[PATCH] knfsd: svcrpc: WARN() instead of returning an error from svc_take_page
[sfrench/cifs-2.6.git] / mm / hugetlb.c
index 67f29516662a4b9d3c2291731a2259808646f54c..832f676ca038837ab87c7544d4c3344b45cdc264 100644 (file)
 #include <linux/pagemap.h>
 #include <linux/mempolicy.h>
 #include <linux/cpuset.h>
+#include <linux/mutex.h>
 
 #include <asm/page.h>
 #include <asm/pgtable.h>
 
 #include <linux/hugetlb.h>
+#include "internal.h"
 
 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
-static unsigned long nr_huge_pages, free_huge_pages;
+static unsigned long nr_huge_pages, free_huge_pages, reserved_huge_pages;
 unsigned long max_huge_pages;
 static struct list_head hugepage_freelists[MAX_NUMNODES];
 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
 static unsigned int free_huge_pages_node[MAX_NUMNODES];
-
 /*
  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
  */
 static DEFINE_SPINLOCK(hugetlb_lock);
 
+static void clear_huge_page(struct page *page, unsigned long addr)
+{
+       int i;
+
+       might_sleep();
+       for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
+               cond_resched();
+               clear_user_highpage(page + i, addr);
+       }
+}
+
+static void copy_huge_page(struct page *dst, struct page *src,
+                          unsigned long addr)
+{
+       int i;
+
+       might_sleep();
+       for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
+               cond_resched();
+               copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE);
+       }
+}
+
 static void enqueue_huge_page(struct page *page)
 {
        int nid = page_to_nid(page);
@@ -64,57 +88,176 @@ static struct page *dequeue_huge_page(struct vm_area_struct *vma,
        return page;
 }
 
-static struct page *alloc_fresh_huge_page(void)
+static void free_huge_page(struct page *page)
+{
+       BUG_ON(page_count(page));
+
+       INIT_LIST_HEAD(&page->lru);
+
+       spin_lock(&hugetlb_lock);
+       enqueue_huge_page(page);
+       spin_unlock(&hugetlb_lock);
+}
+
+static int alloc_fresh_huge_page(void)
 {
        static int nid = 0;
        struct page *page;
        page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
                                        HUGETLB_PAGE_ORDER);
-       nid = (nid + 1) % num_online_nodes();
+       nid = next_node(nid, node_online_map);
+       if (nid == MAX_NUMNODES)
+               nid = first_node(node_online_map);
        if (page) {
+               page[1].lru.next = (void *)free_huge_page;      /* dtor */
                spin_lock(&hugetlb_lock);
                nr_huge_pages++;
                nr_huge_pages_node[page_to_nid(page)]++;
                spin_unlock(&hugetlb_lock);
+               put_page(page); /* free it into the hugepage allocator */
+               return 1;
        }
-       return page;
+       return 0;
 }
 
-void free_huge_page(struct page *page)
+static struct page *alloc_huge_page(struct vm_area_struct *vma,
+                                   unsigned long addr)
 {
-       BUG_ON(page_count(page));
+       struct inode *inode = vma->vm_file->f_dentry->d_inode;
+       struct page *page;
+       int use_reserve = 0;
+       unsigned long idx;
 
