cgroup: fix memory leak in cgroup_get_sb()
[sfrench/cifs-2.6.git] / kernel / cgroup.c
index f4c4dce9558f8c40630cc2f15b5576a8520ca86f..947fe3b22182b7e0f5d13b0b8891c31846c9987f 100644 (file)
@@ -1,6 +1,4 @@
 /*
- *  kernel/cgroup.c
- *
  *  Generic process-grouping system.
  *
  *  Based originally on the cpuset system, extracted by Paul Menage
 #include <linux/mutex.h>
 #include <linux/mount.h>
 #include <linux/pagemap.h>
+#include <linux/proc_fs.h>
 #include <linux/rcupdate.h>
 #include <linux/sched.h>
+#include <linux/backing-dev.h>
 #include <linux/seq_file.h>
 #include <linux/slab.h>
 #include <linux/magic.h>
 #include <linux/spinlock.h>
 #include <linux/string.h>
 #include <linux/sort.h>
+#include <linux/kmod.h>
+#include <linux/delayacct.h>
+#include <linux/cgroupstats.h>
+
 #include <asm/atomic.h>
 
+static DEFINE_MUTEX(cgroup_mutex);
+
 /* Generate an array of cgroup subsystem pointers */
 #define SUBSYS(_x) &_x ## _subsys,
 
@@ -81,6 +87,13 @@ struct cgroupfs_root {
 
        /* Hierarchy-specific flags */
        unsigned long flags;
+
+       /* The path to use for release notifications. No locking
+        * between setting and use - so if userspace updates this
+        * while child cgroups exist, you could miss a
+        * notification. We ensure that it's always a valid
+        * NUL-terminated string */
+       char release_agent_path[PATH_MAX];
 };
 
 
@@ -94,26 +107,33 @@ static struct cgroupfs_root rootnode;
 /* The list of hierarchy roots */
 
 static LIST_HEAD(roots);
+static int root_count;
 
 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
 #define dummytop (&rootnode.top_cgroup)
 
 /* This flag indicates whether tasks in the fork and exit paths should
- * take callback_mutex and check for fork/exit handlers to call. This
- * avoids us having to do extra work in the fork/exit path if none of the
- * subsystems need to be called.
+ * check for fork/exit handlers to call. This avoids us having to do
+ * extra work in the fork/exit path if none of the subsystems need to
+ * be called.
  */
 static int need_forkexit_callback;
 
 /* bits in struct cgroup flags field */
 enum {
-       CONT_REMOVED,
+       /* Control Group is dead */
+       CGRP_REMOVED,
+       /* Control Group has previously had a child cgroup or a task,
+        * but no longer (only if CGRP_NOTIFY_ON_RELEASE is set) */
+       CGRP_RELEASABLE,
+       /* Control Group requires release notifications to userspace */
+       CGRP_NOTIFY_ON_RELEASE,
 };
 
 /* convenient tests for these bits */
-inline int cgroup_is_removed(const struct cgroup *cont)
+inline int cgroup_is_removed(const struct cgroup *cgrp)
 {
-       return test_bit(CONT_REMOVED, &cont->flags);
+       return test_bit(CGRP_REMOVED, &cgrp->flags);
 }
 
 /* bits in struct cgroupfs_root flags field */
@@ -121,6 +141,19 @@ enum {
        ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
 };
 
+static int cgroup_is_releasable(const struct cgroup *cgrp)
+{
+       const int bits =
+               (1 << CGRP_RELEASABLE) |
+               (1 << CGRP_NOTIFY_ON_RELEASE);
+       return (cgrp->flags & bits) == bits;
+}
+
+static int notify_on_release(const struct cgroup *cgrp)
+{
+       return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
+}
+
 /*
  * for_each_subsys() allows you to iterate on each subsystem attached to
  * an active hierarchy
@@ -132,6 +165,317 @@ list_for_each_entry(_ss, &_root->subsys_list, sibling)
 #define for_each_root(_root) \
 list_for_each_entry(_root, &roots, root_list)
 
