gdb vmlinux
(gdb) p vt_ioctl
(gdb) l *(0x<address of vt_ioctl> + 0xda8)
+or, as one command
+ (gdb) l *(vt_ioctl + 0xda8)
+
+If you have a call trace, such as :-
+>Call Trace:
+> [<ffffffff8802c8e9>] :jbd:log_wait_commit+0xa3/0xf5
+> [<ffffffff810482d9>] autoremove_wake_function+0x0/0x2e
+> [<ffffffff8802770b>] :jbd:journal_stop+0x1be/0x1ee
+> ...
+this shows the problem in the :jbd: module. You can load that module in gdb
+and list the relevant code.
+ gdb fs/jbd/jbd.ko
+ (gdb) p log_wait_commit
+ (gdb) l *(0x<address> + 0xa3)
+or
+ (gdb) l *(log_wait_commit + 0xa3)
+
Another very useful option of the Kernel Hacking section in menuconfig is
Debug memory allocations. This will help you see whether data has been
!Emm/vmalloc.c
!Imm/page_alloc.c
!Emm/mempool.c
+!Emm/dmapool.c
!Emm/page-writeback.c
!Emm/truncate.c
</sect1>
!Edrivers/base/class.c
!Edrivers/base/firmware_class.c
!Edrivers/base/transport_class.c
-!Edrivers/base/dmapool.c
<!-- Cannot be included, because
attribute_container_add_class_device_adapter
and attribute_container_classdev_to_container
<para>
For our first example, we assume that all operations are in user
context (ie. from system calls), so we can sleep. This means we can
-use a semaphore to protect the cache and all the objects within
+use a mutex to protect the cache and all the objects within
it. Here's the code:
</para>
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/string.h>
-#include <asm/semaphore.h>
+#include <linux/mutex.h>
#include <asm/errno.h>
struct object
};
/* Protects the cache, cache_num, and the objects within it */
-static DECLARE_MUTEX(cache_lock);
+static DEFINE_MUTEX(cache_lock);
static LIST_HEAD(cache);
static unsigned int cache_num = 0;
#define MAX_CACHE_SIZE 10
obj->id = id;
obj->popularity = 0;
- down(&cache_lock);
+ mutex_lock(&cache_lock);
__cache_add(obj);
- up(&cache_lock);
+ mutex_unlock(&cache_lock);
return 0;
}
void cache_delete(int id)
{
- down(&cache_lock);
+ mutex_lock(&cache_lock);
__cache_delete(__cache_find(id));
- up(&cache_lock);
+ mutex_unlock(&cache_lock);
}
int cache_find(int id, char *name)
struct object *obj;
int ret = -ENOENT;
- down(&cache_lock);
+ mutex_lock(&cache_lock);
obj = __cache_find(id);
if (obj) {
ret = 0;
strcpy(name, obj->name);
}
- up(&cache_lock);
+ mutex_unlock(&cache_lock);
return ret;
}
</programlisting>
int popularity;
};
--static DECLARE_MUTEX(cache_lock);
+-static DEFINE_MUTEX(cache_lock);
+static spinlock_t cache_lock = SPIN_LOCK_UNLOCKED;
static LIST_HEAD(cache);
static unsigned int cache_num = 0;
obj->id = id;
obj->popularity = 0;
-- down(&cache_lock);
+- mutex_lock(&cache_lock);
+ spin_lock_irqsave(&cache_lock, flags);
__cache_add(obj);
-- up(&cache_lock);
+- mutex_unlock(&cache_lock);
+ spin_unlock_irqrestore(&cache_lock, flags);
return 0;
}
void cache_delete(int id)
{
-- down(&cache_lock);
+- mutex_lock(&cache_lock);
+ unsigned long flags;
+
+ spin_lock_irqsave(&cache_lock, flags);
__cache_delete(__cache_find(id));
-- up(&cache_lock);
+- mutex_unlock(&cache_lock);
+ spin_unlock_irqrestore(&cache_lock, flags);
}
int ret = -ENOENT;
+ unsigned long flags;
-- down(&cache_lock);
+- mutex_lock(&cache_lock);
+ spin_lock_irqsave(&cache_lock, flags);
obj = __cache_find(id);
if (obj) {
ret = 0;
strcpy(name, obj->name);
}
-- up(&cache_lock);
+- mutex_unlock(&cache_lock);
+ spin_unlock_irqrestore(&cache_lock, flags);
return ret;
}
works:
- userspace app like Xfbdev mmaps framebuffer
-- deferred IO and driver sets up nopage and page_mkwrite handlers
+- deferred IO and driver sets up fault and page_mkwrite handlers
- userspace app tries to write to mmaped vaddress
-- we get pagefault and reach nopage handler
-- nopage handler finds and returns physical page
+- we get pagefault and reach fault handler
+- fault handler finds and returns physical page
- we get page_mkwrite where we add this page to a list
- schedule a workqueue task to be run after a delay
- app continues writing to that page with no additional cost. this is
---------------------------
-What: drivers depending on OSS_OBSOLETE
-When: options in 2.6.23, code in 2.6.25
-Why: obsolete OSS drivers
-Who: Adrian Bunk <bunk@stusta.de>
-
----------------------------
-
What: libata spindown skipping and warning
When: Dec 2008
Why: Some halt(8) implementations synchronize caches for and spin
Denotes the number of inodes the system has allocated. This number will
grow and shrink dynamically.
+nr_open
+-------
+
+Denotes the maximum number of file-handles a process can
+allocate. Default value is 1024*1024 (1048576) which should be
+enough for most machines. Actual limit depends on RLIMIT_NOFILE
+resource limit.
+
nr_free_inodes
--------------
loop use the MONITOR/MWAIT idle loop anyways. Performance should be the same
as idle=poll.
+ ide-pci-generic.all-generic-ide [HW] (E)IDE subsystem
+ Claim all unknown PCI IDE storage controllers.
+
ignore_loglevel [KNL]
Ignore loglevel setting - this will print /all/
kernel messages to the console. Useful for debugging.
The jprobe will work in either case, so long as the handler's
prototype matches that of the probed function.
-1.3 How Does a Return Probe Work?
+1.3 Return Probes
+
+1.3.1 How Does a Return Probe Work?
When you call register_kretprobe(), Kprobes establishes a kprobe at
the entry to the function. When the probed function is called and this
When the probed function executes its return instruction, control
passes to the trampoline and that probe is hit. Kprobes' trampoline
-handler calls the user-specified handler associated with the kretprobe,
-then sets the saved instruction pointer to the saved return address,
-and that's where execution resumes upon return from the trap.
+handler calls the user-specified return handler associated with the
+kretprobe, then sets the saved instruction pointer to the saved return
+address, and that's where execution resumes upon return from the trap.
While the probed function is executing, its return address is
stored in an object of type kretprobe_instance. Before calling
time the probed function is entered but there is no kretprobe_instance
object available for establishing the return probe.
+1.3.2 Kretprobe entry-handler
+
+Kretprobes also provides an optional user-specified handler which runs
+on function entry. This handler is specified by setting the entry_handler
+field of the kretprobe struct. Whenever the kprobe placed by kretprobe at the
+function entry is hit, the user-defined entry_handler, if any, is invoked.
+If the entry_handler returns 0 (success) then a corresponding return handler
+is guaranteed to be called upon function return. If the entry_handler
+returns a non-zero error then Kprobes leaves the return address as is, and
+the kretprobe has no further effect for that particular function instance.
+
+Multiple entry and return handler invocations are matched using the unique
+kretprobe_instance object associated with them. Additionally, a user
+may also specify per return-instance private data to be part of each
+kretprobe_instance object. This is especially useful when sharing private
+data between corresponding user entry and return handlers. The size of each
+private data object can be specified at kretprobe registration time by
+setting the data_size field of the kretprobe struct. This data can be
+accessed through the data field of each kretprobe_instance object.
+
+In case probed function is entered but there is no kretprobe_instance
+object available, then in addition to incrementing the nmissed count,
+the user entry_handler invocation is also skipped.
+
2. Architectures Supported
Kprobes, jprobes, and return probes are implemented on the following
- ret_addr: the return address
- rp: points to the corresponding kretprobe object
- task: points to the corresponding task struct
+- data: points to per return-instance private data; see "Kretprobe
+ entry-handler" for details.
The regs_return_value(regs) macro provides a simple abstraction to
extract the return value from the appropriate register as defined by
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/kprobes.h>
+#include <linux/ktime.h>
+
+/* per-instance private data */
+struct my_data {
+ ktime_t entry_stamp;
+};
static const char *probed_func = "sys_open";
-/* Return-probe handler: If the probed function fails, log the return value. */
-static int ret_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
+/* Timestamp function entry. */
+static int entry_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
+{
+ struct my_data *data;
+
+ if(!current->mm)
+ return 1; /* skip kernel threads */
+
+ data = (struct my_data *)ri->data;
+ data->entry_stamp = ktime_get();
+ return 0;
+}
+
+/* If the probed function failed, log the return value and duration.
+ * Duration may turn out to be zero consistently, depending upon the
+ * granularity of time accounting on the platform. */
+static int return_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
{
int retval = regs_return_value(regs);
+ struct my_data *data = (struct my_data *)ri->data;
+ s64 delta;
+ ktime_t now;
+
if (retval < 0) {
- printk("%s returns %d\n", probed_func, retval);
+ now = ktime_get();
+ delta = ktime_to_ns(ktime_sub(now, data->entry_stamp));
+ printk("%s: return val = %d (duration = %lld ns)\n",
+ probed_func, retval, delta);
}
return 0;
}
static struct kretprobe my_kretprobe = {
- .handler = ret_handler,
- /* Probe up to 20 instances concurrently. */
- .maxactive = 20
+ .handler = return_handler,
+ .entry_handler = entry_handler,
+ .data_size = sizeof(struct my_data),
+ .maxactive = 20, /* probe up to 20 instances concurrently */
};
static int __init kretprobe_init(void)
printk("register_kretprobe failed, returned %d\n", ret);
return -1;
}
- printk("Planted return probe at %p\n", my_kretprobe.kp.addr);
+ printk("Kretprobe active on %s\n", my_kretprobe.kp.symbol_name);
return 0;
}
printk("kretprobe unregistered\n");
/* nmissed > 0 suggests that maxactive was set too low. */
printk("Missed probing %d instances of %s\n",
- my_kretprobe.nmissed, probed_func);
+ my_kretprobe.nmissed, probed_func);
}
module_init(kretprobe_init)
instance, you have a list of items that are each kref-ed, and you wish
to get the first one. You can't just pull the first item off the list
and kref_get() it. That violates rule 3 because you are not already
-holding a valid pointer. You must add locks or semaphores. For
-instance:
+holding a valid pointer. You must add a mutex (or some other lock).
+For instance:
-static DECLARE_MUTEX(sem);
+static DEFINE_MUTEX(mutex);
static LIST_HEAD(q);
struct my_data
{
static struct my_data *get_entry()
{
struct my_data *entry = NULL;
- down(&sem);
+ mutex_lock(&mutex);
if (!list_empty(&q)) {
entry = container_of(q.next, struct my_q_entry, link);
kref_get(&entry->refcount);
}
- up(&sem);
+ mutex_unlock(&mutex);
return entry;
}
static void put_entry(struct my_data *entry)
{
- down(&sem);
+ mutex_lock(&mutex);
kref_put(&entry->refcount, release_entry);
- up(&sem);
+ mutex_unlock(&mutex);
}
The kref_put() return value is useful if you do not want to hold the
static void put_entry(struct my_data *entry)
{
- down(&sem);
+ mutex_lock(&mutex);
if (kref_put(&entry->refcount, release_entry)) {
list_del(&entry->link);
- up(&sem);
+ mutex_unlock(&mutex);
kfree(entry);
} else
- up(&sem);
+ mutex_unlock(&mutex);
}
This is really more useful if you have to call other routines as part
sectors in total that could need to be processed. The two
numbers are separated by a '/' thus effectively showing one
value, a fraction of the process that is complete.
+ A 'select' on this attribute will return when resync completes,
+ when it reaches the current sync_max (below) and possibly at
+ other times.
+
+ sync_max
+ This is a number of sectors at which point a resync/recovery
+ process will pause. When a resync is active, the value can
+ only ever be increased, never decreased. The value of 'max'
+ effectively disables the limit.
+
sync_speed
This shows the current actual speed, in K/sec, of the current
since the frequency is stored in the irq_freq member of the rtc_device
structure. Your driver needs to initialize the irq_freq member during
init. Make sure you check the requested frequency is in range of your
- hardware in the irq_set_freq function. If you cannot actually change
- the frequency, just return -ENOTTY.
+ hardware in the irq_set_freq function. If it isn't, return -EINVAL. If
+ you cannot actually change the frequency, do not define irq_set_freq.
If all else fails, check out the rtc-test.c driver!
/* This read will block */
retval = read(fd, &data, sizeof(unsigned long));
if (retval == -1) {
- perror("read");
- exit(errno);
+ perror("read");
+ exit(errno);
}
fprintf(stderr, " %d",i);
fflush(stderr);
rtc_tm.tm_sec %= 60;
rtc_tm.tm_min++;
}
- if (rtc_tm.tm_min == 60) {
+ if (rtc_tm.tm_min == 60) {
rtc_tm.tm_min = 0;
rtc_tm.tm_hour++;
}
- if (rtc_tm.tm_hour == 24)
+ if (rtc_tm.tm_hour == 24)
rtc_tm.tm_hour = 0;
retval = ioctl(fd, RTC_ALM_SET, &rtc_tm);
"\n...Periodic IRQ rate is fixed\n");
goto done;
}
- perror("RTC_IRQP_SET ioctl");
- exit(errno);
+ perror("RTC_IRQP_SET ioctl");
+ exit(errno);
}
fprintf(stderr, "\n%ldHz:\t", tmp);
/* Enable periodic interrupts */
retval = ioctl(fd, RTC_PIE_ON, 0);
if (retval == -1) {
- perror("RTC_PIE_ON ioctl");
- exit(errno);
+ perror("RTC_PIE_ON ioctl");
+ exit(errno);
}
for (i=1; i<21; i++) {
- /* This blocks */
- retval = read(fd, &data, sizeof(unsigned long));
- if (retval == -1) {
- perror("read");
- exit(errno);
- }
- fprintf(stderr, " %d",i);
- fflush(stderr);
- irqcount++;
+ /* This blocks */
+ retval = read(fd, &data, sizeof(unsigned long));
+ if (retval == -1) {
+ perror("read");
+ exit(errno);
+ }
+ fprintf(stderr, " %d",i);
+ fflush(stderr);
+ irqcount++;
}
/* Disable periodic interrupts */
retval = ioctl(fd, RTC_PIE_OFF, 0);
if (retval == -1) {
- perror("RTC_PIE_OFF ioctl");
- exit(errno);
+ perror("RTC_PIE_OFF ioctl");
+ exit(errno);
}
}
- inode-max
- inode-nr
- inode-state
+- nr_open
- overflowuid
- overflowgid
- suid_dumpable
==============================================================
+nr_open:
+
+This denotes the maximum number of file-handles a process can
+allocate. Default value is 1024*1024 (1048576) which should be
+enough for most machines. Actual limit depends on RLIMIT_NOFILE
+resource limit.
