); - request_irq(60+16, titan_intr_nop, IRQF_DISABLED, + titan_request_irq(60+16, titan_intr_nop, IRQF_DISABLED, "PChip 0 C_Error", NULL); - request_irq(59+16, titan_intr_nop, IRQF_DISABLED, + titan_request_irq(59+16, titan_intr_nop, IRQF_DISABLED, "PChip 1 C_Error", NULL); /* @@ -345,9 +358,9 @@ privateer_init_pci(void) * Hook a couple of extra err interrupts that the * common titan code won't. */ - request_irq(53+16, titan_intr_nop, IRQF_DISABLED, + titan_request_irq(53+16, titan_intr_nop, IRQF_DISABLED, "NMI", NULL); - request_irq(50+16, titan_intr_nop, IRQF_DISABLED, + titan_request_irq(50+16, titan_intr_nop, IRQF_DISABLED, "Temperature Warning", NULL); /* diff --git a/arch/alpha/kernel/vmlinux.lds.S b/arch/alpha/kernel/vmlinux.lds.S index fe13daa5cb2c..7af07d3ad5f0 100644 --- a/arch/alpha/kernel/vmlinux.lds.S +++ b/arch/alpha/kernel/vmlinux.lds.S @@ -15,6 +15,7 @@ SECTIONS _text = .; /* Text and read-only data */ .text : { + *(.text.head) TEXT_TEXT SCHED_TEXT LOCK_TEXT diff --git a/arch/alpha/mm/init.c b/arch/alpha/mm/init.c index 550f4907d613..5e6da47779a4 100644 --- a/arch/alpha/mm/init.c +++ b/arch/alpha/mm/init.c @@ -267,8 +267,7 @@ callback_init(void * kernel_end) /* * paging_init() sets up the memory map. */ -void -paging_init(void) +void __init paging_init(void) { unsigned long zones_size[MAX_NR_ZONES] = {0, }; unsigned long dma_pfn, high_pfn; diff --git a/arch/arm/Kconfig b/arch/arm/Kconfig index 85016313bd11..d6145298a325 100644 --- a/arch/arm/Kconfig +++ b/arch/arm/Kconfig @@ -341,6 +341,7 @@ config ARCH_PXA select ARCH_MTD_XIP select GENERIC_GPIO select GENERIC_TIME + select GENERIC_CLOCKEVENTS help Support for Intel's PXA2XX processor line. @@ -990,8 +991,6 @@ source "drivers/pnp/Kconfig" source "drivers/block/Kconfig" -source "drivers/acorn/block/Kconfig" - if PCMCIA || ARCH_CLPS7500 || ARCH_IOP32X || ARCH_IOP33X || ARCH_IXP4XX \ || ARCH_L7200 || ARCH_LH7A40X || ARCH_PXA || ARCH_RPC \ || ARCH_S3C2410 || ARCH_SA1100 || ARCH_SHARK || FOOTBRIDGE \ diff --git a/arch/arm/configs/iop13xx_defconfig b/arch/arm/configs/iop13xx_defconfig index 43c4a37e9247..add03c9e5553 100644 --- a/arch/arm/configs/iop13xx_defconfig +++ b/arch/arm/configs/iop13xx_defconfig @@ -1,12 +1,18 @@ # # Automatically generated make config: don't edit -# Linux kernel version: 2.6.20-rc1-git5 -# Tue Dec 19 21:38:01 2006 +# Linux kernel version: 2.6.22 +# Thu Jul 19 15:57:52 2007 # CONFIG_ARM=y +CONFIG_SYS_SUPPORTS_APM_EMULATION=y +# CONFIG_GENERIC_GPIO is not set # CONFIG_GENERIC_TIME is not set +# CONFIG_GENERIC_CLOCKEVENTS is not set CONFIG_MMU=y +# CONFIG_NO_IOPORT is not set CONFIG_GENERIC_HARDIRQS=y +CONFIG_STACKTRACE_SUPPORT=y +CONFIG_LOCKDEP_SUPPORT=y CONFIG_TRACE_IRQFLAGS_SUPPORT=y CONFIG_HARDIRQS_SW_RESEND=y CONFIG_GENERIC_IRQ_PROBE=y @@ -15,6 +21,7 @@ CONFIG_RWSEM_GENERIC_SPINLOCK=y # CONFIG_ARCH_HAS_ILOG2_U64 is not set CONFIG_GENERIC_HWEIGHT=y CONFIG_GENERIC_CALIBRATE_DELAY=y +CONFIG_ZONE_DMA=y CONFIG_VECTORS_BASE=0xffff0000 CONFIG_DEFCONFIG_LIST="/lib/modules/$UNAME_RELEASE/.config" @@ -32,17 +39,19 @@ CONFIG_LOCALVERSION="" # CONFIG_LOCALVERSION_AUTO is not set CONFIG_SWAP=y CONFIG_SYSVIPC=y -# CONFIG_IPC_NS is not set +CONFIG_SYSVIPC_SYSCTL=y CONFIG_POSIX_MQUEUE=y CONFIG_BSD_PROCESS_ACCT=y # CONFIG_BSD_PROCESS_ACCT_V3 is not set # CONFIG_TASKSTATS is not set -# CONFIG_UTS_NS is not set +# CONFIG_USER_NS is not set # CONFIG_AUDIT is not set CONFIG_IKCONFIG=y CONFIG_IKCONFIG_PROC=y +CONFIG_LOG_BUF_SHIFT=14 CONFIG_SYSFS_DEPRECATED=y # CONFIG_RELAY is not set +CONFIG_BLK_DEV_INITRD=y CONFIG_INITRAMFS_SOURCE="" # CONFIG_CC_OPTIMIZE_FOR_SIZE is not set CONFIG_SYSCTL=y @@ -57,32 +66,30 @@ CONFIG_BUG=y CONFIG_ELF_CORE=y CONFIG_BASE_FULL=y CONFIG_FUTEX=y +CONFIG_ANON_INODES=y CONFIG_EPOLL=y +CONFIG_SIGNALFD=y +CONFIG_TIMERFD=y +CONFIG_EVENTFD=y CONFIG_SHMEM=y -CONFIG_SLAB=y CONFIG_VM_EVENT_COUNTERS=y +CONFIG_SLAB=y +# CONFIG_SLUB is not set +# CONFIG_SLOB is not set CONFIG_RT_MUTEXES=y # CONFIG_TINY_SHMEM is not set CONFIG_BASE_SMALL=0 -# CONFIG_SLOB is not set - -# -# Loadable module support -# CONFIG_MODULES=y CONFIG_MODULE_UNLOAD=y # CONFIG_MODULE_FORCE_UNLOAD is not set CONFIG_MODVERSIONS=y # CONFIG_MODULE_SRCVERSION_ALL is not set CONFIG_KMOD=y - -# -# Block layer -# CONFIG_BLOCK=y # CONFIG_LBD is not set # CONFIG_BLK_DEV_IO_TRACE is not set # CONFIG_LSF is not set +# CONFIG_BLK_DEV_BSG is not set # # IO Schedulers @@ -114,13 +121,15 @@ CONFIG_DEFAULT_IOSCHED="deadline" # CONFIG_ARCH_NETX is not set # CONFIG_ARCH_H720X is not set # CONFIG_ARCH_IMX is not set +CONFIG_ARCH_IOP13XX=y # CONFIG_ARCH_IOP32X is not set # CONFIG_ARCH_IOP33X is not set -CONFIG_ARCH_IOP13XX=y -# CONFIG_ARCH_IXP4XX is not set -# CONFIG_ARCH_IXP2000 is not set # CONFIG_ARCH_IXP23XX is not set +# CONFIG_ARCH_IXP2000 is not set +# CONFIG_ARCH_IXP4XX is not set # CONFIG_ARCH_L7200 is not set +# CONFIG_ARCH_KS8695 is not set +# CONFIG_ARCH_NS9XXX is not set # CONFIG_ARCH_PNX4008 is not set # CONFIG_ARCH_PXA is not set # CONFIG_ARCH_RPC is not set @@ -128,6 +137,7 @@ CONFIG_ARCH_IOP13XX=y # CONFIG_ARCH_S3C2410 is not set # CONFIG_ARCH_SHARK is not set # CONFIG_ARCH_LH7A40X is not set +# CONFIG_ARCH_DAVINCI is not set # CONFIG_ARCH_OMAP is not set # @@ -140,6 +150,12 @@ CONFIG_ARCH_IOP13XX=y CONFIG_MACH_IQ81340SC=y CONFIG_MACH_IQ81340MC=y +# +# IOP13XX IMU Support +# +# CONFIG_IOP_IMU is not set +CONFIG_PLAT_IOP=y + # # Processor Type # @@ -159,13 +175,16 @@ CONFIG_IO_36=y CONFIG_ARM_THUMB=y # CONFIG_CPU_DCACHE_DISABLE is not set # CONFIG_CPU_BPREDICT_DISABLE is not set +# CONFIG_OUTER_CACHE is not set # CONFIG_IWMMXT is not set # # Bus support # CONFIG_PCI=y -# CONFIG_PCI_MULTITHREAD_PROBE is not set +CONFIG_PCI_SYSCALL=y +CONFIG_ARCH_SUPPORTS_MSI=y +# CONFIG_PCI_MSI is not set # # PCCARD (PCMCIA/CardBus) support @@ -175,6 +194,7 @@ CONFIG_PCI=y # # Kernel Features # +# CONFIG_TICK_ONESHOT is not set # CONFIG_PREEMPT is not set # CONFIG_NO_IDLE_HZ is not set CONFIG_HZ=100 @@ -189,6 +209,9 @@ CONFIG_FLAT_NODE_MEM_MAP=y # CONFIG_SPARSEMEM_STATIC is not set CONFIG_SPLIT_PTLOCK_CPUS=4096 # CONFIG_RESOURCES_64BIT is not set +CONFIG_ZONE_DMA_FLAG=1 +CONFIG_BOUNCE=y +CONFIG_VIRT_TO_BUS=y CONFIG_ALIGNMENT_TRAP=y # @@ -198,6 +221,7 @@ CONFIG_ZBOOT_ROM_TEXT=0x0 CONFIG_ZBOOT_ROM_BSS=0x0 CONFIG_CMDLINE="ip=bootp root=nfs console=ttyS0,115200 nfsroot=,tcp,v3,wsize=8192,rsize=8192" # CONFIG_XIP_KERNEL is not set +# CONFIG_KEXEC is not set # # Floating point emulation @@ -222,7 +246,6 @@ CONFIG_BINFMT_AOUT=y # Power management options # # CONFIG_PM is not set -# CONFIG_APM is not set # # Networking @@ -232,14 +255,15 @@ CONFIG_NET=y # # Networking options # -# CONFIG_NETDEBUG is not set CONFIG_PACKET=y CONFIG_PACKET_MMAP=y CONFIG_UNIX=y CONFIG_XFRM=y # CONFIG_XFRM_USER is not set # CONFIG_XFRM_SUB_POLICY is not set +# CONFIG_XFRM_MIGRATE is not set CONFIG_NET_KEY=y +# CONFIG_NET_KEY_MIGRATE is not set CONFIG_INET=y CONFIG_IP_MULTICAST=y # CONFIG_IP_ADVANCED_ROUTER is not set @@ -270,6 +294,7 @@ CONFIG_DEFAULT_TCP_CONG="cubic" CONFIG_IPV6=y # CONFIG_IPV6_PRIVACY is not set # CONFIG_IPV6_ROUTER_PREF is not set +# CONFIG_IPV6_OPTIMISTIC_DAD is not set # CONFIG_INET6_AH is not set # CONFIG_INET6_ESP is not set # CONFIG_INET6_IPCOMP is not set @@ -285,20 +310,8 @@ CONFIG_IPV6=y # CONFIG_IPV6_MULTIPLE_TABLES is not set # CONFIG_NETWORK_SECMARK is not set # CONFIG_NETFILTER is not set - -# -# DCCP Configuration (EXPERIMENTAL) -# # CONFIG_IP_DCCP is not set - -# -# SCTP Configuration (EXPERIMENTAL) -# # CONFIG_IP_SCTP is not set - -# -# TIPC Configuration (EXPERIMENTAL) -# # CONFIG_TIPC is not set # CONFIG_ATM is not set # CONFIG_BRIDGE is not set @@ -324,7 +337,17 @@ CONFIG_IPV6=y # CONFIG_HAMRADIO is not set # CONFIG_IRDA is not set # CONFIG_BT is not set +# CONFIG_AF_RXRPC is not set + +# +# Wireless +# +# CONFIG_CFG80211 is not set +# CONFIG_WIRELESS_EXT is not set +# CONFIG_MAC80211 is not set # CONFIG_IEEE80211 is not set +# CONFIG_RFKILL is not set +# CONFIG_NET_9P is not set # # Device Drivers @@ -337,15 +360,7 @@ CONFIG_STANDALONE=y CONFIG_PREVENT_FIRMWARE_BUILD=y # CONFIG_FW_LOADER is not set # CONFIG_SYS_HYPERVISOR is not set - -# -# Connector - unified userspace <-> kernelspace linker -# # CONFIG_CONNECTOR is not set - -# -# Memory Technology Devices (MTD) -# CONFIG_MTD=y # CONFIG_MTD_DEBUG is not set # CONFIG_MTD_CONCAT is not set @@ -361,6 +376,7 @@ CONFIG_MTD_REDBOOT_PARTS_READONLY=y # User Modules And Translation Layers # # CONFIG_MTD_CHAR is not set +CONFIG_MTD_BLKDEVS=y CONFIG_MTD_BLOCK=y # CONFIG_FTL is not set # CONFIG_NFTL is not set @@ -397,7 +413,6 @@ CONFIG_MTD_CFI_UTIL=y # CONFIG_MTD_RAM is not set # CONFIG_MTD_ROM is not set # CONFIG_MTD_ABSENT is not set -# CONFIG_MTD_OBSOLETE_CHIPS is not set # # Mapping drivers for chip access @@ -425,42 +440,27 @@ CONFIG_MTD_PHYSMAP_BANKWIDTH=2 # CONFIG_MTD_DOC2000 is not set # CONFIG_MTD_DOC2001 is not set # CONFIG_MTD_DOC2001PLUS is not set - -# -# NAND Flash Device Drivers -# # CONFIG_MTD_NAND is not set - -# -# OneNAND Flash Device Drivers -# # CONFIG_MTD_ONENAND is not set # -# Parallel port support +# UBI - Unsorted block images # +# CONFIG_MTD_UBI is not set # CONFIG_PARPORT is not set - -# -# Plug and Play support -# - -# -# Block devices -# +CONFIG_BLK_DEV=y # CONFIG_BLK_CPQ_DA is not set # CONFIG_BLK_CPQ_CISS_DA is not set # CONFIG_BLK_DEV_DAC960 is not set # CONFIG_BLK_DEV_UMEM is not set # CONFIG_BLK_DEV_COW_COMMON is not set # CONFIG_BLK_DEV_LOOP is not set -CONFIG_BLK_DEV_NBD=y +# CONFIG_BLK_DEV_NBD is not set # CONFIG_BLK_DEV_SX8 is not set CONFIG_BLK_DEV_RAM=y CONFIG_BLK_DEV_RAM_COUNT=2 CONFIG_BLK_DEV_RAM_SIZE=8192 CONFIG_BLK_DEV_RAM_BLOCKSIZE=1024 -CONFIG_BLK_DEV_INITRD=y # CONFIG_CDROM_PKTCDVD is not set # CONFIG_ATA_OVER_ETH is not set @@ -469,6 +469,7 @@ CONFIG_BLK_DEV_INITRD=y # # CONFIG_RAID_ATTRS is not set CONFIG_SCSI=y +CONFIG_SCSI_DMA=y # CONFIG_SCSI_TGT is not set # CONFIG_SCSI_NETLINK is not set CONFIG_SCSI_PROC_FS=y @@ -490,6 +491,7 @@ CONFIG_CHR_DEV_SG=y CONFIG_SCSI_CONSTANTS=y # CONFIG_SCSI_LOGGING is not set # CONFIG_SCSI_SCAN_ASYNC is not set +CONFIG_SCSI_WAIT_SCAN=m # # SCSI Transports @@ -534,15 +536,7 @@ CONFIG_SCSI_SAS_ATTRS=y # CONFIG_SCSI_NSP32 is not set # CONFIG_SCSI_DEBUG is not set # CONFIG_SCSI_SRP is not set - -# -# Serial ATA (prod) and Parallel ATA (experimental) drivers -# # CONFIG_ATA is not set - -# -# Multi-device support (RAID and LVM) -# CONFIG_MD=y CONFIG_BLK_DEV_MD=y # CONFIG_MD_LINEAR is not set @@ -560,6 +554,7 @@ CONFIG_BLK_DEV_DM=y # CONFIG_DM_MIRROR is not set # CONFIG_DM_ZERO is not set # CONFIG_DM_MULTIPATH is not set +# CONFIG_DM_DELAY is not set # # Fusion MPT device support @@ -572,39 +567,19 @@ CONFIG_BLK_DEV_DM=y # # IEEE 1394 (FireWire) support # +# CONFIG_FIREWIRE is not set # CONFIG_IEEE1394 is not set - -# -# I2O device support -# # CONFIG_I2O is not set - -# -# Network device support -# CONFIG_NETDEVICES=y +# CONFIG_NETDEVICES_MULTIQUEUE is not set # CONFIG_DUMMY is not set # CONFIG_BONDING is not set +# CONFIG_MACVLAN is not set # CONFIG_EQUALIZER is not set # CONFIG_TUN is not set - -# -# ARCnet devices -# # CONFIG_ARCNET is not set - -# -# PHY device support -# - -# -# Ethernet (10 or 100Mbit) -# # CONFIG_NET_ETHERNET is not set - -# -# Ethernet (1000 