+/* the list of cgroups eligible for automatic release. Protected by
+ * release_list_lock */
+static LIST_HEAD(release_list);
+static DEFINE_SPINLOCK(release_list_lock);
+static void cgroup_release_agent(struct work_struct *work);
+static DECLARE_WORK(release_agent_work, cgroup_release_agent);
+static void check_for_release(struct cgroup *cgrp);
+
+/* Link structure for associating css_set objects with cgroups */
+struct cg_cgroup_link {
+       /*
+        * List running through cg_cgroup_links associated with a
+        * cgroup, anchored on cgroup->css_sets
+        */
+       struct list_head cgrp_link_list;
+       /*
+        * List running through cg_cgroup_links pointing at a
+        * single css_set object, anchored on css_set->cg_links
+        */
+       struct list_head cg_link_list;
+       struct css_set *cg;
+};
+
+/* The default css_set - used by init and its children prior to any
+ * hierarchies being mounted. It contains a pointer to the root state
+ * for each subsystem. Also used to anchor the list of css_sets. Not
+ * reference-counted, to improve performance when child cgroups
+ * haven't been created.
+ */
+
+static struct css_set init_css_set;
+static struct cg_cgroup_link init_css_set_link;
+
+/* css_set_lock protects the list of css_set objects, and the
+ * chain of tasks off each css_set.  Nests outside task->alloc_lock
+ * due to cgroup_iter_start() */
+static DEFINE_RWLOCK(css_set_lock);
+static int css_set_count;
+
+/* We don't maintain the lists running through each css_set to its
+ * task until after the first call to cgroup_iter_start(). This
+ * reduces the fork()/exit() overhead for people who have cgroups
+ * compiled into their kernel but not actually in use */
+static int use_task_css_set_links;
+
+/* When we create or destroy a css_set, the operation simply
+ * takes/releases a reference count on all the cgroups referenced
+ * by subsystems in this css_set. This can end up multiple-counting
+ * some cgroups, but that's OK - the ref-count is just a
+ * busy/not-busy indicator; ensuring that we only count each cgroup
+ * once would require taking a global lock to ensure that no
+ * subsystems moved between hierarchies while we were doing so.
+ *
+ * Possible TODO: decide at boot time based on the number of
+ * registered subsystems and the number of CPUs or NUMA nodes whether
+ * it's better for performance to ref-count every subsystem, or to
+ * take a global lock and only add one ref count to each hierarchy.
+ */
+
+/*
+ * unlink a css_set from the list and free it
+ */
+static void unlink_css_set(struct css_set *cg)
+{
+       write_lock(&css_set_lock);
+       list_del(&cg->list);
+       css_set_count--;
+       while (!list_empty(&cg->cg_links)) {
+               struct cg_cgroup_link *link;
+               link = list_entry(cg->cg_links.next,
+                                 struct cg_cgroup_link, cg_link_list);
+               list_del(&link->cg_link_list);
+               list_del(&link->cgrp_link_list);
+               kfree(link);
+       }
+       write_unlock(&css_set_lock);
+}
+
+static void __release_css_set(struct kref *k, int taskexit)
+{
+       int i;
+       struct css_set *cg = container_of(k, struct css_set, ref);
+
+       unlink_css_set(cg);
+
+       rcu_read_lock();
+       for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
+               struct cgroup *cgrp = cg->subsys[i]->cgroup;
+               if (atomic_dec_and_test(&cgrp->count) &&
+                   notify_on_release(cgrp)) {
+                       if (taskexit)
+                               set_bit(CGRP_RELEASABLE, &cgrp->flags);
+                       check_for_release(cgrp);
+               }
+       }
+       rcu_read_unlock();
+       kfree(cg);
+}
+
+static void release_css_set(struct kref *k)
+{
+       __release_css_set(k, 0);
+}
+
+static void release_css_set_taskexit(struct kref *k)
+{
+       __release_css_set(k, 1);
+}
+
+/*
+ * refcounted get/put for css_set objects
+ */
+static inline void get_css_set(struct css_set *cg)
+{
+       kref_get(&cg->ref);
+}
+
+static inline void put_css_set(struct css_set *cg)
+{
+       kref_put(&cg->ref, release_css_set);
+}
+
+static inline void put_css_set_taskexit(struct css_set *cg)
+{
+       kref_put(&cg->ref, release_css_set_taskexit);
+}
+
+/*
+ * find_existing_css_set() is a helper for
+ * find_css_set(), and checks to see whether an existing
+ * css_set is suitable. This currently walks a linked-list for
+ * simplicity; a later patch will use a hash table for better
+ * performance
+ *
+ * oldcg: the cgroup group that we're using before the cgroup
+ * transition
+ *
+ * cgrp: the cgroup that we're moving into
+ *
+ * template: location in which to build the desired set of subsystem
+ * state objects for the new cgroup group
+ */
+static struct css_set *find_existing_css_set(
+       struct css_set *oldcg,
+       struct cgroup *cgrp,
+       struct cgroup_subsys_state *template[])
+{
+       int i;
+       struct cgroupfs_root *root = cgrp->root;
+       struct list_head *l = &init_css_set.list;
+
+       /* Built the set of subsystem state objects that we want to
+        * see in the new css_set */
+       for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
+               if (root->subsys_bits & (1ull << i)) {
+                       /* Subsystem is in this hierarchy. So we want
+                        * the subsystem state from the new
+                        * cgroup */
+                       template[i] = cgrp->subsys[i];
+               } else {
+                       /* Subsystem is not in this hierarchy, so we
+                        * don't want to change the subsystem state */
+                       template[i] = oldcg->subsys[i];
+               }
+       }
+
+       /* Look through existing cgroup groups to find one to reuse */
+       do {
+               struct css_set *cg =
+                       list_entry(l, struct css_set, list);
+
+               if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
+                       /* All subsystems matched */
+                       return cg;
+               }
+               /* Try the next cgroup group */
+               l = l->next;
+       } while (l != &init_css_set.list);
+
+       /* No existing cgroup group matched */
+       return NULL;
+}
+
+/*
+ * allocate_cg_links() allocates "count" cg_cgroup_link structures
+ * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
+ * success or a negative error
+ */
+static int allocate_cg_links(int count, struct list_head *tmp)
+{
+       struct cg_cgroup_link *link;
+       int i;
+       INIT_LIST_HEAD(tmp);
+       for (i = 0; i < count; i++) {