+
+==============================================================
+
inode-max, inode-nr & inode-state:
As with file handles, the kernel allocates the inode structures
--- /dev/null
+UNALIGNED MEMORY ACCESSES
+=========================
+
+Linux runs on a wide variety of architectures which have varying behaviour
+when it comes to memory access. This document presents some details about
+unaligned accesses, why you need to write code that doesn't cause them,
+and how to write such code!
+
+
+The definition of an unaligned access
+=====================================
+
+Unaligned memory accesses occur when you try to read N bytes of data starting
+from an address that is not evenly divisible by N (i.e. addr % N != 0).
+For example, reading 4 bytes of data from address 0x10004 is fine, but
+reading 4 bytes of data from address 0x10005 would be an unaligned memory
+access.
+
+The above may seem a little vague, as memory access can happen in different
+ways. The context here is at the machine code level: certain instructions read
+or write a number of bytes to or from memory (e.g. movb, movw, movl in x86
+assembly). As will become clear, it is relatively easy to spot C statements
+which will compile to multiple-byte memory access instructions, namely when
+dealing with types such as u16, u32 and u64.
+
+
+Natural alignment
+=================
+
+The rule mentioned above forms what we refer to as natural alignment:
+When accessing N bytes of memory, the base memory address must be evenly
+divisible by N, i.e. addr % N == 0.
+
+When writing code, assume the target architecture has natural alignment
+requirements.
+
+In reality, only a few architectures require natural alignment on all sizes
+of memory access. However, we must consider ALL supported architectures;
+writing code that satisfies natural alignment requirements is the easiest way
+to achieve full portability.
+
+
+Why unaligned access is bad
+===========================
+
+The effects of performing an unaligned memory access vary from architecture
+to architecture. It would be easy to write a whole document on the differences
+here; a summary of the common scenarios is presented below:
+
+ - Some architectures are able to perform unaligned memory accesses
+ transparently, but there is usually a significant performance cost.
+ - Some architectures raise processor exceptions when unaligned accesses
+ happen. The exception handler is able to correct the unaligned access,
+ at significant cost to performance.
+ - Some architectures raise processor exceptions when unaligned accesses
+ happen, but the exceptions do not contain enough information for the
+ unaligned access to be corrected.
+ - Some architectures are not capable of unaligned memory access, but will
+ silently perform a different memory access to the one that was requested,
+ resulting a a subtle code bug that is hard to detect!
+
+It should be obvious from the above that if your code causes unaligned
+memory accesses to happen, your code will not work correctly on certain
+platforms and will cause performance problems on others.
+
+
+Code that does not cause unaligned access
+=========================================
+
+At first, the concepts above may seem a little hard to relate to actual
+coding practice. After all, you don't have a great deal of control over
+memory addresses of certain variables, etc.
+
+Fortunately things are not too complex, as in most cases, the compiler
+ensures that things will work for you. For example, take the following
+structure:
+
+ struct foo {
+ u16 field1;
+ u32 field2;
+ u8 field3;
+ };
+
+Let us assume that an instance of the above structure resides in memory
+starting at address 0x10000. With a basic level of understanding, it would
+not be unreasonable to expect that accessing field2 would cause an unaligned
+access. You'd be expecting field2 to be located at offset 2 bytes into the
+structure, i.e. address 0x10002, but that address is not evenly divisible
+by 4 (remember, we're reading a 4 byte value here).
+
+Fortunately, the compiler understands the alignment constraints, so in the
+above case it would insert 2 bytes of padding in between field1 and field2.
+Therefore, for standard structure types you can always rely on the compiler
+to pad structures so that accesses to fields are suitably aligned (assuming
+you do not cast the field to a type of different length).
+
+Similarly, you can also rely on the compiler to align variables and function
+parameters to a naturally aligned scheme, based on the size of the type of
+the variable.
+
+At this point, it should be clear that accessing a single byte (u8 or char)
+will never cause an unaligned access, because all memory addresses are evenly
+divisible by one.
+
+On a related topic, with the above considerations in mind you may observe
+that you could reorder the fields in the structure in order to place fields
+where padding would otherwise be inserted, and hence reduce the overall
+resident memory size of structure instances. The optimal layout of the
+above example is:
+
+ struct foo {
+ u32 field2;
+ u16 field1;
+ u8 field3;
+ };
+
+For a natural alignment scheme, the compiler would only have to add a single
+byte of padding at the end of the structure. This padding is added in order
+to satisfy alignment constraints for arrays of these structures.
+
+Another point worth mentioning is the use of __attribute__((packed)) on a
+structure type. This GCC-specific attribute tells the compiler never to
+insert any padding within structures, useful when you want to use a C struct
+to represent some data that comes in a fixed arrangement 'off the wire'.
+
+You might be inclined to believe that usage of this attribute can easily
+lead to unaligned accesses when accessing fields that do not satisfy
+architectural alignment requirements. However, again, the compiler is aware
+of the alignment constraints and will generate extra instructions to perform
+the memory access in a way that does not cause unaligned access. Of course,
+the extra instructions obviously cause a loss in performance compared to the
+non-packed case, so the packed attribute should only be used when avoiding
+structure padding is of importance.
+
+
+Code that causes unaligned access
+=================================
+
+With the above in mind, let's move onto a real life example of a function
+that can cause an unaligned memory access. The following function adapted
+from include/linux/etherdevice.h is an optimized routine to compare two
+ethernet MAC addresses for equality.
+
+unsigned int compare_ether_addr(const u8 *addr1, const u8 *addr2)
+{
+ const u16 *a = (const u16 *) addr1;
+ const u16 *b = (const u16 *) addr2;
+ return ((a[0] ^ b[0]) | (a[1] ^ b[1]) | (a[2] ^ b[2])) != 0;
+}
+
+In the above function, the reference to a[0] causes 2 bytes (16 bits) to
+be read from memory starting at address addr1. Think about what would happen
+if addr1 was an odd address such as 0x10003. (Hint: it'd be an unaligned
+access.)
+
+Despite the potential unaligned access problems with the above function, it
+is included in the kernel anyway but is understood to only work on
+16-bit-aligned addresses. It is up to the caller to ensure this alignment or
+not use this function at all. This alignment-unsafe function is still useful
+as it is a decent optimization for the cases when you can ensure alignment,
+which is true almost all of the time in ethernet networking context.
+
+
+Here is another example of some code that could cause unaligned accesses:
+ void myfunc(u8 *data, u32 value)
+ {
+ [...]
+ *((u32 *) data) = cpu_to_le32(value);
+ [...]
+ }
+
+This code will cause unaligned accesses every time the data parameter points
+to an address that is not evenly divisible by 4.
+
+In summary, the 2 main scenarios where you may run into unaligned access
+problems involve:
+ 1. Casting variables to types of different lengths
+ 2. Pointer arithmetic followed by access to at least 2 bytes of data
+
+
+Avoiding unaligned accesses
+===========================
+
+The easiest way to avoid unaligned access is to use the get_unaligned() and
+put_unaligned() macros provided by the <asm/unaligned.h> header file.
+
+Going back to an earlier example of code that potentially causes unaligned
+access:
+
+ void myfunc(u8 *data, u32 value)
+ {
+ [...]
+ *((u32 *) data) = cpu_to_le32(value);
+ [...]
+ }
+
+To avoid the unaligned memory access, you would rewrite it as follows:
+
+ void myfunc(u8 *data, u32 value)
+ {
+ [...]
+ value = cpu_to_le32(value);
+ put_unaligned(value, (u32 *) data);
+ [...]
+ }
+
+The get_unaligned() macro works similarly. Assuming 'data' is a pointer to
+memory and you wish to avoid unaligned access, its usage is as follows:
+
+ u32 value = get_unaligned((u32 *) data);
+
+These macros work work for memory accesses of any length (not just 32 bits as
+in the examples above). Be aware that when compared to standard access of
+aligned memory, using these macros to access unaligned memory can be costly in
+terms of performance.
+
+If use of such macros is not convenient, another option is to use memcpy(),
+where the source or destination (or both) are of type u8* or unsigned char*.
+Due to the byte-wise nature of this operation, unaligned accesses are avoided.
+
+--
+Author: Daniel Drake <dsd@gentoo.org>
+With help from: Alan Cox, Avuton Olrich, Heikki Orsila, Jan Engelhardt,
+Johannes Berg, Kyle McMartin, Kyle Moffett, Randy Dunlap, Robert Hancock,
+Uli Kunitz, Vadim Lobanov
+
- The Maxim/Dallas Semiconductor DS2482 provides 1-wire busses.
ds2490
- The Maxim/Dallas Semiconductor DS2490 builds USB <-> W1 bridges.
+w1-gpio
+ - GPIO 1-wire bus master driver.
--- /dev/null
+Kernel driver w1-gpio
+=====================
+
+Author: Ville Syrjala <syrjala@sci.fi>
+
+
+Description
+-----------
+
+GPIO 1-wire bus master driver. The driver uses the GPIO API to control the
+wire and the GPIO pin can be specified using platform data.
+
+
+Example (mach-at91)
+-------------------
+
+#include <linux/w1-gpio.h>
+
+static struct w1_gpio_platform_data foo_w1_gpio_pdata = {
+ .pin = AT91_PIN_PB20,
+ .is_open_drain = 1,
+};
+
+static struct platform_device foo_w1_device = {
+ .name = "w1-gpio",
+ .id = -1,
+ .dev.platform_data = &foo_w1_gpio_pdata,
+};
+
+...
+ at91_set_GPIO_periph(foo_w1_gpio_pdata.pin, 1);
+ at91_set_multi_drive(foo_w1_gpio_pdata.pin, 1);
+ platform_device_register(&foo_w1_device);
AMD GEODE CS5536 USB DEVICE CONTROLLER DRIVER
P: Thomas Dahlmann
M: thomas.dahlmann@amd.com
-L: info-linux@geode.amd.com
+L: info-linux@geode.amd.com (subscribers-only)
S: Supported
AMD GEODE PROCESSOR/CHIPSET SUPPORT
P: Jordan Crouse
-M: info-linux@geode.amd.com
-L: info-linux@geode.amd.com
+L: info-linux@geode.amd.com (subscribers-only)
W: http://www.amd.com/us-en/ConnectivitySolutions/TechnicalResources/0,,50_2334_2452_11363,00.html
S: Supported
T: git kernel.org:/pub/scm/linux/kernel/git/axboe/linux-2.6-block.git
S: Maintained
+BLOCK2MTD DRIVER
+P: Joern Engel
+M: joern@lazybastard.org
+L: linux-mtd@lists.infradead.org
+S: Maintained
+
BLUETOOTH SUBSYSTEM
P: Marcel Holtmann
M: marcel@holtmann.org
S: Maintained
PHRAM MTD DRIVER
-P: Jörn Engel
-M: joern@wh.fh-wedel.de
+P: Joern Engel
+M: joern@lazybastard.org
L: linux-mtd@lists.infradead.org
S: Maintained
L: linux-kernel@vger.kernel.org
S: Maintained
+RDC R-321X SoC
+P: Florian Fainelli
+M: florian.fainelli@telecomint.eu
+L: linux-kernel@vger.kernel.org
+S: Maintained
+
RDC R6040 FAST ETHERNET DRIVER
P: Florian Fainelli
M: florian.fainelli@telecomint.eu
L: linux-usb@vger.kernel.org
S: Maintained
+USB AUERSWALD DRIVER
+P: Wolfgang Muees
+M: wolfgang@iksw-muees.de
+L: linux-usb@vger.kernel.org
+S: Maintained
+
USB BLOCK DRIVER (UB ub)
P: Pete Zaitcev
M: zaitcev@redhat.com
W: http://geocities.com/i0xox0i
W: http://firstlight.net/cvs
-USB AUERSWALD DRIVER
-P: Wolfgang Muees
-M: wolfgang@iksw-muees.de
-L: linux-usb@vger.kernel.org
-S: Maintained
-
USB SERIAL EMPEG EMPEG-CAR MARK I/II DRIVER
P: Gary Brubaker
M: xavyer@ix.netcom.com
depends on ALPHA_GENERIC || ALPHA_SRM
default y
-config DEBUG_RWLOCK
- bool "Read-write spinlock debugging"
- depends on DEBUG_KERNEL
- help
- If you say Y here then read-write lock processing will count how many
- times it has tried to get the lock and issue an error message after
- too many attempts. If you suspect a rwlock problem or a kernel
- hacker asks for this option then say Y. Otherwise say N.
-
config ALPHA_LEGACY_START_ADDRESS
bool "Legacy kernel start address"
depends on ALPHA_GENERIC
# CONFIG_DEBUG_SPINLOCK is not set
CONFIG_DEBUG_INFO=y
CONFIG_EARLY_PRINTK=y
-# CONFIG_DEBUG_RWLOCK is not set
# CONFIG_DEBUG_SEMAPHORE is not set
CONFIG_ALPHA_LEGACY_START_ADDRESS=y
CONFIG_MATHEMU=y
asmlinkage unsigned long
sys_getdtablesize(void)
{
- return NR_OPEN;
+ return sysctl_nr_open;
}
/*
int smp_num_cpus = 1; /* Number that came online. */
EXPORT_SYMBOL(smp_num_cpus);
-extern void calibrate_delay(void);
-
-\f
-
/*
* Called by both boot and secondaries to move global data into
* per-processor storage.