Mbit) -# +CONFIG_NETDEV_1000=y # CONFIG_ACENIC is not set # CONFIG_DL2K is not set CONFIG_E1000=y @@ -617,33 +592,26 @@ CONFIG_E1000_NAPI=y # CONFIG_SIS190 is not set # CONFIG_SKGE is not set # CONFIG_SKY2 is not set -# CONFIG_SK98LIN is not set +# CONFIG_VIA_VELOCITY is not set # CONFIG_TIGON3 is not set # CONFIG_BNX2 is not set # CONFIG_QLA3XXX is not set - -# -# Ethernet (10000 Mbit) -# +# CONFIG_ATL1 is not set +CONFIG_NETDEV_10000=y # CONFIG_CHELSIO_T1 is not set +# CONFIG_CHELSIO_T3 is not set # CONFIG_IXGB is not set # CONFIG_S2IO is not set # CONFIG_MYRI10GE is not set # CONFIG_NETXEN_NIC is not set - -# -# Token Ring devices -# +# CONFIG_MLX4_CORE is not set # CONFIG_TR is not set # -# Wireless LAN (non-hamradio) -# -# CONFIG_NET_RADIO is not set - -# -# Wan interfaces +# Wireless LAN # +# CONFIG_WLAN_PRE80211 is not set +# CONFIG_WLAN_80211 is not set # CONFIG_WAN is not set # CONFIG_FDDI is not set # CONFIG_HIPPI is not set @@ -654,10 +622,6 @@ CONFIG_E1000_NAPI=y # CONFIG_NETCONSOLE is not set # CONFIG_NETPOLL is not set # CONFIG_NET_POLL_CONTROLLER is not set - -# -# ISDN subsystem -# # CONFIG_ISDN is not set # @@ -665,6 +629,7 @@ CONFIG_E1000_NAPI=y # CONFIG_INPUT=y # CONFIG_INPUT_FF_MEMLESS is not set +# CONFIG_INPUT_POLLDEV is not set # # Userland interfaces @@ -684,6 +649,7 @@ CONFIG_INPUT_MOUSEDEV_SCREEN_Y=768 # CONFIG_INPUT_KEYBOARD is not set # CONFIG_INPUT_MOUSE is not set # CONFIG_INPUT_JOYSTICK is not set +# CONFIG_INPUT_TABLET is not set # CONFIG_INPUT_TOUCHSCREEN is not set # CONFIG_INPUT_MISC is not set @@ -721,33 +687,18 @@ CONFIG_SERIAL_CORE_CONSOLE=y CONFIG_UNIX98_PTYS=y CONFIG_LEGACY_PTYS=y CONFIG_LEGACY_PTY_COUNT=256 - -# -# IPMI -# # CONFIG_IPMI_HANDLER is not set - -# -# Watchdog Cards -# # CONFIG_WATCHDOG is not set CONFIG_HW_RANDOM=y # CONFIG_NVRAM is not set -# CONFIG_DTLK is not set # CONFIG_R3964 is not set # CONFIG_APPLICOM is not set # CONFIG_DRM is not set # CONFIG_RAW_DRIVER is not set - -# -# TPM devices -# # CONFIG_TCG_TPM is not set - -# -# I2C support -# +CONFIG_DEVPORT=y CONFIG_I2C=y +CONFIG_I2C_BOARDINFO=y # CONFIG_I2C_CHARDEV is not set # @@ -774,25 +725,28 @@ CONFIG_I2C_IOP3XX=y # CONFIG_I2C_PARPORT_LIGHT is not set # CONFIG_I2C_PROSAVAGE is not set # CONFIG_I2C_SAVAGE4 is not set +# CONFIG_I2C_SIMTEC is not set # CONFIG_I2C_SIS5595 is not set # CONFIG_I2C_SIS630 is not set # CONFIG_I2C_SIS96X is not set +# CONFIG_I2C_TAOS_EVM is not set # CONFIG_I2C_STUB is not set # CONFIG_I2C_VIA is not set # CONFIG_I2C_VIAPRO is not set # CONFIG_I2C_VOODOO3 is not set -# CONFIG_I2C_PCA_ISA is not set # # Miscellaneous I2C Chip support # # CONFIG_SENSORS_DS1337 is not set # CONFIG_SENSORS_DS1374 is not set +# CONFIG_DS1682 is not set # CONFIG_SENSORS_EEPROM is not set # CONFIG_SENSORS_PCF8574 is not set # CONFIG_SENSORS_PCA9539 is not set # CONFIG_SENSORS_PCF8591 is not set # CONFIG_SENSORS_MAX6875 is not set +# CONFIG_SENSORS_TSL2550 is not set # CONFIG_I2C_DEBUG_CORE is not set # CONFIG_I2C_DEBUG_ALGO is not set # CONFIG_I2C_DEBUG_BUS is not set @@ -803,21 +757,15 @@ CONFIG_I2C_IOP3XX=y # # CONFIG_SPI is not set # CONFIG_SPI_MASTER is not set - -# -# Dallas's 1-wire bus -# # CONFIG_W1 is not set - -# -# Hardware Monitoring support -# CONFIG_HWMON=y # CONFIG_HWMON_VID is not set # CONFIG_SENSORS_ABITUGURU is not set +# CONFIG_SENSORS_AD7418 is not set # CONFIG_SENSORS_ADM1021 is not set # CONFIG_SENSORS_ADM1025 is not set # CONFIG_SENSORS_ADM1026 is not set +# CONFIG_SENSORS_ADM1029 is not set # CONFIG_SENSORS_ADM1031 is not set # CONFIG_SENSORS_ADM9240 is not set # CONFIG_SENSORS_ASB100 is not set @@ -840,6 +788,7 @@ CONFIG_HWMON=y # CONFIG_SENSORS_LM90 is not set # CONFIG_SENSORS_LM92 is not set # CONFIG_SENSORS_MAX1619 is not set +# CONFIG_SENSORS_MAX6650 is not set # CONFIG_SENSORS_PC87360 is not set # CONFIG_SENSORS_PC87427 is not set # CONFIG_SENSORS_SIS5595 is not set @@ -857,12 +806,16 @@ CONFIG_HWMON=y # CONFIG_SENSORS_W83627HF is not set # CONFIG_SENSORS_W83627EHF is not set # CONFIG_HWMON_DEBUG_CHIP is not set +CONFIG_MISC_DEVICES=y +# CONFIG_PHANTOM is not set +# CONFIG_EEPROM_93CX6 is not set +# CONFIG_SGI_IOC4 is not set +# CONFIG_TIFM_CORE is not set # -# Misc devices +# Multifunction device drivers # -# CONFIG_SGI_IOC4 is not set -# CONFIG_TIFM_CORE is not set +# CONFIG_MFD_SM501 is not set # # LED devices @@ -881,16 +834,19 @@ CONFIG_HWMON=y # Multimedia devices # # CONFIG_VIDEO_DEV is not set +# CONFIG_DVB_CORE is not set +CONFIG_DAB=y # -# Digital Video Broadcasting Devices +# Graphics support # -# CONFIG_DVB is not set +# CONFIG_BACKLIGHT_LCD_SUPPORT is not set # -# Graphics support +# Display device support # -CONFIG_FIRMWARE_EDID=y +# CONFIG_DISPLAY_SUPPORT is not set +# CONFIG_VGASTATE is not set # CONFIG_FB is not set # @@ -898,21 +854,15 @@ CONFIG_FIRMWARE_EDID=y # # CONFIG_VGA_CONSOLE is not set CONFIG_DUMMY_CONSOLE=y -# CONFIG_BACKLIGHT_LCD_SUPPORT is not set # # Sound # # CONFIG_SOUND is not set - -# -# HID Devices -# +CONFIG_HID_SUPPORT=y CONFIG_HID=y - -# -# USB support -# +# CONFIG_HID_DEBUG is not set +CONFIG_USB_SUPPORT=y CONFIG_USB_ARCH_HAS_HCD=y CONFIG_USB_ARCH_HAS_OHCI=y CONFIG_USB_ARCH_HAS_EHCI=y @@ -926,10 +876,6 @@ CONFIG_USB_ARCH_HAS_EHCI=y # USB Gadget Support # # CONFIG_USB_GADGET is not set - -# -# MMC/SD Card support -# # CONFIG_MMC is not set # @@ -938,6 +884,22 @@ CONFIG_USB_ARCH_HAS_EHCI=y CONFIG_RTC_LIB=y # CONFIG_RTC_CLASS is not set +# +# DMA Engine support +# +CONFIG_DMA_ENGINE=y + +# +# DMA Clients +# +# CONFIG_NET_DMA is not set + +# +# DMA Devices +# +# CONFIG_INTEL_IOATDMA is not set +CONFIG_INTEL_IOP_ADMA=y + # # File systems # @@ -1004,7 +966,6 @@ CONFIG_ECRYPT_FS=y # CONFIG_BEFS_FS is not set # CONFIG_BFS_FS is not set # CONFIG_EFS_FS is not set -# CONFIG_JFFS_FS is not set CONFIG_JFFS2_FS=y CONFIG_JFFS2_FS_DEBUG=0 CONFIG_JFFS2_FS_WRITEBUFFER=y @@ -1014,7 +975,7 @@ CONFIG_JFFS2_FS_WRITEBUFFER=y CONFIG_JFFS2_ZLIB=y CONFIG_JFFS2_RTIME=y # CONFIG_JFFS2_RUBIN is not set -# CONFIG_CRAMFS is not set +CONFIG_CRAMFS=y # CONFIG_VXFS_FS is not set # CONFIG_HPFS_FS is not set # CONFIG_QNX4FS_FS is not set @@ -1040,6 +1001,7 @@ CONFIG_LOCKD_V4=y CONFIG_EXPORTFS=y CONFIG_NFS_COMMON=y CONFIG_SUNRPC=y +# CONFIG_SUNRPC_BIND34 is not set # CONFIG_RPCSEC_GSS_KRB5 is not set # CONFIG_RPCSEC_GSS_SPKM3 is not set CONFIG_SMB_FS=m @@ -1053,7 +1015,6 @@ CONFIG_CIFS=m # CONFIG_NCP_FS is not set # CONFIG_CODA_FS is not set # CONFIG_AFS_FS is not set -# CONFIG_9P_FS is not set # # Partition Types @@ -1075,6 +1036,7 @@ CONFIG_MSDOS_PARTITION=y # CONFIG_SUN_PARTITION is not set # CONFIG_KARMA_PARTITION is not set # CONFIG_EFI_PARTITION is not set +# CONFIG_SYSV68_PARTITION is not set # # Native Language Support @@ -1140,7 +1102,6 @@ CONFIG_ENABLE_MUST_CHECK=y # CONFIG_DEBUG_FS is not set # CONFIG_HEADERS_CHECK is not set # CONFIG_DEBUG_KERNEL is not set -CONFIG_LOG_BUF_SHIFT=14 CONFIG_DEBUG_BUGVERBOSE=y CONFIG_FRAME_POINTER=y CONFIG_DEBUG_USER=y @@ -1151,10 +1112,10 @@ CONFIG_DEBUG_USER=y CONFIG_KEYS=y CONFIG_KEYS_DEBUG_PROC_KEYS=y # CONFIG_SECURITY is not set - -# -# Cryptographic options -# +CONFIG_XOR_BLOCKS=y +CONFIG_ASYNC_CORE=y +CONFIG_ASYNC_MEMCPY=y +CONFIG_ASYNC_XOR=y CONFIG_CRYPTO=y CONFIG_CRYPTO_ALGAPI=y CONFIG_CRYPTO_BLKCIPHER=y @@ -1173,8 +1134,11 @@ CONFIG_CRYPTO_TGR192=y CONFIG_CRYPTO_GF128MUL=y CONFIG_CRYPTO_ECB=y CONFIG_CRYPTO_CBC=y +CONFIG_CRYPTO_PCBC=m CONFIG_CRYPTO_LRW=y +# CONFIG_CRYPTO_CRYPTD is not set CONFIG_CRYPTO_DES=y +# CONFIG_CRYPTO_FCRYPT is not set CONFIG_CRYPTO_BLOWFISH=y CONFIG_CRYPTO_TWOFISH=y CONFIG_CRYPTO_TWOFISH_COMMON=y @@ -1189,11 +1153,9 @@ CONFIG_CRYPTO_ANUBIS=y CONFIG_CRYPTO_DEFLATE=y CONFIG_CRYPTO_MICHAEL_MIC=y CONFIG_CRYPTO_CRC32C=y +# CONFIG_CRYPTO_CAMELLIA is not set # CONFIG_CRYPTO_TEST is not set - -# -# Hardware crypto devices -# +CONFIG_CRYPTO_HW=y # # Library routines @@ -1201,9 +1163,13 @@ CONFIG_CRYPTO_CRC32C=y CONFIG_BITREVERSE=y CONFIG_CRC_CCITT=y # CONFIG_CRC16 is not set +# CONFIG_CRC_ITU_T is not set CONFIG_CRC32=y +# CONFIG_CRC7 is not set CONFIG_LIBCRC32C=y CONFIG_ZLIB_INFLATE=y CONFIG_ZLIB_DEFLATE=y CONFIG_PLIST=y -CONFIG_IOMAP_COPY=y +CONFIG_HAS_IOMEM=y +CONFIG_HAS_IOPORT=y +CONFIG_HAS_DMA=y diff --git a/arch/arm/configs/iop32x_defconfig b/arch/arm/configs/iop32x_defconfig index 7909a555706d..027aef22b4d1 100644 --- a/arch/arm/configs/iop32x_defconfig +++ b/arch/arm/configs/iop32x_defconfig @@ -1,12 +1,18 @@ # # Automatically generated make config: don't edit -# Linux kernel version: 2.6.20-rc1-git5 -# Tue Dec 19 21:37:52 2006 +# Linux kernel version: 2.6.22 +# Thu Jul 19 16:00:36 2007 # CONFIG_ARM=y +CONFIG_SYS_SUPPORTS_APM_EMULATION=y +# CONFIG_GENERIC_GPIO is not set # CONFIG_GENERIC_TIME is not set +# CONFIG_GENERIC_CLOCKEVENTS is not set CONFIG_MMU=y +# CONFIG_NO_IOPORT is not set CONFIG_GENERIC_HARDIRQS=y +CONFIG_STACKTRACE_SUPPORT=y +CONFIG_LOCKDEP_SUPPORT=y CONFIG_TRACE_IRQFLAGS_SUPPORT=y CONFIG_HARDIRQS_SW_RESEND=y CONFIG_GENERIC_IRQ_PROBE=y @@ -15,6 +21,7 @@ CONFIG_RWSEM_GENERIC_SPINLOCK=y # CONFIG_ARCH_HAS_ILOG2_U64 is not set CONFIG_GENERIC_HWEIGHT=y CONFIG_GENERIC_CALIBRATE_DELAY=y +CONFIG_ZONE_DMA=y CONFIG_VECTORS_BASE=0xffff0000 CONFIG_DEFCONFIG_LIST="/lib/modules/$UNAME_RELEASE/.config" @@ -32,16 +39,18 @@ CONFIG_LOCALVERSION="" CONFIG_LOCALVERSION_AUTO=y CONFIG_SWAP=y CONFIG_SYSVIPC=y -# CONFIG_IPC_NS is not set +CONFIG_SYSVIPC_SYSCTL=y # CONFIG_POSIX_MQUEUE is not set CONFIG_BSD_PROCESS_ACCT=y # CONFIG_BSD_PROCESS_ACCT_V3 is not set # CONFIG_TASKSTATS is not set -# CONFIG_UTS_NS is not set +# CONFIG_USER_NS is not set # CONFIG_AUDIT is not set # CONFIG_IKCONFIG is not set +CONFIG_LOG_BUF_SHIFT=14 CONFIG_SYSFS_DEPRECATED=y # CONFIG_RELAY is not set +CONFIG_BLK_DEV_INITRD=y CONFIG_INITRAMFS_SOURCE="" CONFIG_CC_OPTIMIZE_FOR_SIZE=y CONFIG_SYSCTL=y @@ -57,32 +66,30 @@ CONFIG_BUG=y CONFIG_ELF_CORE=y CONFIG_BASE_FULL=y CONFIG_FUTEX=y +CONFIG_ANON_INODES=y CONFIG_EPOLL=y +CONFIG_SIGNALFD=y +CONFIG_TIMERFD=y +CONFIG_EVENTFD=y CONFIG_SHMEM=y -CONFIG_SLAB=y CONFIG_VM_EVENT_COUNTERS=y +CONFIG_SLAB=y +# CONFIG_SLUB is not set +# CONFIG_SLOB is not set CONFIG_RT_MUTEXES=y # CONFIG_TINY_SHMEM is not set CONFIG_BASE_SMALL=0 -# CONFIG_SLOB is not set - -# -# Loadable module support -# CONFIG_MODULES=y CONFIG_MODULE_UNLOAD=y # CONFIG_MODULE_FORCE_UNLOAD is not set # CONFIG_MODVERSIONS is not set # CONFIG_MODULE_SRCVERSION_ALL is not set CONFIG_KMOD=y - -# -# Block layer -# CONFIG_BLOCK=y # CONFIG_LBD is not set # CONFIG_BLK_DEV_IO_TRACE is not set # CONFIG_LSF is not set +# CONFIG_BLK_DEV_BSG is not set # # IO Schedulers @@ -114,13 +121,15 @@ CONFIG_DEFAULT_IOSCHED="cfq" # CONFIG_ARCH_NETX is not set # CONFIG_ARCH_H720X is not set # CONFIG_ARCH_IMX is not set +# CONFIG_ARCH_IOP13XX is not set CONFIG_ARCH_IOP32X=y # CONFIG_ARCH_IOP33X is not set -# CONFIG_ARCH_IOP13XX is not set -# CONFIG_ARCH_IXP4XX is not set -# CONFIG_ARCH_IXP2000 is not set # CONFIG_ARCH_IXP23XX is not set +# CONFIG_ARCH_IXP2000 is not set +# CONFIG_ARCH_IXP4XX is not set # CONFIG_ARCH_L7200 is not set +# CONFIG_ARCH_KS8695 is not set +# CONFIG_ARCH_NS9XXX is not set # CONFIG_ARCH_PNX4008 is not set # CONFIG_ARCH_PXA is not set # CONFIG_ARCH_RPC is not set @@ -128,6 +137,7 @@ CONFIG_ARCH_IOP32X=y # CONFIG_ARCH_S3C2410 is not set # CONFIG_ARCH_SHARK