slub: don't confuse ctor and dtor
[sfrench/cifs-2.6.git] / mm / slub.c
index ae28310278026938b87f7603067c4397b569eaae..5e3e8bc9838f8f30eb7a383447356e436737623c 100644 (file)
--- a/mm/slub.c
+++ b/mm/slub.c
  * PageActive          The slab is used as a cpu cache. Allocations
  *                     may be performed from the slab. The slab is not
  *                     on any slab list and cannot be moved onto one.
+ *                     The cpu slab may be equipped with an additioanl
+ *                     lockless_freelist that allows lockless access to
+ *                     free objects in addition to the regular freelist
+ *                     that requires the slab lock.
  *
  * PageError           Slab requires special handling due to debug
  *                     options set. This moves slab handling out of
- *                     the fast path.
+ *                     the fast path and disables lockless freelists.
  */
 
 static inline int SlabDebug(struct page *page)
@@ -1014,6 +1018,7 @@ static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
        set_freepointer(s, last, NULL);
 
        page->freelist = start;
+       page->lockless_freelist = NULL;
        page->inuse = 0;
 out:
        if (flags & __GFP_WAIT)
@@ -1276,6 +1281,23 @@ static void putback_slab(struct kmem_cache *s, struct page *page)
  */
 static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu)
 {
+       /*
+        * Merge cpu freelist into freelist. Typically we get here
+        * because both freelists are empty. So this is unlikely
+        * to occur.
+        */
+       while (unlikely(page->lockless_freelist)) {
+               void **object;
+
+               /* Retrieve object from cpu_freelist */
+               object = page->lockless_freelist;
+               page->lockless_freelist = page->lockless_freelist[page->offset];
+
+               /* And put onto the regular freelist */
+               object[page->offset] = page->freelist;
+               page->freelist = object;
+               page->inuse--;
+       }
        s->cpu_slab[cpu] = NULL;
        ClearPageActive(page);
 
@@ -1322,47 +1344,46 @@ static void flush_all(struct kmem_cache *s)
 }
 
 /*
- * slab_alloc is optimized to only modify two cachelines on the fast path
- * (aside from the stack):
+ * Slow path. The lockless freelist is empty or we need to perform
+ * debugging duties.
+ *
+ * Interrupts are disabled.
  *
- * 1. The page struct
- * 2. The first cacheline of the object to be allocated.
+ * Processing is still very fast if new objects have been freed to the
+ * regular freelist. In that case we simply take over the regular freelist
+ * as the lockless freelist and zap the regular freelist.
  *
- * The only other cache lines that are read (apart from code) is the
- * per cpu array in the kmem_cache struct.
+ * If that is not working then we fall back to the partial lists. We take the
+ * first element of the freelist as the object to allocate now and move the
+ * rest of the freelist to the lockless freelist.
  *
- * Fastpath is not possible if we need to get a new slab or have
- * debugging enabled (which means all slabs are marked with SlabDebug)
+ * And if we were unable to get a new slab from the partial slab lists then
+ * we need to allocate a new slab. This is slowest path since we may sleep.
  */
-static void *slab_alloc(struct kmem_cache *s,
-                               gfp_t gfpflags, int node, void *addr)
+static void *__slab_alloc(struct kmem_cache *s,
+               gfp_t gfpflags, int node, void *addr, struct page *page)
 {
-       struct page *page;
        void **object;
-       unsigned long flags;
-       int cpu;
+       int cpu = smp_processor_id();
 
-       local_irq_save(flags);
-       cpu = smp_processor_id();
-       page = s->cpu_slab[cpu];
        if (!page)
                goto new_slab;
 
        slab_lock(page);
        if (unlikely(node != -1 && page_to_nid(page) != node))
                goto another_slab;
-redo:
+load_freelist:
        object = page->freelist;
        if (unlikely(!object))
                goto another_slab;
        if (unlikely(SlabDebug(page)))
                goto debug;
 
