* attach_mutex to avoid changing binding state while
* worker_attach_to_pool() is in progress.
*/
+ POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
/* worker flags */
/* L: hash of busy workers */
/* see manage_workers() for details on the two manager mutexes */
- struct mutex manager_arb; /* manager arbitration */
struct worker *manager; /* L: purely informational */
struct mutex attach_mutex; /* attach/detach exclusion */
struct list_head workers; /* A: attached workers */
static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
+static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
static LIST_HEAD(workqueues); /* PR: list of all workqueues */
static bool workqueue_freezing; /* PL: have wqs started freezing? */
/* Do we have too many workers and should some go away? */
static bool too_many_workers(struct worker_pool *pool)
{
- bool managing = mutex_is_locked(&pool->manager_arb);
+ bool managing = pool->flags & POOL_MANAGER_ACTIVE;
int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
int nr_busy = pool->nr_workers - nr_idle;
* queued or lose PENDING. Grabbing PENDING and queueing should
* happen with IRQ disabled.
*/
- WARN_ON_ONCE(!irqs_disabled());
+ lockdep_assert_irqs_disabled();
debug_work_activate(work);
}
EXPORT_SYMBOL(queue_work_on);
-void delayed_work_timer_fn(unsigned long __data)
+void delayed_work_timer_fn(struct timer_list *t)
{
- struct delayed_work *dwork = (struct delayed_work *)__data;
+ struct delayed_work *dwork = from_timer(dwork, t, timer);
/* should have been called from irqsafe timer with irq already off */
__queue_work(dwork->cpu, dwork->wq, &dwork->work);
struct work_struct *work = &dwork->work;
WARN_ON_ONCE(!wq);
- WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
- timer->data != (unsigned long)dwork);
+ WARN_ON_ONCE(timer->function != (TIMER_FUNC_TYPE)delayed_work_timer_fn);
WARN_ON_ONCE(timer_pending(timer));
WARN_ON_ONCE(!list_empty(&work->entry));
wake_up_process(worker->task);
}
-static void idle_worker_timeout(unsigned long __pool)
+static void idle_worker_timeout(struct timer_list *t)
{
- struct worker_pool *pool = (void *)__pool;
+ struct worker_pool *pool = from_timer(pool, t, idle_timer);
spin_lock_irq(&pool->lock);
}
}
-static void pool_mayday_timeout(unsigned long __pool)
+static void pool_mayday_timeout(struct timer_list *t)
{
- struct worker_pool *pool = (void *)__pool;
+ struct worker_pool *pool = from_timer(pool, t, mayday_timer);
struct work_struct *work;
spin_lock_irq(&pool->lock);
{
struct worker_pool *pool = worker->pool;
- /*
- * Anyone who successfully grabs manager_arb wins the arbitration
- * and becomes the manager. mutex_trylock() on pool->manager_arb
- * failure while holding pool->lock reliably indicates that someone
- * else is managing the pool and the worker which failed trylock
- * can proceed to executing work items. This means that anyone
- * grabbing manager_arb is responsible for actually performing
- * manager duties. If manager_arb is grabbed and released without
- * actual management, the pool may stall indefinitely.
- */
- if (!mutex_trylock(&pool->manager_arb))
+ if (pool->flags & POOL_MANAGER_ACTIVE)
return false;
+
+ pool->flags |= POOL_MANAGER_ACTIVE;
pool->manager = worker;
maybe_create_worker(pool);
pool->manager = NULL;
- mutex_unlock(&pool->manager_arb);
+ pool->flags &= ~POOL_MANAGER_ACTIVE;
+ wake_up(&wq_manager_wait);
return true;
}
INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
- /*
- * Explicitly init the crosslock for wq_barrier::done, make its lock
- * key a subkey of the corresponding work. As a result we won't
- * build a dependency between wq_barrier::done and unrelated work.