is not set # CONFIG_ARCH_LH7A40X is not set +# CONFIG_ARCH_DAVINCI is not set # CONFIG_ARCH_OMAP is not set # @@ -137,10 +147,12 @@ CONFIG_ARCH_IOP32X=y # # IOP32x Platform Types # +CONFIG_MACH_EP80219=y CONFIG_MACH_GLANTANK=y CONFIG_ARCH_IQ80321=y CONFIG_ARCH_IQ31244=y CONFIG_MACH_N2100=y +CONFIG_IOP3XX_ATU=y CONFIG_PLAT_IOP=y # @@ -160,6 +172,7 @@ CONFIG_CPU_CP15_MMU=y # # CONFIG_ARM_THUMB is not set # CONFIG_CPU_DCACHE_DISABLE is not set +# CONFIG_OUTER_CACHE is not set # CONFIG_IWMMXT is not set CONFIG_XSCALE_PMU=y @@ -167,7 +180,8 @@ CONFIG_XSCALE_PMU=y # Bus support # CONFIG_PCI=y -# CONFIG_PCI_MULTITHREAD_PROBE is not set +CONFIG_PCI_SYSCALL=y +# CONFIG_ARCH_SUPPORTS_MSI is not set # CONFIG_PCI_DEBUG is not set # @@ -178,6 +192,7 @@ CONFIG_PCI=y # # Kernel Features # +# CONFIG_TICK_ONESHOT is not set # CONFIG_PREEMPT is not set # CONFIG_NO_IDLE_HZ is not set CONFIG_HZ=100 @@ -192,6 +207,9 @@ CONFIG_FLAT_NODE_MEM_MAP=y # CONFIG_SPARSEMEM_STATIC is not set CONFIG_SPLIT_PTLOCK_CPUS=4096 # CONFIG_RESOURCES_64BIT is not set +CONFIG_ZONE_DMA_FLAG=1 +CONFIG_BOUNCE=y +CONFIG_VIRT_TO_BUS=y CONFIG_ALIGNMENT_TRAP=y # @@ -199,8 +217,9 @@ CONFIG_ALIGNMENT_TRAP=y # CONFIG_ZBOOT_ROM_TEXT=0x0 CONFIG_ZBOOT_ROM_BSS=0x0 -CONFIG_CMDLINE="console=ttyS0,115200 root=/dev/nfs ip=bootp" +CONFIG_CMDLINE="console=ttyS0,115200 root=/dev/nfs ip=bootp cachepolicy=writealloc" # CONFIG_XIP_KERNEL is not set +# CONFIG_KEXEC is not set # # Floating point emulation @@ -225,7 +244,6 @@ CONFIG_BINFMT_AOUT=y # Power management options # # CONFIG_PM is not set -# CONFIG_APM is not set # # Networking @@ -235,13 +253,13 @@ CONFIG_NET=y # # Networking options # -# CONFIG_NETDEBUG is not set CONFIG_PACKET=y CONFIG_PACKET_MMAP=y CONFIG_UNIX=y CONFIG_XFRM=y # CONFIG_XFRM_USER is not set # CONFIG_XFRM_SUB_POLICY is not set +# CONFIG_XFRM_MIGRATE is not set # CONFIG_NET_KEY is not set CONFIG_INET=y CONFIG_IP_MULTICAST=y @@ -273,6 +291,7 @@ CONFIG_DEFAULT_TCP_CONG="cubic" CONFIG_IPV6=y # CONFIG_IPV6_PRIVACY is not set # CONFIG_IPV6_ROUTER_PREF is not set +# CONFIG_IPV6_OPTIMISTIC_DAD is not set # CONFIG_INET6_AH is not set # CONFIG_INET6_ESP is not set # CONFIG_INET6_IPCOMP is not set @@ -288,20 +307,8 @@ CONFIG_IPV6=y # CONFIG_IPV6_MULTIPLE_TABLES is not set # CONFIG_NETWORK_SECMARK is not set # CONFIG_NETFILTER is not set - -# -# DCCP Configuration (EXPERIMENTAL) -# # CONFIG_IP_DCCP is not set - -# -# SCTP Configuration (EXPERIMENTAL) -# # CONFIG_IP_SCTP is not set - -# -# TIPC Configuration (EXPERIMENTAL) -# # CONFIG_TIPC is not set # CONFIG_ATM is not set # CONFIG_BRIDGE is not set @@ -327,7 +334,17 @@ CONFIG_IPV6=y # CONFIG_HAMRADIO is not set # CONFIG_IRDA is not set # CONFIG_BT is not set +# CONFIG_AF_RXRPC is not set + +# +# Wireless +# +# CONFIG_CFG80211 is not set +# CONFIG_WIRELESS_EXT is not set +# CONFIG_MAC80211 is not set # CONFIG_IEEE80211 is not set +# CONFIG_RFKILL is not set +# CONFIG_NET_9P is not set # # Device Drivers @@ -340,16 +357,9 @@ CONFIG_STANDALONE=y CONFIG_PREVENT_FIRMWARE_BUILD=y # CONFIG_FW_LOADER is not set # CONFIG_DEBUG_DRIVER is not set +# CONFIG_DEBUG_DEVRES is not set # CONFIG_SYS_HYPERVISOR is not set - -# -# Connector - unified userspace <-> kernelspace linker -# # CONFIG_CONNECTOR is not set - -# -# Memory Technology Devices (MTD) -# CONFIG_MTD=y # CONFIG_MTD_DEBUG is not set # CONFIG_MTD_CONCAT is not set @@ -365,6 +375,7 @@ CONFIG_MTD_REDBOOT_PARTS_READONLY=y # User Modules And Translation Layers # CONFIG_MTD_CHAR=y +CONFIG_MTD_BLKDEVS=y CONFIG_MTD_BLOCK=y # CONFIG_FTL is not set # CONFIG_NFTL is not set @@ -396,7 +407,6 @@ CONFIG_MTD_CFI_UTIL=y # CONFIG_MTD_RAM is not set # CONFIG_MTD_ROM is not set # CONFIG_MTD_ABSENT is not set -# CONFIG_MTD_OBSOLETE_CHIPS is not set # # Mapping drivers for chip access @@ -424,29 +434,15 @@ CONFIG_MTD_PHYSMAP_BANKWIDTH=1 # CONFIG_MTD_DOC2000 is not set # CONFIG_MTD_DOC2001 is not set # CONFIG_MTD_DOC2001PLUS is not set - -# -# NAND Flash Device Drivers -# # CONFIG_MTD_NAND is not set - -# -# OneNAND Flash Device Drivers -# # CONFIG_MTD_ONENAND is not set # -# Parallel port support +# UBI - Unsorted block images # +# CONFIG_MTD_UBI is not set # CONFIG_PARPORT is not set - -# -# Plug and Play support -# - -# -# Block devices -# +CONFIG_BLK_DEV=y # CONFIG_BLK_CPQ_DA is not set # CONFIG_BLK_CPQ_CISS_DA is not set # CONFIG_BLK_DEV_DAC960 is not set @@ -461,13 +457,8 @@ CONFIG_BLK_DEV_RAM=y CONFIG_BLK_DEV_RAM_COUNT=16 CONFIG_BLK_DEV_RAM_SIZE=8192 CONFIG_BLK_DEV_RAM_BLOCKSIZE=1024 -CONFIG_BLK_DEV_INITRD=y # CONFIG_CDROM_PKTCDVD is not set # CONFIG_ATA_OVER_ETH is not set - -# -# ATA/ATAPI/MFM/RLL support -# # CONFIG_IDE is not set # @@ -475,6 +466,7 @@ CONFIG_BLK_DEV_INITRD=y # # CONFIG_RAID_ATTRS is not set CONFIG_SCSI=y +CONFIG_SCSI_DMA=y # CONFIG_SCSI_TGT is not set # CONFIG_SCSI_NETLINK is not set CONFIG_SCSI_PROC_FS=y @@ -496,6 +488,7 @@ CONFIG_CHR_DEV_SG=y # CONFIG_SCSI_CONSTANTS is not set # CONFIG_SCSI_LOGGING is not set # CONFIG_SCSI_SCAN_ASYNC is not set +CONFIG_SCSI_WAIT_SCAN=m # # SCSI Transports @@ -541,11 +534,8 @@ CONFIG_CHR_DEV_SG=y # CONFIG_SCSI_NSP32 is not set # CONFIG_SCSI_DEBUG is not set # CONFIG_SCSI_SRP is not set - -# -# Serial ATA (prod) and Parallel ATA (experimental) drivers -# CONFIG_ATA=y +# CONFIG_ATA_NONSTANDARD is not set # CONFIG_SATA_AHCI is not set # CONFIG_SATA_SVW is not set # CONFIG_ATA_PIIX is not set @@ -560,11 +550,13 @@ CONFIG_SATA_SIL=y # CONFIG_SATA_SIS is not set # CONFIG_SATA_ULI is not set # CONFIG_SATA_VIA is not set -# CONFIG_SATA_VITESSE is not set +CONFIG_SATA_VITESSE=y +# CONFIG_SATA_INIC162X is not set # CONFIG_PATA_ALI is not set # CONFIG_PATA_AMD is not set # CONFIG_PATA_ARTOP is not set # CONFIG_PATA_ATIIXP is not set +# CONFIG_PATA_CMD640_PCI is not set # CONFIG_PATA_CMD64X is not set # CONFIG_PATA_CS5520 is not set # CONFIG_PATA_CS5530 is not set @@ -576,6 +568,7 @@ CONFIG_SATA_SIL=y # CONFIG_PATA_HPT3X2N is not set # CONFIG_PATA_HPT3X3 is not set # CONFIG_PATA_IT821X is not set +# CONFIG_PATA_IT8213 is not set # CONFIG_PATA_JMICRON is not set # CONFIG_PATA_TRIFLEX is not set # CONFIG_PATA_MARVELL is not set @@ -595,17 +588,14 @@ CONFIG_SATA_SIL=y # CONFIG_PATA_SIS is not set # CONFIG_PATA_VIA is not set # CONFIG_PATA_WINBOND is not set - -# -# Multi-device support (RAID and LVM) -# CONFIG_MD=y CONFIG_BLK_DEV_MD=y # CONFIG_MD_LINEAR is not set CONFIG_MD_RAID0=y CONFIG_MD_RAID1=y -# CONFIG_MD_RAID10 is not set -# CONFIG_MD_RAID456 is not set +CONFIG_MD_RAID10=y +CONFIG_MD_RAID456=y +# CONFIG_MD_RAID5_RESHAPE is not set # CONFIG_MD_MULTIPATH is not set # CONFIG_MD_FAULTY is not set CONFIG_BLK_DEV_DM=y @@ -615,6 +605,7 @@ CONFIG_BLK_DEV_DM=y # CONFIG_DM_MIRROR is not set # CONFIG_DM_ZERO is not set # CONFIG_DM_MULTIPATH is not set +# CONFIG_DM_DELAY is not set # # Fusion MPT device support @@ -627,47 +618,27 @@ CONFIG_BLK_DEV_DM=y # # IEEE 1394 (FireWire) support # +# CONFIG_FIREWIRE is not set # CONFIG_IEEE1394 is not set - -# -# I2O device support -# # CONFIG_I2O is not set - -# -# Network device support -# CONFIG_NETDEVICES=y +# CONFIG_NETDEVICES_MULTIQUEUE is not set # CONFIG_DUMMY is not set # CONFIG_BONDING is not set +# CONFIG_MACVLAN is not set # CONFIG_EQUALIZER is not set # CONFIG_TUN is not set - -# -# ARCnet devices -# # CONFIG_ARCNET is not set - -# -# PHY device support -# # CONFIG_PHYLIB is not set - -# -# Ethernet (10 or 100Mbit) -# CONFIG_NET_ETHERNET=y CONFIG_MII=y +# CONFIG_AX88796 is not set # CONFIG_HAPPYMEAL is not set # CONFIG_SUNGEM is not set # CONFIG_CASSINI is not set # CONFIG_NET_VENDOR_3COM is not set # CONFIG_SMC91X is not set # CONFIG_DM9000 is not set - -# -# Tulip family network device support -# # CONFIG_NET_TULIP is not set # CONFIG_HP100 is not set CONFIG_NET_PCI=y @@ -689,10 +660,8 @@ CONFIG_E100=y # CONFIG_SUNDANCE is not set # CONFIG_TLAN is not set # CONFIG_VIA_RHINE is not set - -# -# Ethernet (1000 Mbit) -# +# CONFIG_SC92031 is not set +CONFIG_NETDEV_1000=y # CONFIG_ACENIC is not set # CONFIG_DL2K is not set CONFIG_E1000=y @@ -706,34 +675,36 @@ CONFIG_R8169=y # CONFIG_SIS190 is not set # CONFIG_SKGE is not set # CONFIG_SKY2 is not set -# CONFIG_SK98LIN is not set # CONFIG_VIA_VELOCITY is not set # CONFIG_TIGON3 is not set # CONFIG_BNX2 is not set # CONFIG_QLA3XXX is not set - -# -# Ethernet (10000 Mbit) -# +# CONFIG_ATL1 is not set +CONFIG_NETDEV_10000=y # CONFIG_CHELSIO_T1 is not set +# CONFIG_CHELSIO_T3 is not set # CONFIG_IXGB is not set # CONFIG_S2IO is not set # CONFIG_MYRI10GE is not set # CONFIG_NETXEN_NIC is not set - -# -# Token Ring devices -# +# CONFIG_MLX4_CORE is not set # CONFIG_TR is not set # -# Wireless LAN (non-hamradio) +# Wireless LAN # -# CONFIG_NET_RADIO is not set +# CONFIG_WLAN_PRE80211 is not set +# CONFIG_WLAN_80211 is not set # -# Wan interfaces +# USB Network Adapters # +# CONFIG_USB_CATC is not set +# CONFIG_USB_KAWETH is not set +# CONFIG_USB_PEGASUS is not set +# CONFIG_USB_RTL8150 is not set +# CONFIG_USB_USBNET_MII is not set +# CONFIG_USB_USBNET is not set # CONFIG_WAN is not set # CONFIG_FDDI is not set # CONFIG_HIPPI is not set @@ -744,10 +715,6 @@ CONFIG_R8169=y # CONFIG_NETCONSOLE is not set # CONFIG_NETPOLL is not set # CONFIG_NET_POLL_CONTROLLER is not set - -# -# ISDN subsystem -# # CONFIG_ISDN is not set # @@ -755,6 +722,7 @@ CONFIG_R8169=y # CONFIG_INPUT=y # CONFIG_INPUT_FF_MEMLESS is not set +# CONFIG_INPUT_POLLDEV is not set # # Userland interfaces @@ -774,6 +742,7 @@ CONFIG_INPUT_MOUSEDEV_SCREEN_Y=768 # CONFIG_INPUT_KEYBOARD is not set # CONFIG_INPUT_MOUSE is not set # CONFIG_INPUT_JOYSTICK is not set +# CONFIG_INPUT_TABLET is not set # CONFIG_INPUT_TOUCHSCREEN is not set # CONFIG_INPUT_MISC is not set @@ -811,33 +780,18 @@ CONFIG_SERIAL_CORE_CONSOLE=y CONFIG_UNIX98_PTYS=y CONFIG_LEGACY_PTYS=y CONFIG_LEGACY_PTY_COUNT=256 - -# -# IPMI -# # CONFIG_IPMI_HANDLER is not set - -# -# Watchdog Cards -# # CONFIG_WATCHDOG is not set CONFIG_HW_RANDOM=y # CONFIG_NVRAM is not set -# CONFIG_DTLK is not set # CONFIG_R3964 is not set # CONFIG_APPLICOM is not set # CONFIG_DRM is not set # CONFIG_RAW_DRIVER is not set - -# -# TPM devices -# # CONFIG_TCG_TPM is not set - -# -# I2C support -# +CONFIG_DEVPORT=y CONFIG_I2C=y +CONFIG_I2C_BOARDINFO=y CONFIG_I2C_CHARDEV=y # @@ -864,25 +818,29 @@ CONFIG_I2C_IOP3XX=y # CONFIG_I2C_PARPORT_LIGHT is not set # CONFIG_I2C_PROSAVAGE is not set # CONFIG_I2C_SAVAGE4 is not set +# CONFIG_I2C_SIMTEC is not set # CONFIG_I2C_SIS5595 is not set # CONFIG_I2C_SIS630 is not set # CONFIG_I2C_SIS96X is not set +# CONFIG_I2C_TAOS_EVM is not set # CONFIG_I2C_STUB is not set +# CONFIG_I2C_TINY_USB is not set # CONFIG_I2C_VIA is not set # CONFIG_I2C_VIAPRO is not set # CONFIG_I2C_VOODOO3 is not set -# CONFIG_I2C_PCA_ISA is not set # # Miscellaneous I2C Chip support # # CONFIG_SENSORS_DS1337 is not set # CONFIG_SENSORS_DS1374 is not set +# CONFIG_DS1682 is not set # CONFIG_SENSORS_EEPROM is not set # CONFIG_SENSORS_PCF8574 is not set # CONFIG_SENSORS_PCA9539 is not set # CONFIG_SENSORS_PCF8591 is not set # CONFIG_SENSORS_MAX6875 is not set +# CONFIG_SENSORS_TSL2550 is not set # CONFIG_I2C_DEBUG_CORE is not set # CONFIG_I2C_DEBUG_ALGO is not set # CONFIG_I2C_DEBUG_BUS is not set @@ -893,21 +851,15 @@ CONFIG_I2C_IOP3XX=y # # CONFIG_SPI is not set # CONFIG_SPI_MASTER