}
static struct atmel_lcdfb_info __initdata ek_lcdc_data = {
+ .lcdcon_is_backlight = true,
.default_bpp = 16,
.default_dmacon = ATMEL_LCDC_DMAEN,
.default_lcdcon2 = AT91SAM9261_DEFAULT_TFT_LCDCON2,
/* Driver datas */
static struct atmel_lcdfb_info __initdata ek_lcdc_data = {
+ .lcdcon_is_backlight = true,
.default_bpp = 16,
.default_dmacon = ATMEL_LCDC_DMAEN,
.default_lcdcon2 = AT91SAM9263_DEFAULT_LCDCON2,
#include <linux/sched.h>
#include <linux/device.h>
#include <linux/serial_8250.h>
-#include <linux/pata_platform.h>
+#include <linux/ata_platform.h>
#include <asm/elf.h>
#include <asm/io.h>
.long sys_shmctl
.long sys_utimensat
.long sys_signalfd
- .long sys_timerfd /* 280 */
+ .long sys_ni_syscall /* 280, was sys_timerfd */
.long sys_eventfd
.long sys_ni_syscall /* r8 is saturated at nr_syscalls */
#include <linux/delay.h>
#include <linux/module.h>
+#include <linux/timex.h>
#include <linux/param.h>
#include <linux/types.h>
+#include <linux/init.h>
#include <asm/processor.h>
#include <asm/sysreg.h>
-int read_current_timer(unsigned long *timer_value)
+int __devinit read_current_timer(unsigned long *timer_value)
{
*timer_value = sysreg_read(COUNT);
return 0;
#if defined(CONFIG_USB_ISP1362_HCD) || defined(CONFIG_USB_ISP1362_HCD_MODULE)
#include <linux/usb/isp1362.h>
#endif
-#include <linux/pata_platform.h>
+#include <linux/ata_platform.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/usb/sl811.h>
#if defined(CONFIG_USB_ISP1362_HCD) || defined(CONFIG_USB_ISP1362_HCD_MODULE)
#include <linux/usb/isp1362.h>
#endif
-#include <linux/pata_platform.h>
+#include <linux/ata_platform.h>
#include <linux/irq.h>
#include <asm/dma.h>
#include <linux/spi/spi.h>
#include <linux/spi/flash.h>
#include <linux/usb/isp1362.h>
-#include <linux/pata_platform.h>
+#include <linux/ata_platform.h>
#include <linux/irq.h>
#include <asm/dma.h>
#include <asm/bfin5xx_spi.h>
#include <linux/spi/spi.h>
#include <linux/spi/flash.h>
#include <linux/usb/isp1362.h>
-#include <linux/pata_platform.h>
+#include <linux/ata_platform.h>
#include <linux/irq.h>
#include <asm/dma.h>
#include <asm/bfin5xx_spi.h>
#if defined(CONFIG_USB_ISP1362_HCD) || defined(CONFIG_USB_ISP1362_HCD_MODULE)
#include <linux/usb/isp1362.h>
#endif
-#include <linux/pata_platform.h>
+#include <linux/ata_platform.h>
#include <linux/irq.h>
#include <asm/dma.h>
#include <asm/bfin5xx_spi.h>
#include <linux/spi/spi.h>
#include <linux/spi/flash.h>
#include <linux/usb/isp1362.h>
-#include <linux/pata_platform.h>
+#include <linux/ata_platform.h>
#include <linux/irq.h>
#include <asm/dma.h>
#include <asm/bfin5xx_spi.h>
#if defined(CONFIG_USB_ISP1362_HCD) || defined(CONFIG_USB_ISP1362_HCD_MODULE)
#include <linux/usb/isp1362.h>
#endif
-#include <linux/pata_platform.h>
+#include <linux/ata_platform.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/usb/sl811.h>
#if defined(CONFIG_USB_ISP1362_HCD) || defined(CONFIG_USB_ISP1362_HCD_MODULE)
#include <linux/usb_isp1362.h>
#endif
-#include <linux/pata_platform.h>
+#include <linux/ata_platform.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/usb_sl811.h>
#if defined(CONFIG_USB_ISP1362_HCD) || defined(CONFIG_USB_ISP1362_HCD_MODULE)
#include <linux/usb/isp1362.h>
#endif
-#include <linux/pata_platform.h>
+#include <linux/ata_platform.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/usb/sl811.h>
#include <linux/spi/spi.h>
#include <linux/spi/flash.h>
#include <linux/usb/isp1362.h>
-#include <linux/pata_platform.h>
+#include <linux/ata_platform.h>
#include <linux/irq.h>
#include <asm/dma.h>
#include <asm/bfin5xx_spi.h>
#include <linux/spi/spi.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
-#include <linux/pata_platform.h>
+#include <linux/ata_platform.h>
#include <asm/dma.h>
#include <asm/bfin5xx_spi.h>
#include <asm/portmux.h>
.long sys_epoll_pwait
.long sys_utimensat /* 320 */
.long sys_signalfd
- .long sys_timerfd
+ .long sys_ni_syscall
.long sys_eventfd
.long sys_fallocate
/*
* calibrate the delay loop
*/
-void __init calibrate_delay(void)
+void __cpuinit calibrate_delay(void)
{
loops_per_jiffy = __delay_loops_MHz * (1000000 / HZ);
#include <linux/random.h>
#include <linux/bootmem.h>
#include <linux/irq.h>
+#include <linux/interrupt.h>
#include <asm/system.h>
#include <asm/traps.h>
#define DEBUG_ITC_SYNC 0
-extern void __devinit calibrate_delay (void);
extern void start_ap (void);
extern unsigned long ia64_iobase;
return 0;
}
-struct pt_regs * __devinit idle_regs(struct pt_regs *regs)
+struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
{
return NULL;
}
static irqreturn_t
pcibr_error_intr_handler(int irq, void *arg)
{
- struct pcibus_info *soft = (struct pcibus_info *)arg;
+ struct pcibus_info *soft = arg;
- if (sal_pcibr_error_interrupt(soft) < 0) {
+ if (sal_pcibr_error_interrupt(soft) < 0)
panic("pcibr_error_intr_handler(): Fatal Bridge Error");
- }
+
return IRQ_HANDLED;
}
.long sys_epoll_pwait
.long sys_utimensat /* 320 */
.long sys_signalfd
- .long sys_timerfd
+ .long sys_ni_syscall
.long sys_eventfd
.long sys_fallocate
if (!AMIGAHW_PRESENT(CHIP_RAM))
return;
-#ifndef CONFIG_APUS_FAST_EXCEPT
/*
* Remove the first 4 pages where PPC exception handlers will be located
*/
amiga_chip_size -= 0x4000;
-#endif
chipram_res.end = amiga_chip_size-1;
request_resource(&iomem_resource, &chipram_res);
static irqreturn_t cia_handler(int irq, void *dev_id)
{
- struct ciabase *base = (struct ciabase *)dev_id;
+ struct ciabase *base = dev_id;
int mach_irq;
unsigned char ints;
#include <linux/types.h>
-#include <linux/autoconf.h>
void * memcpy(void * to, const void * from, size_t n)
{
* others have a second one : GPIO2
*/
-#include <linux/autoconf.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/types.h>
EXPORT_SYMBOL(phys_cpu_present_map);
EXPORT_SYMBOL(cpu_online_map);
-extern void __init calibrate_delay(void);
extern void cpu_idle(void);
/* Number of TCs (or siblings in Intel speak) per CPU core */
retval = NGROUPS_MAX;
goto out;
case 5:
- retval = NR_OPEN;
+ retval = sysctl_nr_open;
goto out;
case 6:
retval = 1;
source "lib/Kconfig.debug"
-config DEBUG_RWLOCK
- bool "Read-write spinlock debugging"
- depends on DEBUG_KERNEL && SMP
- help
- If you say Y here then read-write lock processing will count how many
- times it has tried to get the lock and issue an error message after
- too many attempts. If you suspect a rwlock problem or a kernel
- hacker asks for this option then say Y. Otherwise say N.
-
config DEBUG_RODATA
bool "Write protect kernel read-only data structures"
depends on DEBUG_KERNEL
CONFIG_FORCED_INLINING=y
# CONFIG_RCU_TORTURE_TEST is not set
# CONFIG_FAULT_INJECTION is not set
-# CONFIG_DEBUG_RWLOCK is not set
# CONFIG_DEBUG_RODATA is not set
#
#include <asm/smp.h>
#include <asm/vdso_datapage.h>
#include <asm/firmware.h>
+#include <asm/cputime.h>
#ifdef CONFIG_PPC_ISERIES
#include <asm/iseries/it_lp_queue.h>
#include <asm/iseries/hv_call_xm.h>
EXPORT_SYMBOL(__cputime_sec_factor);
u64 __cputime_clockt_factor;
EXPORT_SYMBOL(__cputime_clockt_factor);
+DEFINE_PER_CPU(unsigned long, cputime_last_delta);
+DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
static void calc_cputime_factors(void)
{
}
account_system_time(tsk, 0, delta);
account_system_time_scaled(tsk, deltascaled);
- get_paca()->purrdelta = delta;
- get_paca()->spurrdelta = deltascaled;
+ per_cpu(cputime_last_delta, smp_processor_id()) = delta;
+ per_cpu(cputime_scaled_last_delta, smp_processor_id()) = deltascaled;
local_irq_restore(flags);
}
get_paca()->user_time = 0;
account_user_time(tsk, utime);
- /* Estimate the scaled utime by scaling the real utime based
- * on the last spurr to purr ratio */
- utimescaled = utime * get_paca()->spurrdelta / get_paca()->purrdelta;
- get_paca()->spurrdelta = get_paca()->purrdelta = 0;
+ utimescaled = cputime_to_scaled(utime);
account_user_time_scaled(tsk, utimescaled);
}
* result. We backup/restore the value to avoid affecting the
* core cpufreq framework's own calculation.
*/
- extern void calibrate_delay(void);
-
unsigned long save_lpj = loops_per_jiffy;
calibrate_delay();
loops_per_jiffy = save_lpj;
struct sk_buff *skb;
ushort pkt_len;
- cep = (struct scc_enet_private *)dev->priv;
+ cep = dev->priv;
/* First, grab all of the stats for the incoming packet.
* These get messed up if we get called due to a busy condition.
struct sk_buff *skb;
ushort pkt_len;
- cep = (struct fcc_enet_private *)dev->priv;
+ cep = dev->priv;
/* First, grab all of the stats for the incoming packet.
* These get messed up if we get called due to a busy condition.
. = ALIGN(4096);
__init_end = .;
-
- . = ALIGN(4096);
- _sextratext = .;
- _eextratext = .;
-
__bss_start = .;
.bss :
{
#define cached_21 (((char *)(ppc_cached_irq_mask))[3])
#define cached_A1 (((char *)(ppc_cached_irq_mask))[2])
-#ifdef CONFIG_SOUND_CS4232
-long ppc_cs4232_dma, ppc_cs4232_dma2;
-#endif
-
extern PTE *Hash, *Hash_end;
extern unsigned long Hash_size, Hash_mask;
extern int probingmem;
extern unsigned long loops_per_jiffy;
-#ifdef CONFIG_SOUND_CS4232
-EXPORT_SYMBOL(ppc_cs4232_dma);
-EXPORT_SYMBOL(ppc_cs4232_dma2);
-#endif
-
/* useful ISA ports */
#define PREP_SYSCTL 0x81c
/* present in the IBM reference design; possibly identical in Mot boxes: */
return 0;
}
-#ifdef CONFIG_SOUND_CS4232
-static long __init masktoint(unsigned int i)
-{
- int t = -1;
- while (i >> ++t)
- ;
- return (t-1);
-}
-
-/*
- * ppc_cs4232_dma and ppc_cs4232_dma2 are used in include/asm/dma.h
- * to distinguish sound dma-channels from others. This is because
- * blocksize on 16 bit dma-channels 5,6,7 is 128k, but
- * the cs4232.c uses 64k like on 8 bit dma-channels 0,1,2,3
- */
-
-static void __init prep_init_sound(void)
-{
- PPC_DEVICE *audiodevice = NULL;
-
- /*
- * Get the needed resource information from residual data.
- *
- */
- if (have_residual_data)
- audiodevice = residual_find_device(~0, NULL,
- MultimediaController, AudioController, -1, 0);
-
- if (audiodevice != NULL) {
- PnP_TAG_PACKET *pkt;
-
- pkt = PnP_find_packet((unsigned char *)&res->DevicePnPHeap[audiodevice->AllocatedOffset],
- S5_Packet, 0);
- if (pkt != NULL)
- ppc_cs4232_dma = masktoint(pkt->S5_Pack.DMAMask);
- pkt = PnP_find_packet((unsigned char*)&res->DevicePnPHeap[audiodevice->AllocatedOffset],
- S5_Packet, 1);
- if (pkt != NULL)
- ppc_cs4232_dma2 = masktoint(pkt->S5_Pack.DMAMask);
- }
-
- /*
- * These are the PReP specs' defaults for the cs4231. We use these
- * as fallback incase we don't have residual data.
- * At least the IBM Thinkpad 850 with IDE DMA Channels at 6 and 7
- * will use the other values.
- */
- if (audiodevice == NULL) {
- switch (_prep_type) {
- case _PREP_IBM:
- ppc_cs4232_dma = 1;
- ppc_cs4232_dma2 = -1;
- break;
- default:
- ppc_cs4232_dma = 6;
- ppc_cs4232_dma2 = 7;
- }
- }
-
- /*
- * Find a way to push this information to the cs4232 driver
- * Give it out with printk, when not in cmd_line?
- * Append it to cmd_line and boot_command_line?
- * Format is cs4232=io,irq,dma,dma2
- */
-}
-#endif /* CONFIG_SOUND_CS4232 */
-
/*
* Fill out screen_info according to the residual data. This allows us to use
* at least vesafb.
