Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
authorLinus Torvalds <torvalds@linux-foundation.org>
Wed, 26 Dec 2018 19:46:28 +0000 (11:46 -0800)
committerLinus Torvalds <torvalds@linux-foundation.org>
Wed, 26 Dec 2018 19:46:28 +0000 (11:46 -0800)
Pull KVM updates from Paolo Bonzini:
 "ARM:
   - selftests improvements
   - large PUD support for HugeTLB
   - single-stepping fixes
   - improved tracing
   - various timer and vGIC fixes

  x86:
   - Processor Tracing virtualization
   - STIBP support
   - some correctness fixes
   - refactorings and splitting of vmx.c
   - use the Hyper-V range TLB flush hypercall
   - reduce order of vcpu struct
   - WBNOINVD support
   - do not use -ftrace for __noclone functions
   - nested guest support for PAUSE filtering on AMD
   - more Hyper-V enlightenments (direct mode for synthetic timers)

  PPC:
   -  nested VFIO

  s390:
   - bugfixes only this time"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (171 commits)
  KVM: x86: Add CPUID support for new instruction WBNOINVD
  kvm: selftests: ucall: fix exit mmio address guessing
  Revert "compiler-gcc: disable -ftracer for __noclone functions"
  KVM: VMX: Move VM-Enter + VM-Exit handling to non-inline sub-routines
  KVM: VMX: Explicitly reference RCX as the vmx_vcpu pointer in asm blobs
  KVM: x86: Use jmp to invoke kvm_spurious_fault() from .fixup
  MAINTAINERS: Add arch/x86/kvm sub-directories to existing KVM/x86 entry
  KVM/x86: Use SVM assembly instruction mnemonics instead of .byte streams
  KVM/MMU: Flush tlb directly in the kvm_zap_gfn_range()
  KVM/MMU: Flush tlb directly in kvm_set_pte_rmapp()
  KVM/MMU: Move tlb flush in kvm_set_pte_rmapp() to kvm_mmu_notifier_change_pte()
  KVM: Make kvm_set_spte_hva() return int
  KVM: Replace old tlb flush function with new one to flush a specified range.
  KVM/MMU: Add tlb flush with range helper function
  KVM/VMX: Add hv tlb range flush support
  x86/hyper-v: Add HvFlushGuestAddressList hypercall support
  KVM: Add tlb_remote_flush_with_range callback in kvm_x86_ops
  KVM: x86: Disable Intel PT when VMXON in L1 guest
  KVM: x86: Set intercept for Intel PT MSRs read/write
  KVM: x86: Implement Intel PT MSRs read/write emulation
  ...

16 files changed:
1  2 
MAINTAINERS
arch/arm/include/asm/kvm_host.h
arch/arm64/include/asm/kvm_arm.h
arch/arm64/include/asm/kvm_host.h
arch/arm64/include/asm/pgtable-hwdef.h
arch/arm64/include/asm/pgtable.h
arch/arm64/kvm/handle_exit.c
arch/arm64/kvm/hyp/switch.c
arch/arm64/kvm/sys_regs.c
arch/mips/include/asm/kvm_host.h
arch/x86/include/asm/cpufeatures.h
arch/x86/include/asm/msr-index.h
arch/x86/kvm/svm.c
arch/x86/kvm/vmx/nested.c
arch/x86/kvm/x86.c
virt/kvm/arm/arm.c

diff --cc MAINTAINERS
Simple merge
Simple merge
Simple merge
Simple merge
Simple merge
Simple merge
Simple merge
Simple merge
Simple merge
Simple merge
Simple merge
Simple merge
index 0000000000000000000000000000000000000000,abbad93ed26a27bd32fb1a008c64acb18c06e67a..3170e291215d01e32cb216650760655944d2ad9c
mode 000000,100644..100644
--- /dev/null
@@@ -1,0 -1,5719 +1,5721 @@@
+ // SPDX-License-Identifier: GPL-2.0
+ #include <linux/frame.h>
+ #include <linux/percpu.h>
+ #include <asm/debugreg.h>
+ #include <asm/mmu_context.h>
+ #include "cpuid.h"
+ #include "hyperv.h"
+ #include "mmu.h"
+ #include "nested.h"
+ #include "trace.h"
+ #include "x86.h"
+ static bool __read_mostly enable_shadow_vmcs = 1;
+ module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
+ static bool __read_mostly nested_early_check = 0;
+ module_param(nested_early_check, bool, S_IRUGO);
+ /*
+  * Hyper-V requires all of these, so mark them as supported even though
+  * they are just treated the same as all-context.
+  */
+ #define VMX_VPID_EXTENT_SUPPORTED_MASK                \
+       (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
+       VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
+       VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
+       VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
+ #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
+ enum {
+       VMX_VMREAD_BITMAP,
+       VMX_VMWRITE_BITMAP,
+       VMX_BITMAP_NR
+ };
+ static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
+ #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
+ #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
+ static u16 shadow_read_only_fields[] = {
+ #define SHADOW_FIELD_RO(x) x,
+ #include "vmcs_shadow_fields.h"
+ };
+ static int max_shadow_read_only_fields =
+       ARRAY_SIZE(shadow_read_only_fields);
+ static u16 shadow_read_write_fields[] = {
+ #define SHADOW_FIELD_RW(x) x,
+ #include "vmcs_shadow_fields.h"
+ };
+ static int max_shadow_read_write_fields =
+       ARRAY_SIZE(shadow_read_write_fields);
+ void init_vmcs_shadow_fields(void)
+ {
+       int i, j;
+       memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
+       memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
+       for (i = j = 0; i < max_shadow_read_only_fields; i++) {
+               u16 field = shadow_read_only_fields[i];
+               if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
+                   (i + 1 == max_shadow_read_only_fields ||
+                    shadow_read_only_fields[i + 1] != field + 1))
+                       pr_err("Missing field from shadow_read_only_field %x\n",
+                              field + 1);
+               clear_bit(field, vmx_vmread_bitmap);
+ #ifdef CONFIG_X86_64
+               if (field & 1)
+                       continue;
+ #endif
+               if (j < i)
+                       shadow_read_only_fields[j] = field;
+               j++;
+       }
+       max_shadow_read_only_fields = j;
+       for (i = j = 0; i < max_shadow_read_write_fields; i++) {
+               u16 field = shadow_read_write_fields[i];
+               if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
+                   (i + 1 == max_shadow_read_write_fields ||
+                    shadow_read_write_fields[i + 1] != field + 1))
+                       pr_err("Missing field from shadow_read_write_field %x\n",
+                              field + 1);
+               /*
+                * PML and the preemption timer can be emulated, but the
+                * processor cannot vmwrite to fields that don't exist
+                * on bare metal.
+                */
+               switch (field) {
+               case GUEST_PML_INDEX:
+                       if (!cpu_has_vmx_pml())
+                               continue;
+                       break;
+               case VMX_PREEMPTION_TIMER_VALUE:
+                       if (!cpu_has_vmx_preemption_timer())
+                               continue;
+                       break;
+               case GUEST_INTR_STATUS:
+                       if (!cpu_has_vmx_apicv())
+                               continue;
+                       break;
+               default:
+                       break;
+               }
+               clear_bit(field, vmx_vmwrite_bitmap);
+               clear_bit(field, vmx_vmread_bitmap);
+ #ifdef CONFIG_X86_64
+               if (field & 1)
+                       continue;
+ #endif
+               if (j < i)
+                       shadow_read_write_fields[j] = field;
+               j++;
+       }
+       max_shadow_read_write_fields = j;
+ }
+ /*
+  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
+  * set the success or error code of an emulated VMX instruction (as specified
+  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
+  * instruction.
+  */
+ static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
+ {
+       vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
+                       & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
+                           X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
+       return kvm_skip_emulated_instruction(vcpu);
+ }
+ static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
+ {
+       vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
+                       & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
+                           X86_EFLAGS_SF | X86_EFLAGS_OF))
+                       | X86_EFLAGS_CF);
+       return kvm_skip_emulated_instruction(vcpu);
+ }
+ static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
+                               u32 vm_instruction_error)
+ {
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       /*
+        * failValid writes the error number to the current VMCS, which
+        * can't be done if there isn't a current VMCS.
+        */
+       if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
+               return nested_vmx_failInvalid(vcpu);
+       vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
+                       & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
+                           X86_EFLAGS_SF | X86_EFLAGS_OF))
+                       | X86_EFLAGS_ZF);
+       get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
+       /*
+        * We don't need to force a shadow sync because
+        * VM_INSTRUCTION_ERROR is not shadowed
+        */
+       return kvm_skip_emulated_instruction(vcpu);
+ }
+ static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
+ {
+       /* TODO: not to reset guest simply here. */
+       kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
+       pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
+ }
+ static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
+ {
+       vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
+       vmcs_write64(VMCS_LINK_POINTER, -1ull);
+ }
+ static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
+ {
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       if (!vmx->nested.hv_evmcs)
+               return;
+       kunmap(vmx->nested.hv_evmcs_page);
+       kvm_release_page_dirty(vmx->nested.hv_evmcs_page);
+       vmx->nested.hv_evmcs_vmptr = -1ull;
+       vmx->nested.hv_evmcs_page = NULL;
+       vmx->nested.hv_evmcs = NULL;
+ }
+ /*
+  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
+  * just stops using VMX.
+  */
+ static void free_nested(struct kvm_vcpu *vcpu)
+ {
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
+               return;
+       vmx->nested.vmxon = false;
+       vmx->nested.smm.vmxon = false;
+       free_vpid(vmx->nested.vpid02);
+       vmx->nested.posted_intr_nv = -1;
+       vmx->nested.current_vmptr = -1ull;
+       if (enable_shadow_vmcs) {
+               vmx_disable_shadow_vmcs(vmx);
+               vmcs_clear(vmx->vmcs01.shadow_vmcs);
+               free_vmcs(vmx->vmcs01.shadow_vmcs);
+               vmx->vmcs01.shadow_vmcs = NULL;
+       }
+       kfree(vmx->nested.cached_vmcs12);
+       kfree(vmx->nested.cached_shadow_vmcs12);
+       /* Unpin physical memory we referred to in the vmcs02 */
+       if (vmx->nested.apic_access_page) {
+               kvm_release_page_dirty(vmx->nested.apic_access_page);
+               vmx->nested.apic_access_page = NULL;
+       }
+       if (vmx->nested.virtual_apic_page) {
+               kvm_release_page_dirty(vmx->nested.virtual_apic_page);
+               vmx->nested.virtual_apic_page = NULL;
+       }
+       if (vmx->nested.pi_desc_page) {
+               kunmap(vmx->nested.pi_desc_page);
+               kvm_release_page_dirty(vmx->nested.pi_desc_page);
+               vmx->nested.pi_desc_page = NULL;
+               vmx->nested.pi_desc = NULL;
+       }
+       kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
+       nested_release_evmcs(vcpu);
+       free_loaded_vmcs(&vmx->nested.vmcs02);
+ }
+ static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
+ {
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       int cpu;
+       if (vmx->loaded_vmcs == vmcs)
+               return;
+       cpu = get_cpu();
+       vmx_vcpu_put(vcpu);
+       vmx->loaded_vmcs = vmcs;
+       vmx_vcpu_load(vcpu, cpu);
+       put_cpu();
+       vm_entry_controls_reset_shadow(vmx);
+       vm_exit_controls_reset_shadow(vmx);
+       vmx_segment_cache_clear(vmx);
+ }
+ /*
+  * Ensure that the current vmcs of the logical processor is the
+  * vmcs01 of the vcpu before calling free_nested().
+  */
+ void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
+ {
+       vcpu_load(vcpu);
+       vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
+       free_nested(vcpu);
+       vcpu_put(vcpu);
+ }
+ static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
+               struct x86_exception *fault)
+ {
+       struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       u32 exit_reason;
+       unsigned long exit_qualification = vcpu->arch.exit_qualification;
+       if (vmx->nested.pml_full) {
+               exit_reason = EXIT_REASON_PML_FULL;
+               vmx->nested.pml_full = false;
+               exit_qualification &= INTR_INFO_UNBLOCK_NMI;
+       } else if (fault->error_code & PFERR_RSVD_MASK)
+               exit_reason = EXIT_REASON_EPT_MISCONFIG;
+       else
+               exit_reason = EXIT_REASON_EPT_VIOLATION;
+       nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
+       vmcs12->guest_physical_address = fault->address;
+ }
+ static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
+ {
+       WARN_ON(mmu_is_nested(vcpu));
+       vcpu->arch.mmu = &vcpu->arch.guest_mmu;
+       kvm_init_shadow_ept_mmu(vcpu,
+                       to_vmx(vcpu)->nested.msrs.ept_caps &
+                       VMX_EPT_EXECUTE_ONLY_BIT,
+                       nested_ept_ad_enabled(vcpu),
+                       nested_ept_get_cr3(vcpu));
+       vcpu->arch.mmu->set_cr3           = vmx_set_cr3;
+       vcpu->arch.mmu->get_cr3           = nested_ept_get_cr3;
+       vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
+       vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
+       vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
+ }
+ static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
+ {
+       vcpu->arch.mmu = &vcpu->arch.root_mmu;
+       vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
+ }
+ static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
+                                           u16 error_code)
+ {
+       bool inequality, bit;
+       bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
+       inequality =
+               (error_code & vmcs12->page_fault_error_code_mask) !=
+                vmcs12->page_fault_error_code_match;
+       return inequality ^ bit;
+ }
+ /*
+  * KVM wants to inject page-faults which it got to the guest. This function
+  * checks whether in a nested guest, we need to inject them to L1 or L2.
+  */
+ static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
+ {
+       struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+       unsigned int nr = vcpu->arch.exception.nr;
+       bool has_payload = vcpu->arch.exception.has_payload;
+       unsigned long payload = vcpu->arch.exception.payload;
+       if (nr == PF_VECTOR) {
+               if (vcpu->arch.exception.nested_apf) {
+                       *exit_qual = vcpu->arch.apf.nested_apf_token;
+                       return 1;
+               }
+               if (nested_vmx_is_page_fault_vmexit(vmcs12,
+                                                   vcpu->arch.exception.error_code)) {
+                       *exit_qual = has_payload ? payload : vcpu->arch.cr2;
+                       return 1;
+               }
+       } else if (vmcs12->exception_bitmap & (1u << nr)) {
+               if (nr == DB_VECTOR) {
+                       if (!has_payload) {
+                               payload = vcpu->arch.dr6;
+                               payload &= ~(DR6_FIXED_1 | DR6_BT);
+                               payload ^= DR6_RTM;
+                       }
+                       *exit_qual = payload;
+               } else
+                       *exit_qual = 0;
+               return 1;
+       }
+       return 0;
+ }
+ static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
+               struct x86_exception *fault)
+ {
+       struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+       WARN_ON(!is_guest_mode(vcpu));
+       if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
+               !to_vmx(vcpu)->nested.nested_run_pending) {
+               vmcs12->vm_exit_intr_error_code = fault->error_code;
+               nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
+                                 PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
+                                 INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
+                                 fault->address);
+       } else {
+               kvm_inject_page_fault(vcpu, fault);
+       }
+ }
+ static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
+ {
+       return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
+ }
+ static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
+                                              struct vmcs12 *vmcs12)
+ {
+       if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
+               return 0;
+       if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
+           !page_address_valid(vcpu, vmcs12->io_bitmap_b))
+               return -EINVAL;
+       return 0;
+ }
+ static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
+                                               struct vmcs12 *vmcs12)
+ {
+       if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
+               return 0;
+       if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
+               return -EINVAL;
+       return 0;
+ }
+ static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
+                                               struct vmcs12 *vmcs12)
+ {
+       if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
+               return 0;
+       if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))
+               return -EINVAL;
+       return 0;
+ }
+ /*
+  * Check if MSR is intercepted for L01 MSR bitmap.
+  */
+ static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
+ {
+       unsigned long *msr_bitmap;
+       int f = sizeof(unsigned long);
+       if (!cpu_has_vmx_msr_bitmap())
+               return true;
+       msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
+       if (msr <= 0x1fff) {
+               return !!test_bit(msr, msr_bitmap + 0x800 / f);
+       } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
+               msr &= 0x1fff;
+               return !!test_bit(msr, msr_bitmap + 0xc00 / f);
+       }
+       return true;
+ }
+ /*
+  * If a msr is allowed by L0, we should check whether it is allowed by L1.
+  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
+  */
+ static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
+                                              unsigned long *msr_bitmap_nested,
+                                              u32 msr, int type)
+ {
+       int f = sizeof(unsigned long);
+       /*
+        * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
+        * have the write-low and read-high bitmap offsets the wrong way round.
+        * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
+        */
+       if (msr <= 0x1fff) {
+               if (type & MSR_TYPE_R &&
+                  !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
+                       /* read-low */
+                       __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
+               if (type & MSR_TYPE_W &&
+                  !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
+                       /* write-low */
+                       __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
+       } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
+               msr &= 0x1fff;
+               if (type & MSR_TYPE_R &&
+                  !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
+                       /* read-high */
+                       __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
+               if (type & MSR_TYPE_W &&
+                  !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
+                       /* write-high */
+                       __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
+       }
+ }
+ /*
+  * Merge L0's and L1's MSR bitmap, return false to indicate that
+  * we do not use the hardware.
+  */
+ static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
+                                                struct vmcs12 *vmcs12)
+ {
+       int msr;
+       struct page *page;
+       unsigned long *msr_bitmap_l1;
+       unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
+       /*
+        * pred_cmd & spec_ctrl are trying to verify two things:
+        *
+        * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
+        *    ensures that we do not accidentally generate an L02 MSR bitmap
+        *    from the L12 MSR bitmap that is too permissive.
+        * 2. That L1 or L2s have actually used the MSR. This avoids
+        *    unnecessarily merging of the bitmap if the MSR is unused. This
+        *    works properly because we only update the L01 MSR bitmap lazily.
+        *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
+        *    updated to reflect this when L1 (or its L2s) actually write to
+        *    the MSR.
+        */
+       bool pred_cmd = !msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD);
+       bool spec_ctrl = !msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL);
+       /* Nothing to do if the MSR bitmap is not in use.  */
+       if (!cpu_has_vmx_msr_bitmap() ||
+           !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
+               return false;
+       if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
+           !pred_cmd && !spec_ctrl)
+               return false;
+       page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap);
+       if (is_error_page(page))
+               return false;
+       msr_bitmap_l1 = (unsigned long *)kmap(page);
+       if (nested_cpu_has_apic_reg_virt(vmcs12)) {
+               /*
+                * L0 need not intercept reads for MSRs between 0x800 and 0x8ff, it
+                * just lets the processor take the value from the virtual-APIC page;
+                * take those 256 bits directly from the L1 bitmap.
+                */
+               for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
+                       unsigned word = msr / BITS_PER_LONG;
+                       msr_bitmap_l0[word] = msr_bitmap_l1[word];
+                       msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0;
+               }
+       } else {
+               for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
+                       unsigned word = msr / BITS_PER_LONG;
+                       msr_bitmap_l0[word] = ~0;
+                       msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0;
+               }
+       }
+       nested_vmx_disable_intercept_for_msr(
+               msr_bitmap_l1, msr_bitmap_l0,
+               X2APIC_MSR(APIC_TASKPRI),
+               MSR_TYPE_W);
+       if (nested_cpu_has_vid(vmcs12)) {
+               nested_vmx_disable_intercept_for_msr(
+                       msr_bitmap_l1, msr_bitmap_l0,
+                       X2APIC_MSR(APIC_EOI),
+                       MSR_TYPE_W);
+               nested_vmx_disable_intercept_for_msr(
+                       msr_bitmap_l1, msr_bitmap_l0,
+                       X2APIC_MSR(APIC_SELF_IPI),
+                       MSR_TYPE_W);
+       }
+       if (spec_ctrl)
+               nested_vmx_disable_intercept_for_msr(
+                                       msr_bitmap_l1, msr_bitmap_l0,
+                                       MSR_IA32_SPEC_CTRL,
+                                       MSR_TYPE_R | MSR_TYPE_W);
+       if (pred_cmd)
+               nested_vmx_disable_intercept_for_msr(
+                                       msr_bitmap_l1, msr_bitmap_l0,
+                                       MSR_IA32_PRED_CMD,
+                                       MSR_TYPE_W);
+       kunmap(page);
+       kvm_release_page_clean(page);
+       return true;
+ }
+ static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
+                                      struct vmcs12 *vmcs12)
+ {
+       struct vmcs12 *shadow;
+       struct page *page;
+       if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
+           vmcs12->vmcs_link_pointer == -1ull)
+               return;
+       shadow = get_shadow_vmcs12(vcpu);
+       page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer);
+       memcpy(shadow, kmap(page), VMCS12_SIZE);
+       kunmap(page);
+       kvm_release_page_clean(page);
+ }
+ static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
+                                             struct vmcs12 *vmcs12)
+ {
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
+           vmcs12->vmcs_link_pointer == -1ull)
+               return;
+       kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
+                       get_shadow_vmcs12(vcpu), VMCS12_SIZE);
+ }
+ /*
+  * In nested virtualization, check if L1 has set
+  * VM_EXIT_ACK_INTR_ON_EXIT
+  */
+ static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
+ {
+       return get_vmcs12(vcpu)->vm_exit_controls &
+               VM_EXIT_ACK_INTR_ON_EXIT;
+ }
+ static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
+ {
+       return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
+ }
+ static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
+                                         struct vmcs12 *vmcs12)
+ {
+       if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
+           !page_address_valid(vcpu, vmcs12->apic_access_addr))
+               return -EINVAL;
+       else
+               return 0;
+ }
+ static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
+                                          struct vmcs12 *vmcs12)
+ {
+       if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
+           !nested_cpu_has_apic_reg_virt(vmcs12) &&
+           !nested_cpu_has_vid(vmcs12) &&
+           !nested_cpu_has_posted_intr(vmcs12))
+               return 0;
+       /*
+        * If virtualize x2apic mode is enabled,
+        * virtualize apic access must be disabled.