is not set - -# -# Dallas's 1-wire bus -# # CONFIG_W1 is not set - -# -# Hardware Monitoring support -# CONFIG_HWMON=y # CONFIG_HWMON_VID is not set # CONFIG_SENSORS_ABITUGURU is not set +# CONFIG_SENSORS_AD7418 is not set # CONFIG_SENSORS_ADM1021 is not set # CONFIG_SENSORS_ADM1025 is not set # CONFIG_SENSORS_ADM1026 is not set +# CONFIG_SENSORS_ADM1029 is not set # CONFIG_SENSORS_ADM1031 is not set # CONFIG_SENSORS_ADM9240 is not set # CONFIG_SENSORS_ASB100 is not set @@ -930,6 +882,7 @@ CONFIG_HWMON=y # CONFIG_SENSORS_LM90 is not set # CONFIG_SENSORS_LM92 is not set # CONFIG_SENSORS_MAX1619 is not set +# CONFIG_SENSORS_MAX6650 is not set # CONFIG_SENSORS_PC87360 is not set # CONFIG_SENSORS_PC87427 is not set # CONFIG_SENSORS_SIS5595 is not set @@ -947,12 +900,16 @@ CONFIG_HWMON=y # CONFIG_SENSORS_W83627HF is not set # CONFIG_SENSORS_W83627EHF is not set # CONFIG_HWMON_DEBUG_CHIP is not set +CONFIG_MISC_DEVICES=y +# CONFIG_PHANTOM is not set +# CONFIG_EEPROM_93CX6 is not set +# CONFIG_SGI_IOC4 is not set +# CONFIG_TIFM_CORE is not set # -# Misc devices +# Multifunction device drivers # -# CONFIG_SGI_IOC4 is not set -# CONFIG_TIFM_CORE is not set +# CONFIG_MFD_SM501 is not set # # LED devices @@ -971,17 +928,20 @@ CONFIG_HWMON=y # Multimedia devices # # CONFIG_VIDEO_DEV is not set +# CONFIG_DVB_CORE is not set +CONFIG_DAB=y +# CONFIG_USB_DABUSB is not set # -# Digital Video Broadcasting Devices +# Graphics support # -# CONFIG_DVB is not set -# CONFIG_USB_DABUSB is not set +# CONFIG_BACKLIGHT_LCD_SUPPORT is not set # -# Graphics support +# Display device support # -CONFIG_FIRMWARE_EDID=y +# CONFIG_DISPLAY_SUPPORT is not set +# CONFIG_VGASTATE is not set # CONFIG_FB is not set # @@ -989,21 +949,26 @@ CONFIG_FIRMWARE_EDID=y # # CONFIG_VGA_CONSOLE is not set CONFIG_DUMMY_CONSOLE=y -# CONFIG_BACKLIGHT_LCD_SUPPORT is not set # # Sound # # CONFIG_SOUND is not set +CONFIG_HID_SUPPORT=y +CONFIG_HID=y +# CONFIG_HID_DEBUG is not set # -# HID Devices +# USB Input Devices # -CONFIG_HID=y +# CONFIG_USB_HID is not set # -# USB support +# USB HID Boot Protocol drivers # +# CONFIG_USB_KBD is not set +# CONFIG_USB_MOUSE is not set +CONFIG_USB_SUPPORT=y CONFIG_USB_ARCH_HAS_HCD=y CONFIG_USB_ARCH_HAS_OHCI=y CONFIG_USB_ARCH_HAS_EHCI=y @@ -1014,9 +979,8 @@ CONFIG_USB=y # Miscellaneous USB options # # CONFIG_USB_DEVICEFS is not set -# CONFIG_USB_BANDWIDTH is not set +CONFIG_USB_DEVICE_CLASS=y # CONFIG_USB_DYNAMIC_MINORS is not set -# CONFIG_USB_MULTITHREAD_PROBE is not set # CONFIG_USB_OTG is not set # @@ -1030,6 +994,7 @@ CONFIG_USB_EHCI_TT_NEWSCHED=y # CONFIG_USB_OHCI_HCD is not set CONFIG_USB_UHCI_HCD=y # CONFIG_USB_SL811_HCD is not set +# CONFIG_USB_R8A66597_HCD is not set # # USB Device Class drivers @@ -1057,44 +1022,11 @@ CONFIG_USB_STORAGE=y # CONFIG_USB_STORAGE_KARMA is not set # CONFIG_USB_LIBUSUAL is not set -# -# USB Input Devices -# -# CONFIG_USB_HID is not set - -# -# USB HID Boot Protocol drivers -# -# CONFIG_USB_KBD is not set -# CONFIG_USB_MOUSE is not set -# CONFIG_USB_AIPTEK is not set -# CONFIG_USB_WACOM is not set -# CONFIG_USB_ACECAD is not set -# CONFIG_USB_KBTAB is not set -# CONFIG_USB_POWERMATE is not set -# CONFIG_USB_TOUCHSCREEN is not set -# CONFIG_USB_YEALINK is not set -# CONFIG_USB_XPAD is not set -# CONFIG_USB_ATI_REMOTE is not set -# CONFIG_USB_ATI_REMOTE2 is not set -# CONFIG_USB_KEYSPAN_REMOTE is not set -# CONFIG_USB_APPLETOUCH is not set - # # USB Imaging devices # # CONFIG_USB_MDC800 is not set # CONFIG_USB_MICROTEK is not set - -# -# USB Network Adapters -# -# CONFIG_USB_CATC is not set -# CONFIG_USB_KAWETH is not set -# CONFIG_USB_PEGASUS is not set -# CONFIG_USB_RTL8150 is not set -# CONFIG_USB_USBNET_MII is not set -# CONFIG_USB_USBNET is not set CONFIG_USB_MON=y # @@ -1116,6 +1048,7 @@ CONFIG_USB_MON=y # CONFIG_USB_RIO500 is not set # CONFIG_USB_LEGOTOWER is not set # CONFIG_USB_LCD is not set +# CONFIG_USB_BERRY_CHARGE is not set # CONFIG_USB_LED is not set # CONFIG_USB_CYPRESS_CY7C63 is not set # CONFIG_USB_CYTHERM is not set @@ -1126,6 +1059,7 @@ CONFIG_USB_MON=y # CONFIG_USB_SISUSBVGA is not set # CONFIG_USB_LD is not set # CONFIG_USB_TRANCEVIBRATOR is not set +# CONFIG_USB_IOWARRIOR is not set # # USB DSL modem support @@ -1135,10 +1069,6 @@ CONFIG_USB_MON=y # USB Gadget Support # # CONFIG_USB_GADGET is not set - -# -# MMC/SD Card support -# # CONFIG_MMC is not set # @@ -1147,6 +1077,22 @@ CONFIG_USB_MON=y CONFIG_RTC_LIB=y # CONFIG_RTC_CLASS is not set +# +# DMA Engine support +# +CONFIG_DMA_ENGINE=y + +# +# DMA Clients +# +CONFIG_NET_DMA=y + +# +# DMA Devices +# +# CONFIG_INTEL_IOATDMA is not set +CONFIG_INTEL_IOP_ADMA=y + # # File systems # @@ -1164,11 +1110,7 @@ CONFIG_FS_MBCACHE=y # CONFIG_REISERFS_FS is not set # CONFIG_JFS_FS is not set # CONFIG_FS_POSIX_ACL is not set -CONFIG_XFS_FS=y -# CONFIG_XFS_QUOTA is not set -CONFIG_XFS_SECURITY=y -CONFIG_XFS_POSIX_ACL=y -# CONFIG_XFS_RT is not set +# CONFIG_XFS_FS is not set # CONFIG_GFS2_FS is not set # CONFIG_OCFS2_FS is not set # CONFIG_MINIX_FS is not set @@ -1217,7 +1159,6 @@ CONFIG_ECRYPT_FS=y # CONFIG_BEFS_FS is not set # CONFIG_BFS_FS is not set # CONFIG_EFS_FS is not set -# CONFIG_JFFS_FS is not set CONFIG_JFFS2_FS=y CONFIG_JFFS2_FS_DEBUG=0 CONFIG_JFFS2_FS_WRITEBUFFER=y @@ -1227,7 +1168,7 @@ CONFIG_JFFS2_FS_WRITEBUFFER=y CONFIG_JFFS2_ZLIB=y CONFIG_JFFS2_RTIME=y # CONFIG_JFFS2_RUBIN is not set -# CONFIG_CRAMFS is not set +CONFIG_CRAMFS=y # CONFIG_VXFS_FS is not set # CONFIG_HPFS_FS is not set # CONFIG_QNX4FS_FS is not set @@ -1253,6 +1194,7 @@ CONFIG_LOCKD_V4=y CONFIG_EXPORTFS=y CONFIG_NFS_COMMON=y CONFIG_SUNRPC=y +# CONFIG_SUNRPC_BIND34 is not set # CONFIG_RPCSEC_GSS_KRB5 is not set # CONFIG_RPCSEC_GSS_SPKM3 is not set # CONFIG_SMB_FS is not set @@ -1260,7 +1202,6 @@ CONFIG_SUNRPC=y # CONFIG_NCP_FS is not set # CONFIG_CODA_FS is not set # CONFIG_AFS_FS is not set -# CONFIG_9P_FS is not set # # Partition Types @@ -1282,6 +1223,7 @@ CONFIG_MSDOS_PARTITION=y # CONFIG_SUN_PARTITION is not set # CONFIG_KARMA_PARTITION is not set # CONFIG_EFI_PARTITION is not set +# CONFIG_SYSV68_PARTITION is not set # # Native Language Support @@ -1308,15 +1250,19 @@ CONFIG_MAGIC_SYSRQ=y # CONFIG_DEBUG_FS is not set # CONFIG_HEADERS_CHECK is not set CONFIG_DEBUG_KERNEL=y -CONFIG_LOG_BUF_SHIFT=14 +# CONFIG_DEBUG_SHIRQ is not set CONFIG_DETECT_SOFTLOCKUP=y +CONFIG_SCHED_DEBUG=y # CONFIG_SCHEDSTATS is not set +# CONFIG_TIMER_STATS is not set # CONFIG_DEBUG_SLAB is not set # CONFIG_DEBUG_RT_MUTEXES is not set # CONFIG_RT_MUTEX_TESTER is not set # CONFIG_DEBUG_SPINLOCK is not set # CONFIG_DEBUG_MUTEXES is not set -# CONFIG_DEBUG_RWSEMS is not set +# CONFIG_DEBUG_LOCK_ALLOC is not set +# CONFIG_PROVE_LOCKING is not set +# CONFIG_LOCK_STAT is not set # CONFIG_DEBUG_SPINLOCK_SLEEP is not set # CONFIG_DEBUG_LOCKING_API_SELFTESTS is not set # CONFIG_DEBUG_KOBJECT is not set @@ -1327,6 +1273,7 @@ CONFIG_DEBUG_BUGVERBOSE=y CONFIG_FRAME_POINTER=y # CONFIG_FORCED_INLINING is not set # CONFIG_RCU_TORTURE_TEST is not set +# CONFIG_FAULT_INJECTION is not set CONFIG_DEBUG_USER=y # CONFIG_DEBUG_ERRORS is not set CONFIG_DEBUG_LL=y @@ -1338,10 +1285,10 @@ CONFIG_DEBUG_LL=y CONFIG_KEYS=y CONFIG_KEYS_DEBUG_PROC_KEYS=y # CONFIG_SECURITY is not set - -# -# Cryptographic options -# +CONFIG_XOR_BLOCKS=y +CONFIG_ASYNC_CORE=y +CONFIG_ASYNC_MEMCPY=y +CONFIG_ASYNC_XOR=y CONFIG_CRYPTO=y CONFIG_CRYPTO_ALGAPI=y CONFIG_CRYPTO_BLKCIPHER=y @@ -1360,8 +1307,11 @@ CONFIG_CRYPTO_TGR192=y CONFIG_CRYPTO_GF128MUL=y CONFIG_CRYPTO_ECB=y CONFIG_CRYPTO_CBC=y +CONFIG_CRYPTO_PCBC=m CONFIG_CRYPTO_LRW=y +# CONFIG_CRYPTO_CRYPTD is not set CONFIG_CRYPTO_DES=y +# CONFIG_CRYPTO_FCRYPT is not set CONFIG_CRYPTO_BLOWFISH=y CONFIG_CRYPTO_TWOFISH=y CONFIG_CRYPTO_TWOFISH_COMMON=y @@ -1376,11 +1326,9 @@ CONFIG_CRYPTO_ANUBIS=y CONFIG_CRYPTO_DEFLATE=y CONFIG_CRYPTO_MICHAEL_MIC=y CONFIG_CRYPTO_CRC32C=y +# CONFIG_CRYPTO_CAMELLIA is not set # CONFIG_CRYPTO_TEST is not set - -# -# Hardware crypto devices -# +CONFIG_CRYPTO_HW=y # # Library routines @@ -1388,9 +1336,13 @@ CONFIG_CRYPTO_CRC32C=y CONFIG_BITREVERSE=y # CONFIG_CRC_CCITT is not set # CONFIG_CRC16 is not set +# CONFIG_CRC_ITU_T is not set CONFIG_CRC32=y +# CONFIG_CRC7 is not set CONFIG_LIBCRC32C=y CONFIG_ZLIB_INFLATE=y CONFIG_ZLIB_DEFLATE=y CONFIG_PLIST=y -CONFIG_IOMAP_COPY=y +CONFIG_HAS_IOMEM=y +CONFIG_HAS_IOPORT=y +CONFIG_HAS_DMA=y diff --git a/arch/arm/configs/iop33x_defconfig b/arch/arm/configs/iop33x_defconfig index fa271bce8ff7..721ee64a13f7 100644 --- a/arch/arm/configs/iop33x_defconfig +++ b/arch/arm/configs/iop33x_defconfig @@ -1,12 +1,18 @@ # # Automatically generated make config: don't edit -# Linux kernel version: 2.6.20-rc1 -# Sat Dec 16 06:05:34 2006 +# Linux kernel version: 2.6.22 +# Thu Jul 19 16:05:59 2007 # CONFIG_ARM=y +CONFIG_SYS_SUPPORTS_APM_EMULATION=y +# CONFIG_GENERIC_GPIO is not set # CONFIG_GENERIC_TIME is not set +# CONFIG_GENERIC_CLOCKEVENTS is not set CONFIG_MMU=y +# CONFIG_NO_IOPORT is not set CONFIG_GENERIC_HARDIRQS=y +CONFIG_STACKTRACE_SUPPORT=y +CONFIG_LOCKDEP_SUPPORT=y CONFIG_TRACE_IRQFLAGS_SUPPORT=y CONFIG_HARDIRQS_SW_RESEND=y CONFIG_GENERIC_IRQ_PROBE=y @@ -15,6 +21,7 @@ CONFIG_RWSEM_GENERIC_SPINLOCK=y # CONFIG_ARCH_HAS_ILOG2_U64 is not set CONFIG_GENERIC_HWEIGHT=y CONFIG_GENERIC_CALIBRATE_DELAY=y +CONFIG_ZONE_DMA=y CONFIG_VECTORS_BASE=0xffff0000 CONFIG_DEFCONFIG_LIST="/lib/modules/$UNAME_RELEASE/.config" @@ -32,16 +39,18 @@ CONFIG_LOCALVERSION="" CONFIG_LOCALVERSION_AUTO=y CONFIG_SWAP=y CONFIG_SYSVIPC=y -# CONFIG_IPC_NS is not set +CONFIG_SYSVIPC_SYSCTL=y # CONFIG_POSIX_MQUEUE is not set CONFIG_BSD_PROCESS_ACCT=y # CONFIG_BSD_PROCESS_ACCT_V3 is not set # CONFIG_TASKSTATS is not set -# CONFIG_UTS_NS is not set +# CONFIG_USER_NS is not set # CONFIG_AUDIT is not set # CONFIG_IKCONFIG is not set +CONFIG_LOG_BUF_SHIFT=14 CONFIG_SYSFS_DEPRECATED=y # CONFIG_RELAY is not set +CONFIG_BLK_DEV_INITRD=y CONFIG_INITRAMFS_SOURCE="" CONFIG_CC_OPTIMIZE_FOR_SIZE=y CONFIG_SYSCTL=y @@ -57,32 +66,30 @@ CONFIG_BUG=y CONFIG_ELF_CORE=y CONFIG_BASE_FULL=y CONFIG_FUTEX=y +CONFIG_ANON_INODES=y CONFIG_EPOLL=y +CONFIG_SIGNALFD=y +CONFIG_TIMERFD=y +CONFIG_EVENTFD=y CONFIG_SHMEM=y -CONFIG_SLAB=y CONFIG_VM_EVENT_COUNTERS=y +CONFIG_SLAB=y +# CONFIG_SLUB is not set +# CONFIG_SLOB is not set CONFIG_RT_MUTEXES=y # CONFIG_TINY_SHMEM is not set CONFIG_BASE_SMALL=0 -# CONFIG_SLOB is not set - -# -# Loadable module support -# CONFIG_MODULES=y CONFIG_MODULE_UNLOAD=y # CONFIG_MODULE_FORCE_UNLOAD is not set # CONFIG_MODVERSIONS is not set # CONFIG_MODULE_SRCVERSION_ALL is not set CONFIG_KMOD=y - -# -# Block layer -# CONFIG_BLOCK=y # CONFIG_LBD is not set # CONFIG_BLK_DEV_IO_TRACE is not set # CONFIG_LSF is not set +# CONFIG_BLK_DEV_BSG is not set # # IO Schedulers @@ -114,13 +121,15 @@ CONFIG_DEFAULT_IOSCHED="cfq" # CONFIG_ARCH_NETX is not set # CONFIG_ARCH_H720X is not set # CONFIG_ARCH_IMX is not set +# CONFIG_ARCH_IOP13XX is not set # CONFIG_ARCH_IOP32X is not set CONFIG_ARCH_IOP33X=y -# CONFIG_ARCH_IOP13XX is not set -# CONFIG_ARCH_IXP4XX is not set -# CONFIG_ARCH_IXP2000 is not set # CONFIG_ARCH_IXP23XX is not set +# CONFIG_ARCH_IXP2000 is not set +# CONFIG_ARCH_IXP4XX is not set # CONFIG_ARCH_L7200 is not set +# CONFIG_ARCH_KS8695 is not set +# CONFIG_ARCH_NS9XXX is not set # CONFIG_ARCH_PNX4008 is not set # CONFIG_ARCH_PXA is not set # CONFIG_ARCH_RPC is not set @@ -128,7 +137,9 @@ CONFIG_ARCH_IOP33X=y # CONFIG_ARCH_S3C2410 is not set # CONFIG_ARCH_SHARK is not set # CONFIG_ARCH_LH7A40X is not set +# CONFIG_ARCH_DAVINCI is not set # CONFIG_ARCH_OMAP is not set +CONFIG_IOP3XX_ATU=y # # IOP33x Implementation Options @@ -158,6 +169,7 @@ CONFIG_CPU_CP15_MMU=y # # CONFIG_ARM_THUMB is not set # CONFIG_CPU_DCACHE_DISABLE is not set +# CONFIG_OUTER_CACHE is not set # CONFIG_IWMMXT is not set CONFIG_XSCALE_PMU=y @@ -165,7 +177,8 @@ CONFIG_XSCALE_PMU=y # Bus support # CONFIG_PCI=y -# CONFIG_PCI_MULTITHREAD_PROBE is not set +CONFIG_PCI_SYSCALL=y +# CONFIG_ARCH_SUPPORTS_MSI is not set # CONFIG_PCI_DEBUG is not set # @@ -176,6 +189,7 @@ CONFIG_PCI=y # # Kernel Features # +# CONFIG_TICK_ONESHOT is not set # CONFIG_PREEMPT is not set # CONFIG_NO_IDLE_HZ is not set CONFIG_HZ=100 @@ -190,6 +204,9 @@ CONFIG_FLAT_NODE_MEM_MAP=y # CONFIG_SPARSEMEM_STATIC is not set CONFIG_SPLIT_PTLOCK_CPUS=4096 # CONFIG_RESOURCES_64BIT is not set +CONFIG_ZONE_DMA_FLAG=1 +CONFIG_BOUNCE=y +CONFIG_VIRT_TO_BUS=y CONFIG_ALIGNMENT_TRAP=y # @@ -197,8 +214,9 @@ CONFIG_ALIGNMENT_TRAP=y # CONFIG_ZBOOT_ROM_TEXT=0x0 CONFIG_ZBOOT_ROM_BSS=0x0 -CONFIG_CMDLINE="console=ttyS0,115200 root=/dev/nfs ip=bootp" +CONFIG_CMDLINE="console=ttyS0,115200 root=/dev/nfs ip=bootp cachepolicy=writealloc" # CONFIG_XIP_KERNEL is not set +# CONFIG_KEXEC is not set # # Floating point emulation @@ -223,7 +241,6 @@ CONFIG_BINFMT_AOUT=y # Power management options # # CONFIG_PM is not set -# CONFIG_APM is not set # # Networking @@ -233,13 +250,13 @@ CONFIG_NET=y # # Networking options # -# CONFIG_NETDEBUG is not set CONFIG_PACKET=y CONFIG_PACKET_MMAP=y CONFIG_UNIX=y CONFIG_XFRM=y # CONFIG_XFRM_USER is not set # CONFIG_XFRM_SUB_POLICY is not set +# CONFIG_XFRM_MIGRATE is not set # CONFIG_NET_KEY is not set CONFIG_INET=y CONFIG_IP_MULTICAST=y @@ -271,6 +288,7 @@ CONFIG_DEFAULT_TCP_CONG="cubic" CONFIG_IPV6=y # CONFIG_IPV6_PRIVACY is not set # CONFIG_IPV6_ROUTER_PREF is not set +# CONFIG_IPV6_OPTIMISTIC_DAD is not set # CONFIG_INET6_AH is not set # CONFIG_INET6_ESP is not set # CONFIG_INET6_IPCOMP is not set @@ -286,20 +304,8 @@ CONFIG_IPV6=y # CONFIG_IPV6_MULTIPLE_TABLES is not set # CONFIG_NETWORK_SECMARK is not set # CONFIG_NETFILTER is not set - -# -# DCCP Configuration (EXPERIMENTAL) -# # CONFIG_IP_DCCP is not set - -# -# SCTP Configuration (EXPERIMENTAL) -# # CONFIG_IP_SCTP is not set - -# -# TIPC Configuration (EXPERIMENTAL) -# # CONFIG_TIPC is not set # CONFIG_ATM is not set # CONFIG_BRIDGE is not set @@ -325,7 +331,17 @@ CONFIG_IPV6=y # CONFIG_HAMRADIO is not set # CONFIG_IRDA is not set # CONFIG_BT is not set +# CONFIG_AF_RXRPC is not set + +# +# Wireless +# +# CONFIG_CFG80211 is not set +# CONFIG_WIRELESS_EXT is not set +# CONFIG_MAC80211 is not set # CONFIG_IEEE80211 is not set +# CONFIG_RFKILL is not set +# CONFIG_NET_9P is not set # # Device Drivers @@ -338,16 +354,9 @@ CONFIG_STANDALONE=y CONFIG_PREVENT_FIRMWARE_BUILD=y # CONFIG_FW_LOADER is not set # CONFIG_DEBUG_DRIVER is not set +# CONFIG_DEBUG_DEVRES is not set # CONFIG_SYS_HYPERVISOR is not set - -# -# Connector - unified userspace <-> kernelspace linker -# # CONFIG_CONNECTOR is not set - -# -# Memory Technology Devices (MTD) -# CONFIG_MTD=y # CONFIG_MTD_DEBUG is not set # CONFIG_MTD_CONCAT is not set @@ -363,6 +372,7 @@ CONFIG_MTD_REDBOOT_PARTS_READONLY=y # User Modules And Translation Layers # CONFIG_MTD_CHAR=y +CONFIG_MTD_BLKDEVS=y CONFIG_MTD_BLOCK=y # CONFIG_FTL is not set # CONFIG_NFTL is not set @@ -399,7 +409,6 @@ CONFIG_MTD_CFI_UTIL=y # CONFIG_MTD_RAM is not set # CONFIG_MTD_ROM is not set # CONFIG_MTD_ABSENT is not set -# CONFIG_MTD_OBSOLETE_CHIPS is not set # # Mapping drivers for chip access @@ -427,29 +436,15 @@ CONFIG_MTD_PHYSMAP_BANKWIDTH=1 # CONFIG_MTD_DOC2000 is not set # CONFIG_MTD_DOC2001 is not set # CONFIG_MTD_DOC2001PLUS is not set - -# -# NAND Flash Device Drivers -# # CONFIG_MTD_NAND is not set - -# -# OneNAND Flash Device Drivers -# # CONFIG_MTD_ONENAND is not set # -# Parallel port support +# UBI - Unsorted block images # +# CONFIG_MTD_UBI is not set # CONFIG_PARPORT is not set - -# -# Plug and Play support -# - -# -# Block devices -# +CONFIG_BLK_DEV=y # CONFIG_BLK_CPQ_DA is not set # CONFIG_BLK_CPQ_CISS_DA is not set # CONFIG_BLK_DEV_DAC960 is not set @@ -462,13 +457,8 @@ CONFIG_BLK_DEV_RAM=y CONFIG_BLK_DEV_RAM_COUNT=16 CONFIG_BLK_DEV_RAM_SIZE=8192 CONFIG_BLK_DEV_RAM_BLOCKSIZE=1024 -CONFIG_BLK_DEV_INITRD=y # CONFIG_CDROM_PKTCDVD is not set # CONFIG_ATA_OVER_ETH is not set - -# -# ATA/ATAPI/MFM/RLL support -# # CONFIG_IDE is not set # @@ -476,6 +466,7 @@ CONFIG_BLK_DEV_INITRD=y # # CONFIG_RAID_ATTRS is not set CONFIG_SCSI=y +CONFIG_SCSI_DMA=y # CONFIG_SCSI_TGT is not set # CONFIG_SCSI_NETLINK is not set CONFIG_SCSI_PROC_FS=y @@ -497,6 +488,7 @@ CONFIG_CHR_DEV_SG=y # CONFIG_SCSI_CONSTANTS is not set # CONFIG_SCSI_LOGGING is not set # CONFIG_SCSI_SCAN_ASYNC is not set +CONFIG_SCSI_WAIT_SCAN=m # # SCSI Transports @@ -541,22 +533,15 @@ CONFIG_CHR_DEV_SG=y # CONFIG_SCSI_NSP32 is not set # CONFIG_SCSI_DEBUG is not set # CONFIG_SCSI_SRP is not set - -# -# Serial ATA (prod) and Parallel ATA (experimental) drivers -# # CONFIG_ATA is not set - -# -# Multi-device support (RAID and LVM) -# CONFIG_MD=y CONFIG_BLK_DEV_MD=y CONFIG_MD_LINEAR=y CONFIG_MD_RAID0=y CONFIG_MD_RAID1=y # CONFIG_MD_RAID10 is not set -# CONFIG_MD_RAID456 is not set +CONFIG_MD_RAID456=y +# CONFIG_MD_RAID5_RESHAPE is not set # CONFIG_MD_MULTIPATH is not set # CONFIG_MD_FAULTY is not set CONFIG_BLK_DEV_DM=y @@ -566,6 +551,7 @@ CONFIG_BLK_DEV_DM=y # CONFIG_DM_MIRROR is not set # CONFIG_DM_ZERO is not set # CONFIG_DM_MULTIPATH is not set +# CONFIG_DM_DELAY is not set # # Fusion MPT device support @@ -578,39 +564,19 @@ CONFIG_BLK_DEV_DM=y # # IEEE 1394 (FireWire) support # +# CONFIG_FIREWIRE is not set # CONFIG_IEEE1394 is not set - -# -# I2O device support -# # CONFIG_I2O is not set - -# -# Network device support -# CONFIG_NETDEVICES=y +# CONFIG_NETDEVICES_MULTIQUEUE is not set # CONFIG_DUMMY is not set # CONFIG_BONDING is not set +# CONFIG_MACVLAN is not set # CONFIG_EQUALIZER is not set # CONFIG_TUN is not set - -# -# ARCnet devices -# # CONFIG_ARCNET is not set - -# -# PHY device support -# - -# -# Ethernet (10 or 100Mbit) -# # CONFIG_NET_ETHERNET is not set - -# -# Ethernet (1000 Mbit) -# +CONFIG_NETDEV_1000=y # CONFIG_ACENIC is not set # CONFIG_DL2K is not set CONFIG_E1000=y @@ -623,33 +589,26 @@ CONFIG_E1000_NAPI=y # CONFIG_SIS190 is not set # CONFIG_SKGE is not set # CONFIG_SKY2 is not set -# CONFIG_SK98LIN is not set +# CONFIG_VIA_VELOCITY is not set # CONFIG_TIGON3 is not set # CONFIG_BNX2 is not set # CONFIG_QLA3XXX is not set - -# -# Ethernet (10000 Mbit) -# +# CONFIG_ATL1 is not set +CONFIG_NETDEV_10000=y # CONFIG_CHELSIO_T1 is not set +# CONFIG_CHELSIO_T3 is not set # CONFIG_IXGB is not set # CONFIG_S2IO is not set # CONFIG_MYRI10GE is not set # CONFIG_NETXEN_NIC is not set - -# -# Token Ring devices -# +# CONFIG_MLX4_CORE is not set # CONFIG_TR is not set # -# Wireless LAN (non-hamradio) -# -# CONFIG_NET_RADIO is not set - -# -# Wan interfaces +# Wireless LAN # +# CONFIG_WLAN_PRE80211 is not set +# CONFIG_WLAN_80211 is not set # CONFIG_WAN is not set # CONFIG_FDDI is not set # CONFIG_HIPPI is not set @@ -660,10 +619,6 @@ CONFIG_E1000_NAPI=y # CONFIG_NETCONSOLE is not set # CONFIG_NETPOLL is not set # CONFIG_NET_POLL_CONTROLLER is not set - -# -# ISDN subsystem -# # CONFIG_ISDN is not set # @@ -671,6 +626,7 @@ CONFIG_E1000_NAPI=y # CONFIG_INPUT=y # CONFIG_INPUT_FF_MEMLESS is not set +# CONFIG_INPUT_POLLDEV is not set # # Userland interfaces @@ -690,6 +646,7 @@ CONFIG_INPUT_MOUSEDEV_SCREEN_Y=768 # CONFIG_INPUT_KEYBOARD is not set # CONFIG_INPUT_MOUSE is not set # CONFIG_INPUT_JOYSTICK is not set +# CONFIG_INPUT_TABLET is not set # CONFIG_INPUT_TOUCHSCREEN is not set # CONFIG_INPUT_MISC is not set @@ -727,33 +684,18 @@ CONFIG_SERIAL_CORE_CONSOLE=y CONFIG_UNIX98_PTYS=y CONFIG_LEGACY_PTYS=y CONFIG_LEGACY_PTY_COUNT=256 - -# -# IPMI -# # CONFIG_IPMI_HANDLER is not set - -# -# Watchdog Cards -# # CONFIG_WATCHDOG is not set CONFIG_HW_RANDOM=y # CONFIG_NVRAM is not set -# CONFIG_DTLK is not set # CONFIG_R3964 is not set # CONFIG_APPLICOM is not set # CONFIG_DRM is not set # CONFIG_RAW_DRIVER is not set - -# -# TPM devices -# # CONFIG_TCG_TPM is not set - -# -# I2C support -# +CONFIG_DEVPORT=y CONFIG_I2C=y +CONFIG_I2C_BOARDINFO=y CONFIG_I2C_CHARDEV=y # @@ -780,25 +722,28 @@ CONFIG_I2C_IOP3XX=y # CONFIG_I2C_PARPORT_LIGHT is not set # CONFIG_I2C_PROSAVAGE is not set # CONFIG_I2C_SAVAGE4 is not set +# CONFIG_I2C_SIMTEC is not set # CONFIG_I2C_SIS5595 is not set # CONFIG_I2C_SIS630 is not set # CONFIG_I2C_SIS96X is not set +# CONFIG_I2C_TAOS_EVM is not set # CONFIG_I2C_STUB is not set # CONFIG_I2C_VIA is not set # CONFIG_I2C_VIAPRO is not set # CONFIG_I2C_VOODOO3 is not set -# CONFIG_I2C_PCA_ISA is not set # # Miscellaneous I2C Chip support # # CONFIG_SENSORS_DS1337 is not set # CONFIG_SENSORS_DS1374 is not set +# CONFIG_DS1682 is not set # CONFIG_SENSORS_EEPROM is not set # CONFIG_SENSORS_PCF8574 is not set # CONFIG_SENSORS_PCA9539 is not set # CONFIG_SENSORS_PCF8591 is not set # CONFIG_SENSORS_MAX6875 is not set +# CONFIG_SENSORS_TSL2550 is not set # CONFIG_I2C_DEBUG_CORE is not set # CONFIG_I2C_DEBUG_ALGO is not set # CONFIG_I2C_DEBUG_BUS is not set @@ -809,21 +754,15 @@ CONFIG_I2C_IOP3XX=y # # CONFIG_SPI is not set # CONFIG_SPI_MASTER is not set - -# -# Dallas's 1-wire bus -# # CONFIG_W1 is not set - -# -# Hardware Monitoring support -# CONFIG_HWMON=y # CONFIG_HWMON_VID is not set # CONFIG_SENSORS_ABITUGURU is not set +# CONFIG_SENSORS_AD7418 is not set # CONFIG_SENSORS_ADM1021 is not set # CONFIG_SENSORS_ADM1025 is not set # CONFIG_SENSORS_ADM1026 is not set +# CONFIG_SENSORS_ADM1029 is not set # CONFIG_SENSORS_ADM1031 is not set # CONFIG_SENSORS_ADM9240 is not set # CONFIG_SENSORS_ASB100 is not set @@ -846,6 +785,7 @@ CONFIG_HWMON=y # CONFIG_SENSORS_LM90 is not set # CONFIG_SENSORS_LM92 is not set # CONFIG_SENSORS_MAX1619 is not set +# CONFIG_SENSORS_MAX6650 is not set # CONFIG_SENSORS_PC87360 is not set # CONFIG_SENSORS_PC87427 is not set # CONFIG_SENSORS_SIS5595 is not set @@ -863,12 +803,16 @@ CONFIG_HWMON=y # CONFIG_SENSORS_W83627HF is not set # CONFIG_SENSORS_W83627EHF is not set # CONFIG_HWMON_DEBUG_CHIP is not set +CONFIG_MISC_DEVICES=y +# CONFIG_PHANTOM is not set +# CONFIG_EEPROM_93CX6 is not set +# CONFIG_SGI_IOC4 is not set +# CONFIG_TIFM_CORE is not set # -# Misc devices +# Multifunction device drivers # -# CONFIG_SGI_IOC4 is not set -# CONFIG_TIFM_CORE is not set +# CONFIG_MFD_SM501 is not set # # LED devices @@ -887,16 +831,19 @@ CONFIG_HWMON=y # Multimedia devices # # CONFIG_VIDEO_DEV is not set +# CONFIG_DVB_CORE is not set +CONFIG_DAB=y # -# Digital Video Broadcasting Devices +# Graphics support # -# CONFIG_DVB is not set +# CONFIG_BACKLIGHT_LCD_SUPPORT is not set # -# Graphics support +# Display device support # -CONFIG_FIRMWARE_EDID=y +# CONFIG_DISPLAY_SUPPORT is not set +# CONFIG_VGASTATE is not set # CONFIG_FB is not set # @@ -904,21 +851,15 @@ CONFIG_FIRMWARE_EDID=y # # CONFIG_VGA_CONSOLE is not set