}
}
-#ifdef CONFIG_SOUND_CS4232
- prep_init_sound();
-#endif /* CONFIG_SOUND_CS4232 */
-
prep_init_vesa();
switch (_prep_type) {
*/
#include <linux/init.h>
#include <linux/platform_device.h>
-#include <linux/pata_platform.h>
+#include <linux/ata_platform.h>
#include <linux/pm.h>
#include <linux/mm.h>
#include <asm/machvec.h>
#include <linux/init.h>
#include <linux/platform_device.h>
-#include <linux/pata_platform.h>
+#include <linux/ata_platform.h>
#include <asm/machvec.h>
#include <asm/addrspace.h>
#include <asm/lboxre2.h>
*/
#include <linux/init.h>
#include <linux/platform_device.h>
-#include <linux/pata_platform.h>
+#include <linux/ata_platform.h>
#include <linux/types.h>
#include <net/ax88796.h>
#include <asm/machvec.h>
*/
#include <linux/init.h>
#include <linux/platform_device.h>
-#include <linux/pata_platform.h>
+#include <linux/ata_platform.h>
#include <linux/serial_8250.h>
#include <linux/sm501.h>
#include <linux/sm501-regs.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/platform_device.h>
-#include <linux/pata_platform.h>
+#include <linux/ata_platform.h>
#include <asm/machvec.h>
#include <asm/sdk7780.h>
#include <asm/heartbeat.h>
*/
#include <linux/init.h>
#include <linux/platform_device.h>
-#include <linux/pata_platform.h>
+#include <linux/ata_platform.h>
#include <asm/machvec.h>
#include <asm/se7722.h>
#include <asm/io.h>
.long sys_epoll_pwait
.long sys_utimensat /* 320 */
.long sys_signalfd
- .long sys_timerfd
+ .long sys_ni_syscall
.long sys_eventfd
.long sys_fallocate
.long sys_epoll_pwait
.long sys_utimensat
.long sys_signalfd
- .long sys_timerfd /* 350 */
+ .long sys_ni_syscall /* 350 */
.long sys_eventfd
.long sys_fallocate
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/profile.h>
+#include <linux/delay.h>
#include <asm/ptrace.h>
#include <asm/atomic.h>
#include <asm/irq_regs.h>
-#include <asm/delay.h>
#include <asm/irq.h>
#include <asm/page.h>
#include <asm/pgalloc.h>
extern ctxd_t *srmmu_ctx_table_phys;
-extern void calibrate_delay(void);
-
static volatile int smp_processors_ready = 0;
static int smp_highest_cpu;
extern volatile unsigned long cpu_callin_map[NR_CPUS];
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/profile.h>
+#include <linux/delay.h>
+
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/irq_regs.h>
#include <asm/ptrace.h>
#include <asm/atomic.h>
-#include <asm/delay.h>
#include <asm/irq.h>
#include <asm/page.h>
#include <asm/pgalloc.h>
extern ctxd_t *srmmu_ctx_table_phys;
-extern void calibrate_delay(void);
-
extern volatile unsigned long cpu_callin_map[NR_CPUS];
extern unsigned char boot_cpu_id;
/*295*/ .long sys_fchmodat, sys_faccessat, sys_pselect6, sys_ppoll, sys_unshare
/*300*/ .long sys_set_robust_list, sys_get_robust_list, sys_migrate_pages, sys_mbind, sys_get_mempolicy
/*305*/ .long sys_set_mempolicy, sys_kexec_load, sys_move_pages, sys_getcpu, sys_epoll_pwait
-/*310*/ .long sys_utimensat, sys_signalfd, sys_ni_syscall, sys_eventfd, sys_fallocate
+/*310*/ .long sys_utimensat, sys_signalfd, sys_timerfd_create, sys_eventfd, sys_fallocate
+/*315*/ .long sys_timerfd_settime, sys_timerfd_gettime
#ifdef CONFIG_SUNOS_EMUL
/* Now the SunOS syscall table. */
.long sunos_nosys, sunos_nosys, sunos_nosys
.long sunos_nosys
/*310*/ .long sunos_nosys, sunos_nosys, sunos_nosys
- .long sunos_nosys, sunos_nosys
+ .long sunos_nosys, sunos_nosys, sunos_nosys
+ .long sunos_nosys
#endif
#
# Automatically generated make config: don't edit
-# Linux kernel version: 2.6.24-rc4
-# Tue Dec 4 00:37:59 2007
+# Linux kernel version: 2.6.24
+# Tue Feb 5 17:28:19 2008
#
CONFIG_SPARC=y
CONFIG_SPARC64=y
# CONFIG_ARCH_HAS_ILOG2_U32 is not set
# CONFIG_ARCH_HAS_ILOG2_U64 is not set
CONFIG_AUDIT_ARCH=y
+CONFIG_HAVE_SETUP_PER_CPU_AREA=y
CONFIG_ARCH_NO_VIRT_TO_BUS=y
CONFIG_OF=y
CONFIG_GENERIC_HARDIRQS_NO__DO_IRQ=y
# CONFIG_HZ_300 is not set
# CONFIG_HZ_1000 is not set
CONFIG_HZ=100
+# CONFIG_SCHED_HRTICK is not set
+CONFIG_HOTPLUG_CPU=y
CONFIG_DEFCONFIG_LIST="/lib/modules/$UNAME_RELEASE/.config"
#
# General setup
#
CONFIG_EXPERIMENTAL=y
-CONFIG_BROKEN_ON_SMP=y
+CONFIG_LOCK_KERNEL=y
CONFIG_INIT_ENV_ARG_LIMIT=32
CONFIG_LOCALVERSION=""
# CONFIG_LOCALVERSION_AUTO is not set
CONFIG_ANON_INODES=y
CONFIG_EPOLL=y
CONFIG_SIGNALFD=y
+CONFIG_TIMERFD=y
CONFIG_EVENTFD=y
CONFIG_SHMEM=y
CONFIG_VM_EVENT_COUNTERS=y
# CONFIG_SLAB is not set
CONFIG_SLUB=y
# CONFIG_SLOB is not set
+CONFIG_PROFILING=y
+# CONFIG_MARKERS is not set
+CONFIG_OPROFILE=m
+CONFIG_HAVE_OPROFILE=y
+CONFIG_KPROBES=y
+CONFIG_HAVE_KPROBES=y
+CONFIG_PROC_PAGE_MONITOR=y
+CONFIG_SLABINFO=y
CONFIG_RT_MUTEXES=y
# CONFIG_TINY_SHMEM is not set
CONFIG_BASE_SMALL=0
CONFIG_MODVERSIONS=y
CONFIG_MODULE_SRCVERSION_ALL=y
CONFIG_KMOD=y
+CONFIG_STOP_MACHINE=y
CONFIG_BLOCK=y
CONFIG_BLK_DEV_IO_TRACE=y
CONFIG_BLK_DEV_BSG=y
# CONFIG_DEFAULT_CFQ is not set
# CONFIG_DEFAULT_NOOP is not set
CONFIG_DEFAULT_IOSCHED="anticipatory"
+CONFIG_CLASSIC_RCU=y
+# CONFIG_PREEMPT_RCU is not set
CONFIG_SYSVIPC_COMPAT=y
CONFIG_GENERIC_HARDIRQS=y
CONFIG_NO_HZ=y
CONFIG_HIGH_RES_TIMERS=y
CONFIG_GENERIC_CLOCKEVENTS_BUILD=y
-# CONFIG_SMP is not set
+CONFIG_SMP=y
+CONFIG_NR_CPUS=64
# CONFIG_CPU_FREQ is not set
CONFIG_RWSEM_XCHGADD_ALGORITHM=y
CONFIG_GENERIC_FIND_NEXT_BIT=y
CONFIG_BINFMT_ELF=y
CONFIG_BINFMT_MISC=m
CONFIG_SOLARIS_EMUL=y
+CONFIG_SCHED_SMT=y
+CONFIG_SCHED_MC=y
# CONFIG_PREEMPT_NONE is not set
CONFIG_PREEMPT_VOLUNTARY=y
# CONFIG_PREEMPT is not set
+# CONFIG_RCU_TRACE is not set
# CONFIG_CMDLINE_BOOL is not set
#
CONFIG_XFRM_USER=m
# CONFIG_XFRM_SUB_POLICY is not set
CONFIG_XFRM_MIGRATE=y
+# CONFIG_XFRM_STATISTICS is not set
CONFIG_NET_KEY=m
CONFIG_NET_KEY_MIGRATE=y
CONFIG_INET=y
CONFIG_IP_DCCP_CCID2=m
# CONFIG_IP_DCCP_CCID2_DEBUG is not set
CONFIG_IP_DCCP_CCID3=m
-CONFIG_IP_DCCP_TFRC_LIB=m
# CONFIG_IP_DCCP_CCID3_DEBUG is not set
CONFIG_IP_DCCP_CCID3_RTO=100
+CONFIG_IP_DCCP_TFRC_LIB=m
#
# DCCP Kernel Hacking
CONFIG_NET_PKTGEN=m
CONFIG_NET_TCPPROBE=m
# CONFIG_HAMRADIO is not set
+# CONFIG_CAN is not set
# CONFIG_IRDA is not set
# CONFIG_BT is not set
# CONFIG_AF_RXRPC is not set
CONFIG_BLK_DEV_IDEDISK=y
# CONFIG_IDEDISK_MULTI_MODE is not set
CONFIG_BLK_DEV_IDECD=y
+CONFIG_BLK_DEV_IDECD_VERBOSE_ERRORS=y
# CONFIG_BLK_DEV_IDETAPE is not set
# CONFIG_BLK_DEV_IDEFLOPPY is not set
# CONFIG_BLK_DEV_IDESCSI is not set
# PCI IDE chipsets support
#
CONFIG_BLK_DEV_IDEPCI=y
-# CONFIG_IDEPCI_SHARE_IRQ is not set
CONFIG_IDEPCI_PCIBUS_ORDER=y
# CONFIG_BLK_DEV_GENERIC is not set
# CONFIG_BLK_DEV_OPTI621 is not set
# CONFIG_BLK_DEV_TRM290 is not set
# CONFIG_BLK_DEV_VIA82CXXX is not set
# CONFIG_BLK_DEV_TC86C001 is not set
-# CONFIG_IDE_ARM is not set
CONFIG_BLK_DEV_IDEDMA=y
CONFIG_IDE_ARCH_OBSOLETE_INIT=y
# CONFIG_BLK_DEV_HD is not set
# CONFIG_EQUALIZER is not set
# CONFIG_TUN is not set
# CONFIG_VETH is not set
-# CONFIG_IP1000 is not set
# CONFIG_ARCNET is not set
# CONFIG_PHYLIB is not set
CONFIG_NET_ETHERNET=y
# CONFIG_NE2K_PCI is not set
# CONFIG_8139CP is not set
# CONFIG_8139TOO is not set
+# CONFIG_R6040 is not set
# CONFIG_SIS900 is not set
# CONFIG_EPIC100 is not set
# CONFIG_SUNDANCE is not set
CONFIG_E1000_NAPI=y
# CONFIG_E1000_DISABLE_PACKET_SPLIT is not set
# CONFIG_E1000E is not set
+# CONFIG_E1000E_ENABLED is not set
+# CONFIG_IP1000 is not set
+# CONFIG_IGB is not set
# CONFIG_MYRI_SBUS is not set
# CONFIG_NS83820 is not set
# CONFIG_HAMACHI is not set
CONFIG_NIU=m
# CONFIG_MLX4_CORE is not set
# CONFIG_TEHUTI is not set
+# CONFIG_BNX2X is not set
# CONFIG_TR is not set
#
# CONFIG_SLIP is not set
CONFIG_SLHC=m
# CONFIG_NET_FC is not set
-# CONFIG_SHAPER is not set
# CONFIG_NETCONSOLE is not set
# CONFIG_NETPOLL is not set
# CONFIG_NET_POLL_CONTROLLER is not set
CONFIG_HW_CONSOLE=y
# CONFIG_VT_HW_CONSOLE_BINDING is not set
# CONFIG_SERIAL_NONSTANDARD is not set
+# CONFIG_NOZOMI is not set
#
# Serial drivers
#
# Miscellaneous I2C Chip support
#
-# CONFIG_SENSORS_DS1337 is not set
-# CONFIG_SENSORS_DS1374 is not set
# CONFIG_DS1682 is not set
# CONFIG_SENSORS_EEPROM is not set
# CONFIG_SENSORS_PCF8574 is not set
+# CONFIG_PCF8575 is not set
# CONFIG_SENSORS_PCA9539 is not set
# CONFIG_SENSORS_PCF8591 is not set
+# CONFIG_TPS65010 is not set
# CONFIG_SENSORS_MAX6875 is not set
# CONFIG_SENSORS_TSL2550 is not set
# CONFIG_I2C_DEBUG_CORE is not set
# CONFIG_SND_BT87X is not set
# CONFIG_SND_CA0106 is not set
# CONFIG_SND_CMIPCI is not set
+# CONFIG_SND_OXYGEN is not set
# CONFIG_SND_CS4281 is not set
# CONFIG_SND_CS46XX is not set
# CONFIG_SND_DARLA20 is not set
# CONFIG_SND_HDA_INTEL is not set
# CONFIG_SND_HDSP is not set
# CONFIG_SND_HDSPM is not set
+# CONFIG_SND_HIFIER is not set
# CONFIG_SND_ICE1712 is not set
# CONFIG_SND_ICE1724 is not set
# CONFIG_SND_INTEL8X0 is not set
# CONFIG_SND_TRIDENT is not set
# CONFIG_SND_VIA82XX is not set
# CONFIG_SND_VIA82XX_MODEM is not set
+# CONFIG_SND_VIRTUOSO is not set
# CONFIG_SND_VX222 is not set
# CONFIG_SND_YMFPCI is not set
# CONFIG_SND_AC97_POWER_SAVE is not set
# SoC Audio support for SuperH
#
+#
+# ALSA SoC audio for Freescale SOCs
+#
+
#
# Open Sound System
#
CONFIG_USB_ARCH_HAS_EHCI=y
CONFIG_USB=y
# CONFIG_USB_DEBUG is not set
+# CONFIG_USB_ANNOUNCE_NEW_DEVICES is not set
#
# Miscellaneous USB options
# USB Host Controller Drivers
#
CONFIG_USB_EHCI_HCD=m
-# CONFIG_USB_EHCI_SPLIT_ISO is not set
# CONFIG_USB_EHCI_ROOT_HUB_TT is not set
# CONFIG_USB_EHCI_TT_NEWSCHED is not set
# CONFIG_USB_ISP116X_HCD is not set
#
# USB port drivers
#
-
-#
-# USB Serial Converter support
-#
# CONFIG_USB_SERIAL is not set
#
# CONFIG_USB_TRANCEVIBRATOR is not set
# CONFIG_USB_IOWARRIOR is not set
# CONFIG_USB_TEST is not set
-
-#
-# USB DSL modem support
-#
-
-#
-# USB Gadget Support
-#
# CONFIG_USB_GADGET is not set
# CONFIG_MMC is not set
# CONFIG_NEW_LEDS is not set
# CONFIG_NLS_KOI8_U is not set
# CONFIG_NLS_UTF8 is not set
# CONFIG_DLM is not set
-CONFIG_INSTRUMENTATION=y
-CONFIG_PROFILING=y
-CONFIG_OPROFILE=m
-CONFIG_KPROBES=y
-# CONFIG_MARKERS is not set
#
# Kernel hacking
CONFIG_FORCED_INLINING=y
# CONFIG_BOOT_PRINTK_DELAY is not set
# CONFIG_RCU_TORTURE_TEST is not set
+# CONFIG_KPROBES_SANITY_TEST is not set
+# CONFIG_BACKTRACE_SELF_TEST is not set
# CONFIG_LKDTM is not set
# CONFIG_FAULT_INJECTION is not set
# CONFIG_SAMPLES is not set
CONFIG_ASYNC_XOR=m
CONFIG_CRYPTO=y
CONFIG_CRYPTO_ALGAPI=y
-CONFIG_CRYPTO_AEAD=m
+CONFIG_CRYPTO_AEAD=y
CONFIG_CRYPTO_BLKCIPHER=y
+# CONFIG_CRYPTO_SEQIV is not set
CONFIG_CRYPTO_HASH=y
CONFIG_CRYPTO_MANAGER=y
CONFIG_CRYPTO_HMAC=y
CONFIG_CRYPTO_PCBC=m
CONFIG_CRYPTO_LRW=m
CONFIG_CRYPTO_XTS=m
+# CONFIG_CRYPTO_CTR is not set
+# CONFIG_CRYPTO_GCM is not set
+# CONFIG_CRYPTO_CCM is not set
# CONFIG_CRYPTO_CRYPTD is not set
CONFIG_CRYPTO_DES=y
CONFIG_CRYPTO_FCRYPT=m
CONFIG_CRYPTO_KHAZAD=m
CONFIG_CRYPTO_ANUBIS=m
CONFIG_CRYPTO_SEED=m
+# CONFIG_CRYPTO_SALSA20 is not set
CONFIG_CRYPTO_DEFLATE=y
CONFIG_CRYPTO_MICHAEL_MIC=m
CONFIG_CRYPTO_CRC32C=m
CONFIG_CRYPTO_CAMELLIA=m
CONFIG_CRYPTO_TEST=m
CONFIG_CRYPTO_AUTHENC=m
+# CONFIG_CRYPTO_LZO is not set
CONFIG_CRYPTO_HW=y
+# CONFIG_CRYPTO_DEV_HIFN_795X is not set
#
# Library routines
traps.o auxio.o una_asm.o sysfs.o iommu.o \
irq.o ptrace.o time.o sys_sparc.o signal.o \
unaligned.o central.o pci.o starfire.o semaphore.o \
- power.o sbus.o iommu_common.o sparc64_ksyms.o chmc.o \
+ power.o sbus.o sparc64_ksyms.o chmc.o \
visemul.o prom.o of_device.o hvapi.o sstate.o mdesc.o
obj-$(CONFIG_STACKTRACE) += stacktrace.o
spin_unlock_irqrestore(&iommu->lock, flags);
}
-#define SG_ENT_PHYS_ADDRESS(SG) (__pa(sg_virt((SG))))
-
-static void fill_sg(iopte_t *iopte, struct scatterlist *sg,
- int nused, int nelems,
- unsigned long iopte_protection)
-{
- struct scatterlist *dma_sg = sg;
- int i;
-
- for (i = 0; i < nused; i++) {
- unsigned long pteval = ~0UL;
- u32 dma_npages;
-
- dma_npages = ((dma_sg->dma_address & (IO_PAGE_SIZE - 1UL)) +
- dma_sg->dma_length +
- ((IO_PAGE_SIZE - 1UL))) >> IO_PAGE_SHIFT;
- do {
- unsigned long offset;
- signed int len;
-
- /* If we are here, we know we have at least one
- * more page to map. So walk forward until we
- * hit a page crossing, and begin creating new
- * mappings from that spot.