+        */
+       if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
+           nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
+               return -EINVAL;
+       /*
+        * If virtual interrupt delivery is enabled,
+        * we must exit on external interrupts.
+        */
+       if (nested_cpu_has_vid(vmcs12) &&
+          !nested_exit_on_intr(vcpu))
+               return -EINVAL;
+       /*
+        * bits 15:8 should be zero in posted_intr_nv,
+        * the descriptor address has been already checked
+        * in nested_get_vmcs12_pages.
+        *
+        * bits 5:0 of posted_intr_desc_addr should be zero.
+        */
+       if (nested_cpu_has_posted_intr(vmcs12) &&
+          (!nested_cpu_has_vid(vmcs12) ||
+           !nested_exit_intr_ack_set(vcpu) ||
+           (vmcs12->posted_intr_nv & 0xff00) ||
+           (vmcs12->posted_intr_desc_addr & 0x3f) ||
+           (vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu))))
+               return -EINVAL;
+       /* tpr shadow is needed by all apicv features. */
+       if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
+               return -EINVAL;
+       return 0;
+ }
+ static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
+                                      u32 count, u64 addr)
+ {
+       int maxphyaddr;
+       if (count == 0)
+               return 0;
+       maxphyaddr = cpuid_maxphyaddr(vcpu);
+       if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
+           (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
+               return -EINVAL;
+       return 0;
+ }
+ static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
+                                                    struct vmcs12 *vmcs12)
+ {
+       if (nested_vmx_check_msr_switch(vcpu, vmcs12->vm_exit_msr_load_count,
+                                       vmcs12->vm_exit_msr_load_addr) ||
+           nested_vmx_check_msr_switch(vcpu, vmcs12->vm_exit_msr_store_count,
+                                       vmcs12->vm_exit_msr_store_addr))
+               return -EINVAL;
+       return 0;
+ }
+ static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
+                                                       struct vmcs12 *vmcs12)
+ {
+       if (nested_vmx_check_msr_switch(vcpu, vmcs12->vm_entry_msr_load_count,
+                                         vmcs12->vm_entry_msr_load_addr))
+                 return -EINVAL;
+       return 0;
+ }
+ static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
+                                        struct vmcs12 *vmcs12)
+ {
+       if (!nested_cpu_has_pml(vmcs12))
+               return 0;
+       if (!nested_cpu_has_ept(vmcs12) ||
+           !page_address_valid(vcpu, vmcs12->pml_address))
+               return -EINVAL;
+       return 0;
+ }
+ static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
+                                                       struct vmcs12 *vmcs12)
+ {
+       if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
+           !nested_cpu_has_ept(vmcs12))
+               return -EINVAL;
+       return 0;
+ }
+ static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
+                                                        struct vmcs12 *vmcs12)
+ {
+       if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
+           !nested_cpu_has_ept(vmcs12))
+               return -EINVAL;
+       return 0;
+ }
+ static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
+                                                struct vmcs12 *vmcs12)
+ {
+       if (!nested_cpu_has_shadow_vmcs(vmcs12))
+               return 0;
+       if (!page_address_valid(vcpu, vmcs12->vmread_bitmap) ||
+           !page_address_valid(vcpu, vmcs12->vmwrite_bitmap))
+               return -EINVAL;
+       return 0;
+ }
+ static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
+                                      struct vmx_msr_entry *e)
+ {
+       /* x2APIC MSR accesses are not allowed */
+       if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
+               return -EINVAL;
+       if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
+           e->index == MSR_IA32_UCODE_REV)
+               return -EINVAL;
+       if (e->reserved != 0)
+               return -EINVAL;
+       return 0;
+ }
+ static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
+                                    struct vmx_msr_entry *e)
+ {
+       if (e->index == MSR_FS_BASE ||
+           e->index == MSR_GS_BASE ||
+           e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
+           nested_vmx_msr_check_common(vcpu, e))
+               return -EINVAL;
+       return 0;
+ }
+ static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
+                                     struct vmx_msr_entry *e)
+ {
+       if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
+           nested_vmx_msr_check_common(vcpu, e))
+               return -EINVAL;
+       return 0;
+ }
+ /*
+  * Load guest's/host's msr at nested entry/exit.
+  * return 0 for success, entry index for failure.
+  */
+ static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
+ {
+       u32 i;
+       struct vmx_msr_entry e;
+       struct msr_data msr;
+       msr.host_initiated = false;
+       for (i = 0; i < count; i++) {
+               if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
+                                       &e, sizeof(e))) {
+                       pr_debug_ratelimited(
+                               "%s cannot read MSR entry (%u, 0x%08llx)\n",
+                               __func__, i, gpa + i * sizeof(e));
+                       goto fail;
+               }
+               if (nested_vmx_load_msr_check(vcpu, &e)) {
+                       pr_debug_ratelimited(
+                               "%s check failed (%u, 0x%x, 0x%x)\n",
+                               __func__, i, e.index, e.reserved);
+                       goto fail;
+               }
+               msr.index = e.index;
+               msr.data = e.value;
+               if (kvm_set_msr(vcpu, &msr)) {
+                       pr_debug_ratelimited(
+                               "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
+                               __func__, i, e.index, e.value);
+                       goto fail;
+               }
+       }
+       return 0;
+ fail:
+       return i + 1;
+ }
+ static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
+ {
+       u32 i;
+       struct vmx_msr_entry e;
+       for (i = 0; i < count; i++) {
+               struct msr_data msr_info;
+               if (kvm_vcpu_read_guest(vcpu,
+                                       gpa + i * sizeof(e),
+                                       &e, 2 * sizeof(u32))) {
+                       pr_debug_ratelimited(
+                               "%s cannot read MSR entry (%u, 0x%08llx)\n",
+                               __func__, i, gpa + i * sizeof(e));
+                       return -EINVAL;
+               }
+               if (nested_vmx_store_msr_check(vcpu, &e)) {
+                       pr_debug_ratelimited(
+                               "%s check failed (%u, 0x%x, 0x%x)\n",
+                               __func__, i, e.index, e.reserved);
+                       return -EINVAL;
+               }
+               msr_info.host_initiated = false;
+               msr_info.index = e.index;
+               if (kvm_get_msr(vcpu, &msr_info)) {
+                       pr_debug_ratelimited(
+                               "%s cannot read MSR (%u, 0x%x)\n",
+                               __func__, i, e.index);
+                       return -EINVAL;
+               }
+               if (kvm_vcpu_write_guest(vcpu,
+                                        gpa + i * sizeof(e) +
+                                            offsetof(struct vmx_msr_entry, value),
+                                        &msr_info.data, sizeof(msr_info.data))) {
+                       pr_debug_ratelimited(
+                               "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
+                               __func__, i, e.index, msr_info.data);
+                       return -EINVAL;
+               }
+       }
+       return 0;
+ }
+ static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
+ {
+       unsigned long invalid_mask;
+       invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
+       return (val & invalid_mask) == 0;
+ }
+ /*
+  * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
+  * emulating VM entry into a guest with EPT enabled.
+  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
+  * is assigned to entry_failure_code on failure.
+  */
+ static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
+                              u32 *entry_failure_code)
+ {
+       if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
+               if (!nested_cr3_valid(vcpu, cr3)) {
+                       *entry_failure_code = ENTRY_FAIL_DEFAULT;
+                       return 1;
+               }
+               /*
+                * If PAE paging and EPT are both on, CR3 is not used by the CPU and
+                * must not be dereferenced.
+                */
+               if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
+                   !nested_ept) {
+                       if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
+                               *entry_failure_code = ENTRY_FAIL_PDPTE;
+                               return 1;
+                       }
+               }
+       }
+       if (!nested_ept)
+               kvm_mmu_new_cr3(vcpu, cr3, false);
+       vcpu->arch.cr3 = cr3;
+       __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
+       kvm_init_mmu(vcpu, false);
+       return 0;
+ }
+ /*
+  * Returns if KVM is able to config CPU to tag TLB entries
+  * populated by L2 differently than TLB entries populated
+  * by L1.
+  *
+  * If L1 uses EPT, then TLB entries are tagged with different EPTP.
+  *
+  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
+  * with different VPID (L1 entries are tagged with vmx->vpid
+  * while L2 entries are tagged with vmx->nested.vpid02).
+  */
+ static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
+ {
+       struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+       return nested_cpu_has_ept(vmcs12) ||
+              (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
+ }
+ static u16 nested_get_vpid02(struct kvm_vcpu *vcpu)
+ {
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid;
+ }
+ static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
+ {
+       return fixed_bits_valid(control, low, high);
+ }
+ static inline u64 vmx_control_msr(u32 low, u32 high)
+ {
+       return low | ((u64)high << 32);
+ }
+ static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
+ {
+       superset &= mask;
+       subset &= mask;
+       return (superset | subset) == superset;
+ }
+ static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
+ {
+       const u64 feature_and_reserved =
+               /* feature (except bit 48; see below) */
+               BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
+               /* reserved */
+               BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
+       u64 vmx_basic = vmx->nested.msrs.basic;
+       if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
+               return -EINVAL;
+       /*
+        * KVM does not emulate a version of VMX that constrains physical
+        * addresses of VMX structures (e.g. VMCS) to 32-bits.
+        */
+       if (data & BIT_ULL(48))
+               return -EINVAL;
+       if (vmx_basic_vmcs_revision_id(vmx_basic) !=
+           vmx_basic_vmcs_revision_id(data))
+               return -EINVAL;
+       if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
+               return -EINVAL;
+       vmx->nested.msrs.basic = data;
+       return 0;
+ }
+ static int
+ vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
+ {
+       u64 supported;
+       u32 *lowp, *highp;
+       switch (msr_index) {
+       case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
+               lowp = &vmx->nested.msrs.pinbased_ctls_low;
+               highp = &vmx->nested.msrs.pinbased_ctls_high;
+               break;
+       case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
+               lowp = &vmx->nested.msrs.procbased_ctls_low;
+               highp = &vmx->nested.msrs.procbased_ctls_high;
+               break;
+       case MSR_IA32_VMX_TRUE_EXIT_CTLS:
+               lowp = &vmx->nested.msrs.exit_ctls_low;
+               highp = &vmx->nested.msrs.exit_ctls_high;
+               break;
+       case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
+               lowp = &vmx->nested.msrs.entry_ctls_low;
+               highp = &vmx->nested.msrs.entry_ctls_high;
+               break;
+       case MSR_IA32_VMX_PROCBASED_CTLS2:
+               lowp = &vmx->nested.msrs.secondary_ctls_low;
+               highp = &vmx->nested.msrs.secondary_ctls_high;
+               break;
+       default:
+               BUG();
+       }
+       supported = vmx_control_msr(*lowp, *highp);
+       /* Check must-be-1 bits are still 1. */
+       if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
+               return -EINVAL;
+       /* Check must-be-0 bits are still 0. */
+       if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
+               return -EINVAL;
+       *lowp = data;
+       *highp = data >> 32;
+       return 0;
+ }
+ static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
+ {
+       const u64 feature_and_reserved_bits =
+               /* feature */
+               BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
+               BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
+               /* reserved */
+               GENMASK_ULL(13, 9) | BIT_ULL(31);
+       u64 vmx_misc;
+       vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
+                                  vmx->nested.msrs.misc_high);
+       if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
+               return -EINVAL;
+       if ((vmx->nested.msrs.pinbased_ctls_high &
+            PIN_BASED_VMX_PREEMPTION_TIMER) &&
+           vmx_misc_preemption_timer_rate(data) !=
+           vmx_misc_preemption_timer_rate(vmx_misc))
+               return -EINVAL;
+       if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
+               return -EINVAL;
+       if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
+               return -EINVAL;
+       if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
+               return -EINVAL;
+       vmx->nested.msrs.misc_low = data;
+       vmx->nested.msrs.misc_high = data >> 32;
+       /*
+        * If L1 has read-only VM-exit information fields, use the
+        * less permissive vmx_vmwrite_bitmap to specify write
+        * permissions for the shadow VMCS.
+        */
+       if (enable_shadow_vmcs && !nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
+               vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
+       return 0;
+ }
+ static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
+ {
+       u64 vmx_ept_vpid_cap;
+       vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
+                                          vmx->nested.msrs.vpid_caps);
+       /* Every bit is either reserved or a feature bit. */
+       if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
+               return -EINVAL;
+       vmx->nested.msrs.ept_caps = data;
+       vmx->nested.msrs.vpid_caps = data >> 32;
+       return 0;
+ }
+ static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
+ {
+       u64 *msr;
+       switch (msr_index) {
+       case MSR_IA32_VMX_CR0_FIXED0:
+               msr = &vmx->nested.msrs.cr0_fixed0;
+               break;
+       case MSR_IA32_VMX_CR4_FIXED0:
+               msr = &vmx->nested.msrs.cr4_fixed0;
+               break;
+       default:
+               BUG();
+       }
+       /*
+        * 1 bits (which indicates bits which "must-be-1" during VMX operation)
+        * must be 1 in the restored value.
+        */
+       if (!is_bitwise_subset(data, *msr, -1ULL))
+               return -EINVAL;
+       *msr = data;
+       return 0;
+ }
+ /*
+  * Called when userspace is restoring VMX MSRs.
+  *
+  * Returns 0 on success, non-0 otherwise.
+  */
+ int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
+ {
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       /*
+        * Don't allow changes to the VMX capability MSRs while the vCPU
+        * is in VMX operation.
+        */
+       if (vmx->nested.vmxon)
+               return -EBUSY;
+       switch (msr_index) {
+       case MSR_IA32_VMX_BASIC:
+               return vmx_restore_vmx_basic(vmx, data);
+       case MSR_IA32_VMX_PINBASED_CTLS:
+       case MSR_IA32_VMX_PROCBASED_CTLS:
+       case MSR_IA32_VMX_EXIT_CTLS:
+       case MSR_IA32_VMX_ENTRY_CTLS:
+               /*
+                * The "non-true" VMX capability MSRs are generated from the
+                * "true" MSRs, so we do not support restoring them directly.
+                *
+                * If userspace wants to emulate VMX_BASIC[55]=0, userspace
+                * should restore the "true" MSRs with the must-be-1 bits
+                * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
+                * DEFAULT SETTINGS".
+                */
+               return -EINVAL;
+       case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
+       case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
+       case MSR_IA32_VMX_TRUE_EXIT_CTLS:
+       case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
+       case MSR_IA32_VMX_PROCBASED_CTLS2:
+               return vmx_restore_control_msr(vmx, msr_index, data);
+       case MSR_IA32_VMX_MISC:
+               return vmx_restore_vmx_misc(vmx, data);
+       case MSR_IA32_VMX_CR0_FIXED0:
+       case MSR_IA32_VMX_CR4_FIXED0:
+               return vmx_restore_fixed0_msr(vmx, msr_index, data);
+       case MSR_IA32_VMX_CR0_FIXED1:
+       case MSR_IA32_VMX_CR4_FIXED1:
+               /*
+                * These MSRs are generated based on the vCPU's CPUID, so we
+                * do not support restoring them directly.
+                */
+               return -EINVAL;
+       case MSR_IA32_VMX_EPT_VPID_CAP:
+               return vmx_restore_vmx_ept_vpid_cap(vmx, data);
+       case MSR_IA32_VMX_VMCS_ENUM:
+               vmx->nested.msrs.vmcs_enum = data;
+               return 0;
+       default:
+               /*
+                * The rest of the VMX capability MSRs do not support restore.
+                */
+               return -EINVAL;
+       }
+ }
+ /* Returns 0 on success, non-0 otherwise. */
+ int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
+ {
+       switch (msr_index) {
+       case MSR_IA32_VMX_BASIC:
+               *pdata = msrs->basic;
+               break;
+       case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
+       case MSR_IA32_VMX_PINBASED_CTLS:
+               *pdata = vmx_control_msr(
+                       msrs->pinbased_ctls_low,
+                       msrs->pinbased_ctls_high);
+               if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
+                       *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
+               break;
+       case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
+       case MSR_IA32_VMX_PROCBASED_CTLS:
+               *pdata = vmx_control_msr(
+                       msrs->procbased_ctls_low,
+                       msrs->procbased_ctls_high);
+               if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
+                       *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
+               break;
+       case MSR_IA32_VMX_TRUE_EXIT_CTLS:
+       case MSR_IA32_VMX_EXIT_CTLS:
+               *pdata = vmx_control_msr(
+                       msrs->exit_ctls_low,
+                       msrs->exit_ctls_high);
+               if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
+                       *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
+               break;
+       case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
+       case MSR_IA32_VMX_ENTRY_CTLS:
+               *pdata = vmx_control_msr(
+                       msrs->entry_ctls_low,
+                       msrs->entry_ctls_high);
+               if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
+                       *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
+               break;
+       case MSR_IA32_VMX_MISC:
+               *pdata = vmx_control_msr(
+                       msrs->misc_low,
+                       msrs->misc_high);
+               break;
+       case MSR_IA32_VMX_CR0_FIXED0:
+               *pdata = msrs->cr0_fixed0;
+               break;
+       case MSR_IA32_VMX_CR0_FIXED1:
+               *pdata = msrs->cr0_fixed1;
+               break;
+       case MSR_IA32_VMX_CR4_FIXED0:
+               *pdata = msrs->cr4_fixed0;
+               break;
+       case MSR_IA32_VMX_CR4_FIXED1:
+               *pdata = msrs->cr4_fixed1;
+               break;
+       case MSR_IA32_VMX_VMCS_ENUM:
+               *pdata = msrs->vmcs_enum;
+               break;
+       case MSR_IA32_VMX_PROCBASED_CTLS2:
+               *pdata = vmx_control_msr(
+                       msrs->secondary_ctls_low,
+                       msrs->secondary_ctls_high);
+               break;
+       case MSR_IA32_VMX_EPT_VPID_CAP:
+               *pdata = msrs->ept_caps |
+                       ((u64)msrs->vpid_caps << 32);
+               break;
+       case MSR_IA32_VMX_VMFUNC:
+               *pdata = msrs->vmfunc_controls;
+               break;
+       default:
+               return 1;
+       }
+       return 0;
+ }
+ /*
+  * Copy the writable VMCS shadow fields back to the VMCS12, in case
+  * they have been modified by the L1 guest. Note that the "read-only"
+  * VM-exit information fields are actually writable if the vCPU is
+  * configured to support "VMWRITE to any supported field in the VMCS."
+  */
+ static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
+ {
+       const u16 *fields[] = {
+               shadow_read_write_fields,
+               shadow_read_only_fields
+       };
+       const int max_fields[] = {
+               max_shadow_read_write_fields,
+               max_shadow_read_only_fields
+       };
+       int i, q;
+       unsigned long field;
+       u64 field_value;
+       struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
+       preempt_disable();
+       vmcs_load(shadow_vmcs);
+       for (q = 0; q < ARRAY_SIZE(fields); q++) {
+               for (i = 0; i < max_fields[q]; i++) {
+                       field = fields[q][i];
+                       field_value = __vmcs_readl(field);
+                       vmcs12_write_any(get_vmcs12(&vmx->vcpu), field, field_value);
+               }
+               /*
+                * Skip the VM-exit information fields if they are read-only.