CONFIG_DUMMY_CONSOLE=y -# CONFIG_BACKLIGHT_LCD_SUPPORT is not set # # Sound # # CONFIG_SOUND is not set - -# -# HID Devices -# +CONFIG_HID_SUPPORT=y CONFIG_HID=y - -# -# USB support -# +# CONFIG_HID_DEBUG is not set +CONFIG_USB_SUPPORT=y CONFIG_USB_ARCH_HAS_HCD=y CONFIG_USB_ARCH_HAS_OHCI=y CONFIG_USB_ARCH_HAS_EHCI=y @@ -932,10 +873,6 @@ CONFIG_USB_ARCH_HAS_EHCI=y # USB Gadget Support # # CONFIG_USB_GADGET is not set - -# -# MMC/SD Card support -# # CONFIG_MMC is not set # @@ -944,6 +881,22 @@ CONFIG_USB_ARCH_HAS_EHCI=y CONFIG_RTC_LIB=y # CONFIG_RTC_CLASS is not set +# +# DMA Engine support +# +CONFIG_DMA_ENGINE=y + +# +# DMA Clients +# +CONFIG_NET_DMA=y + +# +# DMA Devices +# +# CONFIG_INTEL_IOATDMA is not set +CONFIG_INTEL_IOP_ADMA=y + # # File systems # @@ -961,11 +914,7 @@ CONFIG_FS_MBCACHE=y # CONFIG_REISERFS_FS is not set # CONFIG_JFS_FS is not set # CONFIG_FS_POSIX_ACL is not set -CONFIG_XFS_FS=y -# CONFIG_XFS_QUOTA is not set -CONFIG_XFS_SECURITY=y -CONFIG_XFS_POSIX_ACL=y -# CONFIG_XFS_RT is not set +# CONFIG_XFS_FS is not set # CONFIG_GFS2_FS is not set # CONFIG_OCFS2_FS is not set # CONFIG_MINIX_FS is not set @@ -1013,9 +962,8 @@ CONFIG_RAMFS=y # CONFIG_BEFS_FS is not set # CONFIG_BFS_FS is not set # CONFIG_EFS_FS is not set -# CONFIG_JFFS_FS is not set # CONFIG_JFFS2_FS is not set -# CONFIG_CRAMFS is not set +CONFIG_CRAMFS=y # CONFIG_VXFS_FS is not set # CONFIG_HPFS_FS is not set # CONFIG_QNX4FS_FS is not set @@ -1041,6 +989,7 @@ CONFIG_LOCKD_V4=y CONFIG_EXPORTFS=y CONFIG_NFS_COMMON=y CONFIG_SUNRPC=y +# CONFIG_SUNRPC_BIND34 is not set # CONFIG_RPCSEC_GSS_KRB5 is not set # CONFIG_RPCSEC_GSS_SPKM3 is not set # CONFIG_SMB_FS is not set @@ -1048,7 +997,6 @@ CONFIG_SUNRPC=y # CONFIG_NCP_FS is not set # CONFIG_CODA_FS is not set # CONFIG_AFS_FS is not set -# CONFIG_9P_FS is not set # # Partition Types @@ -1070,6 +1018,7 @@ CONFIG_MSDOS_PARTITION=y # CONFIG_SUN_PARTITION is not set # CONFIG_KARMA_PARTITION is not set # CONFIG_EFI_PARTITION is not set +# CONFIG_SYSV68_PARTITION is not set # # Native Language Support @@ -1096,15 +1045,19 @@ CONFIG_MAGIC_SYSRQ=y # CONFIG_DEBUG_FS is not set # CONFIG_HEADERS_CHECK is not set CONFIG_DEBUG_KERNEL=y -CONFIG_LOG_BUF_SHIFT=14 +# CONFIG_DEBUG_SHIRQ is not set CONFIG_DETECT_SOFTLOCKUP=y +CONFIG_SCHED_DEBUG=y # CONFIG_SCHEDSTATS is not set +# CONFIG_TIMER_STATS is not set # CONFIG_DEBUG_SLAB is not set # CONFIG_DEBUG_RT_MUTEXES is not set # CONFIG_RT_MUTEX_TESTER is not set # CONFIG_DEBUG_SPINLOCK is not set # CONFIG_DEBUG_MUTEXES is not set -# CONFIG_DEBUG_RWSEMS is not set +# CONFIG_DEBUG_LOCK_ALLOC is not set +# CONFIG_PROVE_LOCKING is not set +# CONFIG_LOCK_STAT is not set # CONFIG_DEBUG_SPINLOCK_SLEEP is not set # CONFIG_DEBUG_LOCKING_API_SELFTESTS is not set # CONFIG_DEBUG_KOBJECT is not set @@ -1115,6 +1068,7 @@ CONFIG_DEBUG_BUGVERBOSE=y CONFIG_FRAME_POINTER=y # CONFIG_FORCED_INLINING is not set # CONFIG_RCU_TORTURE_TEST is not set +# CONFIG_FAULT_INJECTION is not set CONFIG_DEBUG_USER=y # CONFIG_DEBUG_ERRORS is not set CONFIG_DEBUG_LL=y @@ -1125,10 +1079,10 @@ CONFIG_DEBUG_LL=y # # CONFIG_KEYS is not set # CONFIG_SECURITY is not set - -# -# Cryptographic options -# +CONFIG_XOR_BLOCKS=y +CONFIG_ASYNC_CORE=y +CONFIG_ASYNC_MEMCPY=y +CONFIG_ASYNC_XOR=y # CONFIG_CRYPTO is not set # @@ -1136,7 +1090,12 @@ CONFIG_DEBUG_LL=y # # CONFIG_CRC_CCITT is not set # CONFIG_CRC16 is not set +# CONFIG_CRC_ITU_T is not set # CONFIG_CRC32 is not set +# CONFIG_CRC7 is not set # CONFIG_LIBCRC32C is not set +CONFIG_ZLIB_INFLATE=y CONFIG_PLIST=y -CONFIG_IOMAP_COPY=y +CONFIG_HAS_IOMEM=y +CONFIG_HAS_IOPORT=y +CONFIG_HAS_DMA=y diff --git a/arch/arm/configs/rpc_defconfig b/arch/arm/configs/rpc_defconfig index 8452dc8c7cc3..5ddecb9ddf01 100644 --- a/arch/arm/configs/rpc_defconfig +++ b/arch/arm/configs/rpc_defconfig @@ -1,87 +1,150 @@ # # Automatically generated make config: don't edit -# Linux kernel version: 2.6.11 -# Wed Mar 9 14:41:48 2005 +# Linux kernel version: 2.6.23-rc2 +# Mon Aug 6 16:47:24 2007 # CONFIG_ARM=y +CONFIG_SYS_SUPPORTS_APM_EMULATION=y +# CONFIG_GENERIC_GPIO is not set +# CONFIG_GENERIC_TIME is not set +# CONFIG_GENERIC_CLOCKEVENTS is not set CONFIG_MMU=y -CONFIG_UID16=y +CONFIG_NO_IOPORT=y +CONFIG_GENERIC_HARDIRQS=y +CONFIG_STACKTRACE_SUPPORT=y +CONFIG_LOCKDEP_SUPPORT=y +CONFIG_TRACE_IRQFLAGS_SUPPORT=y +CONFIG_HARDIRQS_SW_RESEND=y +CONFIG_GENERIC_IRQ_PROBE=y CONFIG_RWSEM_GENERIC_SPINLOCK=y +# CONFIG_ARCH_HAS_ILOG2_U32 is not set +# CONFIG_ARCH_HAS_ILOG2_U64 is not set +CONFIG_GENERIC_HWEIGHT=y CONFIG_GENERIC_CALIBRATE_DELAY=y -CONFIG_GENERIC_IOMAP=y +CONFIG_ARCH_MAY_HAVE_PC_FDC=y +CONFIG_ZONE_DMA=y CONFIG_FIQ=y +CONFIG_VECTORS_BASE=0xffff0000 +CONFIG_DEFCONFIG_LIST="/lib/modules/$UNAME_RELEASE/.config" # -# Code maturity level options +# General setup # CONFIG_EXPERIMENTAL=y -CONFIG_CLEAN_COMPILE=y CONFIG_BROKEN_ON_SMP=y - -# -# General setup -# +CONFIG_INIT_ENV_ARG_LIMIT=32 CONFIG_LOCALVERSION="" +# CONFIG_LOCALVERSION_AUTO is not set CONFIG_SWAP=y CONFIG_SYSVIPC=y +CONFIG_SYSVIPC_SYSCTL=y # CONFIG_POSIX_MQUEUE is not set # CONFIG_BSD_PROCESS_ACCT is not set -CONFIG_SYSCTL=y +# CONFIG_TASKSTATS is not set +# CONFIG_USER_NS is not set # CONFIG_AUDIT is not set -CONFIG_LOG_BUF_SHIFT=14 -# CONFIG_HOTPLUG is not set -CONFIG_KOBJECT_UEVENT=y # CONFIG_IKCONFIG is not set +CONFIG_LOG_BUF_SHIFT=14 +CONFIG_SYSFS_DEPRECATED=y +# CONFIG_RELAY is not set +CONFIG_BLK_DEV_INITRD=y +CONFIG_INITRAMFS_SOURCE="" +CONFIG_CC_OPTIMIZE_FOR_SIZE=y +CONFIG_SYSCTL=y # CONFIG_EMBEDDED is not set +CONFIG_UID16=y +CONFIG_SYSCTL_SYSCALL=y CONFIG_KALLSYMS=y # CONFIG_KALLSYMS_ALL is not set # CONFIG_KALLSYMS_EXTRA_PASS is not set +CONFIG_HOTPLUG=y +CONFIG_PRINTK=y +CONFIG_BUG=y +CONFIG_ELF_CORE=y CONFIG_BASE_FULL=y CONFIG_FUTEX=y +CONFIG_ANON_INODES=y CONFIG_EPOLL=y -CONFIG_CC_OPTIMIZE_FOR_SIZE=y +CONFIG_SIGNALFD=y +CONFIG_TIMERFD=y +CONFIG_EVENTFD=y CONFIG_SHMEM=y -CONFIG_CC_ALIGN_FUNCTIONS=0 -CONFIG_CC_ALIGN_LABELS=0 -CONFIG_CC_ALIGN_LOOPS=0 -CONFIG_CC_ALIGN_JUMPS=0 +CONFIG_VM_EVENT_COUNTERS=y +CONFIG_SLAB=y +# CONFIG_SLUB is not set +# CONFIG_SLOB is not set +CONFIG_RT_MUTEXES=y # CONFIG_TINY_SHMEM is not set CONFIG_BASE_SMALL=0 - -# -# Loadable module support -# CONFIG_MODULES=y CONFIG_MODULE_UNLOAD=y # CONFIG_MODULE_FORCE_UNLOAD is not set -CONFIG_OBSOLETE_MODPARM=y # CONFIG_MODVERSIONS is not set # CONFIG_MODULE_SRCVERSION_ALL is not set CONFIG_KMOD=y +CONFIG_BLOCK=y +# CONFIG_LBD is not set +# CONFIG_BLK_DEV_IO_TRACE is not set +# CONFIG_LSF is not set +# CONFIG_BLK_DEV_BSG is not set + +# +# IO Schedulers +# +CONFIG_IOSCHED_NOOP=y +CONFIG_IOSCHED_AS=y +CONFIG_IOSCHED_DEADLINE=y +CONFIG_IOSCHED_CFQ=y +# CONFIG_DEFAULT_AS is not set +# CONFIG_DEFAULT_DEADLINE is not set +CONFIG_DEFAULT_CFQ=y +# CONFIG_DEFAULT_NOOP is not set +CONFIG_DEFAULT_IOSCHED="cfq" # # System Type # +# CONFIG_ARCH_AAEC2000 is not set +# CONFIG_ARCH_INTEGRATOR is not set +# CONFIG_ARCH_REALVIEW is not set +# CONFIG_ARCH_VERSATILE is not set +# CONFIG_ARCH_AT91 is not set # CONFIG_ARCH_CLPS7500 is not set # CONFIG_ARCH_CLPS711X is not set # CONFIG_ARCH_CO285 is not set # CONFIG_ARCH_EBSA110 is not set +# CONFIG_ARCH_EP93XX is not set # CONFIG_ARCH_FOOTBRIDGE is not set -# CONFIG_ARCH_INTEGRATOR is not set -# CONFIG_ARCH_IOP3XX is not set -# CONFIG_ARCH_IXP4XX is not set +# CONFIG_ARCH_NETX is not set +# CONFIG_ARCH_H720X is not set +# CONFIG_ARCH_IMX is not set +# CONFIG_ARCH_IOP13XX is not set +# CONFIG_ARCH_IOP32X is not set +# CONFIG_ARCH_IOP33X is not set +# CONFIG_ARCH_IXP23XX is not set # CONFIG_ARCH_IXP2000 is not set +# CONFIG_ARCH_IXP4XX is not set # CONFIG_ARCH_L7200 is not set +# CONFIG_ARCH_KS8695 is not set +# CONFIG_ARCH_NS9XXX is not set +# CONFIG_ARCH_MXC is not set +# CONFIG_ARCH_PNX4008 is not set # CONFIG_ARCH_PXA is not set CONFIG_ARCH_RPC=y # CONFIG_ARCH_SA1100 is not set # CONFIG_ARCH_S3C2410 is not set # CONFIG_ARCH_SHARK is not set # CONFIG_ARCH_LH7A40X is not set +# CONFIG_ARCH_DAVINCI is not set # CONFIG_ARCH_OMAP is not set -# CONFIG_ARCH_VERSATILE is not set -# CONFIG_ARCH_IMX is not set -# CONFIG_ARCH_H720X is not set + +# +# Boot options +# + +# +# Power management +# CONFIG_ARCH_ACORN=y # @@ -100,29 +163,49 @@ CONFIG_CPU_COPY_V3=y CONFIG_CPU_COPY_V4WB=y CONFIG_CPU_TLB_V3=y CONFIG_CPU_TLB_V4WB=y +CONFIG_CPU_CP15=y +CONFIG_CPU_CP15_MMU=y # # Processor Features # +# CONFIG_CPU_DCACHE_DISABLE is not set +# CONFIG_OUTER_CACHE is not set CONFIG_TIMER_ACORN=y # # Bus support # +CONFIG_ISA_DMA_API=y +# CONFIG_PCI_SYSCALL is not set +# CONFIG_ARCH_SUPPORTS_MSI is not set # # PCCARD (PCMCIA/CardBus) support # # CONFIG_PCCARD is not set -# -# PC-card bridges -# - # # Kernel Features # +# CONFIG_TICK_ONESHOT is not set # CONFIG_PREEMPT is not set +# CONFIG_NO_IDLE_HZ is not set +CONFIG_HZ=100 +# CONFIG_AEABI is not set +# CONFIG_ARCH_DISCONTIGMEM_ENABLE is not set +CONFIG_SELECT_MEMORY_MODEL=y +CONFIG_FLATMEM_MANUAL=y +# CONFIG_DISCONTIGMEM_MANUAL is not set +# CONFIG_SPARSEMEM_MANUAL is not set +CONFIG_FLATMEM=y +CONFIG_FLAT_NODE_MEM_MAP=y +# CONFIG_SPARSEMEM_STATIC is not set +CONFIG_SPLIT_PTLOCK_CPUS=4096 +# CONFIG_RESOURCES_64BIT is not set +CONFIG_ZONE_DMA_FLAG=1 +CONFIG_BOUNCE=y +CONFIG_VIRT_TO_BUS=y CONFIG_ALIGNMENT_TRAP=y # @@ -132,6 +215,7 @@ CONFIG_ZBOOT_ROM_TEXT=0x0 CONFIG_ZBOOT_ROM_BSS=0x0 CONFIG_CMDLINE="" # CONFIG_XIP_KERNEL is not set +# CONFIG_KEXEC is not set # # Floating point emulation @@ -157,41 +241,122 @@ CONFIG_BINFMT_AOUT=y # CONFIG_PM is not set # -# Device Drivers +# Networking # +CONFIG_NET=y # -# Generic Driver Options +# Networking options # -CONFIG_STANDALONE=y -CONFIG_PREVENT_FIRMWARE_BUILD=y -# CONFIG_FW_LOADER is not set -# CONFIG_DEBUG_DRIVER is not set +CONFIG_PACKET=y +CONFIG_PACKET_MMAP=y +CONFIG_UNIX=y +# CONFIG_NET_KEY is not set +CONFIG_INET=y +CONFIG_IP_MULTICAST=y +# CONFIG_IP_ADVANCED_ROUTER is not set +CONFIG_IP_FIB_HASH=y +# CONFIG_IP_PNP is not set +# CONFIG_NET_IPIP is not set +# CONFIG_NET_IPGRE is not set +# CONFIG_IP_MROUTE is not set +# CONFIG_ARPD is not set +# CONFIG_SYN_COOKIES is not set +# CONFIG_INET_AH is not set +# CONFIG_INET_ESP is not set +# CONFIG_INET_IPCOMP is not set +# CONFIG_INET_XFRM_TUNNEL is not set +CONFIG_INET_TUNNEL=m +# CONFIG_INET_XFRM_MODE_TRANSPORT is not set +# CONFIG_INET_XFRM_MODE_TUNNEL is not set +# CONFIG_INET_XFRM_MODE_BEET is not set +CONFIG_INET_DIAG=y +CONFIG_INET_TCP_DIAG=y +# CONFIG_TCP_CONG_ADVANCED is not set +CONFIG_TCP_CONG_CUBIC=y +CONFIG_DEFAULT_TCP_CONG="cubic" +# CONFIG_TCP_MD5SIG is not set +CONFIG_IPV6=m +# CONFIG_IPV6_PRIVACY is not set +# CONFIG_IPV6_ROUTER_PREF is not set +# CONFIG_IPV6_OPTIMISTIC_DAD is not set +# CONFIG_INET6_AH is not set +# CONFIG_INET6_ESP is not set +# CONFIG_INET6_IPCOMP is not set +# CONFIG_IPV6_MIP6 is not set +# CONFIG_INET6_XFRM_TUNNEL is not set +# CONFIG_INET6_TUNNEL is not set +# CONFIG_INET6_XFRM_MODE_TRANSPORT is not set +# CONFIG_INET6_XFRM_MODE_TUNNEL is not set +# CONFIG_INET6_XFRM_MODE_BEET is not set +# CONFIG_INET6_XFRM_MODE_ROUTEOPTIMIZATION is not set +CONFIG_IPV6_SIT=m +# CONFIG_IPV6_TUNNEL is not set +# CONFIG_IPV6_MULTIPLE_TABLES is not set +# CONFIG_NETWORK_SECMARK is not set +# CONFIG_NETFILTER is not set +# CONFIG_IP_DCCP is not set +# CONFIG_IP_SCTP is not set +# CONFIG_TIPC is not set +# CONFIG_ATM is not set +# CONFIG_BRIDGE is not set +# CONFIG_VLAN_8021Q is not set +# CONFIG_DECNET is not set +# CONFIG_LLC2 is not set +# CONFIG_IPX is not set +# CONFIG_ATALK is not set +# CONFIG_X25 is not set +# CONFIG_LAPB is not set +# CONFIG_ECONET is not set +# CONFIG_WAN_ROUTER is not set # -# Memory Technology Devices (MTD) +# QoS and/or fair queueing # -# CONFIG_MTD is not set +# CONFIG_NET_SCHED is not set # -# Parallel port support +# Network testing # -CONFIG_PARPORT=y -CONFIG_PARPORT_PC=y -CONFIG_PARPORT_PC_CML1=y -CONFIG_PARPORT_PC_FIFO=y -# CONFIG_PARPORT_PC_SUPERIO is not set -# CONFIG_PARPORT_ARC is not set -# CONFIG_PARPORT_OTHER is not set -# CONFIG_PARPORT_1284 is not set +# CONFIG_NET_PKTGEN is not set +# CONFIG_HAMRADIO is not set +# CONFIG_IRDA is not set +# CONFIG_BT is not set +# CONFIG_AF_RXRPC is not set + +# +# Wireless +# +# CONFIG_CFG80211 is not set +# CONFIG_WIRELESS_EXT is not set +# CONFIG_MAC80211 is not set +# CONFIG_IEEE80211 is not set +# CONFIG_RFKILL is not set +# CONFIG_NET_9P is not set # -# Plug and Play support +# Device Drivers # # -# Block devices +# Generic Driver Options # +CONFIG_STANDALONE=y +CONFIG_PREVENT_FIRMWARE_BUILD=y +# CONFIG_FW_LOADER is not set +# CONFIG_DEBUG_DRIVER is not set +# CONFIG_DEBUG_DEVRES is not set +# CONFIG_SYS_HYPERVISOR is not set +# CONFIG_CONNECTOR is not set +# CONFIG_MTD is not set +CONFIG_PARPORT=y +CONFIG_PARPORT_PC=y +CONFIG_PARPORT_PC_FIFO=y +# CONFIG_PARPORT_PC_SUPERIO is not set +# CONFIG_PARPORT_GSC is not set +# CONFIG_PARPORT_AX88796 is not set +# CONFIG_PARPORT_1284 is not set +CONFIG_BLK_DEV=y CONFIG_BLK_DEV_FD=y # CONFIG_PARIDE is not set # CONFIG_BLK_DEV_COW_COMMON is not set @@ -201,59 +366,19 @@ CONFIG_BLK_DEV_LOOP=m CONFIG_BLK_DEV_RAM=y CONFIG_BLK_DEV_RAM_COUNT=16 CONFIG_BLK_DEV_RAM_SIZE=4096 -CONFIG_BLK_DEV_INITRD=y -CONFIG_INITRAMFS_SOURCE="" +CONFIG_BLK_DEV_RAM_BLOCKSIZE=1024 # CONFIG_CDROM_PKTCDVD is not set - -# -# IO Schedulers -# -CONFIG_IOSCHED_NOOP=y -CONFIG_IOSCHED_AS=y -CONFIG_IOSCHED_DEADLINE=y -CONFIG_IOSCHED_CFQ=y # CONFIG_ATA_OVER_ETH is not set - -# -# Acorn-specific block devices -# - -# -# ATA/ATAPI/MFM/RLL support -# -CONFIG_IDE=y -CONFIG_BLK_DEV_IDE=y - -# -# Please see Documentation/ide.txt for help/info on IDE drives -# -# CONFIG_BLK_DEV_IDE_SATA is not set -CONFIG_BLK_DEV_IDEDISK=y -CONFIG_IDEDISK_MULTI_MODE=y -CONFIG_BLK_DEV_IDECD=y -# CONFIG_BLK_DEV_IDETAPE is not set -# CONFIG_BLK_DEV_IDEFLOPPY is not set -# CONFIG_BLK_DEV_IDESCSI is not set -# CONFIG_IDE_TASK_IOCTL is not set - -# -# IDE chipset support/bugfixes -# -CONFIG_IDE_GENERIC=y -CONFIG_IDE_ARM=y -CONFIG_BLK_DEV_IDE_ICSIDE=y -CONFIG_BLK_DEV_IDEDMA_ICS=y -CONFIG_IDEDMA_ICS_AUTO=y -CONFIG_BLK_DEV_IDE_RAPIDE=y -CONFIG_BLK_DEV_IDEDMA=y -# CONFIG_IDEDMA_IVB is not set -CONFIG_IDEDMA_AUTO=y -# CONFIG_BLK_DEV_HD is not set +# CONFIG_IDE is not set # # SCSI device support # +# CONFIG_RAID_ATTRS is not set CONFIG_SCSI=y +CONFIG_SCSI_DMA=y +# CONFIG_SCSI_TGT is not set +# CONFIG_SCSI_NETLINK is not set CONFIG_SCSI_PROC_FS=y # @@ -265,6 +390,7 @@ CONFIG_CHR_DEV_ST=m CONFIG_BLK_DEV_SR=y CONFIG_BLK_DEV_SR_VENDOR=y CONFIG_CHR_DEV_SG=y +# CONFIG_CHR_DEV_SCH is not set # # Some SCSI devices (e.g. CD jukebox) support multiple LUNs @@ -272,26 +398,23 @@ CONFIG_CHR_DEV_SG=y # CONFIG_SCSI_MULTI_LUN is not set CONFIG_SCSI_CONSTANTS=y CONFIG_SCSI_LOGGING=y +# CONFIG_SCSI_SCAN_ASYNC is not set +CONFIG_SCSI_WAIT_SCAN=m # -# SCSI Transport Attributes +# SCSI Transports # -# CONFIG_SCSI_SPI_ATTRS is not set +CONFIG_SCSI_SPI_ATTRS=m # CONFIG_SCSI_FC_ATTRS is not set # CONFIG_SCSI_ISCSI_ATTRS is not set - -# -# SCSI low-level drivers -# -# CONFIG_SCSI_SATA is not set -CONFIG_SCSI_PPA=m -CONFIG_SCSI_IMM=m +# CONFIG_SCSI_SAS_LIBSAS is not set +CONFIG_SCSI_LOWLEVEL=y +# CONFIG_ISCSI_TCP is not set +# CONFIG_SCSI_PPA is not set +# CONFIG_SCSI_IMM is not set # CONFIG_SCSI_IZIP_EPP16 is not set # CONFIG_SCSI_IZIP_SLOW_CTR is not set # CONFIG_SCSI_DEBUG is not set -CONFIG_SCSI_ACORNSCSI_3=m -CONFIG_SCSI_ACORNSCSI_TAGGED_QUEUE=y -CONFIG_SCSI_ACORNSCSI_SYNC=y CONFIG_SCSI_ARXESCSI=m CONFIG_SCSI_CUMANA_2=m CONFIG_SCSI_EESOXSCSI=m @@ -302,129 +425,36 @@ CONFIG_SCSI_POWERTECSCSI=y # CONFIG_SCSI_CUMANA_1=m CONFIG_SCSI_OAK1=m - -# -# Multi-device support (RAID and LVM) -# +CONFIG_ATA=y +# CONFIG_ATA_NONSTANDARD is not set +CONFIG_PATA_PLATFORM=y +CONFIG_PATA_ICSIDE=y # CONFIG_MD is not set - -# -# Fusion MPT device support -# - -# -# IEEE 1394 (FireWire) support -# - -# -# I2O device support -# - -# -# Networking support -# -CONFIG_NET=y - -# -# Networking options -# -# CONFIG_PACKET is not set -CONFIG_NETLINK_DEV=y -CONFIG_UNIX=y -# CONFIG_NET_KEY is not set -CONFIG_INET=y -CONFIG_IP_MULTICAST=y -# CONFIG_IP_ADVANCED_ROUTER is not set -# CONFIG_IP_PNP is not set -# CONFIG_NET_IPIP is not set -# CONFIG_NET_IPGRE is not set -# CONFIG_IP_MROUTE is not set -# CONFIG_ARPD is not set -# CONFIG_SYN_COOKIES is not set -# CONFIG_INET_AH is not set -# CONFIG_INET_ESP is not set -# CONFIG_INET_IPCOMP is not set -# CONFIG_INET_TUNNEL is not set -# CONFIG_IP_TCPDIAG is not set -# CONFIG_IP_TCPDIAG_IPV6 is not set -CONFIG_IPV6=m -# CONFIG_IPV6_PRIVACY is not set -# CONFIG_INET6_AH is not set -# CONFIG_INET6_ESP is not set -# CONFIG_INET6_IPCOMP is not set -# CONFIG_INET6_TUNNEL is not set -# CONFIG_IPV6_TUNNEL is not set -# CONFIG_NETFILTER is not set - -# -# SCTP Configuration (EXPERIMENTAL) -# -# CONFIG_IP_SCTP is not set -# CONFIG_ATM is not set -# CONFIG_BRIDGE is not set -# CONFIG_VLAN_8021Q is not set -# CONFIG_DECNET is not set -# CONFIG_LLC2 is not set -# CONFIG_IPX is not set -# CONFIG_ATALK is not set -# CONFIG_X25 is not set -# CONFIG_LAPB is not set -# CONFIG_NET_DIVERT is not set -# CONFIG_ECONET is not set -# CONFIG_WAN_ROUTER is not set - -# -# QoS and/or fair queueing -# -# CONFIG_NET_SCHED is not set -# CONFIG_NET_CLS_ROUTE is not set - -# -# Network testing -# -# CONFIG_NET_PKTGEN is not set -# CONFIG_NETPOLL is not set -# CONFIG_NET_POLL_CONTROLLER is not set -# CONFIG_HAMRADIO is not set -# CONFIG_IRDA is not set -# CONFIG_BT is not set CONFIG_NETDEVICES=y +# CONFIG_NETDEVICES_MULTIQUEUE is not set # CONFIG_DUMMY is not set # CONFIG_BONDING is not set +# CONFIG_MACVLAN is not set # CONFIG_EQUALIZER is not set # CONFIG_TUN is not set -# CONFIG_ETHERTAP is not set - -# -# Ethernet (10 or 100Mbit) -# +# CONFIG_PHYLIB is not set CONFIG_NET_ETHERNET=y # CONFIG_MII is not set CONFIG_ARM_ETHER1=y CONFIG_ARM_ETHER3=y CONFIG_ARM_ETHERH=y +# CONFIG_AX88796 is not set # CONFIG_SMC91X is not set +# CONFIG_DM9000 is not set +# CONFIG_NET_POCKET is not set +# CONFIG_NETDEV_1000 is not set +# CONFIG_NETDEV_10000 is not set # -# Ethernet (1000 Mbit) -# - -# -# Ethernet (10000 Mbit) -# - -# -# Token Ring devices -# - -# -# Wireless LAN (non-hamradio) -# -# CONFIG_NET_RADIO is not set - -# -# Wan interfaces +# Wireless LAN # +# CONFIG_WLAN_PRE80211 is not set +# CONFIG_WLAN_80211 is not set # CONFIG_WAN is not set # CONFIG_PLIP is not set CONFIG_PPP=m @@ -434,20 +464,23 @@ CONFIG_PPP=m # CONFIG_PPP_SYNC_TTY is not set # CONFIG_PPP_DEFLATE is not set # CONFIG_PPP_BSDCOMP is not set +# CONFIG_PPP_MPPE is not set CONFIG_PPPOE=m +# CONFIG_PPPOL2TP is not set # CONFIG_SLIP is not set +CONFIG_SLHC=m # CONFIG_SHAPER is not set # CONFIG_NETCONSOLE is not set - -# -# ISDN subsystem -# +# CONFIG_NETPOLL is not set +# CONFIG_NET_POLL_CONTROLLER is not set # CONFIG_ISDN is not set # # Input device support # CONFIG_INPUT=y +# CONFIG_INPUT_FF_MEMLESS is not set +# CONFIG_INPUT_POLLDEV is not set # # Userland interfaces @@ -461,19 +494,6 @@ CONFIG_INPUT_MOUSEDEV_SCREEN_Y=768 CONFIG_INPUT_EVDEV=y # CONFIG_INPUT_EVBUG is not set -# -# Input I/O drivers -# -# CONFIG_GAMEPORT is not set -CONFIG_SOUND_GAMEPORT=y -CONFIG_SERIO=y -# CONFIG_SERIO_SERPORT is not set -# CONFIG_SERIO_CT82C710 is not set -# CONFIG_SERIO_PARKBD is not set -CONFIG_SERIO_RPCKBD=y -CONFIG_SERIO_LIBPS2=y -# CONFIG_SERIO_RAW is not set - # # Input Device Drivers # @@ -483,21 +503,35 @@ CONFIG_KEYBOARD_ATKBD=y # CONFIG_KEYBOARD_LKKBD is not set # CONFIG_KEYBOARD_XTKBD is not set # CONFIG_KEYBOARD_NEWTON is not set +# CONFIG_KEYBOARD_STOWAWAY is not set CONFIG_INPUT_MOUSE=y # CONFIG_MOUSE_PS2 is not set # CONFIG_MOUSE_SERIAL is not set CONFIG_MOUSE_RISCPC=y # CONFIG_MOUSE_VSXXXAA is not set # CONFIG_INPUT_JOYSTICK is not set +# CONFIG_INPUT_TABLET is not set # CONFIG_INPUT_TOUCHSCREEN is not set # CONFIG_INPUT_MISC is not set +# +# Hardware I/O ports +# +CONFIG_SERIO=y +# CONFIG_SERIO_SERPORT is not set +# CONFIG_SERIO_PARKBD is not set +CONFIG_SERIO_RPCKBD=y +CONFIG_SERIO_LIBPS2=y +# CONFIG_SERIO_RAW is not set +# CONFIG_GAMEPORT is not set + # # Character devices # CONFIG_VT=y CONFIG_VT_CONSOLE=y CONFIG_HW_CONSOLE=y +# CONFIG_VT_HW_CONSOLE_BINDING is not set # CONFIG_SERIAL_NONSTANDARD is not set # @@ -506,12 +540,13 @@ CONFIG_HW_CONSOLE=y CONFIG_SERIAL_8250=y CONFIG_SERIAL_8250_CONSOLE=y CONFIG_SERIAL_8250_NR_UARTS=16 +CONFIG_SERIAL_8250_RUNTIME_UARTS=8 # CONFIG_SERIAL_8250_EXTENDED is not set +CONFIG_SERIAL_8250_ACORN=y # # Non-8250 serial port support # -CONFIG_SERIAL_8250_ACORN=y CONFIG_SERIAL_CORE=y CONFIG_SERIAL_CORE_CONSOLE=y CONFIG_UNIX98_PTYS=y @@ -521,31 +556,15 @@ CONFIG_PRINTER=m # CONFIG_LP_CONSOLE is not set # CONFIG_PPDEV is not set # CONFIG_TIPAR is not set - -# -# IPMI -# # CONFIG_IPMI_HANDLER is not set - -# -# Watchdog Cards -# # CONFIG_WATCHDOG is not set +# CONFIG_HW_RANDOM is not set # CONFIG_NVRAM is not set -# CONFIG_RTC is not set -# CONFIG_DTLK is not set # CONFIG_R3964 is not set - -# -# Ftape, the floppy tape device driver -# -# CONFIG_DRM is not set # CONFIG_RAW_DRIVER is not set - -# -# I2C support -# +# CONFIG_TCG_TPM is not set CONFIG_I2C=y +CONFIG_I2C_BOARDINFO=y CONFIG_I2C_CHARDEV=y # @@ -558,76 +577,87 @@ CONFIG_I2C_ALGOBIT=y # # I2C Hardware Bus support # +# CONFIG_I2C_OCORES is not set # CONFIG_I2C_PARPORT is not set # CONFIG_I2C_PARPORT_LIGHT is not set +# CONFIG_I2C_SIMTEC is not set +# CONFIG_I2C_TAOS_EVM is not set # CONFIG_I2C_STUB is not set -# CONFIG_I2C_PCA_ISA is not set - -# -# Hardware Sensors Chip support -# -# CONFIG_I2C_SENSOR is not set -# CONFIG_SENSORS_ADM1021 is not set -# CONFIG_SENSORS_ADM1025 is not set -# CONFIG_SENSORS_ADM1026 is not set -# CONFIG_SENSORS_ADM1031 is not set -# CONFIG_SENSORS_ASB100 is not set -# CONFIG_SENSORS_DS1621 is not set -# CONFIG_SENSORS_FSCHER is not set -# CONFIG_SENSORS_FSCPOS is not set -# CONFIG_SENSORS_GL518SM is not set -# CONFIG_SENSORS_GL520SM is not set -# CONFIG_SENSORS_IT87 is not set -# CONFIG_SENSORS_LM63 is not set -# CONFIG_SENSORS_LM75 is not set -# CONFIG_SENSORS_LM77 is not set -# CONFIG_SENSORS_LM78 is not set -# CONFIG_SENSORS_LM80 is not set -# CONFIG_SENSORS_LM83 is not set -# CONFIG_SENSORS_LM85 is not set -# CONFIG_SENSORS_LM87 is not set -# CONFIG_SENSORS_LM90 is not set -# CONFIG_SENSORS_MAX1619 is not set -# CONFIG_SENSORS_PC87360 is not set -# CONFIG_SENSORS_SMSC47B397 is not set -# CONFIG_SENSORS_SMSC47M1 is not set -# CONFIG_SENSORS_W83781D is not set -# CONFIG_SENSORS_W83L785TS is not set -# CONFIG_SENSORS_W83627HF is not set - -# -# Other I2C Chip support +CONFIG_I2C_ACORN=y + +# +# Miscellaneous I2C Chip support # +# CONFIG_SENSORS_DS1337 