- */
- for (;;) {
- unsigned long tmp;
-
- tmp = SG_ENT_PHYS_ADDRESS(sg);
- len = sg->length;
- if (((tmp ^ pteval) >> IO_PAGE_SHIFT) != 0UL) {
- pteval = tmp & IO_PAGE_MASK;
- offset = tmp & (IO_PAGE_SIZE - 1UL);
- break;
- }
- if (((tmp ^ (tmp + len - 1UL)) >> IO_PAGE_SHIFT) != 0UL) {
- pteval = (tmp + IO_PAGE_SIZE) & IO_PAGE_MASK;
- offset = 0UL;
- len -= (IO_PAGE_SIZE - (tmp & (IO_PAGE_SIZE - 1UL)));
- break;
- }
- sg = sg_next(sg);
- nelems--;
- }
-
- pteval = iopte_protection | (pteval & IOPTE_PAGE);
- while (len > 0) {
- *iopte++ = __iopte(pteval);
- pteval += IO_PAGE_SIZE;
- len -= (IO_PAGE_SIZE - offset);
- offset = 0;
- dma_npages--;
- }
-
- pteval = (pteval & IOPTE_PAGE) + len;
- sg = sg_next(sg);
- nelems--;
-
- /* Skip over any tail mappings we've fully mapped,
- * adjusting pteval along the way. Stop when we
- * detect a page crossing event.
- */
- while (nelems &&
- (pteval << (64 - IO_PAGE_SHIFT)) != 0UL &&
- (pteval == SG_ENT_PHYS_ADDRESS(sg)) &&
- ((pteval ^
- (SG_ENT_PHYS_ADDRESS(sg) + sg->length - 1UL)) >> IO_PAGE_SHIFT) == 0UL) {
- pteval += sg->length;
- sg = sg_next(sg);
- nelems--;
- }
- if ((pteval << (64 - IO_PAGE_SHIFT)) == 0UL)
- pteval = ~0UL;
- } while (dma_npages != 0);
- dma_sg = sg_next(dma_sg);
- }
-}
-
static int dma_4u_map_sg(struct device *dev, struct scatterlist *sglist,
int nelems, enum dma_data_direction direction)
{
- struct iommu *iommu;
+ unsigned long flags, ctx, i, npages, iopte_protection;
+ struct scatterlist *sg;
struct strbuf *strbuf;
- unsigned long flags, ctx, npages, iopte_protection;
+ struct iommu *iommu;
iopte_t *base;
u32 dma_base;
- struct scatterlist *sgtmp;
- int used;
/* Fast path single entry scatterlists. */
if (nelems == 1) {
if (unlikely(direction == DMA_NONE))
goto bad_no_ctx;
- /* Step 1: Prepare scatter list. */
-
- npages = prepare_sg(dev, sglist, nelems);
-
- /* Step 2: Allocate a cluster and context, if necessary. */
+ npages = calc_npages(sglist, nelems);
spin_lock_irqsave(&iommu->lock, flags);
dma_base = iommu->page_table_map_base +
((base - iommu->page_table) << IO_PAGE_SHIFT);
- /* Step 3: Normalize DMA addresses. */
- used = nelems;
-
- sgtmp = sglist;
- while (used && sgtmp->dma_length) {
- sgtmp->dma_address += dma_base;
- sgtmp = sg_next(sgtmp);
- used--;
- }
- used = nelems - used;
-
- /* Step 4: Create the mappings. */
if (strbuf->strbuf_enabled)
iopte_protection = IOPTE_STREAMING(ctx);
else
if (direction != DMA_TO_DEVICE)
iopte_protection |= IOPTE_WRITE;
- fill_sg(base, sglist, used, nelems, iopte_protection);
+ for_each_sg(sglist, sg, nelems, i) {
+ unsigned long paddr = SG_ENT_PHYS_ADDRESS(sg);
+ unsigned long slen = sg->length;
+ unsigned long this_npages;
-#ifdef VERIFY_SG
- verify_sglist(sglist, nelems, base, npages);
-#endif
+ this_npages = iommu_num_pages(paddr, slen);
- return used;
+ sg->dma_address = dma_base | (paddr & ~IO_PAGE_MASK);
+ sg->dma_length = slen;
+
+ paddr &= IO_PAGE_MASK;
+ while (this_npages--) {
+ iopte_val(*base) = iopte_protection | paddr;
+
+ base++;
+ paddr += IO_PAGE_SIZE;
+ dma_base += IO_PAGE_SIZE;
+ }
+ }
+
+ return nelems;
bad:
iommu_free_ctx(iommu, ctx);
static void dma_4u_unmap_sg(struct device *dev, struct scatterlist *sglist,
int nelems, enum dma_data_direction direction)
{
- struct iommu *iommu;
+ unsigned long flags, ctx, i, npages;
struct strbuf *strbuf;
+ struct iommu *iommu;
iopte_t *base;
- unsigned long flags, ctx, i, npages;
- struct scatterlist *sg, *sgprv;
u32 bus_addr;
if (unlikely(direction == DMA_NONE)) {
bus_addr = sglist->dma_address & IO_PAGE_MASK;
- sgprv = NULL;
- for_each_sg(sglist, sg, nelems, i) {
- if (sg->dma_length == 0)
- break;
- sgprv = sg;
- }
-
- npages = (IO_PAGE_ALIGN(sgprv->dma_address + sgprv->dma_length) -
- bus_addr) >> IO_PAGE_SHIFT;
+ npages = calc_npages(sglist, nelems);
base = iommu->page_table +
((bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
+++ /dev/null
-/* $Id: iommu_common.c,v 1.9 2001/12/17 07:05:09 davem Exp $
- * iommu_common.c: UltraSparc SBUS/PCI common iommu code.
- *
- * Copyright (C) 1999 David S. Miller (davem@redhat.com)
- */
-
-#include <linux/dma-mapping.h>
-#include "iommu_common.h"
-
-/* You are _strongly_ advised to enable the following debugging code
- * any time you make changes to the sg code below, run it for a while
- * with filesystems mounted read-only before buying the farm... -DaveM
- */
-
-#ifdef VERIFY_SG
-static int verify_lengths(struct scatterlist *sglist, int nents, int npages)
-{
- int sg_len, dma_len;
- int i, pgcount;
- struct scatterlist *sg;
-
- sg_len = 0;
- for_each_sg(sglist, sg, nents, i)
- sg_len += sg->length;
-
- dma_len = 0;
- for_each_sg(sglist, sg, nents, i) {
- if (!sg->dma_length)
- break;
- dma_len += sg->dma_length;
- }
-
- if (sg_len != dma_len) {
- printk("verify_lengths: Error, different, sg[%d] dma[%d]\n",
- sg_len, dma_len);
- return -1;
- }
-
- pgcount = 0;
- for_each_sg(sglist, sg, nents, i) {
- unsigned long start, end;
-
- if (!sg->dma_length)
- break;
-
- start = sg->dma_address;
- start = start & IO_PAGE_MASK;
-
- end = sg->dma_address + sg->dma_length;
- end = (end + (IO_PAGE_SIZE - 1)) & IO_PAGE_MASK;
-
- pgcount += ((end - start) >> IO_PAGE_SHIFT);
- }
-
- if (pgcount != npages) {
- printk("verify_lengths: Error, page count wrong, "
- "npages[%d] pgcount[%d]\n",
- npages, pgcount);
- return -1;
- }
-
- /* This test passes... */
- return 0;
-}
-
-static int verify_one_map(struct scatterlist *dma_sg, struct scatterlist **__sg, int nents, iopte_t **__iopte)
-{
- struct scatterlist *sg = *__sg;
- iopte_t *iopte = *__iopte;
- u32 dlen = dma_sg->dma_length;
- u32 daddr;
- unsigned int sglen;
- unsigned long sgaddr;
-
- daddr = dma_sg->dma_address;
- sglen = sg->length;
- sgaddr = (unsigned long) sg_virt(sg);
- while (dlen > 0) {
- unsigned long paddr;
-
- /* SG and DMA_SG must begin at the same sub-page boundary. */
- if ((sgaddr & ~IO_PAGE_MASK) != (daddr & ~IO_PAGE_MASK)) {
- printk("verify_one_map: Wrong start offset "
- "sg[%08lx] dma[%08x]\n",
- sgaddr, daddr);
- nents = -1;
- goto out;
- }
-
- /* Verify the IOPTE points to the right page. */
- paddr = iopte_val(*iopte) & IOPTE_PAGE;
- if ((paddr + PAGE_OFFSET) != (sgaddr & IO_PAGE_MASK)) {
- printk("verify_one_map: IOPTE[%08lx] maps the "
- "wrong page, should be [%08lx]\n",
- iopte_val(*iopte), (sgaddr & IO_PAGE_MASK) - PAGE_OFFSET);
- nents = -1;
- goto out;
- }
-
- /* If this SG crosses a page, adjust to that next page
- * boundary and loop.
- */
- if ((sgaddr & IO_PAGE_MASK) ^ ((sgaddr + sglen - 1) & IO_PAGE_MASK)) {
- unsigned long next_page, diff;
-
- next_page = (sgaddr + IO_PAGE_SIZE) & IO_PAGE_MASK;
- diff = next_page - sgaddr;
- sgaddr += diff;
- daddr += diff;
- sglen -= diff;
- dlen -= diff;
- if (dlen > 0)
- iopte++;
- continue;
- }
-
- /* SG wholly consumed within this page. */
- daddr += sglen;
- dlen -= sglen;
-
- if (dlen > 0 && ((daddr & ~IO_PAGE_MASK) == 0))
- iopte++;
-
- sg = sg_next(sg);
- if (--nents <= 0)
- break;
- sgaddr = (unsigned long) sg_virt(sg);
- sglen = sg->length;
- }
- if (dlen < 0) {
- /* Transfer overrun, big problems. */
- printk("verify_one_map: Transfer overrun by %d bytes.\n",
- -dlen);
- nents = -1;
- } else {
- /* Advance to next dma_sg implies that the next iopte will
- * begin it.