+                */
+               if (!nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
+                       break;
+       }
+       vmcs_clear(shadow_vmcs);
+       vmcs_load(vmx->loaded_vmcs->vmcs);
+       preempt_enable();
+ }
+ static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
+ {
+       const u16 *fields[] = {
+               shadow_read_write_fields,
+               shadow_read_only_fields
+       };
+       const int max_fields[] = {
+               max_shadow_read_write_fields,
+               max_shadow_read_only_fields
+       };
+       int i, q;
+       unsigned long field;
+       u64 field_value = 0;
+       struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
+       vmcs_load(shadow_vmcs);
+       for (q = 0; q < ARRAY_SIZE(fields); q++) {
+               for (i = 0; i < max_fields[q]; i++) {
+                       field = fields[q][i];
+                       vmcs12_read_any(get_vmcs12(&vmx->vcpu), field, &field_value);
+                       __vmcs_writel(field, field_value);
+               }
+       }
+       vmcs_clear(shadow_vmcs);
+       vmcs_load(vmx->loaded_vmcs->vmcs);
+ }
+ static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
+ {
+       struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
+       struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
+       /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
+       vmcs12->tpr_threshold = evmcs->tpr_threshold;
+       vmcs12->guest_rip = evmcs->guest_rip;
+       if (unlikely(!(evmcs->hv_clean_fields &
+                      HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
+               vmcs12->guest_rsp = evmcs->guest_rsp;
+               vmcs12->guest_rflags = evmcs->guest_rflags;
+               vmcs12->guest_interruptibility_info =
+                       evmcs->guest_interruptibility_info;
+       }
+       if (unlikely(!(evmcs->hv_clean_fields &
+                      HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
+               vmcs12->cpu_based_vm_exec_control =
+                       evmcs->cpu_based_vm_exec_control;
+       }
+       if (unlikely(!(evmcs->hv_clean_fields &
+                      HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
+               vmcs12->exception_bitmap = evmcs->exception_bitmap;
+       }
+       if (unlikely(!(evmcs->hv_clean_fields &
+                      HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
+               vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
+       }
+       if (unlikely(!(evmcs->hv_clean_fields &
+                      HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
+               vmcs12->vm_entry_intr_info_field =
+                       evmcs->vm_entry_intr_info_field;
+               vmcs12->vm_entry_exception_error_code =
+                       evmcs->vm_entry_exception_error_code;
+               vmcs12->vm_entry_instruction_len =
+                       evmcs->vm_entry_instruction_len;
+       }
+       if (unlikely(!(evmcs->hv_clean_fields &
+                      HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
+               vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
+               vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
+               vmcs12->host_cr0 = evmcs->host_cr0;
+               vmcs12->host_cr3 = evmcs->host_cr3;
+               vmcs12->host_cr4 = evmcs->host_cr4;
+               vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
+               vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
+               vmcs12->host_rip = evmcs->host_rip;
+               vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
+               vmcs12->host_es_selector = evmcs->host_es_selector;
+               vmcs12->host_cs_selector = evmcs->host_cs_selector;
+               vmcs12->host_ss_selector = evmcs->host_ss_selector;
+               vmcs12->host_ds_selector = evmcs->host_ds_selector;
+               vmcs12->host_fs_selector = evmcs->host_fs_selector;
+               vmcs12->host_gs_selector = evmcs->host_gs_selector;
+               vmcs12->host_tr_selector = evmcs->host_tr_selector;
+       }
+       if (unlikely(!(evmcs->hv_clean_fields &
+                      HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
+               vmcs12->pin_based_vm_exec_control =
+                       evmcs->pin_based_vm_exec_control;
+               vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
+               vmcs12->secondary_vm_exec_control =
+                       evmcs->secondary_vm_exec_control;
+       }
+       if (unlikely(!(evmcs->hv_clean_fields &
+                      HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
+               vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
+               vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
+       }
+       if (unlikely(!(evmcs->hv_clean_fields &
+                      HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
+               vmcs12->msr_bitmap = evmcs->msr_bitmap;
+       }
+       if (unlikely(!(evmcs->hv_clean_fields &
+                      HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
+               vmcs12->guest_es_base = evmcs->guest_es_base;
+               vmcs12->guest_cs_base = evmcs->guest_cs_base;
+               vmcs12->guest_ss_base = evmcs->guest_ss_base;
+               vmcs12->guest_ds_base = evmcs->guest_ds_base;
+               vmcs12->guest_fs_base = evmcs->guest_fs_base;
+               vmcs12->guest_gs_base = evmcs->guest_gs_base;
+               vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
+               vmcs12->guest_tr_base = evmcs->guest_tr_base;
+               vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
+               vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
+               vmcs12->guest_es_limit = evmcs->guest_es_limit;
+               vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
+               vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
+               vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
+               vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
+               vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
+               vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
+               vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
+               vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
+               vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
+               vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
+               vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
+               vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
+               vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
+               vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
+               vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
+               vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
+               vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
+               vmcs12->guest_es_selector = evmcs->guest_es_selector;
+               vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
+               vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
+               vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
+               vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
+               vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
+               vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
+               vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
+       }
+       if (unlikely(!(evmcs->hv_clean_fields &
+                      HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
+               vmcs12->tsc_offset = evmcs->tsc_offset;
+               vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
+               vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
+       }
+       if (unlikely(!(evmcs->hv_clean_fields &
+                      HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
+               vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
+               vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
+               vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
+               vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
+               vmcs12->guest_cr0 = evmcs->guest_cr0;
+               vmcs12->guest_cr3 = evmcs->guest_cr3;
+               vmcs12->guest_cr4 = evmcs->guest_cr4;
+               vmcs12->guest_dr7 = evmcs->guest_dr7;
+       }
+       if (unlikely(!(evmcs->hv_clean_fields &
+                      HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
+               vmcs12->host_fs_base = evmcs->host_fs_base;
+               vmcs12->host_gs_base = evmcs->host_gs_base;
+               vmcs12->host_tr_base = evmcs->host_tr_base;
+               vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
+               vmcs12->host_idtr_base = evmcs->host_idtr_base;
+               vmcs12->host_rsp = evmcs->host_rsp;
+       }
+       if (unlikely(!(evmcs->hv_clean_fields &
+                      HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
+               vmcs12->ept_pointer = evmcs->ept_pointer;
+               vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
+       }
+       if (unlikely(!(evmcs->hv_clean_fields &
+                      HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
+               vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
+               vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
+               vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
+               vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
+               vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
+               vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
+               vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
+               vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
+               vmcs12->guest_pending_dbg_exceptions =
+                       evmcs->guest_pending_dbg_exceptions;
+               vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
+               vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
+               vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
+               vmcs12->guest_activity_state = evmcs->guest_activity_state;
+               vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
+       }
+       /*
+        * Not used?
+        * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
+        * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
+        * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
+        * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0;
+        * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1;
+        * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2;
+        * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3;
+        * vmcs12->page_fault_error_code_mask =
+        *              evmcs->page_fault_error_code_mask;
+        * vmcs12->page_fault_error_code_match =
+        *              evmcs->page_fault_error_code_match;
+        * vmcs12->cr3_target_count = evmcs->cr3_target_count;
+        * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
+        * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
+        * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
+        */
+       /*
+        * Read only fields:
+        * vmcs12->guest_physical_address = evmcs->guest_physical_address;
+        * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
+        * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
+        * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
+        * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
+        * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
+        * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
+        * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
+        * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
+        * vmcs12->exit_qualification = evmcs->exit_qualification;
+        * vmcs12->guest_linear_address = evmcs->guest_linear_address;
+        *
+        * Not present in struct vmcs12:
+        * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
+        * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
+        * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
+        * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
+        */
+       return 0;
+ }
+ static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
+ {
+       struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
+       struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
+       /*
+        * Should not be changed by KVM:
+        *
+        * evmcs->host_es_selector = vmcs12->host_es_selector;
+        * evmcs->host_cs_selector = vmcs12->host_cs_selector;
+        * evmcs->host_ss_selector = vmcs12->host_ss_selector;
+        * evmcs->host_ds_selector = vmcs12->host_ds_selector;
+        * evmcs->host_fs_selector = vmcs12->host_fs_selector;
+        * evmcs->host_gs_selector = vmcs12->host_gs_selector;
+        * evmcs->host_tr_selector = vmcs12->host_tr_selector;
+        * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
+        * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
+        * evmcs->host_cr0 = vmcs12->host_cr0;
+        * evmcs->host_cr3 = vmcs12->host_cr3;
+        * evmcs->host_cr4 = vmcs12->host_cr4;
+        * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
+        * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
+        * evmcs->host_rip = vmcs12->host_rip;
+        * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
+        * evmcs->host_fs_base = vmcs12->host_fs_base;
+        * evmcs->host_gs_base = vmcs12->host_gs_base;
+        * evmcs->host_tr_base = vmcs12->host_tr_base;
+        * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
+        * evmcs->host_idtr_base = vmcs12->host_idtr_base;
+        * evmcs->host_rsp = vmcs12->host_rsp;
+        * sync_vmcs12() doesn't read these:
+        * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
+        * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
+        * evmcs->msr_bitmap = vmcs12->msr_bitmap;
+        * evmcs->ept_pointer = vmcs12->ept_pointer;
+        * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
+        * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
+        * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
+        * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
+        * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0;
+        * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1;
+        * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2;
+        * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3;
+        * evmcs->tpr_threshold = vmcs12->tpr_threshold;
+        * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
+        * evmcs->exception_bitmap = vmcs12->exception_bitmap;
+        * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
+        * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
+        * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
+        * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
+        * evmcs->page_fault_error_code_mask =
+        *              vmcs12->page_fault_error_code_mask;
+        * evmcs->page_fault_error_code_match =
+        *              vmcs12->page_fault_error_code_match;
+        * evmcs->cr3_target_count = vmcs12->cr3_target_count;
+        * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
+        * evmcs->tsc_offset = vmcs12->tsc_offset;
+        * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
+        * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
+        * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
+        * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
+        * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
+        * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
+        * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
+        * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
+        *
+        * Not present in struct vmcs12:
+        * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
+        * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
+        * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
+        * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
+        */
+       evmcs->guest_es_selector = vmcs12->guest_es_selector;
+       evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
+       evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
+       evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
+       evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
+       evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
+       evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
+       evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
+       evmcs->guest_es_limit = vmcs12->guest_es_limit;
+       evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
+       evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
+       evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
+       evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
+       evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
+       evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
+       evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
+       evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
+       evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
+       evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
+       evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
+       evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
+       evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
+       evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
+       evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
+       evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
+       evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
+       evmcs->guest_es_base = vmcs12->guest_es_base;
+       evmcs->guest_cs_base = vmcs12->guest_cs_base;
+       evmcs->guest_ss_base = vmcs12->guest_ss_base;
+       evmcs->guest_ds_base = vmcs12->guest_ds_base;
+       evmcs->guest_fs_base = vmcs12->guest_fs_base;
+       evmcs->guest_gs_base = vmcs12->guest_gs_base;
+       evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
+       evmcs->guest_tr_base = vmcs12->guest_tr_base;
+       evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
+       evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
+       evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
+       evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
+       evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
+       evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
+       evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
+       evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
+       evmcs->guest_pending_dbg_exceptions =
+               vmcs12->guest_pending_dbg_exceptions;
+       evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
+       evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
+       evmcs->guest_activity_state = vmcs12->guest_activity_state;
+       evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
+       evmcs->guest_cr0 = vmcs12->guest_cr0;
+       evmcs->guest_cr3 = vmcs12->guest_cr3;
+       evmcs->guest_cr4 = vmcs12->guest_cr4;
+       evmcs->guest_dr7 = vmcs12->guest_dr7;
+       evmcs->guest_physical_address = vmcs12->guest_physical_address;
+       evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
+       evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
+       evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
+       evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
+       evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
+       evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
+       evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
+       evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
+       evmcs->exit_qualification = vmcs12->exit_qualification;
+       evmcs->guest_linear_address = vmcs12->guest_linear_address;
+       evmcs->guest_rsp = vmcs12->guest_rsp;
+       evmcs->guest_rflags = vmcs12->guest_rflags;
+       evmcs->guest_interruptibility_info =
+               vmcs12->guest_interruptibility_info;
+       evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
+       evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
+       evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
+       evmcs->vm_entry_exception_error_code =
+               vmcs12->vm_entry_exception_error_code;
+       evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
+       evmcs->guest_rip = vmcs12->guest_rip;
+       evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
+       return 0;
+ }
+ /*
+  * This is an equivalent of the nested hypervisor executing the vmptrld
+  * instruction.
+  */
+ static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu,
+                                                bool from_launch)
+ {
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       struct hv_vp_assist_page assist_page;
+       if (likely(!vmx->nested.enlightened_vmcs_enabled))
+               return 1;
+       if (unlikely(!kvm_hv_get_assist_page(vcpu, &assist_page)))
+               return 1;
+       if (unlikely(!assist_page.enlighten_vmentry))
+               return 1;
+       if (unlikely(assist_page.current_nested_vmcs !=
+                    vmx->nested.hv_evmcs_vmptr)) {
+               if (!vmx->nested.hv_evmcs)
+                       vmx->nested.current_vmptr = -1ull;
+               nested_release_evmcs(vcpu);
+               vmx->nested.hv_evmcs_page = kvm_vcpu_gpa_to_page(
+                       vcpu, assist_page.current_nested_vmcs);
+               if (unlikely(is_error_page(vmx->nested.hv_evmcs_page)))
+                       return 0;
+               vmx->nested.hv_evmcs = kmap(vmx->nested.hv_evmcs_page);
+               /*
+                * Currently, KVM only supports eVMCS version 1
+                * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
+                * value to first u32 field of eVMCS which should specify eVMCS
+                * VersionNumber.
+                *
+                * Guest should be aware of supported eVMCS versions by host by
+                * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
+                * expected to set this CPUID leaf according to the value
+                * returned in vmcs_version from nested_enable_evmcs().
+                *
+                * However, it turns out that Microsoft Hyper-V fails to comply
+                * to their own invented interface: When Hyper-V use eVMCS, it
+                * just sets first u32 field of eVMCS to revision_id specified
+                * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
+                * which is one of the supported versions specified in
+                * CPUID.0x4000000A.EAX[0:15].
+                *
+                * To overcome Hyper-V bug, we accept here either a supported
+                * eVMCS version or VMCS12 revision_id as valid values for first
+                * u32 field of eVMCS.
+                */
+               if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
+                   (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
+                       nested_release_evmcs(vcpu);
+                       return 0;
+               }
+               vmx->nested.dirty_vmcs12 = true;
+               /*
+                * As we keep L2 state for one guest only 'hv_clean_fields' mask
+                * can't be used when we switch between them. Reset it here for
+                * simplicity.
+                */
+               vmx->nested.hv_evmcs->hv_clean_fields &=
+                       ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
+               vmx->nested.hv_evmcs_vmptr = assist_page.current_nested_vmcs;
+               /*
+                * Unlike normal vmcs12, enlightened vmcs12 is not fully
+                * reloaded from guest's memory (read only fields, fields not
+                * present in struct hv_enlightened_vmcs, ...). Make sure there
+                * are no leftovers.
+                */
+               if (from_launch) {
+                       struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+                       memset(vmcs12, 0, sizeof(*vmcs12));
+                       vmcs12->hdr.revision_id = VMCS12_REVISION;
+               }
+       }
+       return 1;
+ }
+ void nested_sync_from_vmcs12(struct kvm_vcpu *vcpu)
+ {
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       /*
+        * hv_evmcs may end up being not mapped after migration (when
+        * L2 was running), map it here to make sure vmcs12 changes are
+        * properly reflected.
+        */
+       if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs)
+               nested_vmx_handle_enlightened_vmptrld(vcpu, false);
+       if (vmx->nested.hv_evmcs) {
+               copy_vmcs12_to_enlightened(vmx);
+               /* All fields are clean */
+               vmx->nested.hv_evmcs->hv_clean_fields |=
+                       HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
+       } else {
+               copy_vmcs12_to_shadow(vmx);
+       }
+       vmx->nested.need_vmcs12_sync = false;
+ }
+ static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
+ {
+       struct vcpu_vmx *vmx =
+               container_of(timer, struct vcpu_vmx, nested.preemption_timer);
+       vmx->nested.preemption_timer_expired = true;
+       kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
+       kvm_vcpu_kick(&vmx->vcpu);
+       return HRTIMER_NORESTART;
+ }
+ static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
+ {
+       u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       /*
+        * A timer value of zero is architecturally guaranteed to cause
+        * a VMExit prior to executing any instructions in the guest.
+        */
+       if (preemption_timeout == 0) {
+               vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
+               return;
+       }
+       if (vcpu->arch.virtual_tsc_khz == 0)
+               return;
+       preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
+       preemption_timeout *= 1000000;
+       do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
+       hrtimer_start(&vmx->nested.preemption_timer,
+                     ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
+ }
+ static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
+ {
+       if (vmx->nested.nested_run_pending &&
+           (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
+               return vmcs12->guest_ia32_efer;
+       else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
+               return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
+       else
+               return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
+ }
+ static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
+ {
+       /*
+        * If vmcs02 hasn't been initialized, set the constant vmcs02 state
+        * according to L0's settings (vmcs12 is irrelevant here).  Host
+        * fields that come from L0 and are not constant, e.g. HOST_CR3,
+        * will be set as needed prior to VMLAUNCH/VMRESUME.
+        */
+       if (vmx->nested.vmcs02_initialized)
+               return;
+       vmx->nested.vmcs02_initialized = true;
+       /*
+        * We don't care what the EPTP value is we just need to guarantee
+        * it's valid so we don't get a false positive when doing early
+        * consistency checks.
+        */
+       if (enable_ept && nested_early_check)
+               vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0));
+       /* All VMFUNCs are currently emulated through L0 vmexits.  */
+       if (cpu_has_vmx_vmfunc())
+               vmcs_write64(VM_FUNCTION_CONTROL, 0);
+       if (cpu_has_vmx_posted_intr())
+               vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
+       if (cpu_has_vmx_msr_bitmap())
+               vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
+       if (enable_pml)
+               vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
+       /*
+        * Set the MSR load/store lists to match L0's settings.  Only the
+        * addresses are constant (for vmcs02), the counts can change based
+        * on L2's behavior, e.g. switching to/from long mode.
+        */
+       vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
+       vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
+       vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
+       vmx_set_constant_host_state(vmx);
+ }
+ static void prepare_vmcs02_early_full(struct vcpu_vmx *vmx,
+                                     struct vmcs12 *vmcs12)
+ {
+       prepare_vmcs02_constant_state(vmx);
+       vmcs_write64(VMCS_LINK_POINTER, -1ull);
+       if (enable_vpid) {
+               if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
+                       vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
+               else
+                       vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
+       }
+ }
+ static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
+ {
+       u32 exec_control, vmcs12_exec_ctrl;
+       u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
+       if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
+               prepare_vmcs02_early_full(vmx, vmcs12);
+       /*
+        * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
+        * entry, but only if the current (host) sp changed from the value
+        * we wrote last (vmx->host_rsp).  This cache is no longer relevant
+        * if we switch vmcs, and rather than hold a separate cache per vmcs,
+        * here we just force the write to happen on entry.  host_rsp will
+        * also be written unconditionally by nested_vmx_check_vmentry_hw()
+        * if we are doing early consistency checks via hardware.
+        */
+       vmx->host_rsp = 0;
+       /*
+        * PIN CONTROLS
+        */
+       exec_control = vmcs12->pin_based_vm_exec_control;
+       /* Preemption timer setting is computed directly in vmx_vcpu_run.  */
+       exec_control |= vmcs_config.pin_based_exec_ctrl;
+       exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
+       vmx->loaded_vmcs->hv_timer_armed = false;
+       /* Posted interrupts setting is only taken from vmcs12.  */
+       if (nested_cpu_has_posted_intr(vmcs12)) {
+               vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
+               vmx->nested.pi_pending = false;
+       } else {
+               exec_control &= ~PIN_BASED_POSTED_INTR;
+       }
+       vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
+       /*
+        * EXEC CONTROLS
+        */
+       exec_control = vmx_exec_control(vmx); /* L0's desires */
+       exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
+       exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
+       exec_control &= ~CPU_BASED_TPR_SHADOW;
+       exec_control |= vmcs12->cpu_based_vm_exec_control;
+       /*
+        * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
+        * nested_get_vmcs12_pages can't fix it up, the illegal value
+        * will result in a VM entry failure.
+        */
+       if (exec_control & CPU_BASED_TPR_SHADOW) {
+               vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
+               vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
+       } else {
+ #ifdef CONFIG_X86_64
+               exec_control |= CPU_BASED_CR8_LOAD_EXITING |
+                               CPU_BASED_CR8_STORE_EXITING;
+ #endif
+       }
+       /*
+        * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
+        * for I/O port accesses.
+        */
+       exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
+       exec_control |= CPU_BASED_UNCOND_IO_EXITING;
+       vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
+       /*
+        * SECONDARY EXEC CONTROLS
+        */
+       if (cpu_has_secondary_exec_ctrls()) {
+               exec_control = vmx->secondary_exec_control;
+               /* Take the following fields only from vmcs12 */
+               exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
+                                 SECONDARY_EXEC_ENABLE_INVPCID |
+                                 SECONDARY_EXEC_RDTSCP |
+                                 SECONDARY_EXEC_XSAVES |
+                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
+                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
+                                 SECONDARY_EXEC_ENABLE_VMFUNC);
+               if (nested_cpu_has(vmcs12,
+                                  CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
+                       vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
+                               ~SECONDARY_EXEC_ENABLE_PML;
+                       exec_control |= vmcs12_exec_ctrl;
+               }
+               /* VMCS shadowing for L2 is emulated for now */
+               exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
+               if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
+                       vmcs_write16(GUEST_INTR_STATUS,
+                               vmcs12->guest_intr_status);
+               /*
+                * Write an illegal value to APIC_ACCESS_ADDR. Later,
+                * nested_get_vmcs12_pages will either fix it up or
+                * remove the VM execution control.
+                */
+               if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
+                       vmcs_write64(APIC_ACCESS_ADDR, -1ull);
+               if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
+                       vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
+               vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
+       }
+       /*
+        * ENTRY CONTROLS
+        *
+        * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
+        * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
+        * on the related bits (if supported by the CPU) in the hope that
+        * we can avoid VMWrites during vmx_set_efer().