is not set +# CONFIG_SENSORS_DS1374 is not set +# CONFIG_DS1682 is not set # CONFIG_SENSORS_EEPROM is not set # CONFIG_SENSORS_PCF8574 is not set +# CONFIG_SENSORS_PCA9539 is not set # CONFIG_SENSORS_PCF8591 is not set -# CONFIG_SENSORS_RTC8564 is not set +# CONFIG_SENSORS_MAX6875 is not set +# CONFIG_SENSORS_TSL2550 is not set # CONFIG_I2C_DEBUG_CORE is not set # CONFIG_I2C_DEBUG_ALGO is not set # CONFIG_I2C_DEBUG_BUS is not set # CONFIG_I2C_DEBUG_CHIP is not set # -# Misc devices +# SPI support # +# CONFIG_SPI is not set +# CONFIG_SPI_MASTER is not set +# CONFIG_W1 is not set +# CONFIG_HWMON is not set +CONFIG_MISC_DEVICES=y +# CONFIG_EEPROM_93CX6 is not set + +# +# Multifunction device drivers +# +# CONFIG_MFD_SM501 is not set +# CONFIG_NEW_LEDS is not set # # Multimedia devices # # CONFIG_VIDEO_DEV is not set +# CONFIG_DVB_CORE is not set +# CONFIG_DAB is not set # -# Digital Video Broadcasting Devices +# Graphics support # -# CONFIG_DVB is not set +# CONFIG_BACKLIGHT_LCD_SUPPORT is not set # -# Graphics support +# Display device support # +# CONFIG_DISPLAY_SUPPORT is not set +# CONFIG_VGASTATE is not set +# CONFIG_VIDEO_OUTPUT_CONTROL is not set CONFIG_FB=y +# CONFIG_FIRMWARE_EDID is not set +# CONFIG_FB_DDC is not set +CONFIG_FB_CFB_FILLRECT=y +CONFIG_FB_CFB_COPYAREA=y +CONFIG_FB_CFB_IMAGEBLIT=y +# CONFIG_FB_SYS_FILLRECT is not set +# CONFIG_FB_SYS_COPYAREA is not set +# CONFIG_FB_SYS_IMAGEBLIT is not set +# CONFIG_FB_SYS_FOPS is not set +CONFIG_FB_DEFERRED_IO=y +# CONFIG_FB_SVGALIB is not set +# CONFIG_FB_MACMODES is not set +# CONFIG_FB_BACKLIGHT is not set # CONFIG_FB_MODE_HELPERS is not set # CONFIG_FB_TILEBLITTING is not set + +# +# Frame buffer hardware drivers +# CONFIG_FB_ACORN=y +# CONFIG_FB_S1D13XXX is not set # CONFIG_FB_VIRTUAL is not set # @@ -635,24 +665,23 @@ CONFIG_FB_ACORN=y # CONFIG_DUMMY_CONSOLE=y CONFIG_FRAMEBUFFER_CONSOLE=y +# CONFIG_FRAMEBUFFER_CONSOLE_DETECT_PRIMARY is not set +# CONFIG_FRAMEBUFFER_CONSOLE_ROTATION is not set CONFIG_FONTS=y # CONFIG_FONT_8x8 is not set CONFIG_FONT_8x16=y # CONFIG_FONT_6x11 is not set +# CONFIG_FONT_7x14 is not set # CONFIG_FONT_PEARL_8x8 is not set CONFIG_FONT_ACORN_8x8=y # CONFIG_FONT_MINI_4x6 is not set # CONFIG_FONT_SUN8x16 is not set # CONFIG_FONT_SUN12x22 is not set - -# -# Logo configuration -# +# CONFIG_FONT_10x18 is not set CONFIG_LOGO=y CONFIG_LOGO_LINUX_MONO=y CONFIG_LOGO_LINUX_VGA16=y CONFIG_LOGO_LINUX_CLUT224=y -# CONFIG_BACKLIGHT_LCD_SUPPORT is not set # # Sound @@ -668,91 +697,115 @@ CONFIG_SOUND=m # Open Sound System # CONFIG_SOUND_PRIME=m -# CONFIG_SOUND_BT878 is not set -# CONFIG_SOUND_FUSION is not set -# CONFIG_SOUND_CS4281 is not set -# CONFIG_SOUND_SONICVIBES is not set -# CONFIG_SOUND_TRIDENT is not set # CONFIG_SOUND_MSNDCLAS is not set # CONFIG_SOUND_MSNDPIN is not set CONFIG_SOUND_OSS=m # CONFIG_SOUND_TRACEINIT is not set # CONFIG_SOUND_DMAP is not set -# CONFIG_SOUND_AD1816 is not set -# CONFIG_SOUND_AD1889 is not set -# CONFIG_SOUND_SGALAXY is not set -# CONFIG_SOUND_ADLIB is not set -# CONFIG_SOUND_ACI_MIXER is not set -# CONFIG_SOUND_CS4232 is not set # CONFIG_SOUND_SSCAPE is not set -# CONFIG_SOUND_GUS is not set # CONFIG_SOUND_VMIDI is not set # CONFIG_SOUND_TRIX is not set # CONFIG_SOUND_MSS is not set # CONFIG_SOUND_MPU401 is not set -# CONFIG_SOUND_NM256 is not set -# CONFIG_SOUND_MAD16 is not set # CONFIG_SOUND_PAS is not set # CONFIG_SOUND_PSS is not set # CONFIG_SOUND_SB is not set -# CONFIG_SOUND_AWE32_SYNTH is not set -# CONFIG_SOUND_WAVEFRONT is not set -# CONFIG_SOUND_MAUI is not set # CONFIG_SOUND_YM3812 is not set -# CONFIG_SOUND_OPL3SA1 is not set -# CONFIG_SOUND_OPL3SA2 is not set # CONFIG_SOUND_UART6850 is not set # CONFIG_SOUND_AEDSP16 is not set CONFIG_SOUND_VIDC=m -# CONFIG_SOUND_TVMIXER is not set -# CONFIG_SOUND_AD1980 is not set +# CONFIG_HID_SUPPORT is not set +# CONFIG_USB_SUPPORT is not set +# CONFIG_MMC is not set +CONFIG_RTC_LIB=y +CONFIG_RTC_CLASS=y +CONFIG_RTC_HCTOSYS=y +CONFIG_RTC_HCTOSYS_DEVICE="rtc0" +# CONFIG_RTC_DEBUG is not set # -# USB support +# RTC interfaces # -# CONFIG_USB is not set -CONFIG_USB_ARCH_HAS_HCD=y -# CONFIG_USB_ARCH_HAS_OHCI is not set +CONFIG_RTC_INTF_SYSFS=y +CONFIG_RTC_INTF_PROC=y +CONFIG_RTC_INTF_DEV=y +# CONFIG_RTC_INTF_DEV_UIE_EMUL is not set +# CONFIG_RTC_DRV_TEST is not set # -# NOTE: USB_STORAGE enables SCSI, and 'SCSI disk support' may also be needed; see USB_STORAGE Help for more information +# I2C RTC drivers # +# CONFIG_RTC_DRV_DS1307 is not set +# CONFIG_RTC_DRV_DS1672 is not set +# CONFIG_RTC_DRV_MAX6900 is not set +# CONFIG_RTC_DRV_RS5C372 is not set +# CONFIG_RTC_DRV_ISL1208 is not set +# CONFIG_RTC_DRV_X1205 is not set +# CONFIG_RTC_DRV_PCF8563 is not set +CONFIG_RTC_DRV_PCF8583=y +# CONFIG_RTC_DRV_M41T80 is not set # -# USB Gadget Support +# SPI RTC drivers # -# CONFIG_USB_GADGET is not set # -# MMC/SD Card support +# Platform RTC drivers +# +# CONFIG_RTC_DRV_CMOS is not set +# CONFIG_RTC_DRV_DS1553 is not set +# CONFIG_RTC_DRV_STK17TA8 is not set +# CONFIG_RTC_DRV_DS1742 is not set +# CONFIG_RTC_DRV_M48T86 is not set +# CONFIG_RTC_DRV_M48T59 is not set +# CONFIG_RTC_DRV_V3020 is not set + +# +# on-CPU RTC drivers +# + +# +# DMA Engine support +# +# CONFIG_DMA_ENGINE is not set + +# +# DMA Clients +# + +# +# DMA Devices # -# CONFIG_MMC is not set # # File systems # CONFIG_EXT2_FS=y # CONFIG_EXT2_FS_XATTR is not set +# CONFIG_EXT2_FS_XIP is not set CONFIG_EXT3_FS=y CONFIG_EXT3_FS_XATTR=y # CONFIG_EXT3_FS_POSIX_ACL is not set # CONFIG_EXT3_FS_SECURITY is not set +# CONFIG_EXT4DEV_FS is not set CONFIG_JBD=y # CONFIG_JBD_DEBUG is not set CONFIG_FS_MBCACHE=y # CONFIG_REISERFS_FS is not set # CONFIG_JFS_FS is not set - -# -# XFS support -# +# CONFIG_FS_POSIX_ACL is not set # CONFIG_XFS_FS is not set +# CONFIG_GFS2_FS is not set +# CONFIG_OCFS2_FS is not set # CONFIG_MINIX_FS is not set # CONFIG_ROMFS_FS is not set +CONFIG_INOTIFY=y +CONFIG_INOTIFY_USER=y # CONFIG_QUOTA is not set CONFIG_DNOTIFY=y # CONFIG_AUTOFS_FS is not set CONFIG_AUTOFS4_FS=m +# CONFIG_FUSE_FS is not set # # CD-ROM/DVD Filesystems @@ -776,12 +829,12 @@ CONFIG_FAT_DEFAULT_IOCHARSET="iso8859-1" # Pseudo filesystems # CONFIG_PROC_FS=y +CONFIG_PROC_SYSCTL=y CONFIG_SYSFS=y -# CONFIG_DEVFS_FS is not set -# CONFIG_DEVPTS_FS_XATTR is not set # CONFIG_TMPFS is not set # CONFIG_HUGETLB_PAGE is not set CONFIG_RAMFS=y +# CONFIG_CONFIGFS_FS is not set # # Miscellaneous filesystems @@ -810,7 +863,9 @@ CONFIG_NFS_FS=y # CONFIG_NFS_DIRECTIO is not set # CONFIG_NFSD is not set CONFIG_LOCKD=y +CONFIG_NFS_COMMON=y CONFIG_SUNRPC=y +# CONFIG_SUNRPC_BIND34 is not set # CONFIG_RPCSEC_GSS_KRB5 is not set # CONFIG_RPCSEC_GSS_SPKM3 is not set # CONFIG_SMB_FS is not set @@ -830,20 +885,22 @@ CONFIG_ACORN_PARTITION_ICS=y CONFIG_ACORN_PARTITION_ADFS=y CONFIG_ACORN_PARTITION_POWERTEC=y CONFIG_ACORN_PARTITION_RISCIX=y -CONFIG_OSF_PARTITION=y -CONFIG_AMIGA_PARTITION=y +# CONFIG_OSF_PARTITION is not set +# CONFIG_AMIGA_PARTITION is not set # CONFIG_ATARI_PARTITION is not set -CONFIG_MAC_PARTITION=y +# CONFIG_MAC_PARTITION is not set CONFIG_MSDOS_PARTITION=y CONFIG_BSD_DISKLABEL=y # CONFIG_MINIX_SUBPARTITION is not set -CONFIG_SOLARIS_X86_PARTITION=y +# CONFIG_SOLARIS_X86_PARTITION is not set # CONFIG_UNIXWARE_DISKLABEL is not set # CONFIG_LDM_PARTITION is not set -CONFIG_SGI_PARTITION=y +# CONFIG_SGI_PARTITION is not set # CONFIG_ULTRIX_PARTITION is not set -CONFIG_SUN_PARTITION=y +# CONFIG_SUN_PARTITION is not set +# CONFIG_KARMA_PARTITION is not set # CONFIG_EFI_PARTITION is not set +# CONFIG_SYSV68_PARTITION is not set # # Native Language Support @@ -889,6 +946,11 @@ CONFIG_NLS_KOI8_R=m # CONFIG_NLS_KOI8_U is not set # CONFIG_NLS_UTF8 is not set +# +# Distributed Lock Manager +# +# CONFIG_DLM is not set + # # Profiling support # @@ -897,17 +959,37 @@ CONFIG_NLS_KOI8_R=m # # Kernel hacking # -CONFIG_DEBUG_KERNEL=y -CONFIG_MAGIC_SYSRQ=y # CONFIG_PRINTK_TIME is not set +CONFIG_ENABLE_MUST_CHECK=y +CONFIG_MAGIC_SYSRQ=y +# CONFIG_UNUSED_SYMBOLS is not set +# CONFIG_DEBUG_FS is not set +# CONFIG_HEADERS_CHECK is not set +CONFIG_DEBUG_KERNEL=y +# CONFIG_DEBUG_SHIRQ is not set +CONFIG_DETECT_SOFTLOCKUP=y +CONFIG_SCHED_DEBUG=y # CONFIG_SCHEDSTATS is not set +# CONFIG_TIMER_STATS is not set # CONFIG_DEBUG_SLAB is not set +# CONFIG_DEBUG_RT_MUTEXES is not set +# CONFIG_RT_MUTEX_TESTER is not set # CONFIG_DEBUG_SPINLOCK is not set +# CONFIG_DEBUG_MUTEXES is not set +# CONFIG_DEBUG_LOCK_ALLOC is not set +# CONFIG_PROVE_LOCKING is not set +# CONFIG_LOCK_STAT is not set +# CONFIG_DEBUG_SPINLOCK_SLEEP is not set +# CONFIG_DEBUG_LOCKING_API_SELFTESTS is not set # CONFIG_DEBUG_KOBJECT is not set CONFIG_DEBUG_BUGVERBOSE=y # CONFIG_DEBUG_INFO is not set -# CONFIG_DEBUG_FS is not set +# CONFIG_DEBUG_VM is not set +# CONFIG_DEBUG_LIST is not set CONFIG_FRAME_POINTER=y +CONFIG_FORCED_INLINING=y +# CONFIG_RCU_TORTURE_TEST is not set +# CONFIG_FAULT_INJECTION is not set CONFIG_DEBUG_USER=y CONFIG_DEBUG_ERRORS=y CONFIG_DEBUG_LL=y @@ -918,19 +1000,18 @@ CONFIG_DEBUG_LL=y # # CONFIG_KEYS is not set # CONFIG_SECURITY is not set - -# -# Cryptographic options -# # CONFIG_CRYPTO is not set -# -# Hardware crypto devices -# - # # Library routines # +CONFIG_BITREVERSE=y # CONFIG_CRC_CCITT is not set +# CONFIG_CRC16 is not set +# CONFIG_CRC_ITU_T is not set CONFIG_CRC32=y +# CONFIG_CRC7 is not set # CONFIG_LIBCRC32C is not set +CONFIG_PLIST=y +CONFIG_HAS_IOMEM=y +CONFIG_HAS_DMA=y diff --git a/arch/arm/kernel/entry-common.S b/arch/arm/kernel/entry-common.S index c589dc3ecd1a..33e6cc2ffd3b 100644 --- a/arch/arm/kernel/entry-common.S +++ b/arch/arm/kernel/entry-common.S @@ -46,7 +46,7 @@ fast_work_pending: work_pending: tst r1, #_TIF_NEED_RESCHED bne work_resched - tst r1, #_TIF_NOTIFY_RESUME | _TIF_SIGPENDING + tst r1, #_TIF_SIGPENDING beq no_work_pending mov r0, sp @ 'regs' mov r2, why @ 'syscall' diff --git a/arch/arm/kernel/setup.c b/arch/arm/kernel/setup.c index 5be2e987b843..4de432ec903a 100644 --- a/arch/arm/kernel/setup.c +++ b/arch/arm/kernel/setup.c @@ -23,6 +23,7 @@ #include #include #include +#include #include #include diff --git a/arch/arm/kernel/smp.c b/arch/arm/kernel/smp.c index 1b76d87fa335..eafbb2b05eb8 100644 --- a/arch/arm/kernel/smp.c +++ b/arch/arm/kernel/smp.c @@ -17,6 +17,7 @@ #include #include #include +#include #include #include #include @@ -630,7 +631,7 @@ void smp_send_stop(void) /* * not supported here */ -int __init setup_profiling_timer(unsigned int multiplier) +int setup_profiling_timer(unsigned int multiplier) { return -EINVAL; } diff --git a/arch/arm/kernel/traps.c b/arch/arm/kernel/traps.c index f2114bcf09d5..8ad47619c079 100644 --- a/arch/arm/kernel/traps.c +++ b/arch/arm/kernel/traps.c @@ -352,10 +352,8 @@ asmlinkage void __exception do_undefinstr(struct pt_regs *regs) asmlinkage void do_unexp_fiq (struct pt_regs *regs) { -#ifndef CONFIG_IGNORE_FIQ printk("Hmm. Unexpected FIQ received, but trying to continue\n"); printk("You may have a hardware problem...\n"); -#endif } /* diff --git a/arch/arm/mach-at91/at91sam9261_devices.c b/arch/arm/mach-at91/at91sam9261_devices.c index 9db58da04754..3576595b4941 100644 --- a/arch/arm/mach-at91/at91sam9261_devices.c +++ b/arch/arm/mach-at91/at91sam9261_devices.c @@ -15,6 +15,8 @@ #include +#include