+               link = kmalloc(sizeof(*link), GFP_KERNEL);
+               if (!link) {
+                       while (!list_empty(tmp)) {
+                               link = list_entry(tmp->next,
+                                                 struct cg_cgroup_link,
+                                                 cgrp_link_list);
+                               list_del(&link->cgrp_link_list);
+                               kfree(link);
+                       }
+                       return -ENOMEM;
+               }
+               list_add(&link->cgrp_link_list, tmp);
+       }
+       return 0;
+}
+
+static void free_cg_links(struct list_head *tmp)
+{
+       while (!list_empty(tmp)) {
+               struct cg_cgroup_link *link;
+               link = list_entry(tmp->next,
+                                 struct cg_cgroup_link,
+                                 cgrp_link_list);
+               list_del(&link->cgrp_link_list);
+               kfree(link);
+       }
+}
+
+/*
+ * find_css_set() takes an existing cgroup group and a
+ * cgroup object, and returns a css_set object that's
+ * equivalent to the old group, but with the given cgroup
+ * substituted into the appropriate hierarchy. Must be called with
+ * cgroup_mutex held
+ */
+static struct css_set *find_css_set(
+       struct css_set *oldcg, struct cgroup *cgrp)
+{
+       struct css_set *res;
+       struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
+       int i;
+
+       struct list_head tmp_cg_links;
+       struct cg_cgroup_link *link;
+
+       /* First see if we already have a cgroup group that matches
+        * the desired set */
+       write_lock(&css_set_lock);
+       res = find_existing_css_set(oldcg, cgrp, template);
+       if (res)
+               get_css_set(res);
+       write_unlock(&css_set_lock);
+
+       if (res)
+               return res;
+
+       res = kmalloc(sizeof(*res), GFP_KERNEL);
+       if (!res)
+               return NULL;
+
+       /* Allocate all the cg_cgroup_link objects that we'll need */
+       if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
+               kfree(res);
+               return NULL;
+       }
+
+       kref_init(&res->ref);
+       INIT_LIST_HEAD(&res->cg_links);
+       INIT_LIST_HEAD(&res->tasks);
+
+       /* Copy the set of subsystem state objects generated in
+        * find_existing_css_set() */
+       memcpy(res->subsys, template, sizeof(res->subsys));
+
+       write_lock(&css_set_lock);
+       /* Add reference counts and links from the new css_set. */
+       for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
+               struct cgroup *cgrp = res->subsys[i]->cgroup;
+               struct cgroup_subsys *ss = subsys[i];
+               atomic_inc(&cgrp->count);
+               /*
+                * We want to add a link once per cgroup, so we
+                * only do it for the first subsystem in each
+                * hierarchy
+                */
+               if (ss->root->subsys_list.next == &ss->sibling) {
+                       BUG_ON(list_empty(&tmp_cg_links));
+                       link = list_entry(tmp_cg_links.next,
+                                         struct cg_cgroup_link,
+                                         cgrp_link_list);
+                       list_del(&link->cgrp_link_list);
+                       list_add(&link->cgrp_link_list, &cgrp->css_sets);
+                       link->cg = res;
+                       list_add(&link->cg_link_list, &res->cg_links);
+               }
+       }
+       if (list_empty(&rootnode.subsys_list)) {
+               link = list_entry(tmp_cg_links.next,
+                                 struct cg_cgroup_link,
+                                 cgrp_link_list);
+               list_del(&link->cgrp_link_list);
+               list_add(&link->cgrp_link_list, &dummytop->css_sets);
+               link->cg = res;
+               list_add(&link->cg_link_list, &res->cg_links);
+       }
+
+       BUG_ON(!list_empty(&tmp_cg_links));
+
+       /* Link this cgroup group into the list */
+       list_add(&res->list, &init_css_set.list);
+       css_set_count++;
+       INIT_LIST_HEAD(&res->tasks);
+       write_unlock(&css_set_lock);
+
+       return res;
+}
+
 /*
  * There is one global cgroup mutex. We also require taking
  * task_lock() when dereferencing a task's cgroup subsys pointers.
@@ -142,7 +486,7 @@ list_for_each_entry(_root, &roots, root_list)
  * Any task can increment and decrement the count field without lock.
  * So in general, code holding cgroup_mutex can't rely on the count
  * field not changing.  However, if the count goes to zero, then only
- * attach_task() can increment it again.  Because a count of zero
+ * cgroup_attach_task() can increment it again.  Because a count of zero
  * means that no tasks are currently attached, therefore there is no
  * way a task attached to that cgroup can fork (the other way to
  * increment the count).  So code holding cgroup_mutex can safely
@@ -160,8 +504,8 @@ list_for_each_entry(_root, &roots, root_list)
  * critical pieces of code here.  The exception occurs on cgroup_exit(),
  * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
  * is taken, and if the cgroup count is zero, a usermode call made
- * to /sbin/cgroup_release_agent with the name of the cgroup (path
- * relative to the root of cgroup file system) as the argument.
+ * to the release agent with the name of the cgroup (path relative to
+ * the root of cgroup file system) as the argument.
  *
  * A cgroup can only be deleted if both its 'count' of using tasks
  * is zero, and its list of 'children' cgroups is empty.  Since all
@@ -173,26 +517,23 @@ list_for_each_entry(_root, &roots, root_list)
  *     The task_lock() exception
  *
  * The need for this exception arises from the action of
- * attach_task(), which overwrites one tasks cgroup pointer with
- * another.  It does so using cgroup_mutexe, however there are
+ * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
+ * another.  It does so using cgroup_mutex, however there are
  * several performance critical places that need to reference
  * task->cgroup without the expense of grabbing a system global
  * mutex.  Therefore except as noted below, when dereferencing or, as
- * in attach_task(), modifying a task'ss cgroup pointer we use
+ * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
  * task_lock(), which acts on a spinlock (task->alloc_lock) already in
  * the task_struct routinely used for such matters.
  *
  * P.S.  One more locking exception.  RCU is used to guard the
- * update of a tasks cgroup pointer by attach_task()
+ * update of a tasks cgroup pointer by cgroup_attach_task()
  */
 