- */
- iopte++;
- }
-
-out:
- *__sg = sg;
- *__iopte = iopte;
- return nents;
-}
-
-static int verify_maps(struct scatterlist *sg, int nents, iopte_t *iopte)
-{
- struct scatterlist *dma_sg = sg;
- struct scatterlist *orig_dma_sg = dma_sg;
- int orig_nents = nents;
-
- for (;;) {
- nents = verify_one_map(dma_sg, &sg, nents, &iopte);
- if (nents <= 0)
- break;
- dma_sg = sg_next(dma_sg);
- if (dma_sg->dma_length == 0)
- break;
- }
-
- if (nents > 0) {
- printk("verify_maps: dma maps consumed by some sgs remain (%d)\n",
- nents);
- return -1;
- }
-
- if (nents < 0) {
- printk("verify_maps: Error, messed up mappings, "
- "at sg %d dma_sg %d\n",
- (int) (orig_nents + nents), (int) (dma_sg - orig_dma_sg));
- return -1;
- }
-
- /* This test passes... */
- return 0;
-}
-
-void verify_sglist(struct scatterlist *sglist, int nents, iopte_t *iopte, int npages)
-{
- struct scatterlist *sg;
-
- if (verify_lengths(sglist, nents, npages) < 0 ||
- verify_maps(sglist, nents, iopte) < 0) {
- int i;
-
- printk("verify_sglist: Crap, messed up mappings, dumping, iodma at ");
- printk("%016lx.\n", sglist->dma_address & IO_PAGE_MASK);
-
- for_each_sg(sglist, sg, nents, i) {
- printk("sg(%d): page_addr(%p) off(%x) length(%x) "
- "dma_address[%016x] dma_length[%016x]\n",
- i,
- page_address(sg_page(sg)), sg->offset,
- sg->length,
- sg->dma_address, sg->dma_length);
- }
- }
-
- /* Seems to be ok */
-}
-#endif
-
-unsigned long prepare_sg(struct device *dev, struct scatterlist *sg, int nents)
-{
- struct scatterlist *dma_sg = sg;
- unsigned long prev;
- u32 dent_addr, dent_len;
- unsigned int max_seg_size;
-
- prev = (unsigned long) sg_virt(sg);
- prev += (unsigned long) (dent_len = sg->length);
- dent_addr = (u32) ((unsigned long)(sg_virt(sg)) & (IO_PAGE_SIZE - 1UL));
- max_seg_size = dma_get_max_seg_size(dev);
- while (--nents) {
- unsigned long addr;
-
- sg = sg_next(sg);
- addr = (unsigned long) sg_virt(sg);
- if (! VCONTIG(prev, addr) ||
- dent_len + sg->length > max_seg_size) {
- dma_sg->dma_address = dent_addr;
- dma_sg->dma_length = dent_len;
- dma_sg = sg_next(dma_sg);
-
- dent_addr = ((dent_addr +
- dent_len +
- (IO_PAGE_SIZE - 1UL)) >> IO_PAGE_SHIFT);
- dent_addr <<= IO_PAGE_SHIFT;
- dent_addr += addr & (IO_PAGE_SIZE - 1UL);
- dent_len = 0;
- }
- dent_len += sg->length;
- prev = addr + sg->length;
- }
- dma_sg->dma_address = dent_addr;
- dma_sg->dma_length = dent_len;
-
- if (dma_sg != sg) {
- dma_sg = sg_next(dma_sg);
- dma_sg->dma_length = 0;
- }
-
- return ((unsigned long) dent_addr +
- (unsigned long) dent_len +
- (IO_PAGE_SIZE - 1UL)) >> IO_PAGE_SHIFT;
-}
*/
#define IOMMU_PAGE_SHIFT 13
+#define SG_ENT_PHYS_ADDRESS(SG) (__pa(sg_virt((SG))))
+
+static inline unsigned long iommu_num_pages(unsigned long vaddr,
+ unsigned long slen)
+{
+ unsigned long npages;
+
+ npages = IO_PAGE_ALIGN(vaddr + slen) - (vaddr & IO_PAGE_MASK);
+ npages >>= IO_PAGE_SHIFT;
+
+ return npages;
+}
+
+static inline unsigned long calc_npages(struct scatterlist *sglist, int nelems)
+{
+ unsigned long i, npages = 0;
+ struct scatterlist *sg;
+
+ for_each_sg(sglist, sg, nelems, i) {
+ unsigned long paddr = SG_ENT_PHYS_ADDRESS(sg);
+ npages += iommu_num_pages(paddr, sg->length);
+ }
+
+ return npages;
+}
+
/* You are _strongly_ advised to enable the following debugging code
* any time you make changes to the sg code below, run it for a while
* with filesystems mounted read-only before buying the farm... -DaveM
spin_unlock_irqrestore(&iommu->lock, flags);
}
-#define SG_ENT_PHYS_ADDRESS(SG) (__pa(sg_virt((SG))))
-
-static long fill_sg(long entry, struct device *dev,
- struct scatterlist *sg,
- int nused, int nelems, unsigned long prot)
-{
- struct scatterlist *dma_sg = sg;
- unsigned long flags;
- int i;
-
- local_irq_save(flags);
-
- iommu_batch_start(dev, prot, entry);
-
- for (i = 0; i < nused; i++) {
- unsigned long pteval = ~0UL;
- u32 dma_npages;
-
- dma_npages = ((dma_sg->dma_address & (IO_PAGE_SIZE - 1UL)) +
- dma_sg->dma_length +
- ((IO_PAGE_SIZE - 1UL))) >> IO_PAGE_SHIFT;
- do {
- unsigned long offset;
- signed int len;
-
- /* If we are here, we know we have at least one
- * more page to map. So walk forward until we
- * hit a page crossing, and begin creating new
- * mappings from that spot.
- */
- for (;;) {
- unsigned long tmp;
-
- tmp = SG_ENT_PHYS_ADDRESS(sg);
- len = sg->length;
- if (((tmp ^ pteval) >> IO_PAGE_SHIFT) != 0UL) {
- pteval = tmp & IO_PAGE_MASK;
- offset = tmp & (IO_PAGE_SIZE - 1UL);
- break;
- }
- if (((tmp ^ (tmp + len - 1UL)) >> IO_PAGE_SHIFT) != 0UL) {
- pteval = (tmp + IO_PAGE_SIZE) & IO_PAGE_MASK;
- offset = 0UL;
- len -= (IO_PAGE_SIZE - (tmp & (IO_PAGE_SIZE - 1UL)));
- break;
- }
- sg = sg_next(sg);
- nelems--;
- }
-
- pteval = (pteval & IOPTE_PAGE);
- while (len > 0) {
- long err;
-
- err = iommu_batch_add(pteval);
- if (unlikely(err < 0L))
- goto iommu_map_failed;
-
- pteval += IO_PAGE_SIZE;
- len -= (IO_PAGE_SIZE - offset);
- offset = 0;
- dma_npages--;
- }
-
- pteval = (pteval & IOPTE_PAGE) + len;
- sg = sg_next(sg);
- nelems--;
-
- /* Skip over any tail mappings we've fully mapped,
- * adjusting pteval along the way. Stop when we
- * detect a page crossing event.
- */
- while (nelems &&
- (pteval << (64 - IO_PAGE_SHIFT)) != 0UL &&
- (pteval == SG_ENT_PHYS_ADDRESS(sg)) &&
- ((pteval ^
- (SG_ENT_PHYS_ADDRESS(sg) + sg->length - 1UL)) >> IO_PAGE_SHIFT) == 0UL) {
- pteval += sg->length;
- sg = sg_next(sg);
- nelems--;
- }
- if ((pteval << (64 - IO_PAGE_SHIFT)) == 0UL)
- pteval = ~0UL;
- } while (dma_npages != 0);
- dma_sg = sg_next(dma_sg);
- }
-
- if (unlikely(iommu_batch_end() < 0L))
- goto iommu_map_failed;
-
- local_irq_restore(flags);
- return 0;
-
-iommu_map_failed:
- local_irq_restore(flags);
- return -1L;
-}
-
static int dma_4v_map_sg(struct device *dev, struct scatterlist *sglist,
int nelems, enum dma_data_direction direction)
{
+ unsigned long flags, npages, i, prot;
+ struct scatterlist *sg;
struct iommu *iommu;
- unsigned long flags, npages, prot;
- u32 dma_base;
- struct scatterlist *sgtmp;
long entry, err;
- int used;
+ u32 dma_base;
/* Fast path single entry scatterlists. */
if (nelems == 1) {
if (unlikely(direction == DMA_NONE))
goto bad;
- /* Step 1: Prepare scatter list. */
- npages = prepare_sg(dev, sglist, nelems);
+ npages = calc_npages(sglist, nelems);
- /* Step 2: Allocate a cluster and context, if necessary. */
spin_lock_irqsave(&iommu->lock, flags);
entry = arena_alloc(&iommu->arena, npages);
spin_unlock_irqrestore(&iommu->lock, flags);
dma_base = iommu->page_table_map_base +
(entry << IO_PAGE_SHIFT);
- /* Step 3: Normalize DMA addresses. */
- used = nelems;
-
- sgtmp = sglist;
- while (used && sgtmp->dma_length) {
- sgtmp->dma_address += dma_base;
- sgtmp = sg_next(sgtmp);
- used--;
- }
- used = nelems - used;
-
- /* Step 4: Create the mappings. */
prot = HV_PCI_MAP_ATTR_READ;
if (direction != DMA_TO_DEVICE)
prot |= HV_PCI_MAP_ATTR_WRITE;
- err = fill_sg(entry, dev, sglist, used, nelems, prot);
+ local_irq_save(flags);
+
+ iommu_batch_start(dev, prot, entry);
+
+ for_each_sg(sglist, sg, nelems, i) {
+ unsigned long paddr = SG_ENT_PHYS_ADDRESS(sg);
+ unsigned long slen = sg->length;
+ unsigned long this_npages;
+
+ this_npages = iommu_num_pages(paddr, slen);
+
+ sg->dma_address = dma_base | (paddr & ~IO_PAGE_MASK);
+ sg->dma_length = slen;
+
+ paddr &= IO_PAGE_MASK;
+ while (this_npages--) {
+ err = iommu_batch_add(paddr);
+ if (unlikely(err < 0L)) {
+ local_irq_restore(flags);
+ goto iommu_map_failed;
+ }
+
+ paddr += IO_PAGE_SIZE;
+ dma_base += IO_PAGE_SIZE;
+ }
+ }
+
+ err = iommu_batch_end();
+
+ local_irq_restore(flags);
+
if (unlikely(err < 0L))
goto iommu_map_failed;
- return used;
+ return nelems;
bad:
if (printk_ratelimit())
static void dma_4v_unmap_sg(struct device *dev, struct scatterlist *sglist,
int nelems, enum dma_data_direction direction)
{
+ unsigned long flags, npages;
struct pci_pbm_info *pbm;
+ u32 devhandle, bus_addr;
struct iommu *iommu;
- unsigned long flags, i, npages;
- struct scatterlist *sg, *sgprv;
long entry;
- u32 devhandle, bus_addr;
if (unlikely(direction == DMA_NONE)) {
if (printk_ratelimit())
devhandle = pbm->devhandle;
bus_addr = sglist->dma_address & IO_PAGE_MASK;
- sgprv = NULL;
- for_each_sg(sglist, sg, nelems, i) {
- if (sg->dma_length == 0)
- break;
-
- sgprv = sg;
- }
- npages = (IO_PAGE_ALIGN(sgprv->dma_address + sgprv->dma_length) -
- bus_addr) >> IO_PAGE_SHIFT;
+ npages = calc_npages(sglist, nelems);
entry = ((bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
#include <asm/ldc.h>
#include <asm/hypervisor.h>
-extern void calibrate_delay(void);
-
int sparc64_multi_core __read_mostly;
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_NONE;
EXPORT_SYMBOL(sys_geteuid);
EXPORT_SYMBOL(sys_getuid);
EXPORT_SYMBOL(sys_getegid);
+EXPORT_SYMBOL(sysctl_nr_open);
EXPORT_SYMBOL(sys_getgid);
EXPORT_SYMBOL(svr4_getcontext);
EXPORT_SYMBOL(svr4_setcontext);
.word sys_fchmodat, sys_faccessat, compat_sys_pselect6, compat_sys_ppoll, sys_unshare
/*300*/ .word compat_sys_set_robust_list, compat_sys_get_robust_list, compat_sys_migrate_pages, compat_sys_mbind, compat_sys_get_mempolicy
.word compat_sys_set_mempolicy, compat_sys_kexec_load, compat_sys_move_pages, sys_getcpu, compat_sys_epoll_pwait
-/*310*/ .word compat_sys_utimensat, compat_sys_signalfd, sys_ni_syscall, sys_eventfd, compat_sys_fallocate
+/*310*/ .word compat_sys_utimensat, compat_sys_signalfd, sys_timerfd_create, sys_eventfd, compat_sys_fallocate
+ .word compat_sys_timerfd_settime, compat_sys_timerfd_gettime
#endif /* CONFIG_COMPAT */
.word sys_fchmodat, sys_faccessat, sys_pselect6, sys_ppoll, sys_unshare
/*300*/ .word sys_set_robust_list, sys_get_robust_list, sys_migrate_pages, sys_mbind, sys_get_mempolicy
.word sys_set_mempolicy, sys_kexec_load, sys_move_pages, sys_getcpu, sys_epoll_pwait
-/*310*/ .word sys_utimensat, sys_signalfd, sys_ni_syscall, sys_eventfd, sys_fallocate
+/*310*/ .word sys_utimensat, sys_signalfd, sys_timerfd_create, sys_eventfd, sys_fallocate
+ .word sys_timerfd_settime, sys_timerfd_gettime
#if defined(CONFIG_SUNOS_EMUL) || defined(CONFIG_SOLARIS_EMUL) || \
defined(CONFIG_SOLARIS_EMUL_MODULE)
.word sunos_nosys, sunos_nosys, sunos_nosys
.word sunos_nosys
/*310*/ .word sunos_nosys, sunos_nosys, sunos_nosys
- .word sunos_nosys, sunos_nosys
+ .word sunos_nosys, sunos_nosys, sunos_nosys
+ .word sunos_nosys
#endif
misc_deregister(&rtc_mini_dev);
}
+int __devinit read_current_timer(unsigned long *timer_val)
+{
+ *timer_val = tick_ops->get_tick();
+ return 0;
+}
module_init(rtc_mini_init);
module_exit(rtc_mini_exit);
case 3: /* UL_GMEMLIM */
return current->signal->rlim[RLIMIT_DATA].rlim_cur;
case 4: /* UL_GDESLIM */
- return NR_OPEN;
+ return sysctl_nr_open;
}
return -EINVAL;
}
SOLD("entry");
lock_kernel();
- if(fd >= NR_OPEN) goto out;
+ if (fd >= sysctl_nr_open)
+ goto out;
fdt = files_fdtable(current->files);
filp = fdt->fd[fd];
SOLD("entry");
lock_kernel();
- if(fd >= NR_OPEN) goto out;
+ if (fd >= sysctl_nr_open)
+ goto out;
fdt = files_fdtable(current->files);
filp = fdt->fd[fd];
config HPET_EMULATE_RTC
def_bool y
- depends on HPET_TIMER && (RTC=y || RTC=m)
+ depends on HPET_TIMER && (RTC=y || RTC=m || RTC_DRV_CMOS=m || RTC_DRV_CMOS=y)
# Mark as embedded because too many people got it wrong.
# The code disables itself when not needed.
This option will cause struct boot_params to be exported via debugfs.
config CPA_DEBUG
- bool "CPA self test code"
+ bool "CPA self-test code"
depends on DEBUG_KERNEL
help
- Do change_page_attr self tests at boot.