+        */
+       exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
+                       ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
+       if (cpu_has_load_ia32_efer()) {
+               if (guest_efer & EFER_LMA)
+                       exec_control |= VM_ENTRY_IA32E_MODE;
+               if (guest_efer != host_efer)
+                       exec_control |= VM_ENTRY_LOAD_IA32_EFER;
+       }
+       vm_entry_controls_init(vmx, exec_control);
+       /*
+        * EXIT CONTROLS
+        *
+        * L2->L1 exit controls are emulated - the hardware exit is to L0 so
+        * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
+        * bits may be modified by vmx_set_efer() in prepare_vmcs02().
+        */
+       exec_control = vmx_vmexit_ctrl();
+       if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
+               exec_control |= VM_EXIT_LOAD_IA32_EFER;
+       vm_exit_controls_init(vmx, exec_control);
+       /*
+        * Conceptually we want to copy the PML address and index from
+        * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
+        * since we always flush the log on each vmexit and never change
+        * the PML address (once set), this happens to be equivalent to
+        * simply resetting the index in vmcs02.
+        */
+       if (enable_pml)
+               vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
+       /*
+        * Interrupt/Exception Fields
+        */
+       if (vmx->nested.nested_run_pending) {
+               vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
+                            vmcs12->vm_entry_intr_info_field);
+               vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
+                            vmcs12->vm_entry_exception_error_code);
+               vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
+                            vmcs12->vm_entry_instruction_len);
+               vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
+                            vmcs12->guest_interruptibility_info);
+               vmx->loaded_vmcs->nmi_known_unmasked =
+                       !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
+       } else {
+               vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
+       }
+ }
+ static void prepare_vmcs02_full(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
+ {
+       struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
+       if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
+                          HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
+               vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
+               vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
+               vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
+               vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
+               vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
+               vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
+               vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
+               vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
+               vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
+               vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
+               vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
+               vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
+               vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
+               vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
+               vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
+               vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
+               vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
+               vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
+               vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
+               vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
+               vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
+               vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
+               vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
+               vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
+               vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
+               vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
+               vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
+               vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
+               vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
+               vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
+               vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
+               vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
+               vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
+               vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
+       }
+       if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
+                          HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
+               vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
+               vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
+                           vmcs12->guest_pending_dbg_exceptions);
+               vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
+               vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
+               /*
+                * L1 may access the L2's PDPTR, so save them to construct
+                * vmcs12
+                */
+               if (enable_ept) {
+                       vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
+                       vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
+                       vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
+                       vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
+               }
+       }
+       if (nested_cpu_has_xsaves(vmcs12))
+               vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
+       /*
+        * Whether page-faults are trapped is determined by a combination of
+        * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
+        * If enable_ept, L0 doesn't care about page faults and we should
+        * set all of these to L1's desires. However, if !enable_ept, L0 does
+        * care about (at least some) page faults, and because it is not easy
+        * (if at all possible?) to merge L0 and L1's desires, we simply ask
+        * to exit on each and every L2 page fault. This is done by setting
+        * MASK=MATCH=0 and (see below) EB.PF=1.
+        * Note that below we don't need special code to set EB.PF beyond the
+        * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
+        * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
+        * !enable_ept, EB.PF is 1, so the "or" will always be 1.
+        */
+       vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
+               enable_ept ? vmcs12->page_fault_error_code_mask : 0);
+       vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
+               enable_ept ? vmcs12->page_fault_error_code_match : 0);
+       if (cpu_has_vmx_apicv()) {
+               vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
+               vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
+               vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
+               vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
+       }
+       vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
+       vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
+       set_cr4_guest_host_mask(vmx);
+       if (kvm_mpx_supported()) {
+               if (vmx->nested.nested_run_pending &&
+                       (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
+                       vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
+               else
+                       vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
+       }
+ }
+ /*
+  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
+  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
+  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
+  * guest in a way that will both be appropriate to L1's requests, and our
+  * needs. In addition to modifying the active vmcs (which is vmcs02), this
+  * function also has additional necessary side-effects, like setting various
+  * vcpu->arch fields.
+  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
+  * is assigned to entry_failure_code on failure.
+  */
+ static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
+                         u32 *entry_failure_code)
+ {
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
+       if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs) {
+               prepare_vmcs02_full(vmx, vmcs12);
+               vmx->nested.dirty_vmcs12 = false;
+       }
+       /*
+        * First, the fields that are shadowed.  This must be kept in sync
+        * with vmcs_shadow_fields.h.
+        */
+       if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
+                          HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
+               vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
+               vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
+       }
+       if (vmx->nested.nested_run_pending &&
+           (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
+               kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
+               vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
+       } else {
+               kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
+               vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
+       }
+       vmx_set_rflags(vcpu, vmcs12->guest_rflags);
+       vmx->nested.preemption_timer_expired = false;
+       if (nested_cpu_has_preemption_timer(vmcs12))
+               vmx_start_preemption_timer(vcpu);
+       /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
+        * bitwise-or of what L1 wants to trap for L2, and what we want to
+        * trap. Note that CR0.TS also needs updating - we do this later.
+        */
+       update_exception_bitmap(vcpu);
+       vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
+       vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
+       if (vmx->nested.nested_run_pending &&
+           (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
+               vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
+               vcpu->arch.pat = vmcs12->guest_ia32_pat;
+       } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
+               vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
+       }
+       vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
+       if (kvm_has_tsc_control)
+               decache_tsc_multiplier(vmx);
+       if (enable_vpid) {
+               /*
+                * There is no direct mapping between vpid02 and vpid12, the
+                * vpid02 is per-vCPU for L0 and reused while the value of
+                * vpid12 is changed w/ one invvpid during nested vmentry.
+                * The vpid12 is allocated by L1 for L2, so it will not
+                * influence global bitmap(for vpid01 and vpid02 allocation)
+                * even if spawn a lot of nested vCPUs.
+                */
+               if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) {
+                       if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
+                               vmx->nested.last_vpid = vmcs12->virtual_processor_id;
+                               __vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false);
+                       }
+               } else {
+                       /*
+                        * If L1 use EPT, then L0 needs to execute INVEPT on
+                        * EPTP02 instead of EPTP01. Therefore, delay TLB
+                        * flush until vmcs02->eptp is fully updated by
+                        * KVM_REQ_LOAD_CR3. Note that this assumes
+                        * KVM_REQ_TLB_FLUSH is evaluated after
+                        * KVM_REQ_LOAD_CR3 in vcpu_enter_guest().
+                        */
+                       kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
+               }
+       }
+       if (nested_cpu_has_ept(vmcs12))
+               nested_ept_init_mmu_context(vcpu);
+       else if (nested_cpu_has2(vmcs12,
+                                SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
+               vmx_flush_tlb(vcpu, true);
+       /*
+        * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
+        * bits which we consider mandatory enabled.
+        * The CR0_READ_SHADOW is what L2 should have expected to read given
+        * the specifications by L1; It's not enough to take
+        * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
+        * have more bits than L1 expected.
+        */
+       vmx_set_cr0(vcpu, vmcs12->guest_cr0);
+       vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
+       vmx_set_cr4(vcpu, vmcs12->guest_cr4);
+       vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
+       vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
+       /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
+       vmx_set_efer(vcpu, vcpu->arch.efer);
+       /*
+        * Guest state is invalid and unrestricted guest is disabled,
+        * which means L1 attempted VMEntry to L2 with invalid state.
+        * Fail the VMEntry.
+        */
+       if (vmx->emulation_required) {
+               *entry_failure_code = ENTRY_FAIL_DEFAULT;
+               return 1;
+       }
+       /* Shadow page tables on either EPT or shadow page tables. */
+       if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
+                               entry_failure_code))
+               return 1;
+       if (!enable_ept)
+               vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
+       kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
+       kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
+       return 0;
+ }
+ static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
+ {
+       if (!nested_cpu_has_nmi_exiting(vmcs12) &&
+           nested_cpu_has_virtual_nmis(vmcs12))
+               return -EINVAL;
+       if (!nested_cpu_has_virtual_nmis(vmcs12) &&
+           nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING))
+               return -EINVAL;
+       return 0;
+ }
+ static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
+ {
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       int maxphyaddr = cpuid_maxphyaddr(vcpu);
+       /* Check for memory type validity */
+       switch (address & VMX_EPTP_MT_MASK) {
+       case VMX_EPTP_MT_UC:
+               if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT))
+                       return false;
+               break;
+       case VMX_EPTP_MT_WB:
+               if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT))
+                       return false;
+               break;
+       default:
+               return false;
+       }
+       /* only 4 levels page-walk length are valid */
+       if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)
+               return false;
+       /* Reserved bits should not be set */
+       if (address >> maxphyaddr || ((address >> 7) & 0x1f))
+               return false;
+       /* AD, if set, should be supported */
+       if (address & VMX_EPTP_AD_ENABLE_BIT) {
+               if (!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT))
+                       return false;
+       }
+       return true;
+ }
+ /*
+  * Checks related to VM-Execution Control Fields
+  */
+ static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
+                                               struct vmcs12 *vmcs12)
+ {
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       if (!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
+                               vmx->nested.msrs.pinbased_ctls_low,
+                               vmx->nested.msrs.pinbased_ctls_high) ||
+           !vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
+                               vmx->nested.msrs.procbased_ctls_low,
+                               vmx->nested.msrs.procbased_ctls_high))
+               return -EINVAL;
+       if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
+           !vmx_control_verify(vmcs12->secondary_vm_exec_control,
+                                vmx->nested.msrs.secondary_ctls_low,
+                                vmx->nested.msrs.secondary_ctls_high))
+               return -EINVAL;
+       if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu) ||
+           nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
+           nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
+           nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
+           nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
+           nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
+           nested_vmx_check_nmi_controls(vmcs12) ||
+           nested_vmx_check_pml_controls(vcpu, vmcs12) ||
+           nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
+           nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
+           nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
+           (nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
+               return -EINVAL;
+       if (nested_cpu_has_ept(vmcs12) &&
+           !valid_ept_address(vcpu, vmcs12->ept_pointer))
+               return -EINVAL;
+       if (nested_cpu_has_vmfunc(vmcs12)) {
+               if (vmcs12->vm_function_control &
+                   ~vmx->nested.msrs.vmfunc_controls)
+                       return -EINVAL;
+               if (nested_cpu_has_eptp_switching(vmcs12)) {
+                       if (!nested_cpu_has_ept(vmcs12) ||
+                           !page_address_valid(vcpu, vmcs12->eptp_list_address))
+                               return -EINVAL;
+               }
+       }
+       return 0;
+ }
+ /*
+  * Checks related to VM-Exit Control Fields
+  */
+ static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
+                                          struct vmcs12 *vmcs12)
+ {
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       if (!vmx_control_verify(vmcs12->vm_exit_controls,
+                               vmx->nested.msrs.exit_ctls_low,
+                               vmx->nested.msrs.exit_ctls_high) ||
+           nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12))
+               return -EINVAL;
+       return 0;
+ }
+ /*
+  * Checks related to VM-Entry Control Fields
+  */
+ static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
+                                         struct vmcs12 *vmcs12)
+ {
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       if (!vmx_control_verify(vmcs12->vm_entry_controls,
+                               vmx->nested.msrs.entry_ctls_low,
+                               vmx->nested.msrs.entry_ctls_high))
+               return -EINVAL;
+       /*
+        * From the Intel SDM, volume 3:
+        * Fields relevant to VM-entry event injection must be set properly.
+        * These fields are the VM-entry interruption-information field, the
+        * VM-entry exception error code, and the VM-entry instruction length.
+        */
+       if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
+               u32 intr_info = vmcs12->vm_entry_intr_info_field;
+               u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
+               u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
+               bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
+               bool should_have_error_code;
+               bool urg = nested_cpu_has2(vmcs12,
+                                          SECONDARY_EXEC_UNRESTRICTED_GUEST);
+               bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
+               /* VM-entry interruption-info field: interruption type */
+               if (intr_type == INTR_TYPE_RESERVED ||
+                   (intr_type == INTR_TYPE_OTHER_EVENT &&
+                    !nested_cpu_supports_monitor_trap_flag(vcpu)))
+                       return -EINVAL;
+               /* VM-entry interruption-info field: vector */
+               if ((intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
+                   (intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
+                   (intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
+                       return -EINVAL;
+               /* VM-entry interruption-info field: deliver error code */
+               should_have_error_code =
+                       intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
+                       x86_exception_has_error_code(vector);
+               if (has_error_code != should_have_error_code)
+                       return -EINVAL;
+               /* VM-entry exception error code */
+               if (has_error_code &&
+                   vmcs12->vm_entry_exception_error_code & GENMASK(31, 15))
+                       return -EINVAL;
+               /* VM-entry interruption-info field: reserved bits */
+               if (intr_info & INTR_INFO_RESVD_BITS_MASK)
+                       return -EINVAL;
+               /* VM-entry instruction length */
+               switch (intr_type) {
+               case INTR_TYPE_SOFT_EXCEPTION:
+               case INTR_TYPE_SOFT_INTR:
+               case INTR_TYPE_PRIV_SW_EXCEPTION:
+                       if ((vmcs12->vm_entry_instruction_len > 15) ||
+                           (vmcs12->vm_entry_instruction_len == 0 &&
+                            !nested_cpu_has_zero_length_injection(vcpu)))
+                               return -EINVAL;
+               }
+       }
+       if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
+               return -EINVAL;
+       return 0;
+ }
+ /*
+  * Checks related to Host Control Registers and MSRs
+  */
+ static int nested_check_host_control_regs(struct kvm_vcpu *vcpu,
+                                           struct vmcs12 *vmcs12)
+ {
+       bool ia32e;
+       if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
+           !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
+           !nested_cr3_valid(vcpu, vmcs12->host_cr3))
+               return -EINVAL;
+       /*
+        * If the load IA32_EFER VM-exit control is 1, bits reserved in the
+        * IA32_EFER MSR must be 0 in the field for that register. In addition,
+        * the values of the LMA and LME bits in the field must each be that of
+        * the host address-space size VM-exit control.
+        */
+       if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
+               ia32e = (vmcs12->vm_exit_controls &
+                        VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
+               if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
+                   ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
+                   ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
+                       return -EINVAL;
+       }
+       return 0;
+ }
+ /*
+  * Checks related to Guest Non-register State
+  */
+ static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
+ {
+       if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
+           vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
+               return -EINVAL;
+       return 0;
+ }
+ static int nested_vmx_check_vmentry_prereqs(struct kvm_vcpu *vcpu,
+                                           struct vmcs12 *vmcs12)
+ {
+       if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
+           nested_check_vm_exit_controls(vcpu, vmcs12) ||
+           nested_check_vm_entry_controls(vcpu, vmcs12))
+               return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+       if (nested_check_host_control_regs(vcpu, vmcs12))
+               return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
+       if (nested_check_guest_non_reg_state(vmcs12))
+               return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+       return 0;
+ }
+ static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
+                                         struct vmcs12 *vmcs12)
+ {
+       int r;
+       struct page *page;
+       struct vmcs12 *shadow;
+       if (vmcs12->vmcs_link_pointer == -1ull)
+               return 0;
+       if (!page_address_valid(vcpu, vmcs12->vmcs_link_pointer))
+               return -EINVAL;
+       page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer);
+       if (is_error_page(page))
+               return -EINVAL;
+       r = 0;
+       shadow = kmap(page);
+       if (shadow->hdr.revision_id != VMCS12_REVISION ||
+           shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12))
+               r = -EINVAL;
+       kunmap(page);
+       kvm_release_page_clean(page);
+       return r;
+ }
+ static int nested_vmx_check_vmentry_postreqs(struct kvm_vcpu *vcpu,
+                                            struct vmcs12 *vmcs12,
+                                            u32 *exit_qual)
+ {
+       bool ia32e;
+       *exit_qual = ENTRY_FAIL_DEFAULT;
+       if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
+           !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
+               return 1;
+       if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
+               *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
+               return 1;
+       }
+       /*
+        * If the load IA32_EFER VM-entry control is 1, the following checks
+        * are performed on the field for the IA32_EFER MSR:
+        * - Bits reserved in the IA32_EFER MSR must be 0.
+        * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
+        *   the IA-32e mode guest VM-exit control. It must also be identical
+        *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
+        *   CR0.PG) is 1.
+        */
+       if (to_vmx(vcpu)->nested.nested_run_pending &&
+           (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
+               ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
+               if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
+                   ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
+                   ((vmcs12->guest_cr0 & X86_CR0_PG) &&
+                    ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
+                       return 1;
+       }
+       if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
+               (is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu) ||
+               (vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD)))
+                       return 1;
+       return 0;
+ }
+ static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
+ {
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       unsigned long cr3, cr4;
+       if (!nested_early_check)
+               return 0;
+       if (vmx->msr_autoload.host.nr)
+               vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
+       if (vmx->msr_autoload.guest.nr)
+               vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
+       preempt_disable();
+       vmx_prepare_switch_to_guest(vcpu);
+       /*
+        * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
+        * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
+        * be written (by preparve_vmcs02()) before the "real" VMEnter, i.e.
+        * there is no need to preserve other bits or save/restore the field.
+        */
+       vmcs_writel(GUEST_RFLAGS, 0);
+       cr3 = __get_current_cr3_fast();
+       if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
+               vmcs_writel(HOST_CR3, cr3);
+               vmx->loaded_vmcs->host_state.cr3 = cr3;
+       }
+       cr4 = cr4_read_shadow();
+       if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
+               vmcs_writel(HOST_CR4, cr4);
+               vmx->loaded_vmcs->host_state.cr4 = cr4;
+       }
+       vmx->__launched = vmx->loaded_vmcs->launched;
+       asm(
+               /* Set HOST_RSP */
+               "sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
+               __ex("vmwrite %%" _ASM_SP ", %%" _ASM_DX) "\n\t"
+               "mov %%" _ASM_SP ", %c[host_rsp](%1)\n\t"
+               "add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
+               /* Check if vmlaunch or vmresume is needed */
+               "cmpl $0, %c[launched](%% " _ASM_CX")\n\t"
+               "call vmx_vmenter\n\t"
+               /* Set vmx->fail accordingly */
+               "setbe %c[fail](%% " _ASM_CX")\n\t"
+             : ASM_CALL_CONSTRAINT
+             : "c"(vmx), "d"((unsigned long)HOST_RSP),
+               [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
+               [fail]"i"(offsetof(struct vcpu_vmx, fail)),
+               [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
+               [wordsize]"i"(sizeof(ulong))
+             : "rax", "cc", "memory"
+       );
+       preempt_enable();
+       if (vmx->msr_autoload.host.nr)
+               vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
+       if (vmx->msr_autoload.guest.nr)
+               vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
+       if (vmx->fail) {
+               WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
+                            VMXERR_ENTRY_INVALID_CONTROL_FIELD);
+               vmx->fail = 0;
+               return 1;
+       }
+       /*
+        * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
+        */
+       local_irq_enable();
+       if (hw_breakpoint_active())
+               set_debugreg(__this_cpu_read(cpu_dr7), 7);
+       /*
+        * A non-failing VMEntry means we somehow entered guest mode with
+        * an illegal RIP, and that's just the tip of the iceberg.  There
+        * is no telling what memory has been modified or what state has
+        * been exposed to unknown code.  Hitting this all but guarantees
+        * a (very critical) hardware issue.
+        */
+       WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
+               VMX_EXIT_REASONS_FAILED_VMENTRY));
+       return 0;
+ }
+ STACK_FRAME_NON_STANDARD(nested_vmx_check_vmentry_hw);
+ static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
+                                                struct vmcs12 *vmcs12);
+ static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
+ {
+       struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       struct page *page;
+       u64 hpa;
+       if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
+               /*
+                * Translate L1 physical address to host physical
+                * address for vmcs02. Keep the page pinned, so this
+                * physical address remains valid. We keep a reference
+                * to it so we can release it later.
+                */
+               if (vmx->nested.apic_access_page) { /* shouldn't happen */
+                       kvm_release_page_dirty(vmx->nested.apic_access_page);
+                       vmx->nested.apic_access_page = NULL;
+               }
+               page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
+               /*
+                * If translation failed, no matter: This feature asks
+                * to exit when accessing the given address, and if it
+                * can never be accessed, this feature won't do
+                * anything anyway.
+                */
+               if (!is_error_page(page)) {
+                       vmx->nested.apic_access_page = page;
+                       hpa = page_to_phys(vmx->nested.apic_access_page);
+                       vmcs_write64(APIC_ACCESS_ADDR, hpa);
+               } else {
+                       vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
+                                       SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
+               }
+       }
+       if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
+               if (vmx->nested.virtual_apic_page) { /* shouldn't happen */
+                       kvm_release_page_dirty(vmx->nested.virtual_apic_page);
+                       vmx->nested.virtual_apic_page = NULL;
+               }
+               page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr);
+               /*
+                * If translation failed, VM entry will fail because
+                * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
+                * Failing the vm entry is _not_ what the processor
+                * does but it's basically the only possibility we
+                * have.  We could still enter the guest if CR8 load
+                * exits are enabled, CR8 store exits are enabled, and
+                * virtualize APIC access is disabled; in this case
+                * the processor would never use the TPR shadow and we
+                * could simply clear the bit from the execution
+                * control.  But such a configuration is useless, so
+                * let's keep the code simple.