-static DEFINE_MUTEX(cgroup_mutex);
-
 /**
  * cgroup_lock - lock out any changes to cgroup structures
  *
  */
-
 void cgroup_lock(void)
 {
        mutex_lock(&cgroup_mutex);
@@ -203,7 +544,6 @@ void cgroup_lock(void)
  *
  * Undo the lock taken in a previous cgroup_lock() call.
  */
-
 void cgroup_unlock(void)
 {
        mutex_unlock(&cgroup_mutex);
@@ -218,15 +558,17 @@ void cgroup_unlock(void)
 
 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
-static int cgroup_populate_dir(struct cgroup *cont);
+static int cgroup_populate_dir(struct cgroup *cgrp);
 static struct inode_operations cgroup_dir_inode_operations;
+static struct file_operations proc_cgroupstats_operations;
+
+static struct backing_dev_info cgroup_backing_dev_info = {
+       .capabilities   = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
+};
 
 static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
 {
        struct inode *inode = new_inode(sb);
-       static struct backing_dev_info cgroup_backing_dev_info = {
-               .capabilities   = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
-       };
 
        if (inode) {
                inode->i_mode = mode;
@@ -239,13 +581,51 @@ static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
        return inode;
 }
 
+/*
+ * Call subsys's pre_destroy handler.
+ * This is called before css refcnt check.
+ */
+static void cgroup_call_pre_destroy(struct cgroup *cgrp)
+{
+       struct cgroup_subsys *ss;
+       for_each_subsys(cgrp->root, ss)
+               if (ss->pre_destroy && cgrp->subsys[ss->subsys_id])
+                       ss->pre_destroy(ss, cgrp);
+       return;
+}
+
 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
 {
        /* is dentry a directory ? if so, kfree() associated cgroup */
        if (S_ISDIR(inode->i_mode)) {
-               struct cgroup *cont = dentry->d_fsdata;
-               BUG_ON(!(cgroup_is_removed(cont)));
-               kfree(cont);
+               struct cgroup *cgrp = dentry->d_fsdata;
+               struct cgroup_subsys *ss;
+               BUG_ON(!(cgroup_is_removed(cgrp)));
+               /* It's possible for external users to be holding css
+                * reference counts on a cgroup; css_put() needs to
+                * be able to access the cgroup after decrementing
+                * the reference count in order to know if it needs to
+                * queue the cgroup to be handled by the release
+                * agent */
+               synchronize_rcu();
+
+               mutex_lock(&cgroup_mutex);
+               /*
+                * Release the subsystem state objects.
+                */
+               for_each_subsys(cgrp->root, ss) {
+                       if (cgrp->subsys[ss->subsys_id])
+                               ss->destroy(ss, cgrp);
+               }
+
+               cgrp->root->number_of_cgroups--;
+               mutex_unlock(&cgroup_mutex);
+
+               /* Drop the active superblock reference that we took when we
+                * created the cgroup */
+               deactivate_super(cgrp->root->sb);
+
+               kfree(cgrp);
        }
        iput(inode);
 }
@@ -302,7 +682,7 @@ static int rebind_subsystems(struct cgroupfs_root *root,
                              unsigned long final_bits)
 {
        unsigned long added_bits, removed_bits;
-       struct cgroup *cont = &root->top_cgroup;
+       struct cgroup *cgrp = &root->top_cgroup;
        int i;
 
        removed_bits = root->actual_subsys_bits & ~final_bits;
@@ -323,7 +703,7 @@ static int rebind_subsystems(struct cgroupfs_root *root,
         * any child cgroups exist. This is theoretically supportable
         * but involves complex error handling, so it's being left until
         * later */
-       if (!list_empty(&cont->children))
+       if (!list_empty(&cgrp->children))
                return -EBUSY;
 
        /* Process each subsystem */
@@ -332,32 +712,32 @@ static int rebind_subsystems(struct cgroupfs_root *root,
                unsigned long bit = 1UL << i;
                if (bit & added_bits) {
                        /* We're binding this subsystem to this hierarchy */
-                       BUG_ON(cont->subsys[i]);
+                       BUG_ON(cgrp->subsys[i]);
                        BUG_ON(!dummytop->subsys[i]);
                        BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
-                       cont->subsys[i] = dummytop->subsys[i];
-                       cont->subsys[i]->cgroup = cont;
+                       cgrp->subsys[i] = dummytop->subsys[i];
+                       cgrp->subsys[i]->cgroup = cgrp;
                        list_add(&ss->sibling, &root->subsys_list);
                        rcu_assign_pointer(ss->root, root);
                        if (ss->bind)
-                               ss->bind(ss, cont);
+                               ss->bind(ss, cgrp);
 
                } else if (bit & removed_bits) {
                        /* We're removing this subsystem */
-                       BUG_ON(cont->subsys[i] != dummytop->subsys[i]);
-                       BUG_ON(cont->subsys[i]->cgroup != cont);
+                       BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
+                       BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
                        if (ss->bind)
                                ss->bind(ss, dummytop);
                        dummytop->subsys[i]->cgroup = dummytop;
-                       cont->subsys[i] = NULL;
+                       cgrp->subsys[i] = NULL;
                        rcu_assign_pointer(subsys[i]->root, &rootnode);
                        list_del(&ss->sibling);
                } else if (bit & final_bits) {
                        /* Subsystem state should already exist */
-                       BUG_ON(!cont->subsys[i]);
+                       BUG_ON(!cgrp->subsys[i]);
                } else {
                        /* Subsystem state shouldn't exist */
-                       BUG_ON(cont->subsys[i]);
+                       BUG_ON(cgrp->subsys[i]);
                }
        }
        root->subsys_bits = root->actual_subsys_bits = final_bits;
@@ -376,6 +756,8 @@ static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
                seq_printf(seq, ",%s", ss->name);
        if (test_bit(ROOT_NOPREFIX, &root->flags))
                seq_puts(seq, ",noprefix");
+       if (strlen(root->release_agent_path))
+               seq_printf(seq, ",release_agent=%s", root->release_agent_path);
        mutex_unlock(&cgroup_mutex);
        return 0;
 }
@@ -383,6 +765,7 @@ static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
 struct cgroup_sb_opts {
        unsigned long subsys_bits;
        unsigned long flags;
+       char *release_agent;
 };
 
 /* Convert a hierarchy specifier into a bitmask of subsystems and
@@ -394,6 +777,7 @@ static int parse_cgroupfs_options(char *data,
 
        opts->subsys_bits = 0;
        opts->flags = 0;
+       opts->release_agent = NULL;
 
        while ((token = strsep(&o, ",")) != NULL) {
                if (!*token)
@@ -402,6 +786,15 @@ static int parse_cgroupfs_options(char *data,
                        opts->subsys_bits = (1 << CGROUP_SUBSYS_COUNT) - 1;
                } else if (!strcmp(token, "noprefix")) {
                        set_bit(ROOT_NOPREFIX, &opts->flags);
+               } else if (!strncmp(token, "release_agent=", 14)) {
+                       /* Specifying two release agents is forbidden */
+                       if (opts->release_agent)
+                               return -EINVAL;
+                       opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
+                       if (!opts->release_agent)
+                               return -ENOMEM;
+                       strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
+                       opts->release_agent[PATH_MAX - 1] = 0;
                } else {
                        struct cgroup_subsys *ss;
                        int i;
@@ -428,10 +821,10 @@ static int cgroup_remount(struct super_block *sb, int *flags, char *data)
 {
        int ret = 0;
        struct cgroupfs_root *root = sb->s_fs_info;
-       struct cgroup *cont = &root->top_cgroup;
+       struct cgroup *cgrp = &root->top_cgroup;
        struct cgroup_sb_opts opts;
 