-have_object:
-       page->inuse++;
-       page->freelist = object[page->offset];
+       object = page->freelist;
+       page->lockless_freelist = object[page->offset];
+       page->inuse = s->objects;
+       page->freelist = NULL;
        slab_unlock(page);
-       local_irq_restore(flags);
        return object;
 
 another_slab:
@@ -1370,11 +1391,11 @@ another_slab:
 
 new_slab:
        page = get_partial(s, gfpflags, node);
-       if (likely(page)) {
+       if (page) {
 have_slab:
                s->cpu_slab[cpu] = page;
                SetPageActive(page);
-               goto redo;
+               goto load_freelist;
        }
 
        page = new_slab(s, gfpflags, node);
@@ -1397,7 +1418,7 @@ have_slab:
                                discard_slab(s, page);
                                page = s->cpu_slab[cpu];
                                slab_lock(page);
-                               goto redo;
+                               goto load_freelist;
                        }
                        /* New slab does not fit our expectations */
                        flush_slab(s, s->cpu_slab[cpu], cpu);
@@ -1405,16 +1426,52 @@ have_slab:
                slab_lock(page);
                goto have_slab;
        }
-       local_irq_restore(flags);
        return NULL;
 debug:
+       object = page->freelist;
        if (!alloc_object_checks(s, page, object))
                goto another_slab;
        if (s->flags & SLAB_STORE_USER)
                set_track(s, object, TRACK_ALLOC, addr);
        trace(s, page, object, 1);
        init_object(s, object, 1);
-       goto have_object;
+
+       page->inuse++;
+       page->freelist = object[page->offset];
+       slab_unlock(page);
+       return object;
+}
+
+/*
+ * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
+ * have the fastpath folded into their functions. So no function call
+ * overhead for requests that can be satisfied on the fastpath.
+ *
+ * The fastpath works by first checking if the lockless freelist can be used.
+ * If not then __slab_alloc is called for slow processing.
+ *
+ * Otherwise we can simply pick the next object from the lockless free list.
+ */
+static void __always_inline *slab_alloc(struct kmem_cache *s,
+                               gfp_t gfpflags, int node, void *addr)
+{
+       struct page *page;
+       void **object;
+       unsigned long flags;
+
+       local_irq_save(flags);
+       page = s->cpu_slab[smp_processor_id()];
+       if (unlikely(!page || !page->lockless_freelist ||
+                       (node != -1 && page_to_nid(page) != node)))
+
+               object = __slab_alloc(s, gfpflags, node, addr, page);
+
+       else {
+               object = page->lockless_freelist;
+               page->lockless_freelist = object[page->offset];
+       }
+       local_irq_restore(flags);
+       return object;
 }
 
 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
@@ -1432,20 +1489,19 @@ EXPORT_SYMBOL(kmem_cache_alloc_node);
 #endif
 
 /*
- * The fastpath only writes the cacheline of the page struct and the first
- * cacheline of the object.
+ * Slow patch handling. This may still be called frequently since objects
+ * have a longer lifetime than the cpu slabs in most processing loads.
  *
- * We read the cpu_slab cacheline to check if the slab is the per cpu
- * slab for this processor.
+ * So we still attempt to reduce cache line usage. Just take the slab
+ * lock and free the item. If there is no additional partial page
+ * handling required then we can return immediately.
  */
-static void slab_free(struct kmem_cache *s, struct page *page,
+static void __slab_free(struct kmem_cache *s, struct page *page,
                                        void *x, void *addr)
 {
        void *prior;
        void **object = (void *)x;
-       unsigned long flags;
 