-       INIT_LIST_HEAD(&page->lru);
-       page[1].mapping = NULL;
+       spin_lock(&hugetlb_lock);
+
+       if (vma->vm_flags & VM_MAYSHARE) {
+
+               /* idx = radix tree index, i.e. offset into file in
+                * HPAGE_SIZE units */
+               idx = ((addr - vma->vm_start) >> HPAGE_SHIFT)
+                       + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
+
+               /* The hugetlbfs specific inode info stores the number
+                * of "guaranteed available" (huge) pages.  That is,
+                * the first 'prereserved_hpages' pages of the inode
+                * are either already instantiated, or have been
+                * pre-reserved (by hugetlb_reserve_for_inode()). Here
+                * we're in the process of instantiating the page, so
+                * we use this to determine whether to draw from the
+                * pre-reserved pool or the truly free pool. */
+               if (idx < HUGETLBFS_I(inode)->prereserved_hpages)
+                       use_reserve = 1;
+       }
+
+       if (!use_reserve) {
+               if (free_huge_pages <= reserved_huge_pages)
+                       goto fail;
+       } else {
+               BUG_ON(reserved_huge_pages == 0);
+               reserved_huge_pages--;
+       }
+
+       page = dequeue_huge_page(vma, addr);
+       if (!page)
+               goto fail;
+
+       spin_unlock(&hugetlb_lock);
+       set_page_refcounted(page);
+       return page;
+
+ fail:
+       WARN_ON(use_reserve); /* reserved allocations shouldn't fail */
+       spin_unlock(&hugetlb_lock);
+       return NULL;
+}
+
+/* hugetlb_extend_reservation()
+ *
+ * Ensure that at least 'atleast' hugepages are, and will remain,
+ * available to instantiate the first 'atleast' pages of the given
+ * inode.  If the inode doesn't already have this many pages reserved
+ * or instantiated, set aside some hugepages in the reserved pool to
+ * satisfy later faults (or fail now if there aren't enough, rather
+ * than getting the SIGBUS later).
+ */
+int hugetlb_extend_reservation(struct hugetlbfs_inode_info *info,
+                              unsigned long atleast)
+{
+       struct inode *inode = &info->vfs_inode;
+       unsigned long change_in_reserve = 0;
+       int ret = 0;
 
        spin_lock(&hugetlb_lock);
-       enqueue_huge_page(page);
+       read_lock_irq(&inode->i_mapping->tree_lock);
+
+       if (info->prereserved_hpages >= atleast)
+               goto out;
+
+       /* Because we always call this on shared mappings, none of the
+        * pages beyond info->prereserved_hpages can have been
+        * instantiated, so we need to reserve all of them now. */
+       change_in_reserve = atleast - info->prereserved_hpages;
+
+       if ((reserved_huge_pages + change_in_reserve) > free_huge_pages) {
+               ret = -ENOMEM;
+               goto out;
+       }
+
+       reserved_huge_pages += change_in_reserve;
+       info->prereserved_hpages = atleast;
+
+ out:
+       read_unlock_irq(&inode->i_mapping->tree_lock);
        spin_unlock(&hugetlb_lock);
+
+       return ret;
 }
 
-struct page *alloc_huge_page(struct vm_area_struct *vma, unsigned long addr)
+/* hugetlb_truncate_reservation()
+ *
+ * This returns pages reserved for the given inode to the general free
+ * hugepage pool.  If the inode has any pages prereserved, but not
+ * instantiated, beyond offset (atmost << HPAGE_SIZE), then release
+ * them.
+ */
+void hugetlb_truncate_reservation(struct hugetlbfs_inode_info *info,
+                                 unsigned long atmost)
 {
+       struct inode *inode = &info->vfs_inode;
+       struct address_space *mapping = inode->i_mapping;
+       unsigned long idx;
+       unsigned long change_in_reserve = 0;
        struct page *page;
-       int i;
 
        spin_lock(&hugetlb_lock);
-       page = dequeue_huge_page(vma, addr);
-       if (!page) {
-               spin_unlock(&hugetlb_lock);
-               return NULL;
+       read_lock_irq(&inode->i_mapping->tree_lock);
+
+       if (info->prereserved_hpages <= atmost)
+               goto out;
+
+       /* Count pages which were reserved, but not instantiated, and
+        * which we can now release. */
+       for (idx = atmost; idx < info->prereserved_hpages; idx++) {
+               page = radix_tree_lookup(&mapping->page_tree, idx);
+               if (!page)
+                       /* Pages which are already instantiated can't
+                        * be unreserved (and in fact have already
+                        * been removed from the reserved pool) */
+                       change_in_reserve++;
        }
+
+       BUG_ON(reserved_huge_pages < change_in_reserve);
+       reserved_huge_pages -= change_in_reserve;
+       info->prereserved_hpages = atmost;
+
+ out:
+       read_unlock_irq(&inode->i_mapping->tree_lock);
        spin_unlock(&hugetlb_lock);
-       set_page_count(page, 1);
-       page[1].mapping = (void *)free_huge_page;
-       for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); ++i)
-               clear_user_highpage(&page[i], addr);
-       return page;
 }
 