- */
- lockdep_init_map_crosslock((struct lockdep_map *)&barr->done.map,
- "(complete)wq_barr::done",
- target->lockdep_map.key, 1);
- __init_completion(&barr->done);
+ init_completion_map(&barr->done, &target->lockdep_map);
+
barr->task = current;
/*
struct wq_flusher this_flusher = {
.list = LIST_HEAD_INIT(this_flusher.list),
.flush_color = -1,
- .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
+ .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
};
int next_color;
if (WARN_ON(!wq_online))
return;
- lock_map_acquire(&wq->lockdep_map);
- lock_map_release(&wq->lockdep_map);
-
mutex_lock(&wq->mutex);
/*
if (WARN_ON(!wq_online))
return false;
- lock_map_acquire(&work->lockdep_map);
- lock_map_release(&work->lockdep_map);
-
if (start_flush_work(work, &barr)) {
wait_for_completion(&barr.done);
destroy_work_on_stack(&barr.work);
INIT_LIST_HEAD(&pool->idle_list);
hash_init(pool->busy_hash);
- setup_deferrable_timer(&pool->idle_timer, idle_worker_timeout,
- (unsigned long)pool);
+ timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
- setup_timer(&pool->mayday_timer, pool_mayday_timeout,
- (unsigned long)pool);
+ timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
- mutex_init(&pool->manager_arb);
mutex_init(&pool->attach_mutex);
INIT_LIST_HEAD(&pool->workers);
hash_del(&pool->hash_node);
/*
- * Become the manager and destroy all workers. Grabbing
- * manager_arb prevents @pool's workers from blocking on
- * attach_mutex.
+ * Become the manager and destroy all workers. This prevents
+ * @pool's workers from blocking on attach_mutex. We're the last
+ * manager and @pool gets freed with the flag set.
*/
- mutex_lock(&pool->manager_arb);
-
spin_lock_irq(&pool->lock);
+ wait_event_lock_irq(wq_manager_wait,
+ !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
+ pool->flags |= POOL_MANAGER_ACTIVE;
+
while ((worker = first_idle_worker(pool)))
destroy_worker(worker);
WARN_ON(pool->nr_workers || pool->nr_idle);
if (pool->detach_completion)
wait_for_completion(pool->detach_completion);
- mutex_unlock(&pool->manager_arb);
-
/* shut down the timers */
del_timer_sync(&pool->idle_timer);
del_timer_sync(&pool->mayday_timer);
* concurrency management. Note that when or whether
* @worker clears REBOUND doesn't affect correctness.
*
- * ACCESS_ONCE() is necessary because @worker->flags may be
+ * WRITE_ONCE() is necessary because @worker->flags may be
* tested without holding any lock in
* wq_worker_waking_up(). Without it, NOT_RUNNING test may
* fail incorrectly leading to premature concurrency
WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
worker_flags |= WORKER_REBOUND;
worker_flags &= ~WORKER_UNBOUND;
- ACCESS_ONCE(worker->flags) = worker_flags;
+ WRITE_ONCE(worker->flags, worker_flags);
}
spin_unlock_irq(&pool->lock);
*
* Unbound workqueues have the following extra attributes.
*
- * id RO int : the associated pool ID
+ * pool_ids RO int : the associated pool IDs for each node
* nice RW int : nice value of the workers
* cpumask RW mask : bitmask of allowed CPUs for the workers
+ * numa RW bool : whether enable NUMA affinity
*/
struct wq_device {
struct workqueue_struct *wq;
*/
#ifdef CONFIG_WQ_WATCHDOG
-static void wq_watchdog_timer_fn(unsigned long data);
-
static unsigned long wq_watchdog_thresh = 30;
-static struct timer_list wq_watchdog_timer =
- TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);
+static struct timer_list wq_watchdog_timer;
static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
}
-static void wq_watchdog_timer_fn(unsigned long data)
+static void wq_watchdog_timer_fn(struct timer_list *unused)
{
unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
bool lockup_detected = false;
static void wq_watchdog_init(void)
{
+ timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
wq_watchdog_set_thresh(wq_watchdog_thresh);
}