-       local_irq_save(flags);
        slab_lock(page);
 
        if (unlikely(SlabDebug(page)))
@@ -1475,7 +1531,6 @@ checks_ok:
 
 out_unlock:
        slab_unlock(page);
-       local_irq_restore(flags);
        return;
 
 slab_empty:
@@ -1487,7 +1542,6 @@ slab_empty:
 
        slab_unlock(page);
        discard_slab(s, page);
-       local_irq_restore(flags);
        return;
 
 debug:
@@ -1502,6 +1556,34 @@ debug:
        goto checks_ok;
 }
 
+/*
+ * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
+ * can perform fastpath freeing without additional function calls.
+ *
+ * The fastpath is only possible if we are freeing to the current cpu slab
+ * of this processor. This typically the case if we have just allocated
+ * the item before.
+ *
+ * If fastpath is not possible then fall back to __slab_free where we deal
+ * with all sorts of special processing.
+ */
+static void __always_inline slab_free(struct kmem_cache *s,
+                       struct page *page, void *x, void *addr)
+{
+       void **object = (void *)x;
+       unsigned long flags;
+
+       local_irq_save(flags);
+       if (likely(page == s->cpu_slab[smp_processor_id()] &&
+                                               !SlabDebug(page))) {
+               object[page->offset] = page->lockless_freelist;
+               page->lockless_freelist = object;
+       } else
+               __slab_free(s, page, x, addr);
+
+       local_irq_restore(flags);
+}
+
 void kmem_cache_free(struct kmem_cache *s, void *x)
 {
        struct page *page;
@@ -1577,37 +1659,75 @@ static int slub_nomerge;
  * requested a higher mininum order then we start with that one instead of
  * the smallest order which will fit the object.
  */
-static int calculate_order(int size)
+static inline int slab_order(int size, int min_objects,
+                               int max_order, int fract_leftover)
 {
        int order;
        int rem;
 
-       for (order = max(slub_min_order, fls(size - 1) - PAGE_SHIFT);
-                       order < MAX_ORDER; order++) {
-               unsigned long slab_size = PAGE_SIZE << order;
+       for (order = max(slub_min_order,
+                               fls(min_objects * size - 1) - PAGE_SHIFT);
+                       order <= max_order; order++) {
 
-               if (order < slub_max_order &&
-                               slab_size < slub_min_objects * size)
-                       continue;
+               unsigned long slab_size = PAGE_SIZE << order;
 
-               if (slab_size < size)
+               if (slab_size < min_objects * size)
                        continue;
 
-               if (order >= slub_max_order)
-                       break;
-
                rem = slab_size % size;
 
-               if (rem <= slab_size / 8)
+               if (rem <= slab_size / fract_leftover)
                        break;
 
        }
-       if (order >= MAX_ORDER)
-               return -E2BIG;
 
        return order;
 }
 
+static inline int calculate_order(int size)
+{
+       int order;
+       int min_objects;
+       int fraction;
+
+       /*
+        * Attempt to find best configuration for a slab. This
+        * works by first attempting to generate a layout with
+        * the best configuration and backing off gradually.
+        *
+        * First we reduce the acceptable waste in a slab. Then
+        * we reduce the minimum objects required in a slab.
+        */
+       min_objects = slub_min_objects;
+       while (min_objects > 1) {
+               fraction = 8;
+               while (fraction >= 4) {
+                       order = slab_order(size, min_objects,
+                                               slub_max_order, fraction);
+                       if (order <= slub_max_order)
+                               return order;
+                       fraction /= 2;
+               }
+               min_objects /= 2;
+       }
+
+       /*
+        * We were unable to place multiple objects in a slab. Now
+        * lets see if we can place a single object there.
+        */
+       order = slab_order(size, 1, slub_max_order, 1);
+       if (order <= slub_max_order)
+               return order;
+
+       /*
+        * Doh this slab cannot be placed using slub_max_order.
+        */
+       order = slab_order(size, 1, MAX_ORDER, 1);
+       if (order <= MAX_ORDER)
+               return order;
+       return -ENOSYS;
+}
+
 /*
  * Figure out what the alignment of the objects will be.
  */
@@ -2248,7 +2368,6 @@ EXPORT_SYMBOL(kmem_cache_shrink);
 
 /**
  * krealloc - reallocate memory. The contents will remain unchanged.
- *
  * @p: object to reallocate memory for.
  * @new_size: how many bytes of memory are required.
  * @flags: the type of memory to allocate.
@@ -2326,9 +2445,8 @@ void __init kmem_cache_init(void)
        register_cpu_notifier(&slab_notifier);
 #endif
 