+                */
+               if (!is_error_page(page)) {
+                       vmx->nested.virtual_apic_page = page;
+                       hpa = page_to_phys(vmx->nested.virtual_apic_page);
+                       vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
+               }
+       }
+       if (nested_cpu_has_posted_intr(vmcs12)) {
+               if (vmx->nested.pi_desc_page) { /* shouldn't happen */
+                       kunmap(vmx->nested.pi_desc_page);
+                       kvm_release_page_dirty(vmx->nested.pi_desc_page);
+                       vmx->nested.pi_desc_page = NULL;
++                      vmx->nested.pi_desc = NULL;
++                      vmcs_write64(POSTED_INTR_DESC_ADDR, -1ull);
+               }
+               page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr);
+               if (is_error_page(page))
+                       return;
+               vmx->nested.pi_desc_page = page;
+               vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page);
+               vmx->nested.pi_desc =
+                       (struct pi_desc *)((void *)vmx->nested.pi_desc +
+                       (unsigned long)(vmcs12->posted_intr_desc_addr &
+                       (PAGE_SIZE - 1)));
+               vmcs_write64(POSTED_INTR_DESC_ADDR,
+                       page_to_phys(vmx->nested.pi_desc_page) +
+                       (unsigned long)(vmcs12->posted_intr_desc_addr &
+                       (PAGE_SIZE - 1)));
+       }
+       if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
+               vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
+                             CPU_BASED_USE_MSR_BITMAPS);
+       else
+               vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
+                               CPU_BASED_USE_MSR_BITMAPS);
+ }
+ /*
+  * Intel's VMX Instruction Reference specifies a common set of prerequisites
+  * for running VMX instructions (except VMXON, whose prerequisites are
+  * slightly different). It also specifies what exception to inject otherwise.
+  * Note that many of these exceptions have priority over VM exits, so they
+  * don't have to be checked again here.
+  */
+ static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
+ {
+       if (!to_vmx(vcpu)->nested.vmxon) {
+               kvm_queue_exception(vcpu, UD_VECTOR);
+               return 0;
+       }
+       if (vmx_get_cpl(vcpu)) {
+               kvm_inject_gp(vcpu, 0);
+               return 0;
+       }
+       return 1;
+ }
+ static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
+ {
+       u8 rvi = vmx_get_rvi();
+       u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
+       return ((rvi & 0xf0) > (vppr & 0xf0));
+ }
+ static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
+                                  struct vmcs12 *vmcs12);
+ /*
+  * If from_vmentry is false, this is being called from state restore (either RSM
+  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
+ + *
+ + * Returns:
+ + *   0 - success, i.e. proceed with actual VMEnter
+ + *   1 - consistency check VMExit
+ + *  -1 - consistency check VMFail
+  */
+ int nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
+ {
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+       bool evaluate_pending_interrupts;
+       u32 exit_reason = EXIT_REASON_INVALID_STATE;
+       u32 exit_qual;
+       evaluate_pending_interrupts = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
+               (CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING);
+       if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
+               evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
+       if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
+               vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
+       if (kvm_mpx_supported() &&
+               !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
+               vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
+       vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
+       prepare_vmcs02_early(vmx, vmcs12);
+       if (from_vmentry) {
+               nested_get_vmcs12_pages(vcpu);
+               if (nested_vmx_check_vmentry_hw(vcpu)) {
+                       vmx_switch_vmcs(vcpu, &vmx->vmcs01);
+                       return -1;
+               }
+               if (nested_vmx_check_vmentry_postreqs(vcpu, vmcs12, &exit_qual))
+                       goto vmentry_fail_vmexit;
+       }
+       enter_guest_mode(vcpu);
+       if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
+               vcpu->arch.tsc_offset += vmcs12->tsc_offset;
+       if (prepare_vmcs02(vcpu, vmcs12, &exit_qual))
+               goto vmentry_fail_vmexit_guest_mode;
+       if (from_vmentry) {
+               exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
+               exit_qual = nested_vmx_load_msr(vcpu,
+                                               vmcs12->vm_entry_msr_load_addr,
+                                               vmcs12->vm_entry_msr_load_count);
+               if (exit_qual)
+                       goto vmentry_fail_vmexit_guest_mode;
+       } else {
+               /*
+                * The MMU is not initialized to point at the right entities yet and
+                * "get pages" would need to read data from the guest (i.e. we will
+                * need to perform gpa to hpa translation). Request a call
+                * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
+                * have already been set at vmentry time and should not be reset.
+                */
+               kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
+       }
+       /*
+        * If L1 had a pending IRQ/NMI until it executed
+        * VMLAUNCH/VMRESUME which wasn't delivered because it was
+        * disallowed (e.g. interrupts disabled), L0 needs to
+        * evaluate if this pending event should cause an exit from L2
+        * to L1 or delivered directly to L2 (e.g. In case L1 don't
+        * intercept EXTERNAL_INTERRUPT).
+        *
+        * Usually this would be handled by the processor noticing an
+        * IRQ/NMI window request, or checking RVI during evaluation of
+        * pending virtual interrupts.  However, this setting was done
+        * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
+        * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
+        */
+       if (unlikely(evaluate_pending_interrupts))
+               kvm_make_request(KVM_REQ_EVENT, vcpu);
+       /*
+        * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
+        * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
+        * returned as far as L1 is concerned. It will only return (and set
+        * the success flag) when L2 exits (see nested_vmx_vmexit()).
+        */
+       return 0;
+       /*
+        * A failed consistency check that leads to a VMExit during L1's
+        * VMEnter to L2 is a variation of a normal VMexit, as explained in
+        * 26.7 "VM-entry failures during or after loading guest state".
+        */
+ vmentry_fail_vmexit_guest_mode:
+       if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
+               vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
+       leave_guest_mode(vcpu);
+ vmentry_fail_vmexit:
+       vmx_switch_vmcs(vcpu, &vmx->vmcs01);
+       if (!from_vmentry)
+               return 1;
+       load_vmcs12_host_state(vcpu, vmcs12);
+       vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
+       vmcs12->exit_qualification = exit_qual;
+       if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
+               vmx->nested.need_vmcs12_sync = true;
+       return 1;
+ }
+ /*
+  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
+  * for running an L2 nested guest.
+  */
+ static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
+ {
+       struct vmcs12 *vmcs12;
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
+       int ret;
+       if (!nested_vmx_check_permission(vcpu))
+               return 1;
+       if (!nested_vmx_handle_enlightened_vmptrld(vcpu, true))
+               return 1;
+       if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
+               return nested_vmx_failInvalid(vcpu);
+       vmcs12 = get_vmcs12(vcpu);
+       /*
+        * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
+        * that there *is* a valid VMCS pointer, RFLAGS.CF is set
+        * rather than RFLAGS.ZF, and no error number is stored to the
+        * VM-instruction error field.
+        */
+       if (vmcs12->hdr.shadow_vmcs)
+               return nested_vmx_failInvalid(vcpu);
+       if (vmx->nested.hv_evmcs) {
+               copy_enlightened_to_vmcs12(vmx);
+               /* Enlightened VMCS doesn't have launch state */
+               vmcs12->launch_state = !launch;
+       } else if (enable_shadow_vmcs) {
+               copy_shadow_to_vmcs12(vmx);
+       }
+       /*
+        * The nested entry process starts with enforcing various prerequisites
+        * on vmcs12 as required by the Intel SDM, and act appropriately when
+        * they fail: As the SDM explains, some conditions should cause the
+        * instruction to fail, while others will cause the instruction to seem
+        * to succeed, but return an EXIT_REASON_INVALID_STATE.
+        * To speed up the normal (success) code path, we should avoid checking
+        * for misconfigurations which will anyway be caught by the processor
+        * when using the merged vmcs02.
+        */
+       if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
+               return nested_vmx_failValid(vcpu,
+                       VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
+       if (vmcs12->launch_state == launch)
+               return nested_vmx_failValid(vcpu,
+                       launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
+                              : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
+       ret = nested_vmx_check_vmentry_prereqs(vcpu, vmcs12);
+       if (ret)
+               return nested_vmx_failValid(vcpu, ret);
+       /*
+        * We're finally done with prerequisite checking, and can start with
+        * the nested entry.
+        */
+       vmx->nested.nested_run_pending = 1;
+       ret = nested_vmx_enter_non_root_mode(vcpu, true);
+       vmx->nested.nested_run_pending = !ret;
+       if (ret > 0)
+               return 1;
+       else if (ret)
+               return nested_vmx_failValid(vcpu,
+                       VMXERR_ENTRY_INVALID_CONTROL_FIELD);
+       /* Hide L1D cache contents from the nested guest.  */
+       vmx->vcpu.arch.l1tf_flush_l1d = true;
+       /*
+        * Must happen outside of nested_vmx_enter_non_root_mode() as it will
+        * also be used as part of restoring nVMX state for
+        * snapshot restore (migration).
+        *
+        * In this flow, it is assumed that vmcs12 cache was
+        * trasferred as part of captured nVMX state and should
+        * therefore not be read from guest memory (which may not
+        * exist on destination host yet).
+        */
+       nested_cache_shadow_vmcs12(vcpu, vmcs12);
+       /*
+        * If we're entering a halted L2 vcpu and the L2 vcpu won't be
+        * awakened by event injection or by an NMI-window VM-exit or
+        * by an interrupt-window VM-exit, halt the vcpu.
+        */
+       if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
+           !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
+           !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_NMI_PENDING) &&
+           !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_INTR_PENDING) &&
+             (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
+               vmx->nested.nested_run_pending = 0;
+               return kvm_vcpu_halt(vcpu);
+       }
+       return 1;
+ }
+ /*
+  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
+  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
+  * This function returns the new value we should put in vmcs12.guest_cr0.
+  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
+  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
+  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
+  *     didn't trap the bit, because if L1 did, so would L0).
+  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
+  *     been modified by L2, and L1 knows it. So just leave the old value of
+  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
+  *     isn't relevant, because if L0 traps this bit it can set it to anything.
+  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
+  *     changed these bits, and therefore they need to be updated, but L0
+  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
+  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
+  */
+ static inline unsigned long
+ vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
+ {
+       return
+       /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
+       /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
+       /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
+                       vcpu->arch.cr0_guest_owned_bits));
+ }
+ static inline unsigned long
+ vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
+ {
+       return
+       /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
+       /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
+       /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
+                       vcpu->arch.cr4_guest_owned_bits));
+ }
+ static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
+                                     struct vmcs12 *vmcs12)
+ {
+       u32 idt_vectoring;
+       unsigned int nr;
+       if (vcpu->arch.exception.injected) {
+               nr = vcpu->arch.exception.nr;
+               idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
+               if (kvm_exception_is_soft(nr)) {
+                       vmcs12->vm_exit_instruction_len =
+                               vcpu->arch.event_exit_inst_len;
+                       idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
+               } else
+                       idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
+               if (vcpu->arch.exception.has_error_code) {
+                       idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
+                       vmcs12->idt_vectoring_error_code =
+                               vcpu->arch.exception.error_code;
+               }
+               vmcs12->idt_vectoring_info_field = idt_vectoring;
+       } else if (vcpu->arch.nmi_injected) {
+               vmcs12->idt_vectoring_info_field =
+                       INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
+       } else if (vcpu->arch.interrupt.injected) {
+               nr = vcpu->arch.interrupt.nr;
+               idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
+               if (vcpu->arch.interrupt.soft) {
+                       idt_vectoring |= INTR_TYPE_SOFT_INTR;
+                       vmcs12->vm_entry_instruction_len =
+                               vcpu->arch.event_exit_inst_len;
+               } else
+                       idt_vectoring |= INTR_TYPE_EXT_INTR;
+               vmcs12->idt_vectoring_info_field = idt_vectoring;
+       }
+ }
+ static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
+ {
+       struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+       gfn_t gfn;
+       /*
+        * Don't need to mark the APIC access page dirty; it is never
+        * written to by the CPU during APIC virtualization.
+        */
+       if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
+               gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
+               kvm_vcpu_mark_page_dirty(vcpu, gfn);
+       }
+       if (nested_cpu_has_posted_intr(vmcs12)) {
+               gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
+               kvm_vcpu_mark_page_dirty(vcpu, gfn);
+       }
+ }
+ static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
+ {
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       int max_irr;
+       void *vapic_page;
+       u16 status;
+       if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
+               return;
+       vmx->nested.pi_pending = false;
+       if (!pi_test_and_clear_on(vmx->nested.pi_desc))
+               return;
+       max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
+       if (max_irr != 256) {
+               vapic_page = kmap(vmx->nested.virtual_apic_page);
+               __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
+                       vapic_page, &max_irr);
+               kunmap(vmx->nested.virtual_apic_page);
+               status = vmcs_read16(GUEST_INTR_STATUS);
+               if ((u8)max_irr > ((u8)status & 0xff)) {
+                       status &= ~0xff;
+                       status |= (u8)max_irr;
+                       vmcs_write16(GUEST_INTR_STATUS, status);
+               }
+       }
+       nested_mark_vmcs12_pages_dirty(vcpu);
+ }
+ static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
+                                              unsigned long exit_qual)
+ {
+       struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+       unsigned int nr = vcpu->arch.exception.nr;
+       u32 intr_info = nr | INTR_INFO_VALID_MASK;
+       if (vcpu->arch.exception.has_error_code) {
+               vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
+               intr_info |= INTR_INFO_DELIVER_CODE_MASK;
+       }
+       if (kvm_exception_is_soft(nr))
+               intr_info |= INTR_TYPE_SOFT_EXCEPTION;
+       else
+               intr_info |= INTR_TYPE_HARD_EXCEPTION;
+       if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
+           vmx_get_nmi_mask(vcpu))
+               intr_info |= INTR_INFO_UNBLOCK_NMI;
+       nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
+ }
+ static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
+ {
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       unsigned long exit_qual;
+       bool block_nested_events =
+           vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
+       if (vcpu->arch.exception.pending &&
+               nested_vmx_check_exception(vcpu, &exit_qual)) {
+               if (block_nested_events)
+                       return -EBUSY;
+               nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
+               return 0;
+       }
+       if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
+           vmx->nested.preemption_timer_expired) {
+               if (block_nested_events)
+                       return -EBUSY;
+               nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
+               return 0;
+       }
+       if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
+               if (block_nested_events)
+                       return -EBUSY;
+               nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
+                                 NMI_VECTOR | INTR_TYPE_NMI_INTR |
+                                 INTR_INFO_VALID_MASK, 0);
+               /*
+                * The NMI-triggered VM exit counts as injection:
+                * clear this one and block further NMIs.
+                */
+               vcpu->arch.nmi_pending = 0;
+               vmx_set_nmi_mask(vcpu, true);
+               return 0;
+       }
+       if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
+           nested_exit_on_intr(vcpu)) {
+               if (block_nested_events)
+                       return -EBUSY;
+               nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
+               return 0;
+       }
+       vmx_complete_nested_posted_interrupt(vcpu);
+       return 0;
+ }
+ static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
+ {
+       ktime_t remaining =
+               hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
+       u64 value;
+       if (ktime_to_ns(remaining) <= 0)
+               return 0;
+       value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
+       do_div(value, 1000000);
+       return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
+ }
+ /*
+  * Update the guest state fields of vmcs12 to reflect changes that
+  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
+  * VM-entry controls is also updated, since this is really a guest
+  * state bit.)
+  */
+ static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
+ {
+       vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
+       vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
+       vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
+       vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
+       vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
+       vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
+       vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
+       vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
+       vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
+       vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
+       vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
+       vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
+       vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
+       vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
+       vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
+       vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
+       vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
+       vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
+       vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
+       vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
+       vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
+       vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
+       vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
+       vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
+       vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
+       vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
+       vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
+       vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
+       vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
+       vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
+       vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
+       vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
+       vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
+       vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
+       vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
+       vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
+       vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
+       vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
+       vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
+       vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
+       vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
+       vmcs12->guest_interruptibility_info =
+               vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
+       vmcs12->guest_pending_dbg_exceptions =
+               vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
+       if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
+               vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
+       else
+               vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
+       if (nested_cpu_has_preemption_timer(vmcs12)) {
+               if (vmcs12->vm_exit_controls &
+                   VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
+                       vmcs12->vmx_preemption_timer_value =
+                               vmx_get_preemption_timer_value(vcpu);
+               hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
+       }
+       /*
+        * In some cases (usually, nested EPT), L2 is allowed to change its
+        * own CR3 without exiting. If it has changed it, we must keep it.
+        * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
+        * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
+        *
+        * Additionally, restore L2's PDPTR to vmcs12.
+        */
+       if (enable_ept) {
+               vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
+               vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
+               vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
+               vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
+               vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
+       }
+       vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
+       if (nested_cpu_has_vid(vmcs12))
+               vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
+       vmcs12->vm_entry_controls =
+               (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
+               (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
+       if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
+               kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
+               vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
+       }
+       /* TODO: These cannot have changed unless we have MSR bitmaps and
+        * the relevant bit asks not to trap the change */
+       if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
+               vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
+       if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
+               vmcs12->guest_ia32_efer = vcpu->arch.efer;
+       vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
+       vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
+       vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
+       if (kvm_mpx_supported())
+               vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
+ }
+ /*
+  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
+  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
+  * and this function updates it to reflect the changes to the guest state while
+  * L2 was running (and perhaps made some exits which were handled directly by L0
+  * without going back to L1), and to reflect the exit reason.
+  * Note that we do not have to copy here all VMCS fields, just those that
+  * could have changed by the L2 guest or the exit - i.e., the guest-state and
+  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
+  * which already writes to vmcs12 directly.
+  */
+ static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
+                          u32 exit_reason, u32 exit_intr_info,
+                          unsigned long exit_qualification)
+ {
+       /* update guest state fields: */
+       sync_vmcs12(vcpu, vmcs12);
+       /* update exit information fields: */
+       vmcs12->vm_exit_reason = exit_reason;
+       vmcs12->exit_qualification = exit_qualification;
+       vmcs12->vm_exit_intr_info = exit_intr_info;
+       vmcs12->idt_vectoring_info_field = 0;
+       vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
+       vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+       if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
+               vmcs12->launch_state = 1;
+               /* vm_entry_intr_info_field is cleared on exit. Emulate this
+                * instead of reading the real value. */
+               vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
+               /*
+                * Transfer the event that L0 or L1 may wanted to inject into
+                * L2 to IDT_VECTORING_INFO_FIELD.
+                */
+               vmcs12_save_pending_event(vcpu, vmcs12);
+               /*
+                * According to spec, there's no need to store the guest's
+                * MSRs if the exit is due to a VM-entry failure that occurs
+                * during or after loading the guest state. Since this exit
+                * does not fall in that category, we need to save the MSRs.
+                */
+               if (nested_vmx_store_msr(vcpu,
+                                        vmcs12->vm_exit_msr_store_addr,
+                                        vmcs12->vm_exit_msr_store_count))
+                       nested_vmx_abort(vcpu,
+                                        VMX_ABORT_SAVE_GUEST_MSR_FAIL);
+       }
+       /*
+        * Drop what we picked up for L2 via vmx_complete_interrupts. It is
+        * preserved above and would only end up incorrectly in L1.
+        */
+       vcpu->arch.nmi_injected = false;
+       kvm_clear_exception_queue(vcpu);
+       kvm_clear_interrupt_queue(vcpu);
+ }
+ /*
+  * A part of what we need to when the nested L2 guest exits and we want to
+  * run its L1 parent, is to reset L1's guest state to the host state specified
+  * in vmcs12.
+  * This function is to be called not only on normal nested exit, but also on
+  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
+  * Failures During or After Loading Guest State").
+  * This function should be called when the active VMCS is L1's (vmcs01).
+  */
+ static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
+                                  struct vmcs12 *vmcs12)
+ {
+       struct kvm_segment seg;
+       u32 entry_failure_code;
+       if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
+               vcpu->arch.efer = vmcs12->host_ia32_efer;
+       else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
+               vcpu->arch.efer |= (EFER_LMA | EFER_LME);
+       else
+               vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
+       vmx_set_efer(vcpu, vcpu->arch.efer);
+       kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
+       kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
+       vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
+       vmx_set_interrupt_shadow(vcpu, 0);
+       /*
+        * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
+        * actually changed, because vmx_set_cr0 refers to efer set above.
+        *
+        * CR0_GUEST_HOST_MASK is already set in the original vmcs01
+        * (KVM doesn't change it);
+        */
+       vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
+       vmx_set_cr0(vcpu, vmcs12->host_cr0);
+       /* Same as above - no reason to call set_cr4_guest_host_mask().  */
+       vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
+       vmx_set_cr4(vcpu, vmcs12->host_cr4);
+       nested_ept_uninit_mmu_context(vcpu);
+       /*
+        * Only PDPTE load can fail as the value of cr3 was checked on entry and
+        * couldn't have changed.
+        */
+       if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
+               nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
+       if (!enable_ept)
+               vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
+       /*
+        * If vmcs01 doesn't use VPID, CPU flushes TLB on every
+        * VMEntry/VMExit. Thus, no need to flush TLB.
+        *
+        * If vmcs12 doesn't use VPID, L1 expects TLB to be
+        * flushed on every VMEntry/VMExit.
+        *
+        * Otherwise, we can preserve TLB entries as long as we are
+        * able to tag L1 TLB entries differently than L2 TLB entries.
+        *
+        * If vmcs12 uses EPT, we need to execute this flush on EPTP01
+        * and therefore we request the TLB flush to happen only after VMCS EPTP
+        * has been set by KVM_REQ_LOAD_CR3.