-       mutex_lock(&cont->dentry->d_inode->i_mutex);
+       mutex_lock(&cgrp->dentry->d_inode->i_mutex);
        mutex_lock(&cgroup_mutex);
 
        /* See what subsystems are wanted */
@@ -449,11 +842,15 @@ static int cgroup_remount(struct super_block *sb, int *flags, char *data)
 
        /* (re)populate subsystem files */
        if (!ret)
-               cgroup_populate_dir(cont);
+               cgroup_populate_dir(cgrp);
 
+       if (opts.release_agent)
+               strcpy(root->release_agent_path, opts.release_agent);
  out_unlock:
+       if (opts.release_agent)
+               kfree(opts.release_agent);
        mutex_unlock(&cgroup_mutex);
-       mutex_unlock(&cont->dentry->d_inode->i_mutex);
+       mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
        return ret;
 }
 
@@ -466,14 +863,16 @@ static struct super_operations cgroup_ops = {
 
 static void init_cgroup_root(struct cgroupfs_root *root)
 {
-       struct cgroup *cont = &root->top_cgroup;
+       struct cgroup *cgrp = &root->top_cgroup;
        INIT_LIST_HEAD(&root->subsys_list);
        INIT_LIST_HEAD(&root->root_list);
        root->number_of_cgroups = 1;
-       cont->root = root;
-       cont->top_cgroup = cont;
-       INIT_LIST_HEAD(&cont->sibling);
-       INIT_LIST_HEAD(&cont->children);
+       cgrp->root = root;
+       cgrp->top_cgroup = cgrp;
+       INIT_LIST_HEAD(&cgrp->sibling);
+       INIT_LIST_HEAD(&cgrp->children);
+       INIT_LIST_HEAD(&cgrp->css_sets);
+       INIT_LIST_HEAD(&cgrp->release_list);
 }
 
 static int cgroup_test_super(struct super_block *sb, void *data)
@@ -543,19 +942,31 @@ static int cgroup_get_sb(struct file_system_type *fs_type,
        int ret = 0;
        struct super_block *sb;
        struct cgroupfs_root *root;
+       struct list_head tmp_cg_links, *l;
+       INIT_LIST_HEAD(&tmp_cg_links);
 
        /* First find the desired set of subsystems */
        ret = parse_cgroupfs_options(data, &opts);
-       if (ret)
+       if (ret) {
+               if (opts.release_agent)
+                       kfree(opts.release_agent);
                return ret;
+       }
 
        root = kzalloc(sizeof(*root), GFP_KERNEL);
-       if (!root)
+       if (!root) {
+               if (opts.release_agent)
+                       kfree(opts.release_agent);
                return -ENOMEM;
+       }
 
        init_cgroup_root(root);
        root->subsys_bits = opts.subsys_bits;
        root->flags = opts.flags;
+       if (opts.release_agent) {
+               strcpy(root->release_agent_path, opts.release_agent);
+               kfree(opts.release_agent);
+       }
 
        sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);
 
@@ -571,19 +982,37 @@ static int cgroup_get_sb(struct file_system_type *fs_type,
                root = NULL;
        } else {
                /* New superblock */
-               struct cgroup *cont = &root->top_cgroup;
+               struct cgroup *cgrp = &root->top_cgroup;
+               struct inode *inode;
 
                BUG_ON(sb->s_root != NULL);
 
                ret = cgroup_get_rootdir(sb);
                if (ret)
                        goto drop_new_super;
+               inode = sb->s_root->d_inode;
 
+               mutex_lock(&inode->i_mutex);
                mutex_lock(&cgroup_mutex);
 
+               /*
+                * We're accessing css_set_count without locking
+                * css_set_lock here, but that's OK - it can only be
+                * increased by someone holding cgroup_lock, and
+                * that's us. The worst that can happen is that we
+                * have some link structures left over
+                */
+               ret = allocate_cg_links(css_set_count, &tmp_cg_links);
+               if (ret) {
+                       mutex_unlock(&cgroup_mutex);
+                       mutex_unlock(&inode->i_mutex);
+                       goto drop_new_super;
+               }
+
                ret = rebind_subsystems(root, root->subsys_bits);
                if (ret == -EBUSY) {
                        mutex_unlock(&cgroup_mutex);
+                       mutex_unlock(&inode->i_mutex);
                        goto drop_new_super;
                }
 
@@ -591,24 +1020,40 @@ static int cgroup_get_sb(struct file_system_type *fs_type,
                BUG_ON(ret);
 
                list_add(&root->root_list, &roots);
+               root_count++;
 
                sb->s_root->d_fsdata = &root->top_cgroup;
                root->top_cgroup.dentry = sb->s_root;
 
-               BUG_ON(!list_empty(&cont->sibling));
-               BUG_ON(!list_empty(&cont->children));
+               /* Link the top cgroup in this hierarchy into all
+                * the css_set objects */
+               write_lock(&css_set_lock);
+               l = &init_css_set.list;
+               do {
+                       struct css_set *cg;
+                       struct cg_cgroup_link *link;
+                       cg = list_entry(l, struct css_set, list);
+                       BUG_ON(list_empty(&tmp_cg_links));
+                       link = list_entry(tmp_cg_links.next,
+                                         struct cg_cgroup_link,
+                                         cgrp_link_list);
+                       list_del(&link->cgrp_link_list);
+                       link->cg = cg;
+                       list_add(&link->cgrp_link_list,
+                                &root->top_cgroup.css_sets);
+                       list_add(&link->cg_link_list, &cg->cg_links);
+                       l = l->next;
+               } while (l != &init_css_set.list);
+               write_unlock(&css_set_lock);
+
+               free_cg_links(&tmp_cg_links);
+
+               BUG_ON(!list_empty(&cgrp->sibling));
+               BUG_ON(!list_empty(&cgrp->children));
                BUG_ON(root->number_of_cgroups != 1);
 