+ Do change_page_attr() self-tests every 30 seconds.
endmenu
}
/* Make sure %fs is initialized properly in idle threads */
-struct pt_regs * __devinit idle_regs(struct pt_regs *regs)
+struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
{
memset(regs, 0, sizeof(struct pt_regs));
regs->fs = __KERNEL_PERCPU;
for (i = 0; i < data->acpi_data.state_count; i++) {
u32 index;
- u32 hi = 0, lo = 0;
index = data->acpi_data.states[i].control & HW_PSTATE_MASK;
if (index > data->max_hw_pstate) {
* FIXME: our newer udelay uses the tsc. We don't need to frob with SLOP
*/
-extern void calibrate_delay(void) __init;
-
static void __cpuinit check_cx686_slop(struct cpuinfo_x86 *c)
{
unsigned long flags;
*/
int __init mtrr_trim_uncached_memory(unsigned long end_pfn)
{
- unsigned long i, base, size, highest_addr = 0, def, dummy;
+ unsigned long i, base, size, highest_pfn = 0, def, dummy;
mtrr_type type;
u64 trim_start, trim_size;
mtrr_if->get(i, &base, &size, &type);
if (type != MTRR_TYPE_WRBACK)
continue;
- base <<= PAGE_SHIFT;
- size <<= PAGE_SHIFT;
- if (highest_addr < base + size)
- highest_addr = base + size;
+ if (highest_pfn < base + size)
+ highest_pfn = base + size;
}
/* kvm/qemu doesn't have mtrr set right, don't trim them all */
- if (!highest_addr) {
+ if (!highest_pfn) {
printk(KERN_WARNING "WARNING: strange, CPU MTRRs all blank?\n");
WARN_ON(1);
return 0;
}
- if ((highest_addr >> PAGE_SHIFT) < end_pfn) {
+ if (highest_pfn < end_pfn) {
printk(KERN_WARNING "WARNING: BIOS bug: CPU MTRRs don't cover"
- " all of memory, losing %LdMB of RAM.\n",
- (((u64)end_pfn << PAGE_SHIFT) - highest_addr) >> 20);
+ " all of memory, losing %luMB of RAM.\n",
+ (end_pfn - highest_pfn) >> (20 - PAGE_SHIFT));
WARN_ON(1);
printk(KERN_INFO "update e820 for mtrr\n");
- trim_start = highest_addr;
+ trim_start = highest_pfn;
+ trim_start <<= PAGE_SHIFT;
trim_size = end_pfn;
trim_size <<= PAGE_SHIFT;
trim_size -= trim_start;
TRACE_IRQS_IRETQ
restore_args:
RESTORE_ARGS 0,8,0
-iret_label:
#ifdef CONFIG_PARAVIRT
INTERRUPT_RETURN
#endif
.quad native_iret, bad_iret
.previous
.section .fixup,"ax"
- /* force a signal here? this matches i386 behaviour */
- /* running with kernel gs */
bad_iret:
- movq $11,%rdi /* SIGSEGV */
- TRACE_IRQS_ON
- ENABLE_INTERRUPTS(CLBR_ANY | ~(CLBR_RDI))
- jmp do_exit
+ /*
+ * The iret traps when the %cs or %ss being restored is bogus.
+ * We've lost the original trap vector and error code.
+ * #GPF is the most likely one to get for an invalid selector.
+ * So pretend we completed the iret and took the #GPF in user mode.
+ *
+ * We are now running with the kernel GS after exception recovery.
+ * But error_entry expects us to have user GS to match the user %cs,
+ * so swap back.
+ */
+ pushq $0
+
+ SWAPGS
+ jmp general_protection
+
.previous
/* edi: workmask, edx: work */
iret run with kernel gs again, so don't set the user space flag.
B stepping K8s sometimes report an truncated RIP for IRET
exceptions returning to compat mode. Check for these here too. */
- leaq iret_label(%rip),%rbp
+ leaq native_iret(%rip),%rbp
cmpq %rbp,RIP(%rsp)
je error_swapgs
movl %ebp,%ebp /* zero extend */
lretq
/* SMP bootup changes these two */
-#ifndef CONFIG_HOTPLUG_CPU
- .pushsection .init.data
-#endif
+ __CPUINITDATA
.align 8
- .globl initial_code
-initial_code:
+ ENTRY(initial_code)
.quad x86_64_start_kernel
-#ifndef CONFIG_HOTPLUG_CPU
- .popsection
-#endif
- .globl init_rsp
-init_rsp:
+ __FINITDATA
+
+ ENTRY(init_rsp)
.quad init_thread_union+THREAD_SIZE-8
bad_address:
if (invalid_selector(value))
return -EIO;
- if (offset != offsetof(struct user_regs_struct, gs))
+ /*
+ * For %cs and %ss we cannot permit a null selector.
+ * We can permit a bogus selector as long as it has USER_RPL.
+ * Null selectors are fine for other segment registers, but
+ * we will never get back to user mode with invalid %cs or %ss
+ * and will take the trap in iret instead. Much code relies
+ * on user_mode() to distinguish a user trap frame (which can
+ * safely use invalid selectors) from a kernel trap frame.
+ */
+ switch (offset) {
+ case offsetof(struct user_regs_struct, cs):
+ case offsetof(struct user_regs_struct, ss):
+ if (unlikely(value == 0))
+ return -EIO;
+
+ default:
*pt_regs_access(task_pt_regs(task), offset) = value;
- else {
+ break;
+
+ case offsetof(struct user_regs_struct, gs):
task->thread.gs = value;
if (task == current)
/*
* Can't actually change these in 64-bit mode.
*/
case offsetof(struct user_regs_struct,cs):
+ if (unlikely(value == 0))
+ return -EIO;
#ifdef CONFIG_IA32_EMULATION
if (test_tsk_thread_flag(task, TIF_IA32))
task_pt_regs(task)->cs = value;
#endif
break;
case offsetof(struct user_regs_struct,ss):
+ if (unlikely(value == 0))
+ return -EIO;
#ifdef CONFIG_IA32_EMULATION
if (test_tsk_thread_flag(task, TIF_IA32))
task_pt_regs(task)->ss = value;
void force_hpet_resume(void)
{
switch (force_hpet_resume_type) {
- case ICH_FORCE_HPET_RESUME:
- return ich_force_hpet_resume();
-
- case OLD_ICH_FORCE_HPET_RESUME:
- return old_ich_force_hpet_resume();
-
- case VT8237_FORCE_HPET_RESUME:
- return vt8237_force_hpet_resume();
-
- case NVIDIA_FORCE_HPET_RESUME:
- return nvidia_force_hpet_resume();
-
- default:
+ case ICH_FORCE_HPET_RESUME:
+ ich_force_hpet_resume();
+ return;
+ case OLD_ICH_FORCE_HPET_RESUME:
+ old_ich_force_hpet_resume();
+ return;
+ case VT8237_FORCE_HPET_RESUME:
+ vt8237_force_hpet_resume();
+ return;
+ case NVIDIA_FORCE_HPET_RESUME:
+ nvidia_force_hpet_resume();
+ return;
+ default:
break;
}
}
;
}
-extern void calibrate_delay(void);
-
static atomic_t init_deasserted;
static void __cpuinit smp_callin(void)
* Until then, don't run them to avoid too many people getting scared
* by the error message
*/
-#if 0
#ifdef CONFIG_DEBUG_RODATA
/* Test 3: Check if the .rodata section is executable */
}
#endif
+#if 0
/* Test 4: Check if the .data section of a module is executable */
if (test_address(&test_data)) {
printk(KERN_ERR "test_nx: .data section is executable\n");
#endif
set_trap_gate(19,&simd_coprocessor_error);
+ /*
+ * Verify that the FXSAVE/FXRSTOR data will be 16-byte aligned.
+ * Generate a build-time error if the alignment is wrong.
+ */
+ BUILD_BUG_ON(offsetof(struct task_struct, thread.i387.fxsave) & 15);
if (cpu_has_fxsr) {
- /*
- * Verify that the FXSAVE/FXRSTOR data will be 16-byte aligned.
- * Generates a compile-time "error: zero width for bit-field" if
- * the alignment is wrong.
- */
- struct fxsrAlignAssert {
- int _:!(offsetof(struct task_struct,
- thread.i387.fxsave) & 15);
- };
-
printk(KERN_INFO "Enabling fast FPU save and restore... ");
set_in_cr4(X86_CR4_OSFXSR);
printk("done.\n");
#include <linux/module.h>
#include <linux/sched.h>
+#include <linux/timex.h>
#include <linux/preempt.h>
#include <linux/delay.h>
+#include <linux/init.h>
#include <asm/processor.h>
#include <asm/delay.h>
delay_fn = delay_tsc;
}
-int read_current_timer(unsigned long *timer_val)
+int __devinit read_current_timer(unsigned long *timer_val)
{
if (delay_fn == delay_tsc) {
rdtscl(*timer_val);
#include <linux/module.h>
#include <linux/sched.h>
+#include <linux/timex.h>
#include <linux/preempt.h>
#include <linux/delay.h>
+#include <linux/init.h>
#include <asm/delay.h>
#include <asm/msr.h>
#include <asm/smp.h>
#endif
-int read_current_timer(unsigned long *timer_value)
+int __devinit read_current_timer(unsigned long *timer_value)
{
rdtscll(*timer_value);
return 0;
static void __init start_secondary(void *unused)
{
__u8 cpuid = hard_smp_processor_id();
- /* external functions not defined in the headers */
- extern void calibrate_delay(void);
cpu_init();
}
#endif
+static int spurious_fault_check(unsigned long error_code, pte_t *pte)
+{
+ if ((error_code & PF_WRITE) && !pte_write(*pte))
+ return 0;
+ if ((error_code & PF_INSTR) && !pte_exec(*pte))
+ return 0;
+
+ return 1;
+}
+
/*
* Handle a spurious fault caused by a stale TLB entry. This allows
* us to lazily refresh the TLB when increasing the permissions of a
if (!pud_present(*pud))
return 0;
+ if (pud_large(*pud))
+ return spurious_fault_check(error_code, (pte_t *) pud);
+
pmd = pmd_offset(pud, address);
if (!pmd_present(*pmd))
return 0;
+ if (pmd_large(*pmd))
+ return spurious_fault_check(error_code, (pte_t *) pmd);
+
pte = pte_offset_kernel(pmd, address);
if (!pte_present(*pte))
return 0;
- if ((error_code & PF_WRITE) && !pte_write(*pte))
- return 0;
- if ((error_code & PF_INSTR) && !pte_exec(*pte))
- return 0;
-
- return 1;
+ return spurious_fault_check(error_code, pte);
}
/*
for (address = start; address <= VMALLOC_END; address += PGDIR_SIZE) {
if (!test_bit(pgd_index(address), insync)) {
const pgd_t *pgd_ref = pgd_offset_k(address);
+ unsigned long flags;
struct page *page;
if (pgd_none(*pgd_ref))
continue;
- spin_lock(&pgd_lock);
+ spin_lock_irqsave(&pgd_lock, flags);
list_for_each_entry(page, &pgd_list, lru) {
pgd_t *pgd;
pgd = (pgd_t *)page_address(page) + pgd_index(address);
else
BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
}
- spin_unlock(&pgd_lock);
+ spin_unlock_irqrestore(&pgd_lock, flags);
set_bit(pgd_index(address), insync);
}
if (address == start)
if (end <= start)
return;
- set_memory_ro(start, (end - start) >> PAGE_SHIFT);
printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
(end - start) >> 10);
+ set_memory_ro(start, (end - start) >> PAGE_SHIFT);
+
+ /*
+ * The rodata section (but not the kernel text!) should also be
+ * not-executable.
+ */
+ start = ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
+ set_memory_nx(start, (end - start) >> PAGE_SHIFT);
rodata_test();
* and compares page tables forwards and afterwards.
*/
#include <linux/bootmem.h>
+#include <linux/kthread.h>
#include <linux/random.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <asm/pgtable.h>
#include <asm/kdebug.h>
+/*
+ * Only print the results of the first pass:
+ */
+static __read_mostly int print = 1;
+
enum {
- NTEST = 4000,
+ NTEST = 400,
#ifdef CONFIG_X86_64
LPS = (1 << PMD_SHIFT),
#elif defined(CONFIG_X86_PAE)
long min_exec, max_exec;
};
-static __init int print_split(struct split_state *s)
+static int print_split(struct split_state *s)
{
long i, expected, missed = 0;
int printed = 0;
s->max_exec = addr;
}
}
- printk(KERN_INFO
- "CPA mapping 4k %lu large %lu gb %lu x %lu[%lx-%lx] miss %lu\n",
- s->spg, s->lpg, s->gpg, s->exec,
- s->min_exec != ~0UL ? s->min_exec : 0, s->max_exec, missed);
+ if (print) {
+ printk(KERN_INFO
+ " 4k %lu large %lu gb %lu x %lu[%lx-%lx] miss %lu\n",
+ s->spg, s->lpg, s->gpg, s->exec,
+ s->min_exec != ~0UL ? s->min_exec : 0,
+ s->max_exec, missed);
+ }
expected = (s->gpg*GPS + s->lpg*LPS)/PAGE_SIZE + s->spg + missed;
if (expected != i) {
return err;
}
-static unsigned long __initdata addr[NTEST];
-static unsigned int __initdata len[NTEST];
+static unsigned long addr[NTEST];
+static unsigned int len[NTEST];
/* Change the global bit on random pages in the direct mapping */
-static __init int exercise_pageattr(void)
+static int pageattr_test(void)
{
struct split_state sa, sb, sc;
unsigned long *bm;
int i, k;
int err;
- printk(KERN_INFO "CPA exercising pageattr\n");
+ if (print)
+ printk(KERN_INFO "CPA self-test:\n");
bm = vmalloc((max_pfn_mapped + 7) / 8);
if (!bm) {
failed += print_split(&sb);
- printk(KERN_INFO "CPA reverting everything\n");
for (i = 0; i < NTEST; i++) {
if (!addr[i])
continue;
failed += print_split(&sc);
if (failed) {
- printk(KERN_ERR "CPA selftests NOT PASSED. Please report.\n");
+ printk(KERN_ERR "NOT PASSED. Please report.\n");
WARN_ON(1);
+ return -EINVAL;
} else {
- printk(KERN_INFO "CPA selftests PASSED\n");
+ if (print)
+ printk(KERN_INFO "ok.\n");
}
return 0;
}
-module_init(exercise_pageattr);
+
+static int do_pageattr_test(void *__unused)
+{
+ while (!kthread_should_stop()) {
+ schedule_timeout_interruptible(HZ*30);
+ if (pageattr_test() < 0)
+ break;
+ if (print)
+ print--;
+ }
+ return 0;
+}
+
+static int start_pageattr_test(void)
+{
+ struct task_struct *p;
+
+ p = kthread_create(do_pageattr_test, NULL, "pageattr-test");
+ if (!IS_ERR(p))
+ wake_up_process(p);
+ else
+ WARN_ON(1);
+
+ return 0;
+}
+
+module_init(start_pageattr_test);
if (within(address, virt_to_highmap(_text), virt_to_highmap(_etext)))
pgprot_val(forbidden) |= _PAGE_NX;
-
-#ifdef CONFIG_DEBUG_RODATA
/* The .rodata section needs to be read-only */
if (within(address, (unsigned long)__start_rodata,
(unsigned long)__end_rodata))
if (within(address, virt_to_highmap(__start_rodata),
virt_to_highmap(__end_rodata)))
pgprot_val(forbidden) |= _PAGE_RW;
-#endif
prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
if (!SHARED_KERNEL_PMD) {
struct page *page;
- address = __pa(address);
list_for_each_entry(page, &pgd_list, lru) {
pgd_t *pgd;
pud_t *pud;
pgprot_t old_prot, new_prot;
int level, do_split = 1;
- /*
- * An Athlon 64 X2 showed hard hangs if we tried to preserve
- * largepages and changed the PSE entry from RW to RO.