+        */
+       if (enable_vpid &&
+           (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) {
+               kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
+       }
+       vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
+       vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
+       vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
+       vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
+       vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
+       vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
+       vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
+       /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
+       if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
+               vmcs_write64(GUEST_BNDCFGS, 0);
+       if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
+               vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
+               vcpu->arch.pat = vmcs12->host_ia32_pat;
+       }
+       if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
+               vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
+                       vmcs12->host_ia32_perf_global_ctrl);
+       /* Set L1 segment info according to Intel SDM
+           27.5.2 Loading Host Segment and Descriptor-Table Registers */
+       seg = (struct kvm_segment) {
+               .base = 0,
+               .limit = 0xFFFFFFFF,
+               .selector = vmcs12->host_cs_selector,
+               .type = 11,
+               .present = 1,
+               .s = 1,
+               .g = 1
+       };
+       if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
+               seg.l = 1;
+       else
+               seg.db = 1;
+       vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
+       seg = (struct kvm_segment) {
+               .base = 0,
+               .limit = 0xFFFFFFFF,
+               .type = 3,
+               .present = 1,
+               .s = 1,
+               .db = 1,
+               .g = 1
+       };
+       seg.selector = vmcs12->host_ds_selector;
+       vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
+       seg.selector = vmcs12->host_es_selector;
+       vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
+       seg.selector = vmcs12->host_ss_selector;
+       vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
+       seg.selector = vmcs12->host_fs_selector;
+       seg.base = vmcs12->host_fs_base;
+       vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
+       seg.selector = vmcs12->host_gs_selector;
+       seg.base = vmcs12->host_gs_base;
+       vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
+       seg = (struct kvm_segment) {
+               .base = vmcs12->host_tr_base,
+               .limit = 0x67,
+               .selector = vmcs12->host_tr_selector,
+               .type = 11,
+               .present = 1
+       };
+       vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
+       kvm_set_dr(vcpu, 7, 0x400);
+       vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
+       if (cpu_has_vmx_msr_bitmap())
+               vmx_update_msr_bitmap(vcpu);
+       if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
+                               vmcs12->vm_exit_msr_load_count))
+               nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
+ }
+ static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
+ {
+       struct shared_msr_entry *efer_msr;
+       unsigned int i;
+       if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
+               return vmcs_read64(GUEST_IA32_EFER);
+       if (cpu_has_load_ia32_efer())
+               return host_efer;
+       for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
+               if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
+                       return vmx->msr_autoload.guest.val[i].value;
+       }
+       efer_msr = find_msr_entry(vmx, MSR_EFER);
+       if (efer_msr)
+               return efer_msr->data;
+       return host_efer;
+ }
+ static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
+ {
+       struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       struct vmx_msr_entry g, h;
+       struct msr_data msr;
+       gpa_t gpa;
+       u32 i, j;
+       vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
+       if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
+               /*
+                * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
+                * as vmcs01.GUEST_DR7 contains a userspace defined value
+                * and vcpu->arch.dr7 is not squirreled away before the
+                * nested VMENTER (not worth adding a variable in nested_vmx).
+                */
+               if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
+                       kvm_set_dr(vcpu, 7, DR7_FIXED_1);
+               else
+                       WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
+       }
+       /*
+        * Note that calling vmx_set_{efer,cr0,cr4} is important as they
+        * handle a variety of side effects to KVM's software model.
+        */
+       vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
+       vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
+       vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
+       vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
+       vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
+       nested_ept_uninit_mmu_context(vcpu);
+       vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
+       __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
+       /*
+        * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
+        * from vmcs01 (if necessary).  The PDPTRs are not loaded on
+        * VMFail, like everything else we just need to ensure our
+        * software model is up-to-date.
+        */
+       ept_save_pdptrs(vcpu);
+       kvm_mmu_reset_context(vcpu);
+       if (cpu_has_vmx_msr_bitmap())
+               vmx_update_msr_bitmap(vcpu);
+       /*
+        * This nasty bit of open coding is a compromise between blindly
+        * loading L1's MSRs using the exit load lists (incorrect emulation
+        * of VMFail), leaving the nested VM's MSRs in the software model
+        * (incorrect behavior) and snapshotting the modified MSRs (too
+        * expensive since the lists are unbound by hardware).  For each
+        * MSR that was (prematurely) loaded from the nested VMEntry load
+        * list, reload it from the exit load list if it exists and differs
+        * from the guest value.  The intent is to stuff host state as
+        * silently as possible, not to fully process the exit load list.
+        */
+       msr.host_initiated = false;
+       for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
+               gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
+               if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
+                       pr_debug_ratelimited(
+                               "%s read MSR index failed (%u, 0x%08llx)\n",
+                               __func__, i, gpa);
+                       goto vmabort;
+               }
+               for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
+                       gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
+                       if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
+                               pr_debug_ratelimited(
+                                       "%s read MSR failed (%u, 0x%08llx)\n",
+                                       __func__, j, gpa);
+                               goto vmabort;
+                       }
+                       if (h.index != g.index)
+                               continue;
+                       if (h.value == g.value)
+                               break;
+                       if (nested_vmx_load_msr_check(vcpu, &h)) {
+                               pr_debug_ratelimited(
+                                       "%s check failed (%u, 0x%x, 0x%x)\n",
+                                       __func__, j, h.index, h.reserved);
+                               goto vmabort;
+                       }
+                       msr.index = h.index;
+                       msr.data = h.value;
+                       if (kvm_set_msr(vcpu, &msr)) {
+                               pr_debug_ratelimited(
+                                       "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
+                                       __func__, j, h.index, h.value);
+                               goto vmabort;
+                       }
+               }
+       }
+       return;
+ vmabort:
+       nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
+ }
+ /*
+  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
+  * and modify vmcs12 to make it see what it would expect to see there if
+  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
+  */
+ void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
+                      u32 exit_intr_info, unsigned long exit_qualification)
+ {
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+       /* trying to cancel vmlaunch/vmresume is a bug */
+       WARN_ON_ONCE(vmx->nested.nested_run_pending);
+       leave_guest_mode(vcpu);
+       if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
+               vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
+       if (likely(!vmx->fail)) {
+               if (exit_reason == -1)
+                       sync_vmcs12(vcpu, vmcs12);
+               else
+                       prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
+                                      exit_qualification);
+               /*
+                * Must happen outside of sync_vmcs12() as it will
+                * also be used to capture vmcs12 cache as part of
+                * capturing nVMX state for snapshot (migration).
+                *
+                * Otherwise, this flush will dirty guest memory at a
+                * point it is already assumed by user-space to be
+                * immutable.
+                */
+               nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
+       } else {
+               /*
+                * The only expected VM-instruction error is "VM entry with
+                * invalid control field(s)." Anything else indicates a
+                * problem with L0.  And we should never get here with a
+                * VMFail of any type if early consistency checks are enabled.
+                */
+               WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
+                            VMXERR_ENTRY_INVALID_CONTROL_FIELD);
+               WARN_ON_ONCE(nested_early_check);
+       }
+       vmx_switch_vmcs(vcpu, &vmx->vmcs01);
+       /* Update any VMCS fields that might have changed while L2 ran */
+       vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
+       vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
+       vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
+       if (kvm_has_tsc_control)
+               decache_tsc_multiplier(vmx);
+       if (vmx->nested.change_vmcs01_virtual_apic_mode) {
+               vmx->nested.change_vmcs01_virtual_apic_mode = false;
+               vmx_set_virtual_apic_mode(vcpu);
+       } else if (!nested_cpu_has_ept(vmcs12) &&
+                  nested_cpu_has2(vmcs12,
+                                  SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
+               vmx_flush_tlb(vcpu, true);
+       }
+       /* This is needed for same reason as it was needed in prepare_vmcs02 */
+       vmx->host_rsp = 0;
+       /* Unpin physical memory we referred to in vmcs02 */
+       if (vmx->nested.apic_access_page) {
+               kvm_release_page_dirty(vmx->nested.apic_access_page);
+               vmx->nested.apic_access_page = NULL;
+       }
+       if (vmx->nested.virtual_apic_page) {
+               kvm_release_page_dirty(vmx->nested.virtual_apic_page);
+               vmx->nested.virtual_apic_page = NULL;
+       }
+       if (vmx->nested.pi_desc_page) {
+               kunmap(vmx->nested.pi_desc_page);
+               kvm_release_page_dirty(vmx->nested.pi_desc_page);
+               vmx->nested.pi_desc_page = NULL;
+               vmx->nested.pi_desc = NULL;
+       }
+       /*
+        * We are now running in L2, mmu_notifier will force to reload the
+        * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
+        */
+       kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
+       if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs))
+               vmx->nested.need_vmcs12_sync = true;
+       /* in case we halted in L2 */
+       vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
+       if (likely(!vmx->fail)) {
+               /*
+                * TODO: SDM says that with acknowledge interrupt on
+                * exit, bit 31 of the VM-exit interrupt information
+                * (valid interrupt) is always set to 1 on
+                * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
+                * need kvm_cpu_has_interrupt().  See the commit
+                * message for details.
+                */
+               if (nested_exit_intr_ack_set(vcpu) &&
+                   exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
+                   kvm_cpu_has_interrupt(vcpu)) {
+                       int irq = kvm_cpu_get_interrupt(vcpu);
+                       WARN_ON(irq < 0);
+                       vmcs12->vm_exit_intr_info = irq |
+                               INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
+               }
+               if (exit_reason != -1)
+                       trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
+                                                      vmcs12->exit_qualification,
+                                                      vmcs12->idt_vectoring_info_field,
+                                                      vmcs12->vm_exit_intr_info,
+                                                      vmcs12->vm_exit_intr_error_code,
+                                                      KVM_ISA_VMX);
+               load_vmcs12_host_state(vcpu, vmcs12);
+               return;
+       }
+       /*
+        * After an early L2 VM-entry failure, we're now back
+        * in L1 which thinks it just finished a VMLAUNCH or
+        * VMRESUME instruction, so we need to set the failure
+        * flag and the VM-instruction error field of the VMCS
+        * accordingly, and skip the emulated instruction.
+        */
+       (void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
+       /*
+        * Restore L1's host state to KVM's software model.  We're here
+        * because a consistency check was caught by hardware, which
+        * means some amount of guest state has been propagated to KVM's
+        * model and needs to be unwound to the host's state.
+        */
+       nested_vmx_restore_host_state(vcpu);
+       vmx->fail = 0;
+ }
+ /*
+  * Decode the memory-address operand of a vmx instruction, as recorded on an
+  * exit caused by such an instruction (run by a guest hypervisor).
+  * On success, returns 0. When the operand is invalid, returns 1 and throws
+  * #UD or #GP.
+  */
+ int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
+                       u32 vmx_instruction_info, bool wr, gva_t *ret)
+ {
+       gva_t off;
+       bool exn;
+       struct kvm_segment s;
+       /*
+        * According to Vol. 3B, "Information for VM Exits Due to Instruction
+        * Execution", on an exit, vmx_instruction_info holds most of the
+        * addressing components of the operand. Only the displacement part
+        * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
+        * For how an actual address is calculated from all these components,
+        * refer to Vol. 1, "Operand Addressing".
+        */
+       int  scaling = vmx_instruction_info & 3;
+       int  addr_size = (vmx_instruction_info >> 7) & 7;
+       bool is_reg = vmx_instruction_info & (1u << 10);
+       int  seg_reg = (vmx_instruction_info >> 15) & 7;
+       int  index_reg = (vmx_instruction_info >> 18) & 0xf;
+       bool index_is_valid = !(vmx_instruction_info & (1u << 22));
+       int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
+       bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
+       if (is_reg) {
+               kvm_queue_exception(vcpu, UD_VECTOR);
+               return 1;
+       }
+       /* Addr = segment_base + offset */
+       /* offset = base + [index * scale] + displacement */
+       off = exit_qualification; /* holds the displacement */
+       if (base_is_valid)
+               off += kvm_register_read(vcpu, base_reg);
+       if (index_is_valid)
+               off += kvm_register_read(vcpu, index_reg)<<scaling;
+       vmx_get_segment(vcpu, &s, seg_reg);
+       *ret = s.base + off;
+       if (addr_size == 1) /* 32 bit */
+               *ret &= 0xffffffff;
+       /* Checks for #GP/#SS exceptions. */
+       exn = false;
+       if (is_long_mode(vcpu)) {
+               /* Long mode: #GP(0)/#SS(0) if the memory address is in a
+                * non-canonical form. This is the only check on the memory
+                * destination for long mode!
+                */
+               exn = is_noncanonical_address(*ret, vcpu);
+       } else if (is_protmode(vcpu)) {
+               /* Protected mode: apply checks for segment validity in the
+                * following order:
+                * - segment type check (#GP(0) may be thrown)
+                * - usability check (#GP(0)/#SS(0))
+                * - limit check (#GP(0)/#SS(0))
+                */
+               if (wr)
+                       /* #GP(0) if the destination operand is located in a
+                        * read-only data segment or any code segment.
+                        */
+                       exn = ((s.type & 0xa) == 0 || (s.type & 8));
+               else
+                       /* #GP(0) if the source operand is located in an
+                        * execute-only code segment
+                        */
+                       exn = ((s.type & 0xa) == 8);
+               if (exn) {
+                       kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
+                       return 1;
+               }
+               /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
+                */
+               exn = (s.unusable != 0);
+               /* Protected mode: #GP(0)/#SS(0) if the memory
+                * operand is outside the segment limit.
+                */
+               exn = exn || (off + sizeof(u64) > s.limit);
+       }
+       if (exn) {
+               kvm_queue_exception_e(vcpu,
+                                     seg_reg == VCPU_SREG_SS ?
+                                               SS_VECTOR : GP_VECTOR,
+                                     0);
+               return 1;
+       }
+       return 0;
+ }
+ static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
+ {
+       gva_t gva;
+       struct x86_exception e;
+       if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
+                       vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
+               return 1;
+       if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
+               kvm_inject_page_fault(vcpu, &e);
+               return 1;
+       }
+       return 0;
+ }
+ /*
+  * Allocate a shadow VMCS and associate it with the currently loaded
+  * VMCS, unless such a shadow VMCS already exists. The newly allocated
+  * VMCS is also VMCLEARed, so that it is ready for use.
+  */
+ static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
+ {
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
+       /*
+        * We should allocate a shadow vmcs for vmcs01 only when L1
+        * executes VMXON and free it when L1 executes VMXOFF.
+        * As it is invalid to execute VMXON twice, we shouldn't reach
+        * here when vmcs01 already have an allocated shadow vmcs.
+        */
+       WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
+       if (!loaded_vmcs->shadow_vmcs) {
+               loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
+               if (loaded_vmcs->shadow_vmcs)
+                       vmcs_clear(loaded_vmcs->shadow_vmcs);
+       }
+       return loaded_vmcs->shadow_vmcs;
+ }
+ static int enter_vmx_operation(struct kvm_vcpu *vcpu)
+ {
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       int r;
+       r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
+       if (r < 0)
+               goto out_vmcs02;
+       vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
+       if (!vmx->nested.cached_vmcs12)
+               goto out_cached_vmcs12;
+       vmx->nested.cached_shadow_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
+       if (!vmx->nested.cached_shadow_vmcs12)
+               goto out_cached_shadow_vmcs12;
+       if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
+               goto out_shadow_vmcs;
+       hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
+                    HRTIMER_MODE_REL_PINNED);
+       vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
+       vmx->nested.vpid02 = allocate_vpid();
+       vmx->nested.vmcs02_initialized = false;
+       vmx->nested.vmxon = true;
+       if (pt_mode == PT_MODE_HOST_GUEST) {
+               vmx->pt_desc.guest.ctl = 0;
+               pt_update_intercept_for_msr(vmx);
+       }
+       return 0;
+ out_shadow_vmcs:
+       kfree(vmx->nested.cached_shadow_vmcs12);
+ out_cached_shadow_vmcs12:
+       kfree(vmx->nested.cached_vmcs12);
+ out_cached_vmcs12:
+       free_loaded_vmcs(&vmx->nested.vmcs02);
+ out_vmcs02:
+       return -ENOMEM;
+ }
+ /*
+  * Emulate the VMXON instruction.
+  * Currently, we just remember that VMX is active, and do not save or even
+  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
+  * do not currently need to store anything in that guest-allocated memory
+  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
+  * argument is different from the VMXON pointer (which the spec says they do).
+  */
+ static int handle_vmon(struct kvm_vcpu *vcpu)
+ {
+       int ret;
+       gpa_t vmptr;
+       struct page *page;
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
+               | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
+       /*
+        * The Intel VMX Instruction Reference lists a bunch of bits that are
+        * prerequisite to running VMXON, most notably cr4.VMXE must be set to
+        * 1 (see vmx_set_cr4() for when we allow the guest to set this).
+        * Otherwise, we should fail with #UD.  But most faulting conditions
+        * have already been checked by hardware, prior to the VM-exit for
+        * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
+        * that bit set to 1 in non-root mode.
+        */
+       if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
+               kvm_queue_exception(vcpu, UD_VECTOR);
+               return 1;
+       }
+       /* CPL=0 must be checked manually. */
+       if (vmx_get_cpl(vcpu)) {
+               kvm_inject_gp(vcpu, 0);
+               return 1;
+       }
+       if (vmx->nested.vmxon)
+               return nested_vmx_failValid(vcpu,
+                       VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
+       if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
+                       != VMXON_NEEDED_FEATURES) {
+               kvm_inject_gp(vcpu, 0);
+               return 1;
+       }
+       if (nested_vmx_get_vmptr(vcpu, &vmptr))
+               return 1;
+       /*
+        * SDM 3: 24.11.5
+        * The first 4 bytes of VMXON region contain the supported
+        * VMCS revision identifier
+        *
+        * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
+        * which replaces physical address width with 32
+        */
+       if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
+               return nested_vmx_failInvalid(vcpu);
+       page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
+       if (is_error_page(page))
+               return nested_vmx_failInvalid(vcpu);
+       if (*(u32 *)kmap(page) != VMCS12_REVISION) {
+               kunmap(page);
+               kvm_release_page_clean(page);
+               return nested_vmx_failInvalid(vcpu);
+       }
+       kunmap(page);
+       kvm_release_page_clean(page);
+       vmx->nested.vmxon_ptr = vmptr;
+       ret = enter_vmx_operation(vcpu);
+       if (ret)
+               return ret;
+       return nested_vmx_succeed(vcpu);
+ }
+ static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
+ {
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       if (vmx->nested.current_vmptr == -1ull)
+               return;
+       if (enable_shadow_vmcs) {
+               /* copy to memory all shadowed fields in case
+                  they were modified */
+               copy_shadow_to_vmcs12(vmx);
+               vmx->nested.need_vmcs12_sync = false;
+               vmx_disable_shadow_vmcs(vmx);
+       }
+       vmx->nested.posted_intr_nv = -1;
+       /* Flush VMCS12 to guest memory */
+       kvm_vcpu_write_guest_page(vcpu,
+                                 vmx->nested.current_vmptr >> PAGE_SHIFT,
+                                 vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
+       kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
+       vmx->nested.current_vmptr = -1ull;
+ }
+ /* Emulate the VMXOFF instruction */
+ static int handle_vmoff(struct kvm_vcpu *vcpu)
+ {
+       if (!nested_vmx_check_permission(vcpu))
+               return 1;
+       free_nested(vcpu);
+       return nested_vmx_succeed(vcpu);
+ }
+ /* Emulate the VMCLEAR instruction */
+ static int handle_vmclear(struct kvm_vcpu *vcpu)
+ {
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       u32 zero = 0;
+       gpa_t vmptr;
+       if (!nested_vmx_check_permission(vcpu))
+               return 1;
+       if (nested_vmx_get_vmptr(vcpu, &vmptr))
+               return 1;
+       if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
+               return nested_vmx_failValid(vcpu,
+                       VMXERR_VMCLEAR_INVALID_ADDRESS);
+       if (vmptr == vmx->nested.vmxon_ptr)
+               return nested_vmx_failValid(vcpu,
+                       VMXERR_VMCLEAR_VMXON_POINTER);
+       if (vmx->nested.hv_evmcs_page) {
+               if (vmptr == vmx->nested.hv_evmcs_vmptr)
+                       nested_release_evmcs(vcpu);
+       } else {
+               if (vmptr == vmx->nested.current_vmptr)
+                       nested_release_vmcs12(vcpu);
+               kvm_vcpu_write_guest(vcpu,
+                                    vmptr + offsetof(struct vmcs12,
+                                                     launch_state),
+                                    &zero, sizeof(zero));
+       }
+       return nested_vmx_succeed(vcpu);
+ }
+ static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
+ /* Emulate the VMLAUNCH instruction */
+ static int handle_vmlaunch(struct kvm_vcpu *vcpu)
+ {
+       return nested_vmx_run(vcpu, true);
+ }
+ /* Emulate the VMRESUME instruction */
+ static int handle_vmresume(struct kvm_vcpu *vcpu)
+ {
+       return nested_vmx_run(vcpu, false);
+ }
+ static int handle_vmread(struct kvm_vcpu *vcpu)
+ {
+       unsigned long field;
+       u64 field_value;
+       unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+       u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+       gva_t gva = 0;
+       struct vmcs12 *vmcs12;
+       if (!nested_vmx_check_permission(vcpu))
+               return 1;
+       if (to_vmx(vcpu)->nested.current_vmptr == -1ull)
+               return nested_vmx_failInvalid(vcpu);
+       if (!is_guest_mode(vcpu))
+               vmcs12 = get_vmcs12(vcpu);
+       else {
+               /*
+                * When vmcs->vmcs_link_pointer is -1ull, any VMREAD
+                * to shadowed-field sets the ALU flags for VMfailInvalid.