 static int __init hugetlb_init(void)
 {
        unsigned long i;
-       struct page *page;
 
        if (HPAGE_SHIFT == 0)
                return 0;
@@ -123,12 +266,8 @@ static int __init hugetlb_init(void)
                INIT_LIST_HEAD(&hugepage_freelists[i]);
 
        for (i = 0; i < max_huge_pages; ++i) {
-               page = alloc_fresh_huge_page();
-               if (!page)
+               if (!alloc_fresh_huge_page())
                        break;
-               spin_lock(&hugetlb_lock);
-               enqueue_huge_page(page);
-               spin_unlock(&hugetlb_lock);
        }
        max_huge_pages = free_huge_pages = nr_huge_pages = i;
        printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
@@ -154,9 +293,9 @@ static void update_and_free_page(struct page *page)
                page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
                                1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
                                1 << PG_private | 1<< PG_writeback);
-               set_page_count(&page[i], 0);
        }
-       set_page_count(page, 1);
+       page[1].lru.next = NULL;
+       set_page_refcounted(page);
        __free_pages(page, HUGETLB_PAGE_ORDER);
 }
 
@@ -188,17 +327,14 @@ static inline void try_to_free_low(unsigned long count)
 static unsigned long set_max_huge_pages(unsigned long count)
 {
        while (count > nr_huge_pages) {
-               struct page *page = alloc_fresh_huge_page();
-               if (!page)
+               if (!alloc_fresh_huge_page())
                        return nr_huge_pages;
-               spin_lock(&hugetlb_lock);
-               enqueue_huge_page(page);
-               spin_unlock(&hugetlb_lock);
        }
        if (count >= nr_huge_pages)
                return nr_huge_pages;
 
        spin_lock(&hugetlb_lock);
+       count = max(count, reserved_huge_pages);
        try_to_free_low(count);
        while (count < nr_huge_pages) {
                struct page *page = dequeue_huge_page(NULL, 0);
@@ -225,9 +361,11 @@ int hugetlb_report_meminfo(char *buf)
        return sprintf(buf,
                        "HugePages_Total: %5lu\n"
                        "HugePages_Free:  %5lu\n"
+                       "HugePages_Rsvd:  %5lu\n"
                        "Hugepagesize:    %5lu kB\n",
                        nr_huge_pages,
                        free_huge_pages,
+                       reserved_huge_pages,
                        HPAGE_SIZE/1024);
 }
 
@@ -240,11 +378,6 @@ int hugetlb_report_node_meminfo(int nid, char *buf)
                nid, free_huge_pages_node[nid]);
 }
 
-int is_hugepage_mem_enough(size_t size)
-{
-       return (size + ~HPAGE_MASK)/HPAGE_SIZE <= free_huge_pages;
-}
-
 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
 unsigned long hugetlb_total_pages(void)
 {
@@ -374,7 +507,7 @@ static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
                        unsigned long address, pte_t *ptep, pte_t pte)
 {
        struct page *old_page, *new_page;
-       int i, avoidcopy;
+       int avoidcopy;
 
        old_page = pte_page(pte);
 