- *
- * As AMD CPUs have a long series of erratas in this area,
- * (and none of the known ones seem to explain this hang),
- * disable this code until the hang can be debugged:
- */
- if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
- return 1;
-
spin_lock_irqsave(&pgd_lock, flags);
/*
* Check for races, another CPU might have split this page
}
#ifndef CONFIG_GENERIC_CALIBRATE_DELAY
-void __devinit calibrate_delay(void)
+void __cpuinit calibrate_delay(void)
{
loops_per_jiffy = CCOUNT_PER_JIFFY;
printk("Calibrating delay loop (skipped)... "
* @src: src page
* @offset: offset in pages to start transaction
* @len: length in bytes
- * @flags: ASYNC_TX_ASSUME_COHERENT, ASYNC_TX_ACK, ASYNC_TX_DEP_ACK,
+ * @flags: ASYNC_TX_ACK, ASYNC_TX_DEP_ACK,
* @depend_tx: memcpy depends on the result of this transaction
* @cb_fn: function to call when the memcpy completes
* @cb_param: parameter to pass to the callback routine
struct dma_async_tx_descriptor *depend_tx,
dma_async_tx_callback cb_fn, void *cb_param)
{
- struct dma_chan *chan = async_tx_find_channel(depend_tx, DMA_MEMCPY);
+ struct dma_chan *chan = async_tx_find_channel(depend_tx, DMA_MEMCPY,
+ &dest, 1, &src, 1, len);
struct dma_device *device = chan ? chan->device : NULL;
- int int_en = cb_fn ? 1 : 0;
- struct dma_async_tx_descriptor *tx = device ?
- device->device_prep_dma_memcpy(chan, len,
- int_en) : NULL;
+ struct dma_async_tx_descriptor *tx = NULL;
- if (tx) { /* run the memcpy asynchronously */
- dma_addr_t addr;
- enum dma_data_direction dir;
+ if (device) {
+ dma_addr_t dma_dest, dma_src;
+ unsigned long dma_prep_flags = cb_fn ? DMA_PREP_INTERRUPT : 0;
- pr_debug("%s: (async) len: %zu\n", __FUNCTION__, len);
-
- dir = (flags & ASYNC_TX_ASSUME_COHERENT) ?
- DMA_NONE : DMA_FROM_DEVICE;
-
- addr = dma_map_page(device->dev, dest, dest_offset, len, dir);
- tx->tx_set_dest(addr, tx, 0);
+ dma_dest = dma_map_page(device->dev, dest, dest_offset, len,
+ DMA_FROM_DEVICE);
- dir = (flags & ASYNC_TX_ASSUME_COHERENT) ?
- DMA_NONE : DMA_TO_DEVICE;
+ dma_src = dma_map_page(device->dev, src, src_offset, len,
+ DMA_TO_DEVICE);
- addr = dma_map_page(device->dev, src, src_offset, len, dir);
- tx->tx_set_src(addr, tx, 0);
+ tx = device->device_prep_dma_memcpy(chan, dma_dest, dma_src,
+ len, dma_prep_flags);
+ }
+ if (tx) {
+ pr_debug("%s: (async) len: %zu\n", __FUNCTION__, len);
async_tx_submit(chan, tx, flags, depend_tx, cb_fn, cb_param);
- } else { /* run the memcpy synchronously */
+ } else {
void *dest_buf, *src_buf;
pr_debug("%s: (sync) len: %zu\n", __FUNCTION__, len);
* @val: fill value
* @offset: offset in pages to start transaction
* @len: length in bytes
- * @flags: ASYNC_TX_ASSUME_COHERENT, ASYNC_TX_ACK, ASYNC_TX_DEP_ACK
+ * @flags: ASYNC_TX_ACK, ASYNC_TX_DEP_ACK
* @depend_tx: memset depends on the result of this transaction
* @cb_fn: function to call when the memcpy completes
* @cb_param: parameter to pass to the callback routine
struct dma_async_tx_descriptor *depend_tx,
dma_async_tx_callback cb_fn, void *cb_param)
{
- struct dma_chan *chan = async_tx_find_channel(depend_tx, DMA_MEMSET);
+ struct dma_chan *chan = async_tx_find_channel(depend_tx, DMA_MEMSET,
+ &dest, 1, NULL, 0, len);
struct dma_device *device = chan ? chan->device : NULL;
- int int_en = cb_fn ? 1 : 0;
- struct dma_async_tx_descriptor *tx = device ?
- device->device_prep_dma_memset(chan, val, len,
- int_en) : NULL;
+ struct dma_async_tx_descriptor *tx = NULL;
- if (tx) { /* run the memset asynchronously */
- dma_addr_t dma_addr;
- enum dma_data_direction dir;
+ if (device) {
+ dma_addr_t dma_dest;
+ unsigned long dma_prep_flags = cb_fn ? DMA_PREP_INTERRUPT : 0;
- pr_debug("%s: (async) len: %zu\n", __FUNCTION__, len);
- dir = (flags & ASYNC_TX_ASSUME_COHERENT) ?
- DMA_NONE : DMA_FROM_DEVICE;
+ dma_dest = dma_map_page(device->dev, dest, offset, len,
+ DMA_FROM_DEVICE);
- dma_addr = dma_map_page(device->dev, dest, offset, len, dir);
- tx->tx_set_dest(dma_addr, tx, 0);
+ tx = device->device_prep_dma_memset(chan, dma_dest, val, len,
+ dma_prep_flags);
+ }
+ if (tx) {
+ pr_debug("%s: (async) len: %zu\n", __FUNCTION__, len);
async_tx_submit(chan, tx, flags, depend_tx, cb_fn, cb_param);
} else { /* run the memset synchronously */
void *dest_buf;
*/
static spinlock_t async_tx_lock;
-static struct list_head
-async_tx_master_list = LIST_HEAD_INIT(async_tx_master_list);
+static LIST_HEAD(async_tx_master_list);
/* async_tx_issue_pending_all - start all transactions on all channels */
void async_tx_issue_pending_all(void)
}
/**
- * async_tx_find_channel - find a channel to carry out the operation or let
+ * __async_tx_find_channel - find a channel to carry out the operation or let
* the transaction execute synchronously
* @depend_tx: transaction dependency
* @tx_type: transaction type
*/
struct dma_chan *
-async_tx_find_channel(struct dma_async_tx_descriptor *depend_tx,
+__async_tx_find_channel(struct dma_async_tx_descriptor *depend_tx,
enum dma_transaction_type tx_type)
{
/* see if we can keep the chain on one channel */
} else
return NULL;
}
-EXPORT_SYMBOL_GPL(async_tx_find_channel);
+EXPORT_SYMBOL_GPL(__async_tx_find_channel);
#else
static int __init async_tx_init(void)
{
#include <linux/raid/xor.h>
#include <linux/async_tx.h>
-static void
-do_async_xor(struct dma_async_tx_descriptor *tx, struct dma_device *device,
+/* do_async_xor - dma map the pages and perform the xor with an engine.
+ * This routine is marked __always_inline so it can be compiled away
+ * when CONFIG_DMA_ENGINE=n
+ */
+static __always_inline struct dma_async_tx_descriptor *
+do_async_xor(struct dma_device *device,
struct dma_chan *chan, struct page *dest, struct page **src_list,
unsigned int offset, unsigned int src_cnt, size_t len,
enum async_tx_flags flags, struct dma_async_tx_descriptor *depend_tx,
dma_async_tx_callback cb_fn, void *cb_param)
{
- dma_addr_t dma_addr;
- enum dma_data_direction dir;
+ dma_addr_t dma_dest;
+ dma_addr_t *dma_src = (dma_addr_t *) src_list;
+ struct dma_async_tx_descriptor *tx;
int i;
+ unsigned long dma_prep_flags = cb_fn ? DMA_PREP_INTERRUPT : 0;
pr_debug("%s: len: %zu\n", __FUNCTION__, len);
- dir = (flags & ASYNC_TX_ASSUME_COHERENT) ?
- DMA_NONE : DMA_FROM_DEVICE;
-
- dma_addr = dma_map_page(device->dev, dest, offset, len, dir);
- tx->tx_set_dest(dma_addr, tx, 0);
-
- dir = (flags & ASYNC_TX_ASSUME_COHERENT) ?
- DMA_NONE : DMA_TO_DEVICE;
+ dma_dest = dma_map_page(device->dev, dest, offset, len,
+ DMA_FROM_DEVICE);
- for (i = 0; i < src_cnt; i++) {
- dma_addr = dma_map_page(device->dev, src_list[i],
- offset, len, dir);
- tx->tx_set_src(dma_addr, tx, i);
+ for (i = 0; i < src_cnt; i++)
+ dma_src[i] = dma_map_page(device->dev, src_list[i], offset,
+ len, DMA_TO_DEVICE);
+
+ /* Since we have clobbered the src_list we are committed
+ * to doing this asynchronously. Drivers force forward progress
+ * in case they can not provide a descriptor
+ */
+ tx = device->device_prep_dma_xor(chan, dma_dest, dma_src, src_cnt, len,
+ dma_prep_flags);
+ if (!tx) {
+ if (depend_tx)
+ dma_wait_for_async_tx(depend_tx);
+
+ while (!tx)
+ tx = device->device_prep_dma_xor(chan, dma_dest,
+ dma_src, src_cnt, len,
+ dma_prep_flags);
}
async_tx_submit(chan, tx, flags, depend_tx, cb_fn, cb_param);
+
+ return tx;
}
static void
* @src_cnt: number of source pages
* @len: length in bytes
* @flags: ASYNC_TX_XOR_ZERO_DST, ASYNC_TX_XOR_DROP_DEST,
- * ASYNC_TX_ASSUME_COHERENT, ASYNC_TX_ACK, ASYNC_TX_DEP_ACK
+ * ASYNC_TX_ACK, ASYNC_TX_DEP_ACK
* @depend_tx: xor depends on the result of this transaction.
* @cb_fn: function to call when the xor completes
* @cb_param: parameter to pass to the callback routine
struct dma_async_tx_descriptor *depend_tx,
dma_async_tx_callback cb_fn, void *cb_param)
{
- struct dma_chan *chan = async_tx_find_channel(depend_tx, DMA_XOR);
+ struct dma_chan *chan = async_tx_find_channel(depend_tx, DMA_XOR,
+ &dest, 1, src_list,
+ src_cnt, len);
struct dma_device *device = chan ? chan->device : NULL;
struct dma_async_tx_descriptor *tx = NULL;
dma_async_tx_callback _cb_fn;
void *_cb_param;
unsigned long local_flags;
int xor_src_cnt;
- int i = 0, src_off = 0, int_en;
+ int i = 0, src_off = 0;
BUG_ON(src_cnt <= 1);
_cb_param = cb_param;
}
- int_en = _cb_fn ? 1 : 0;
-
- tx = device->device_prep_dma_xor(
- chan, xor_src_cnt, len, int_en);
-
- if (tx) {
- do_async_xor(tx, device, chan, dest,
- &src_list[src_off], offset, xor_src_cnt, len,
- local_flags, depend_tx, _cb_fn,
- _cb_param);
- } else /* fall through */
- goto xor_sync;
+ tx = do_async_xor(device, chan, dest,
+ &src_list[src_off], offset,
+ xor_src_cnt, len, local_flags,
+ depend_tx, _cb_fn, _cb_param);
} else { /* run the xor synchronously */
-xor_sync:
/* in the sync case the dest is an implied source
* (assumes the dest is at the src_off index)
*/
* @src_cnt: number of source pages
* @len: length in bytes
* @result: 0 if sum == 0 else non-zero
- * @flags: ASYNC_TX_ASSUME_COHERENT, ASYNC_TX_ACK, ASYNC_TX_DEP_ACK
+ * @flags: ASYNC_TX_ACK, ASYNC_TX_DEP_ACK
* @depend_tx: xor depends on the result of this transaction.
* @cb_fn: function to call when the xor completes
* @cb_param: parameter to pass to the callback routine
struct dma_async_tx_descriptor *depend_tx,
dma_async_tx_callback cb_fn, void *cb_param)
{
- struct dma_chan *chan = async_tx_find_channel(depend_tx, DMA_ZERO_SUM);
+ struct dma_chan *chan = async_tx_find_channel(depend_tx, DMA_ZERO_SUM,
+ &dest, 1, src_list,
+ src_cnt, len);
struct dma_device *device = chan ? chan->device : NULL;
- int int_en = cb_fn ? 1 : 0;
- struct dma_async_tx_descriptor *tx = device ?
- device->device_prep_dma_zero_sum(chan, src_cnt, len, result,
- int_en) : NULL;
- int i;
+ struct dma_async_tx_descriptor *tx = NULL;
BUG_ON(src_cnt <= 1);
- if (tx) {
- dma_addr_t dma_addr;
- enum dma_data_direction dir;
+ if (device) {
+ dma_addr_t *dma_src = (dma_addr_t *) src_list;
+ unsigned long dma_prep_flags = cb_fn ? DMA_PREP_INTERRUPT : 0;
+ int i;
pr_debug("%s: (async) len: %zu\n", __FUNCTION__, len);
- dir = (flags & ASYNC_TX_ASSUME_COHERENT) ?
- DMA_NONE : DMA_TO_DEVICE;
-
- for (i = 0; i < src_cnt; i++) {
- &