+                */
+               if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
+                       return nested_vmx_failInvalid(vcpu);
+               vmcs12 = get_shadow_vmcs12(vcpu);
+       }
+       /* Decode instruction info and find the field to read */
+       field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
+       /* Read the field, zero-extended to a u64 field_value */
+       if (vmcs12_read_any(vmcs12, field, &field_value) < 0)
+               return nested_vmx_failValid(vcpu,
+                       VMXERR_UNSUPPORTED_VMCS_COMPONENT);
+       /*
+        * Now copy part of this value to register or memory, as requested.
+        * Note that the number of bits actually copied is 32 or 64 depending
+        * on the guest's mode (32 or 64 bit), not on the given field's length.
+        */
+       if (vmx_instruction_info & (1u << 10)) {
+               kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
+                       field_value);
+       } else {
+               if (get_vmx_mem_address(vcpu, exit_qualification,
+                               vmx_instruction_info, true, &gva))
+                       return 1;
+               /* _system ok, nested_vmx_check_permission has verified cpl=0 */
+               kvm_write_guest_virt_system(vcpu, gva, &field_value,
+                                           (is_long_mode(vcpu) ? 8 : 4), NULL);
+       }
+       return nested_vmx_succeed(vcpu);
+ }
+ static int handle_vmwrite(struct kvm_vcpu *vcpu)
+ {
+       unsigned long field;
+       gva_t gva;
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+       u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+       /* The value to write might be 32 or 64 bits, depending on L1's long
+        * mode, and eventually we need to write that into a field of several
+        * possible lengths. The code below first zero-extends the value to 64
+        * bit (field_value), and then copies only the appropriate number of
+        * bits into the vmcs12 field.
+        */
+       u64 field_value = 0;
+       struct x86_exception e;
+       struct vmcs12 *vmcs12;
+       if (!nested_vmx_check_permission(vcpu))
+               return 1;
+       if (vmx->nested.current_vmptr == -1ull)
+               return nested_vmx_failInvalid(vcpu);
+       if (vmx_instruction_info & (1u << 10))
+               field_value = kvm_register_readl(vcpu,
+                       (((vmx_instruction_info) >> 3) & 0xf));
+       else {
+               if (get_vmx_mem_address(vcpu, exit_qualification,
+                               vmx_instruction_info, false, &gva))
+                       return 1;
+               if (kvm_read_guest_virt(vcpu, gva, &field_value,
+                                       (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
+                       kvm_inject_page_fault(vcpu, &e);
+                       return 1;
+               }
+       }
+       field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
+       /*
+        * If the vCPU supports "VMWRITE to any supported field in the
+        * VMCS," then the "read-only" fields are actually read/write.
+        */
+       if (vmcs_field_readonly(field) &&
+           !nested_cpu_has_vmwrite_any_field(vcpu))
+               return nested_vmx_failValid(vcpu,
+                       VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
+       if (!is_guest_mode(vcpu))
+               vmcs12 = get_vmcs12(vcpu);
+       else {
+               /*
+                * When vmcs->vmcs_link_pointer is -1ull, any VMWRITE
+                * to shadowed-field sets the ALU flags for VMfailInvalid.
+                */
+               if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
+                       return nested_vmx_failInvalid(vcpu);
+               vmcs12 = get_shadow_vmcs12(vcpu);
+       }
+       if (vmcs12_write_any(vmcs12, field, field_value) < 0)
+               return nested_vmx_failValid(vcpu,
+                       VMXERR_UNSUPPORTED_VMCS_COMPONENT);
+       /*
+        * Do not track vmcs12 dirty-state if in guest-mode
+        * as we actually dirty shadow vmcs12 instead of vmcs12.
+        */
+       if (!is_guest_mode(vcpu)) {
+               switch (field) {
+ #define SHADOW_FIELD_RW(x) case x:
+ #include "vmcs_shadow_fields.h"
+                       /*
+                        * The fields that can be updated by L1 without a vmexit are
+                        * always updated in the vmcs02, the others go down the slow
+                        * path of prepare_vmcs02.
+                        */
+                       break;
+               default:
+                       vmx->nested.dirty_vmcs12 = true;
+                       break;
+               }
+       }
+       return nested_vmx_succeed(vcpu);
+ }
+ static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
+ {
+       vmx->nested.current_vmptr = vmptr;
+       if (enable_shadow_vmcs) {
+               vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
+                             SECONDARY_EXEC_SHADOW_VMCS);
+               vmcs_write64(VMCS_LINK_POINTER,
+                            __pa(vmx->vmcs01.shadow_vmcs));
+               vmx->nested.need_vmcs12_sync = true;
+       }
+       vmx->nested.dirty_vmcs12 = true;
+ }
+ /* Emulate the VMPTRLD instruction */
+ static int handle_vmptrld(struct kvm_vcpu *vcpu)
+ {
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       gpa_t vmptr;
+       if (!nested_vmx_check_permission(vcpu))
+               return 1;
+       if (nested_vmx_get_vmptr(vcpu, &vmptr))
+               return 1;
+       if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
+               return nested_vmx_failValid(vcpu,
+                       VMXERR_VMPTRLD_INVALID_ADDRESS);
+       if (vmptr == vmx->nested.vmxon_ptr)
+               return nested_vmx_failValid(vcpu,
+                       VMXERR_VMPTRLD_VMXON_POINTER);
+       /* Forbid normal VMPTRLD if Enlightened version was used */
+       if (vmx->nested.hv_evmcs)
+               return 1;
+       if (vmx->nested.current_vmptr != vmptr) {
+               struct vmcs12 *new_vmcs12;
+               struct page *page;
+               page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
+               if (is_error_page(page)) {
+                       /*
+                        * Reads from an unbacked page return all 1s,
+                        * which means that the 32 bits located at the
+                        * given physical address won't match the required
+                        * VMCS12_REVISION identifier.
+                        */
+                       nested_vmx_failValid(vcpu,
+                               VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
+                       return kvm_skip_emulated_instruction(vcpu);
+               }
+               new_vmcs12 = kmap(page);
+               if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
+                   (new_vmcs12->hdr.shadow_vmcs &&
+                    !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
+                       kunmap(page);
+                       kvm_release_page_clean(page);
+                       return nested_vmx_failValid(vcpu,
+                               VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
+               }
+               nested_release_vmcs12(vcpu);
+               /*
+                * Load VMCS12 from guest memory since it is not already
+                * cached.
+                */
+               memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
+               kunmap(page);
+               kvm_release_page_clean(page);
+               set_current_vmptr(vmx, vmptr);
+       }
+       return nested_vmx_succeed(vcpu);
+ }
+ /* Emulate the VMPTRST instruction */
+ static int handle_vmptrst(struct kvm_vcpu *vcpu)
+ {
+       unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
+       u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+       gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
+       struct x86_exception e;
+       gva_t gva;
+       if (!nested_vmx_check_permission(vcpu))
+               return 1;
+       if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
+               return 1;
+       if (get_vmx_mem_address(vcpu, exit_qual, instr_info, true, &gva))
+               return 1;
+       /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
+       if (kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
+                                       sizeof(gpa_t), &e)) {
+               kvm_inject_page_fault(vcpu, &e);
+               return 1;
+       }
+       return nested_vmx_succeed(vcpu);
+ }
+ /* Emulate the INVEPT instruction */
+ static int handle_invept(struct kvm_vcpu *vcpu)
+ {
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       u32 vmx_instruction_info, types;
+       unsigned long type;
+       gva_t gva;
+       struct x86_exception e;
+       struct {
+               u64 eptp, gpa;
+       } operand;
+       if (!(vmx->nested.msrs.secondary_ctls_high &
+             SECONDARY_EXEC_ENABLE_EPT) ||
+           !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
+               kvm_queue_exception(vcpu, UD_VECTOR);
+               return 1;
+       }
+       if (!nested_vmx_check_permission(vcpu))
+               return 1;
+       vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+       type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
+       types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
+       if (type >= 32 || !(types & (1 << type)))
+               return nested_vmx_failValid(vcpu,
+                               VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
+       /* According to the Intel VMX instruction reference, the memory
+        * operand is read even if it isn't needed (e.g., for type==global)
+        */
+       if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
+                       vmx_instruction_info, false, &gva))
+               return 1;
+       if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
+               kvm_inject_page_fault(vcpu, &e);
+               return 1;
+       }
+       switch (type) {
+       case VMX_EPT_EXTENT_GLOBAL:
+       /*
+        * TODO: track mappings and invalidate
+        * single context requests appropriately
+        */
+       case VMX_EPT_EXTENT_CONTEXT:
+               kvm_mmu_sync_roots(vcpu);
+               kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
+               break;
+       default:
+               BUG_ON(1);
+               break;
+       }
+       return nested_vmx_succeed(vcpu);
+ }
+ static int handle_invvpid(struct kvm_vcpu *vcpu)
+ {
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       u32 vmx_instruction_info;
+       unsigned long type, types;
+       gva_t gva;
+       struct x86_exception e;
+       struct {
+               u64 vpid;
+               u64 gla;
+       } operand;
+       u16 vpid02;
+       if (!(vmx->nested.msrs.secondary_ctls_high &
+             SECONDARY_EXEC_ENABLE_VPID) ||
+                       !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
+               kvm_queue_exception(vcpu, UD_VECTOR);
+               return 1;
+       }
+       if (!nested_vmx_check_permission(vcpu))
+               return 1;
+       vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+       type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
+       types = (vmx->nested.msrs.vpid_caps &
+                       VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
+       if (type >= 32 || !(types & (1 << type)))
+               return nested_vmx_failValid(vcpu,
+                       VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
+       /* according to the intel vmx instruction reference, the memory
+        * operand is read even if it isn't needed (e.g., for type==global)
+        */
+       if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
+                       vmx_instruction_info, false, &gva))
+               return 1;
+       if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
+               kvm_inject_page_fault(vcpu, &e);
+               return 1;
+       }
+       if (operand.vpid >> 16)
+               return nested_vmx_failValid(vcpu,
+                       VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
+       vpid02 = nested_get_vpid02(vcpu);
+       switch (type) {
+       case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
+               if (!operand.vpid ||
+                   is_noncanonical_address(operand.gla, vcpu))
+                       return nested_vmx_failValid(vcpu,
+                               VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
+               if (cpu_has_vmx_invvpid_individual_addr()) {
+                       __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
+                               vpid02, operand.gla);
+               } else
+                       __vmx_flush_tlb(vcpu, vpid02, false);
+               break;
+       case VMX_VPID_EXTENT_SINGLE_CONTEXT:
+       case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
+               if (!operand.vpid)
+                       return nested_vmx_failValid(vcpu,
+                               VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
+               __vmx_flush_tlb(vcpu, vpid02, false);
+               break;
+       case VMX_VPID_EXTENT_ALL_CONTEXT:
+               __vmx_flush_tlb(vcpu, vpid02, false);
+               break;
+       default:
+               WARN_ON_ONCE(1);
+               return kvm_skip_emulated_instruction(vcpu);
+       }
+       return nested_vmx_succeed(vcpu);
+ }
+ static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
+                                    struct vmcs12 *vmcs12)
+ {
+       u32 index = vcpu->arch.regs[VCPU_REGS_RCX];
+       u64 address;
+       bool accessed_dirty;
+       struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
+       if (!nested_cpu_has_eptp_switching(vmcs12) ||
+           !nested_cpu_has_ept(vmcs12))
+               return 1;
+       if (index >= VMFUNC_EPTP_ENTRIES)
+               return 1;
+       if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
+                                    &address, index * 8, 8))
+               return 1;
+       accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
+       /*
+        * If the (L2) guest does a vmfunc to the currently
+        * active ept pointer, we don't have to do anything else
+        */
+       if (vmcs12->ept_pointer != address) {
+               if (!valid_ept_address(vcpu, address))
+                       return 1;
+               kvm_mmu_unload(vcpu);
+               mmu->ept_ad = accessed_dirty;
+               mmu->mmu_role.base.ad_disabled = !accessed_dirty;
+               vmcs12->ept_pointer = address;
+               /*
+                * TODO: Check what's the correct approach in case
+                * mmu reload fails. Currently, we just let the next
+                * reload potentially fail
+                */
+               kvm_mmu_reload(vcpu);
+       }
+       return 0;
+ }
+ static int handle_vmfunc(struct kvm_vcpu *vcpu)
+ {
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       struct vmcs12 *vmcs12;
+       u32 function = vcpu->arch.regs[VCPU_REGS_RAX];
+       /*
+        * VMFUNC is only supported for nested guests, but we always enable the
+        * secondary control for simplicity; for non-nested mode, fake that we
+        * didn't by injecting #UD.
+        */
+       if (!is_guest_mode(vcpu)) {
+               kvm_queue_exception(vcpu, UD_VECTOR);
+               return 1;
+       }
+       vmcs12 = get_vmcs12(vcpu);
+       if ((vmcs12->vm_function_control & (1 << function)) == 0)
+               goto fail;
+       switch (function) {
+       case 0:
+               if (nested_vmx_eptp_switching(vcpu, vmcs12))
+                       goto fail;
+               break;
+       default:
+               goto fail;
+       }
+       return kvm_skip_emulated_instruction(vcpu);
+ fail:
+       nested_vmx_vmexit(vcpu, vmx->exit_reason,
+                         vmcs_read32(VM_EXIT_INTR_INFO),
+                         vmcs_readl(EXIT_QUALIFICATION));
+       return 1;
+ }
+ static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
+                                      struct vmcs12 *vmcs12)
+ {
+       unsigned long exit_qualification;
+       gpa_t bitmap, last_bitmap;
+       unsigned int port;
+       int size;
+       u8 b;
+       if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
+               return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
+       exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+       port = exit_qualification >> 16;
+       size = (exit_qualification & 7) + 1;
+       last_bitmap = (gpa_t)-1;
+       b = -1;
+       while (size > 0) {
+               if (port < 0x8000)
+                       bitmap = vmcs12->io_bitmap_a;
+               else if (port < 0x10000)
+                       bitmap = vmcs12->io_bitmap_b;
+               else
+                       return true;
+               bitmap += (port & 0x7fff) / 8;
+               if (last_bitmap != bitmap)
+                       if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
+                               return true;
+               if (b & (1 << (port & 7)))
+                       return true;
+               port++;
+               size--;
+               last_bitmap = bitmap;
+       }
+       return false;
+ }
+ /*
+  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
+  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
+  * disinterest in the current event (read or write a specific MSR) by using an
+  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
+  */
+ static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
+       struct vmcs12 *vmcs12, u32 exit_reason)
+ {
+       u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
+       gpa_t bitmap;
+       if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
+               return true;
+       /*
+        * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
+        * for the four combinations of read/write and low/high MSR numbers.
+        * First we need to figure out which of the four to use:
+        */
+       bitmap = vmcs12->msr_bitmap;
+       if (exit_reason == EXIT_REASON_MSR_WRITE)
+               bitmap += 2048;
+       if (msr_index >= 0xc0000000) {
+               msr_index -= 0xc0000000;
+               bitmap += 1024;
+       }
+       /* Then read the msr_index'th bit from this bitmap: */
+       if (msr_index < 1024*8) {
+               unsigned char b;
+               if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
+                       return true;
+               return 1 & (b >> (msr_index & 7));
+       } else
+               return true; /* let L1 handle the wrong parameter */
+ }
+ /*
+  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
+  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
+  * intercept (via guest_host_mask etc.) the current event.
+  */
+ static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
+       struct vmcs12 *vmcs12)
+ {
+       unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+       int cr = exit_qualification & 15;
+       int reg;
+       unsigned long val;
+       switch ((exit_qualification >> 4) & 3) {
+       case 0: /* mov to cr */
+               reg = (exit_qualification >> 8) & 15;
+               val = kvm_register_readl(vcpu, reg);
+               switch (cr) {
+               case 0:
+                       if (vmcs12->cr0_guest_host_mask &
+                           (val ^ vmcs12->cr0_read_shadow))
+                               return true;
+                       break;
+               case 3:
+                       if ((vmcs12->cr3_target_count >= 1 &&
+                                       vmcs12->cr3_target_value0 == val) ||
+                               (vmcs12->cr3_target_count >= 2 &&
+                                       vmcs12->cr3_target_value1 == val) ||
+                               (vmcs12->cr3_target_count >= 3 &&
+                                       vmcs12->cr3_target_value2 == val) ||
+                               (vmcs12->cr3_target_count >= 4 &&
+                                       vmcs12->cr3_target_value3 == val))
+                               return false;
+                       if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
+                               return true;
+                       break;
+               case 4:
+                       if (vmcs12->cr4_guest_host_mask &
+                           (vmcs12->cr4_read_shadow ^ val))
+                               return true;
+                       break;
+               case 8:
+                       if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
+                               return true;
+                       break;
+               }
+               break;
+       case 2: /* clts */
+               if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
+                   (vmcs12->cr0_read_shadow & X86_CR0_TS))
+                       return true;
+               break;
+       case 1: /* mov from cr */
+               switch (cr) {
+               case 3:
+                       if (vmcs12->cpu_based_vm_exec_control &
+                           CPU_BASED_CR3_STORE_EXITING)
+                               return true;
+                       break;
+               case 8:
+                       if (vmcs12->cpu_based_vm_exec_control &
+                           CPU_BASED_CR8_STORE_EXITING)
+                               return true;
+                       break;
+               }
+               break;
+       case 3: /* lmsw */
+               /*
+                * lmsw can change bits 1..3 of cr0, and only set bit 0 of
+                * cr0. Other attempted changes are ignored, with no exit.
+                */
+               val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
+               if (vmcs12->cr0_guest_host_mask & 0xe &
+                   (val ^ vmcs12->cr0_read_shadow))
+                       return true;
+               if ((vmcs12->cr0_guest_host_mask & 0x1) &&
+                   !(vmcs12->cr0_read_shadow & 0x1) &&
+                   (val & 0x1))
+                       return true;
+               break;
+       }
+       return false;
+ }
+ static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
+       struct vmcs12 *vmcs12, gpa_t bitmap)
+ {
+       u32 vmx_instruction_info;
+       unsigned long field;
+       u8 b;
+       if (!nested_cpu_has_shadow_vmcs(vmcs12))
+               return true;
+       /* Decode instruction info and find the field to access */
+       vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+       field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
+       /* Out-of-range fields always cause a VM exit from L2 to L1 */
+       if (field >> 15)
+               return true;
+       if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
+               return true;
+       return 1 & (b >> (field & 7));
+ }
+ /*
+  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
+  * should handle it ourselves in L0 (and then continue L2). Only call this
+  * when in is_guest_mode (L2).
+  */
+ bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
+ {
+       u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+       if (vmx->nested.nested_run_pending)
+               return false;
+       if (unlikely(vmx->fail)) {
+               pr_info_ratelimited("%s failed vm entry %x\n", __func__,
+                                   vmcs_read32(VM_INSTRUCTION_ERROR));
+               return true;
+       }
+       /*
+        * The host physical addresses of some pages of guest memory
+        * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
+        * Page). The CPU may write to these pages via their host
+        * physical address while L2 is running, bypassing any
+        * address-translation-based dirty tracking (e.g. EPT write
+        * protection).
+        *
+        * Mark them dirty on every exit from L2 to prevent them from
+        * getting out of sync with dirty tracking.
+        */
+       nested_mark_vmcs12_pages_dirty(vcpu);
+       trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
+                               vmcs_readl(EXIT_QUALIFICATION),
+                               vmx->idt_vectoring_info,
+                               intr_info,
+                               vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
+                               KVM_ISA_VMX);
+       switch (exit_reason) {
+       case EXIT_REASON_EXCEPTION_NMI:
+               if (is_nmi(intr_info))
+                       return false;
+               else if (is_page_fault(intr_info))
+                       return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
+               else if (is_debug(intr_info) &&
+                        vcpu->guest_debug &
+                        (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
+                       return false;
+               else if (is_breakpoint(intr_info) &&
+                        vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
+                       return false;
+               return vmcs12->exception_bitmap &
+                               (1u << (intr_info & INTR_INFO_VECTOR_MASK));
+       case EXIT_REASON_EXTERNAL_INTERRUPT:
+               return false;
+       case EXIT_REASON_TRIPLE_FAULT:
+               return true;
+       case EXIT_REASON_PENDING_INTERRUPT:
+               return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
+       case EXIT_REASON_NMI_WINDOW:
+               return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
+       case EXIT_REASON_TASK_SWITCH:
+               return true;
+       case EXIT_REASON_CPUID:
+               return true;
+       case EXIT_REASON_HLT:
+               return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
+       case EXIT_REASON_INVD:
+               return true;
+       case EXIT_REASON_INVLPG:
+               return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
+       case EXIT_REASON_RDPMC:
+               return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
+       case EXIT_REASON_RDRAND:
+               return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
+       case EXIT_REASON_RDSEED:
+               return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
+       case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
+               return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
+       case EXIT_REASON_VMREAD:
+               return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
+                       vmcs12->vmread_bitmap);
+       case EXIT_REASON_VMWRITE:
+               return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
+                       vmcs12->vmwrite_bitmap);
+       case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
+       case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
+       case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
+       case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
+       case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
+               /*
+                * VMX instructions trap unconditionally. This allows L1 to
+                * emulate them for its L2 guest, i.e., allows 3-level nesting!