-               /*
-                * I believe that it's safe to nest i_mutex inside
-                * cgroup_mutex in this case, since no-one else can
-                * be accessing this directory yet. But we still need
-                * to teach lockdep that this is the case - currently
-                * a cgroupfs remount triggers a lockdep warning
-                */
-               mutex_lock(&cont->dentry->d_inode->i_mutex);
-               cgroup_populate_dir(cont);
-               mutex_unlock(&cont->dentry->d_inode->i_mutex);
+               cgroup_populate_dir(cgrp);
+               mutex_unlock(&inode->i_mutex);
                mutex_unlock(&cgroup_mutex);
        }
 
@@ -617,19 +1062,20 @@ static int cgroup_get_sb(struct file_system_type *fs_type,
  drop_new_super:
        up_write(&sb->s_umount);
        deactivate_super(sb);
+       free_cg_links(&tmp_cg_links);
        return ret;
 }
 
 static void cgroup_kill_sb(struct super_block *sb) {
        struct cgroupfs_root *root = sb->s_fs_info;
-       struct cgroup *cont = &root->top_cgroup;
+       struct cgroup *cgrp = &root->top_cgroup;
        int ret;
 
        BUG_ON(!root);
 
        BUG_ON(root->number_of_cgroups != 1);
-       BUG_ON(!list_empty(&cont->children));
-       BUG_ON(!list_empty(&cont->sibling));
+       BUG_ON(!list_empty(&cgrp->children));
+       BUG_ON(!list_empty(&cgrp->sibling));
 
        mutex_lock(&cgroup_mutex);
 
@@ -638,8 +1084,25 @@ static void cgroup_kill_sb(struct super_block *sb) {
        /* Shouldn't be able to fail ... */
        BUG_ON(ret);
 
-       if (!list_empty(&root->root_list))
+       /*
+        * Release all the links from css_sets to this hierarchy's
+        * root cgroup
+        */
+       write_lock(&css_set_lock);
+       while (!list_empty(&cgrp->css_sets)) {
+               struct cg_cgroup_link *link;
+               link = list_entry(cgrp->css_sets.next,
+                                 struct cg_cgroup_link, cgrp_link_list);
+               list_del(&link->cg_link_list);
+               list_del(&link->cgrp_link_list);
+               kfree(link);
+       }
+       write_unlock(&css_set_lock);
+
+       if (!list_empty(&root->root_list)) {
                list_del(&root->root_list);
+               root_count--;
+       }
        mutex_unlock(&cgroup_mutex);
 
        kfree(root);
@@ -652,7 +1115,7 @@ static struct file_system_type cgroup_fs_type = {
        .kill_sb = cgroup_kill_sb,
 };
 
-static inline struct cgroup *__d_cont(struct dentry *dentry)
+static inline struct cgroup *__d_cgrp(struct dentry *dentry)
 {
        return dentry->d_fsdata;
 }
@@ -662,15 +1125,20 @@ static inline struct cftype *__d_cft(struct dentry *dentry)
        return dentry->d_fsdata;
 }
 
-/*
- * Called with cgroup_mutex held.  Writes path of cgroup into buf.
+/**
+ * cgroup_path - generate the path of a cgroup
+ * @cgrp: the cgroup in question
+ * @buf: the buffer to write the path into
+ * @buflen: the length of the buffer
+ *
+ * Called with cgroup_mutex held. Writes path of cgroup into buf.
  * Returns 0 on success, -errno on error.
  */
-int cgroup_path(const struct cgroup *cont, char *buf, int buflen)
+int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
 {
        char *start;
 
-       if (cont == dummytop) {
+       if (cgrp == dummytop) {
                /*
                 * Inactive subsystems have no dentry for their root
                 * cgroup
@@ -683,14 +1151,14 @@ int cgroup_path(const struct cgroup *cont, char *buf, int buflen)
 
        *--start = '\0';
        for (;;) {
-               int len = cont->dentry->d_name.len;
+               int len = cgrp->dentry->d_name.len;
                if ((start -= len) < buf)
                        return -ENAMETOOLONG;
-               memcpy(start, cont->dentry->d_name.name, len);
-               cont = cont->parent;
-               if (!cont)
+               memcpy(start, cgrp->dentry->d_name.name, len);
+               cgrp = cgrp->parent;
+               if (!cgrp)
                        break;
-               if (!cont->parent)
+               if (!cgrp->parent)
                        continue;
                if (--start < buf)
                        return -ENAMETOOLONG;
@@ -705,89 +1173,95 @@ int cgroup_path(const struct cgroup *cont, char *buf, int buflen)
  * its subsystem id.
  */
 
-static void get_first_subsys(const struct cgroup *cont,
+static void get_first_subsys(const struct cgroup *cgrp,
                        struct cgroup_subsys_state **css, int *subsys_id)
 {
-       const struct cgroupfs_root *root = cont->root;
+       const struct cgroupfs_root *root = cgrp->root;
        const struct cgroup_subsys *test_ss;
        BUG_ON(list_empty(&root->subsys_list));
        test_ss = list_entry(root->subsys_list.next,
                             struct cgroup_subsys, sibling);
        if (css) {
-               *css = cont->subsys[test_ss->subsys_id];
+               *css = cgrp->subsys[test_ss->subsys_id];
                BUG_ON(!*css);
        }
        if (subsys_id)
                *subsys_id = test_ss->subsys_id;
 }
 
-/*
- * Attach task 'tsk' to cgroup 'cont'
+/**
+ * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
+ * @cgrp: the cgroup the task is attaching to
+ * @tsk: the task to be attached
  *
- * Call holding cgroup_mutex.  May take task_lock of
- * the task 'pid' during call.
+ * Call holding cgroup_mutex. May take task_lock of
+ * the task 'tsk' during call.
  */
-static int attach_task(struct cgroup *cont, struct task_struct *tsk)
+int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
 {
        int retval = 0;
        struct cgroup_subsys *ss;
-       struct cgroup *oldcont;
-       struct css_set *cg = &tsk->cgroups;
-       struct cgroupfs_root *root = cont->root;
-       int i;
+       struct cgroup *oldcgrp;
+       struct css_set *cg = tsk->cgroups;
+       struct css_set *newcg;
+       struct cgroupfs_root *root = cgrp->root;
        int subsys_id;
 