@@ -395,9 +528,7 @@ static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
        }
 
        spin_unlock(&mm->page_table_lock);
-       for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++)
-               copy_user_highpage(new_page + i, old_page + i,
-                                  address + i*PAGE_SIZE);
+       copy_huge_page(new_page, old_page, address);
        spin_lock(&mm->page_table_lock);
 
        ptep = huge_pte_offset(mm, address & HPAGE_MASK);
@@ -442,6 +573,7 @@ retry:
                        ret = VM_FAULT_OOM;
                        goto out;
                }
+               clear_huge_page(page, address);
 
                if (vma->vm_flags & VM_SHARED) {
                        int err;
@@ -496,14 +628,24 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
        pte_t *ptep;
        pte_t entry;
        int ret;
+       static DEFINE_MUTEX(hugetlb_instantiation_mutex);
 
        ptep = huge_pte_alloc(mm, address);
        if (!ptep)
                return VM_FAULT_OOM;
 
+       /*
+        * Serialize hugepage allocation and instantiation, so that we don't
+        * get spurious allocation failures if two CPUs race to instantiate
+        * the same page in the page cache.
+        */
+       mutex_lock(&hugetlb_instantiation_mutex);
        entry = *ptep;
-       if (pte_none(entry))
-               return hugetlb_no_page(mm, vma, address, ptep, write_access);
+       if (pte_none(entry)) {
+               ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
+               mutex_unlock(&hugetlb_instantiation_mutex);
+               return ret;
+       }
 
        ret = VM_FAULT_MINOR;
 
@@ -513,6 +655,7 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
                if (write_access && !pte_write(entry))
                        ret = hugetlb_cow(mm, vma, address, ptep, entry);
        spin_unlock(&mm->page_table_lock);
+       mutex_unlock(&hugetlb_instantiation_mutex);
 
        return ret;
 }
@@ -521,10 +664,10 @@ int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
                        struct page **pages, struct vm_area_struct **vmas,
                        unsigned long *position, int *length, int i)
 {
-       unsigned long vpfn, vaddr = *position;
+       unsigned long pfn_offset;
+       unsigned long vaddr = *position;
        int remainder = *length;
 
-       vpfn = vaddr/PAGE_SIZE;
        spin_lock(&mm->page_table_lock);
        while (vaddr < vma->vm_end && remainder) {
                pte_t *pte;
@@ -552,19 +695,29 @@ int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
                        break;
                }
 
+               pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
+               page = pte_page(*pte);
+same_page:
                if (pages) {
-                       page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
                        get_page(page);
-                       pages[i] = page;
+                       pages[i] = page + pfn_offset;
                }
 
                if (vmas)
                        vmas[i] = vma;
 
                vaddr += PAGE_SIZE;
-               ++vpfn;
+               ++pfn_offset;
                --remainder;
                ++i;
+               if (vaddr < vma->vm_end && remainder &&
+                               pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
+                       /*
+                        * We use pfn_offset to avoid touching the pageframes
+                        * of this compound page.
+                        */
+                       goto same_page;
+               }
        }
        spin_unlock(&mm->page_table_lock);
        *length = remainder;
@@ -572,3 +725,32 @@ int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
 
        return i;
 }
+
+void hugetlb_change_protection(struct vm_area_struct *vma,
+               unsigned long address, unsigned long end, pgprot_t newprot)
+{
+       struct mm_struct *mm = vma->vm_mm;
+       unsigned long start = address;
+       pte_t *ptep;
+       pte_t pte;
+
+       BUG_ON(address >= end);
+       flush_cache_range(vma, address, end);
+
+       spin_lock(&mm->page_table_lock);
+       for (; address < end; address += HPAGE_SIZE) {
+               ptep = huge_pte_offset(mm, address);
+               if (!ptep)
+                       continue;
+               if (!pte_none(*ptep)) {
+                       pte = huge_ptep_get_and_clear(mm, address, ptep);
+                       pte = pte_mkhuge(pte_modify(pte, newprot));
+                       set_huge_pte_at(mm, address, ptep, pte);
+                       lazy_mmu_prot_update(pte);
+               }
+       }
+       spin_unlock(&mm->page_table_lock);
+
+       flush_tlb_range(vma, start, end);
+}
+