+                */
+               return true;
+       case EXIT_REASON_CR_ACCESS:
+               return nested_vmx_exit_handled_cr(vcpu, vmcs12);
+       case EXIT_REASON_DR_ACCESS:
+               return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
+       case EXIT_REASON_IO_INSTRUCTION:
+               return nested_vmx_exit_handled_io(vcpu, vmcs12);
+       case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
+               return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
+       case EXIT_REASON_MSR_READ:
+       case EXIT_REASON_MSR_WRITE:
+               return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
+       case EXIT_REASON_INVALID_STATE:
+               return true;
+       case EXIT_REASON_MWAIT_INSTRUCTION:
+               return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
+       case EXIT_REASON_MONITOR_TRAP_FLAG:
+               return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
+       case EXIT_REASON_MONITOR_INSTRUCTION:
+               return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
+       case EXIT_REASON_PAUSE_INSTRUCTION:
+               return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
+                       nested_cpu_has2(vmcs12,
+                               SECONDARY_EXEC_PAUSE_LOOP_EXITING);
+       case EXIT_REASON_MCE_DURING_VMENTRY:
+               return false;
+       case EXIT_REASON_TPR_BELOW_THRESHOLD:
+               return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
+       case EXIT_REASON_APIC_ACCESS:
+       case EXIT_REASON_APIC_WRITE:
+       case EXIT_REASON_EOI_INDUCED:
+               /*
+                * The controls for "virtualize APIC accesses," "APIC-
+                * register virtualization," and "virtual-interrupt
+                * delivery" only come from vmcs12.
+                */
+               return true;
+       case EXIT_REASON_EPT_VIOLATION:
+               /*
+                * L0 always deals with the EPT violation. If nested EPT is
+                * used, and the nested mmu code discovers that the address is
+                * missing in the guest EPT table (EPT12), the EPT violation
+                * will be injected with nested_ept_inject_page_fault()
+                */
+               return false;
+       case EXIT_REASON_EPT_MISCONFIG:
+               /*
+                * L2 never uses directly L1's EPT, but rather L0's own EPT
+                * table (shadow on EPT) or a merged EPT table that L0 built
+                * (EPT on EPT). So any problems with the structure of the
+                * table is L0's fault.
+                */
+               return false;
+       case EXIT_REASON_INVPCID:
+               return
+                       nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
+                       nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
+       case EXIT_REASON_WBINVD:
+               return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
+       case EXIT_REASON_XSETBV:
+               return true;
+       case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
+               /*
+                * This should never happen, since it is not possible to
+                * set XSS to a non-zero value---neither in L1 nor in L2.
+                * If if it were, XSS would have to be checked against
+                * the XSS exit bitmap in vmcs12.
+                */
+               return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
+       case EXIT_REASON_PREEMPTION_TIMER:
+               return false;
+       case EXIT_REASON_PML_FULL:
+               /* We emulate PML support to L1. */
+               return false;
+       case EXIT_REASON_VMFUNC:
+               /* VM functions are emulated through L2->L0 vmexits. */
+               return false;
+       case EXIT_REASON_ENCLS:
+               /* SGX is never exposed to L1 */
+               return false;
+       default:
+               return true;
+       }
+ }
+ static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
+                               struct kvm_nested_state __user *user_kvm_nested_state,
+                               u32 user_data_size)
+ {
+       struct vcpu_vmx *vmx;
+       struct vmcs12 *vmcs12;
+       struct kvm_nested_state kvm_state = {
+               .flags = 0,
+               .format = 0,
+               .size = sizeof(kvm_state),
+               .vmx.vmxon_pa = -1ull,
+               .vmx.vmcs_pa = -1ull,
+       };
+       if (!vcpu)
+               return kvm_state.size + 2 * VMCS12_SIZE;
+       vmx = to_vmx(vcpu);
+       vmcs12 = get_vmcs12(vcpu);
+       if (nested_vmx_allowed(vcpu) && vmx->nested.enlightened_vmcs_enabled)
+               kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
+       if (nested_vmx_allowed(vcpu) &&
+           (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
+               kvm_state.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
+               kvm_state.vmx.vmcs_pa = vmx->nested.current_vmptr;
+               if (vmx_has_valid_vmcs12(vcpu)) {
+                       kvm_state.size += VMCS12_SIZE;
+                       if (is_guest_mode(vcpu) &&
+                           nested_cpu_has_shadow_vmcs(vmcs12) &&
+                           vmcs12->vmcs_link_pointer != -1ull)
+                               kvm_state.size += VMCS12_SIZE;
+               }
+               if (vmx->nested.smm.vmxon)
+                       kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
+               if (vmx->nested.smm.guest_mode)
+                       kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
+               if (is_guest_mode(vcpu)) {
+                       kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
+                       if (vmx->nested.nested_run_pending)
+                               kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
+               }
+       }
+       if (user_data_size < kvm_state.size)
+               goto out;
+       if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
+               return -EFAULT;
+       if (!vmx_has_valid_vmcs12(vcpu))
+               goto out;
+       /*
+        * When running L2, the authoritative vmcs12 state is in the
+        * vmcs02. When running L1, the authoritative vmcs12 state is
+        * in the shadow or enlightened vmcs linked to vmcs01, unless
+        * need_vmcs12_sync is set, in which case, the authoritative
+        * vmcs12 state is in the vmcs12 already.
+        */
+       if (is_guest_mode(vcpu)) {
+               sync_vmcs12(vcpu, vmcs12);
+       } else if (!vmx->nested.need_vmcs12_sync) {
+               if (vmx->nested.hv_evmcs)
+                       copy_enlightened_to_vmcs12(vmx);
+               else if (enable_shadow_vmcs)
+                       copy_shadow_to_vmcs12(vmx);
+       }
+       if (copy_to_user(user_kvm_nested_state->data, vmcs12, sizeof(*vmcs12)))
+               return -EFAULT;
+       if (nested_cpu_has_shadow_vmcs(vmcs12) &&
+           vmcs12->vmcs_link_pointer != -1ull) {
+               if (copy_to_user(user_kvm_nested_state->data + VMCS12_SIZE,
+                                get_shadow_vmcs12(vcpu), sizeof(*vmcs12)))
+                       return -EFAULT;
+       }
+ out:
+       return kvm_state.size;
+ }
+ /*
+  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
+  */
+ void vmx_leave_nested(struct kvm_vcpu *vcpu)
+ {
+       if (is_guest_mode(vcpu)) {
+               to_vmx(vcpu)->nested.nested_run_pending = 0;
+               nested_vmx_vmexit(vcpu, -1, 0, 0);
+       }
+       free_nested(vcpu);
+ }
+ static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
+                               struct kvm_nested_state __user *user_kvm_nested_state,
+                               struct kvm_nested_state *kvm_state)
+ {
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       struct vmcs12 *vmcs12;
+       u32 exit_qual;
+       int ret;
+       if (kvm_state->format != 0)
+               return -EINVAL;
+       if (kvm_state->flags & KVM_STATE_NESTED_EVMCS)
+               nested_enable_evmcs(vcpu, NULL);
+       if (!nested_vmx_allowed(vcpu))
+               return kvm_state->vmx.vmxon_pa == -1ull ? 0 : -EINVAL;
+       if (kvm_state->vmx.vmxon_pa == -1ull) {
+               if (kvm_state->vmx.smm.flags)
+                       return -EINVAL;
+               if (kvm_state->vmx.vmcs_pa != -1ull)
+                       return -EINVAL;
+               vmx_leave_nested(vcpu);
+               return 0;
+       }
+       if (!page_address_valid(vcpu, kvm_state->vmx.vmxon_pa))
+               return -EINVAL;
+       if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
+           (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
+               return -EINVAL;
+       if (kvm_state->vmx.smm.flags &
+           ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
+               return -EINVAL;
+       /*
+        * SMM temporarily disables VMX, so we cannot be in guest mode,
+        * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
+        * must be zero.
+        */
+       if (is_smm(vcpu) ? kvm_state->flags : kvm_state->vmx.smm.flags)
+               return -EINVAL;
+       if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
+           !(kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
+               return -EINVAL;
+       vmx_leave_nested(vcpu);
+       if (kvm_state->vmx.vmxon_pa == -1ull)
+               return 0;
+       vmx->nested.vmxon_ptr = kvm_state->vmx.vmxon_pa;
+       ret = enter_vmx_operation(vcpu);
+       if (ret)
+               return ret;
+       /* Empty 'VMXON' state is permitted */
+       if (kvm_state->size < sizeof(kvm_state) + sizeof(*vmcs12))
+               return 0;
+       if (kvm_state->vmx.vmcs_pa != -1ull) {
+               if (kvm_state->vmx.vmcs_pa == kvm_state->vmx.vmxon_pa ||
+                   !page_address_valid(vcpu, kvm_state->vmx.vmcs_pa))
+                       return -EINVAL;
+               set_current_vmptr(vmx, kvm_state->vmx.vmcs_pa);
+       } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
+               /*
+                * Sync eVMCS upon entry as we may not have
+                * HV_X64_MSR_VP_ASSIST_PAGE set up yet.
+                */
+               vmx->nested.need_vmcs12_sync = true;
+       } else {
+               return -EINVAL;
+       }
+       if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
+               vmx->nested.smm.vmxon = true;
+               vmx->nested.vmxon = false;
+               if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
+                       vmx->nested.smm.guest_mode = true;
+       }
+       vmcs12 = get_vmcs12(vcpu);
+       if (copy_from_user(vmcs12, user_kvm_nested_state->data, sizeof(*vmcs12)))
+               return -EFAULT;
+       if (vmcs12->hdr.revision_id != VMCS12_REVISION)
+               return -EINVAL;
+       if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
+               return 0;
+       vmx->nested.nested_run_pending =
+               !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
+       if (nested_cpu_has_shadow_vmcs(vmcs12) &&
+           vmcs12->vmcs_link_pointer != -1ull) {
+               struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
+               if (kvm_state->size < sizeof(kvm_state) + 2 * sizeof(*vmcs12))
+                       return -EINVAL;
+               if (copy_from_user(shadow_vmcs12,
+                                  user_kvm_nested_state->data + VMCS12_SIZE,
+                                  sizeof(*vmcs12)))
+                       return -EFAULT;
+               if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
+                   !shadow_vmcs12->hdr.shadow_vmcs)
+                       return -EINVAL;
+       }
+       if (nested_vmx_check_vmentry_prereqs(vcpu, vmcs12) ||
+           nested_vmx_check_vmentry_postreqs(vcpu, vmcs12, &exit_qual))
+               return -EINVAL;
+       vmx->nested.dirty_vmcs12 = true;
+       ret = nested_vmx_enter_non_root_mode(vcpu, false);
+       if (ret)
+               return -EINVAL;
+       return 0;
+ }
+ void nested_vmx_vcpu_setup(void)
+ {
+       if (enable_shadow_vmcs) {
+               /*
+                * At vCPU creation, "VMWRITE to any supported field
+                * in the VMCS" is supported, so use the more
+                * permissive vmx_vmread_bitmap to specify both read
+                * and write permissions for the shadow VMCS.
+                */
+               vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
+               vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmread_bitmap));
+       }
+ }
+ /*
+  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
+  * returned for the various VMX controls MSRs when nested VMX is enabled.
+  * The same values should also be used to verify that vmcs12 control fields are
+  * valid during nested entry from L1 to L2.
+  * Each of these control msrs has a low and high 32-bit half: A low bit is on
+  * if the corresponding bit in the (32-bit) control field *must* be on, and a
+  * bit in the high half is on if the corresponding bit in the control field
+  * may be on. See also vmx_control_verify().
+  */
+ void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps,
+                               bool apicv)
+ {
+       /*
+        * Note that as a general rule, the high half of the MSRs (bits in
+        * the control fields which may be 1) should be initialized by the
+        * intersection of the underlying hardware's MSR (i.e., features which
+        * can be supported) and the list of features we want to expose -
+        * because they are known to be properly supported in our code.
+        * Also, usually, the low half of the MSRs (bits which must be 1) can
+        * be set to 0, meaning that L1 may turn off any of these bits. The
+        * reason is that if one of these bits is necessary, it will appear
+        * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
+        * fields of vmcs01 and vmcs02, will turn these bits off - and
+        * nested_vmx_exit_reflected() will not pass related exits to L1.
+        * These rules have exceptions below.
+        */
+       /* pin-based controls */
+       rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
+               msrs->pinbased_ctls_low,
+               msrs->pinbased_ctls_high);
+       msrs->pinbased_ctls_low |=
+               PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
+       msrs->pinbased_ctls_high &=
+               PIN_BASED_EXT_INTR_MASK |
+               PIN_BASED_NMI_EXITING |
+               PIN_BASED_VIRTUAL_NMIS |
+               (apicv ? PIN_BASED_POSTED_INTR : 0);
+       msrs->pinbased_ctls_high |=
+               PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
+               PIN_BASED_VMX_PREEMPTION_TIMER;
+       /* exit controls */
+       rdmsr(MSR_IA32_VMX_EXIT_CTLS,
+               msrs->exit_ctls_low,
+               msrs->exit_ctls_high);
+       msrs->exit_ctls_low =
+               VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
+       msrs->exit_ctls_high &=
+ #ifdef CONFIG_X86_64
+               VM_EXIT_HOST_ADDR_SPACE_SIZE |
+ #endif
+               VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
+       msrs->exit_ctls_high |=
+               VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
+               VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
+               VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
+       /* We support free control of debug control saving. */
+       msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
+       /* entry controls */
+       rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
+               msrs->entry_ctls_low,
+               msrs->entry_ctls_high);
+       msrs->entry_ctls_low =
+               VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
+       msrs->entry_ctls_high &=
+ #ifdef CONFIG_X86_64
+               VM_ENTRY_IA32E_MODE |
+ #endif
+               VM_ENTRY_LOAD_IA32_PAT;
+       msrs->entry_ctls_high |=
+               (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
+       /* We support free control of debug control loading. */
+       msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
+       /* cpu-based controls */
+       rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
+               msrs->procbased_ctls_low,
+               msrs->procbased_ctls_high);
+       msrs->procbased_ctls_low =
+               CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
+       msrs->procbased_ctls_high &=
+               CPU_BASED_VIRTUAL_INTR_PENDING |
+               CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
+               CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
+               CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
+               CPU_BASED_CR3_STORE_EXITING |
+ #ifdef CONFIG_X86_64
+               CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
+ #endif
+               CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
+               CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
+               CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
+               CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
+               CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
+       /*
+        * We can allow some features even when not supported by the
+        * hardware. For example, L1 can specify an MSR bitmap - and we
+        * can use it to avoid exits to L1 - even when L0 runs L2
+        * without MSR bitmaps.
+        */
+       msrs->procbased_ctls_high |=
+               CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
+               CPU_BASED_USE_MSR_BITMAPS;
+       /* We support free control of CR3 access interception. */
+       msrs->procbased_ctls_low &=
+               ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
+       /*
+        * secondary cpu-based controls.  Do not include those that
+        * depend on CPUID bits, they are added later by vmx_cpuid_update.
+        */
+       rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
+               msrs->secondary_ctls_low,
+               msrs->secondary_ctls_high);
+       msrs->secondary_ctls_low = 0;
+       msrs->secondary_ctls_high &=
+               SECONDARY_EXEC_DESC |
+               SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
+               SECONDARY_EXEC_APIC_REGISTER_VIRT |
+               SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
+               SECONDARY_EXEC_WBINVD_EXITING;
+       /*
+        * We can emulate "VMCS shadowing," even if the hardware
+        * doesn't support it.
+        */
+       msrs->secondary_ctls_high |=
+               SECONDARY_EXEC_SHADOW_VMCS;
+       if (enable_ept) {
+               /* nested EPT: emulate EPT also to L1 */
+               msrs->secondary_ctls_high |=
+                       SECONDARY_EXEC_ENABLE_EPT;
+               msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
+                        VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
+               if (cpu_has_vmx_ept_execute_only())
+                       msrs->ept_caps |=
+                               VMX_EPT_EXECUTE_ONLY_BIT;
+               msrs->ept_caps &= ept_caps;
+               msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
+                       VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
+                       VMX_EPT_1GB_PAGE_BIT;
+               if (enable_ept_ad_bits) {
+                       msrs->secondary_ctls_high |=
+                               SECONDARY_EXEC_ENABLE_PML;
+                       msrs->ept_caps |= VMX_EPT_AD_BIT;
+               }
+       }
+       if (cpu_has_vmx_vmfunc()) {
+               msrs->secondary_ctls_high |=
+                       SECONDARY_EXEC_ENABLE_VMFUNC;
+               /*
+                * Advertise EPTP switching unconditionally
+                * since we emulate it
+                */
+               if (enable_ept)
+                       msrs->vmfunc_controls =
+                               VMX_VMFUNC_EPTP_SWITCHING;
+       }
+       /*
+        * Old versions of KVM use the single-context version without
+        * checking for support, so declare that it is supported even
+        * though it is treated as global context.  The alternative is
+        * not failing the single-context invvpid, and it is worse.
+        */
+       if (enable_vpid) {
+               msrs->secondary_ctls_high |=
+                       SECONDARY_EXEC_ENABLE_VPID;
+               msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
+                       VMX_VPID_EXTENT_SUPPORTED_MASK;
+       }
+       if (enable_unrestricted_guest)
+               msrs->secondary_ctls_high |=
+                       SECONDARY_EXEC_UNRESTRICTED_GUEST;
+       if (flexpriority_enabled)
+               msrs->secondary_ctls_high |=
+                       SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
+       /* miscellaneous data */
+       rdmsr(MSR_IA32_VMX_MISC,
+               msrs->misc_low,
+               msrs->misc_high);
+       msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
+       msrs->misc_low |=
+               MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
+               VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
+               VMX_MISC_ACTIVITY_HLT;
+       msrs->misc_high = 0;
+       /*
+        * This MSR reports some information about VMX support. We
+        * should return information about the VMX we emulate for the
+        * guest, and the VMCS structure we give it - not about the
+        * VMX support of the underlying hardware.
+        */
+       msrs->basic =
+               VMCS12_REVISION |
+               VMX_BASIC_TRUE_CTLS |
+               ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
+               (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
+       if (cpu_has_vmx_basic_inout())
+               msrs->basic |= VMX_BASIC_INOUT;
+       /*
+        * These MSRs specify bits which the guest must keep fixed on
+        * while L1 is in VMXON mode (in L1's root mode, or running an L2).
+        * We picked the standard core2 setting.
+        */
+ #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
+ #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
+       msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
+       msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
+       /* These MSRs specify bits which the guest must keep fixed off. */
+       rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
+       rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
+       /* highest index: VMX_PREEMPTION_TIMER_VALUE */
+       msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
+ }
+ void nested_vmx_hardware_unsetup(void)
+ {
+       int i;
+       if (enable_shadow_vmcs) {
+               for (i = 0; i < VMX_BITMAP_NR; i++)
+                       free_page((unsigned long)vmx_bitmap[i]);
+       }
+ }
+ __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
+ {
+       int i;
+       if (!cpu_has_vmx_shadow_vmcs())
+               enable_shadow_vmcs = 0;
+       if (enable_shadow_vmcs) {
+               for (i = 0; i < VMX_BITMAP_NR; i++) {
+                       vmx_bitmap[i] = (unsigned long *)
+                               __get_free_page(GFP_KERNEL);
+                       if (!vmx_bitmap[i]) {
+                               nested_vmx_hardware_unsetup();
+                               return -ENOMEM;
+                       }
+               }
+               init_vmcs_shadow_fields();
+       }
+       exit_handlers[EXIT_REASON_VMCLEAR]      = handle_vmclear,
+       exit_handlers[EXIT_REASON_VMLAUNCH]     = handle_vmlaunch,
+       exit_handlers[EXIT_REASON_VMPTRLD]      = handle_vmptrld,
+       exit_handlers[EXIT_REASON_VMPTRST]      = handle_vmptrst,
+       exit_handlers[EXIT_REASON_VMREAD]       = handle_vmread,
+       exit_handlers[EXIT_REASON_VMRESUME]     = handle_vmresume,
+       exit_handlers[EXIT_REASON_VMWRITE]      = handle_vmwrite,
+       exit_handlers[EXIT_REASON_VMOFF]        = handle_vmoff,
+       exit_handlers[EXIT_REASON_VMON]         = handle_vmon,
+       exit_handlers[EXIT_REASON_INVEPT]       = handle_invept,
+       exit_handlers[EXIT_REASON_INVVPID]      = handle_invvpid,
+       exit_handlers[EXIT_REASON_VMFUNC]       = handle_vmfunc,
+       kvm_x86_ops->check_nested_events = vmx_check_nested_events;
+       kvm_x86_ops->get_nested_state = vmx_get_nested_state;
+       kvm_x86_ops->set_nested_state = vmx_set_nested_state;
+       kvm_x86_ops->get_vmcs12_pages = nested_get_vmcs12_pages,
+       kvm_x86_ops->nested_enable_evmcs = nested_enable_evmcs;
+       kvm_x86_ops->nested_get_evmcs_version = nested_get_evmcs_version;
+       return 0;
+ }
Simple merge
Simple merge