-       if (nr_cpu_ids) /* Remove when nr_cpu_ids is fixed upstream ! */
-               kmem_size = offsetof(struct kmem_cache, cpu_slab)
-                        + nr_cpu_ids * sizeof(struct page *);
+       kmem_size = offsetof(struct kmem_cache, cpu_slab) +
+                               nr_cpu_ids * sizeof(struct page *);
 
        printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
                " Processors=%d, Nodes=%d\n",
@@ -2404,7 +2522,7 @@ struct kmem_cache *kmem_cache_create(const char *name, size_t size,
        struct kmem_cache *s;
 
        down_write(&slub_lock);
-       s = find_mergeable(size, align, flags, dtor, ctor);
+       s = find_mergeable(size, align, flags, ctor, dtor);
        if (s) {
                s->refcount++;
                /*
@@ -2477,7 +2595,9 @@ static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
 
        switch (action) {
        case CPU_UP_CANCELED:
+       case CPU_UP_CANCELED_FROZEN:
        case CPU_DEAD:
+       case CPU_DEAD_FROZEN:
                for_all_slabs(__flush_cpu_slab, cpu);
                break;
        default:
@@ -2491,91 +2611,6 @@ static struct notifier_block __cpuinitdata slab_notifier =
 
 #endif
 
-#ifdef CONFIG_NUMA
-
-/*****************************************************************
- * Generic reaper used to support the page allocator
- * (the cpu slabs are reaped by a per slab workqueue).
- *
- * Maybe move this to the page allocator?
- ****************************************************************/
-
-static DEFINE_PER_CPU(unsigned long, reap_node);
-
-static void init_reap_node(int cpu)
-{
-       int node;
-
-       node = next_node(cpu_to_node(cpu), node_online_map);
-       if (node == MAX_NUMNODES)
-               node = first_node(node_online_map);
-
-       __get_cpu_var(reap_node) = node;
-}
-
-static void next_reap_node(void)
-{
-       int node = __get_cpu_var(reap_node);
-
-       /*
-        * Also drain per cpu pages on remote zones
-        */
-       if (node != numa_node_id())
-               drain_node_pages(node);
-
-       node = next_node(node, node_online_map);
-       if (unlikely(node >= MAX_NUMNODES))
-               node = first_node(node_online_map);
-       __get_cpu_var(reap_node) = node;
-}
-#else
-#define init_reap_node(cpu) do { } while (0)
-#define next_reap_node(void) do { } while (0)
-#endif
-
-#define REAPTIMEOUT_CPUC       (2*HZ)
-
-#ifdef CONFIG_SMP
-static DEFINE_PER_CPU(struct delayed_work, reap_work);
-
-static void cache_reap(struct work_struct *unused)
-{
-       next_reap_node();
-       refresh_cpu_vm_stats(smp_processor_id());
-       schedule_delayed_work(&__get_cpu_var(reap_work),
-                                     REAPTIMEOUT_CPUC);
-}
-
-static void __devinit start_cpu_timer(int cpu)
-{
-       struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
-
-       /*
-        * When this gets called from do_initcalls via cpucache_init(),
-        * init_workqueues() has already run, so keventd will be setup
-        * at that time.
-        */
-       if (keventd_up() && reap_work->work.func == NULL) {
-               init_reap_node(cpu);
-               INIT_DELAYED_WORK(reap_work, cache_reap);
-               schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
-       }
-}
-
-static int __init cpucache_init(void)
-{
-       int cpu;
-
-       /*
-        * Register the timers that drain pcp pages and update vm statistics
-        */
-       for_each_online_cpu(cpu)
-               start_cpu_timer(cpu);
-       return 0;
-}
-__initcall(cpucache_init);
-#endif
-
 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
 {
        struct kmem_cache *s = get_slab(size, gfpflags);