-       get_first_subsys(cont, NULL, &subsys_id);
+       get_first_subsys(cgrp, NULL, &subsys_id);
 
        /* Nothing to do if the task is already in that cgroup */
-       oldcont = task_cgroup(tsk, subsys_id);
-       if (cont == oldcont)
+       oldcgrp = task_cgroup(tsk, subsys_id);
+       if (cgrp == oldcgrp)
                return 0;
 
        for_each_subsys(root, ss) {
                if (ss->can_attach) {
-                       retval = ss->can_attach(ss, cont, tsk);
-                       if (retval) {
+                       retval = ss->can_attach(ss, cgrp, tsk);
+                       if (retval)
                                return retval;
-                       }
                }
        }
 
+       /*
+        * Locate or allocate a new css_set for this task,
+        * based on its final set of cgroups
+        */
+       newcg = find_css_set(cg, cgrp);
+       if (!newcg)
+               return -ENOMEM;
+
        task_lock(tsk);
        if (tsk->flags & PF_EXITING) {
                task_unlock(tsk);
+               put_css_set(newcg);
                return -ESRCH;
        }
-       /* Update the css_set pointers for the subsystems in this
-        * hierarchy */
-       for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
-               if (root->subsys_bits & (1ull << i)) {
-                       /* Subsystem is in this hierarchy. So we want
-                        * the subsystem state from the new
-                        * cgroup. Transfer the refcount from the
-                        * old to the new */
-                       atomic_inc(&cont->count);
-                       atomic_dec(&cg->subsys[i]->cgroup->count);
-                       rcu_assign_pointer(cg->subsys[i], cont->subsys[i]);
-               }
-       }
+       rcu_assign_pointer(tsk->cgroups, newcg);
        task_unlock(tsk);
 
-       for_each_subsys(root, ss) {
-               if (ss->attach) {
-                       ss->attach(ss, cont, oldcont, tsk);
-               }
+       /* Update the css_set linked lists if we're using them */
+       write_lock(&css_set_lock);
+       if (!list_empty(&tsk->cg_list)) {
+               list_del(&tsk->cg_list);
+               list_add(&tsk->cg_list, &newcg->tasks);
        }
+       write_unlock(&css_set_lock);
 
+       for_each_subsys(root, ss) {
+               if (ss->attach)
+                       ss->attach(ss, cgrp, oldcgrp, tsk);
+       }
+       set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
        synchronize_rcu();
+       put_css_set(cg);
        return 0;
 }
 
 /*
- * Attach task with pid 'pid' to cgroup 'cont'. Call with
+ * Attach task with pid 'pid' to cgroup 'cgrp'. Call with
  * cgroup_mutex, may take task_lock of task
  */
-static int attach_task_by_pid(struct cgroup *cont, char *pidbuf)
+static int attach_task_by_pid(struct cgroup *cgrp, char *pidbuf)
 {
        pid_t pid;
        struct task_struct *tsk;
@@ -798,7 +1272,7 @@ static int attach_task_by_pid(struct cgroup *cont, char *pidbuf)
 
        if (pid) {
                rcu_read_lock();
-               tsk = find_task_by_pid(pid);
+               tsk = find_task_by_vpid(pid);
                if (!tsk || tsk->flags & PF_EXITING) {
                        rcu_read_unlock();
                        return -ESRCH;
@@ -816,20 +1290,22 @@ static int attach_task_by_pid(struct cgroup *cont, char *pidbuf)
                get_task_struct(tsk);
        }
 
-       ret = attach_task(cont, tsk);
+       ret = cgroup_attach_task(cgrp, tsk);
        put_task_struct(tsk);
        return ret;
 }
 
 /* The various types of files and directories in a cgroup file system */
-
 enum cgroup_filetype {
        FILE_ROOT,
        FILE_DIR,
        FILE_TASKLIST,
+       FILE_NOTIFY_ON_RELEASE,
+       FILE_RELEASABLE,
+       FILE_RELEASE_AGENT,
 };
 
-static ssize_t cgroup_write_uint(struct cgroup *cont, struct cftype *cft,
+static ssize_t cgroup_write_uint(struct cgroup *cgrp, struct cftype *cft,
                                 struct file *file,
                                 const char __user *userbuf,
                                 size_t nbytes, loff_t *unused_ppos)
@@ -856,13 +1332,13 @@ static ssize_t cgroup_write_uint(struct cgroup *cont, struct cftype *cft,
                return -EINVAL;
 
        /* Pass to subsystem */
-       retval = cft->write_uint(cont, cft, val);
+       retval = cft->write_uint(cgrp, cft, val);
        if (!retval)
                retval = nbytes;
        return retval;
 }
 
-static ssize_t cgroup_common_file_write(struct cgroup *cont,
+static ssize_t cgroup_common_file_write(struct cgroup *cgrp,
                                           struct cftype *cft,
                                           struct file *file,
                                           const char __user *userbuf,
@@ -885,17 +1361,33 @@ static ssize_t cgroup_common_file_write(struct cgroup *cont,
                goto out1;
        }
        buffer[nbytes] = 0;     /* nul-terminate */
+       strstrip(buffer);       /* strip -just- trailing whitespace */
 
        mutex_lock(&cgroup_mutex);
 
-       if (cgroup_is_removed(cont)) {
+       /*
+        * This was already checked for in cgroup_file_write(), but
+        * check again now we're holding cgroup_mutex.
+        */
+       if (cgroup_is_removed(cgrp)) {
                retval = -ENODEV;
                goto out2;
        }
 
        switch (type) {
        case FILE_TASKLIST:
-               retval = attach_task_by_pid(cont, buffer);
+               retval = attach_task_by_pid(cgrp, buffer);
+               break;
+       case FILE_NOTIFY_ON_RELEASE:
+               clear_bit(CGRP_RELEASABLE, &cgrp->flags);
+               if (simple_strtoul(buffer, NULL, 10) != 0)
+                       set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
+               else
+                       clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
+               break;
+       case FILE_RELEASE_AGENT:
+               BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
+               strcpy(cgrp->root->release_agent_path, buffer);
                break;
        default:
                retval = -EINVAL;
@@ -915,42 +1407,85 @@ static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
                                                size_t nbytes, loff_t *ppos)
 {
        struct cftype *cft = __d_cft(file->f_dentry);
-       struct cgroup *cont = __d_cont(file->f_dentry->d_parent);
+       struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
 
-       if (!cft)
+       if (!cft || cgroup_is_removed(cgrp))
                return -ENODEV;
        if (cft->write)
-               return cft->write(cont, cft, file, buf, nbytes, ppos);
+               return cft->write(cgrp, cft, file, buf, nbytes, ppos);
        if (cft->write_uint)
-               return cgroup_write_uint(cont, cft, file, buf, nbytes, ppos);
+               return cgroup_write_uint(cgrp, cft, file, buf, nbytes, ppos);
        return -EINVAL;
 }
 
-static ssize_t cgroup_read_uint(struct cgroup *cont, struct cftype *cft,
+static ssize_t cgroup_read_uint(struct cgroup *cgrp, struct cftype *cft,
                                   struct file *file,
                                   char __user *buf, size_t nbytes,
                                   loff_t *ppos)
 {
        char tmp[64];
-       u64 val = cft->read_uint(cont, cft);
+       u64 val = cft->read_uint(cgrp, cft);
        int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
 
        return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
 }
 
+static ssize_t cgroup_common_file_read(struct cgroup *cgrp,
+                                         struct cftype *cft,
+                                         struct file *file,
+                                         char __user *buf,
+                                         size_t nbytes, loff_t *ppos)
+{
+       enum cgroup_filetype type = cft->private;
+       char *page;
+       ssize_t retval = 0;
+       char *s;
+
+       if (!(page = (char *)__get_free_page(GFP_KERNEL)))
+               return -ENOMEM;
+
+       s = page;
+
+       switch (type) {
+       case FILE_RELEASE_AGENT:
+       {
+               struct cgroupfs_root *root;
+               size_t n;
+               mutex_lock(&cgroup_mutex);
+               root = cgrp->root;
+               n = strnlen(root->release_agent_path,
+                           sizeof(root->release_agent_path));
+               n = min(n, (size_t) PAGE_SIZE);
+               strncpy(s, root->release_agent_path, n);
+               mutex_unlock(&cgroup_mutex);
+               s += n;
+               break;
+       }
+       default:
+               retval = -EINVAL;
+               goto out;
+       }
+       *s++ = '\n';
+
+       retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
+out:
+       free_page((unsigned long)page);
+       return retval;
+}
+
 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
                                   size_t nbytes, loff_t *ppos)
 {
        struct cftype *cft = __d_cft(file->f_dentry);
-       struct cgroup *cont = __d_cont(file->f_dentry->d_parent);
+       struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
 
-       if (!cft)
+       if (!cft || cgroup_is_removed(cgrp))
                return -ENODEV;
 
        if (cft->read)
-               return cft->read(cont, cft, file, buf, nbytes, ppos);
+               return cft->read(cgrp, cft, file, buf, nbytes, ppos);
        if (cft->read_uint)
-               return cgroup_read_uint(cont, cft, file, buf, nbytes, ppos);
+               return cgroup_read_uint(cgrp, cft, file, buf, nbytes, ppos);
        return -EINVAL;
 }
 
@@ -1039,7 +1574,7 @@ static int cgroup_create_file(struct dentry *dentry, int mode,
 
                /* start with the directory inode held, so that we can
                 * populate it without racing with another mkdir */
-               mutex_lock(&inode->i_mutex);
+               mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
        } else if (S_ISREG(mode)) {
                inode->i_size = 0;
                inode->i_fop = &cgroup_file_operations;
@@ -1051,25 +1586,24 @@ static int cgroup_create_file(struct dentry *dentry, int mode,
 }
 
 /*
- *     cgroup_create_dir - create a directory for an object.
- *     cont:   the cgroup we create the directory for.
- *             It must have a valid ->parent field
- *             And we are going to fill its ->dentry field.
- *     dentry: dentry of the new container
- *     mode:   mode to set on new directory.
+ * cgroup_create_dir - create a directory for an object.
+ * @cgrp: the cgroup we create the directory for. It must have a valid
+ *        ->parent field. And we are going to fill its ->dentry field.
+ * @dentry: dentry of the new cgroup
+ * @mode: mode to set on new directory.
  */
-static int cgroup_create_dir(struct cgroup *cont, struct dentry *dentry,
+static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
                                int mode)
 {
        struct dentry *parent;
        int error = 0;
 
-       parent = cont->parent->dentry;
-       error = cgroup_create_file(dentry, S_IFDIR | mode, cont->root->sb);
+       parent = cgrp->parent->dentry;
+       error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
        if (!error) {
-               dentry->d_fsdata = cont;
+               dentry->d_fsdata = cgrp;
                inc_nlink(parent->d_inode);
-               cont->dentry = dentry;
+               cgrp->dentry = dentry;
                dget(dentry);
        }
        dput(dentry);
@@ -1077,16 +1611,16 @@ static int cgroup_create_dir(struct cgroup *cont, struct dentry *dentry,
        return error;
 }
 
-int cgroup_add_file(struct cgroup *cont,
+int cgroup_add_file(struct cgroup *cgrp,
                       struct cgroup_subsys *subsys,
                       const struct cftype *cft)
 {
-       struct dentry *dir = cont->dentry;
+       struct dentry *dir = cgrp->dentry;
        struct dentry *dentry;
        int error;
 
        char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
-       if (subsys && !test_bit(ROOT_NOPREFIX, &cont->root->flags)) {
+       if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
                strcpy(name, subsys->name);
                strcat(name, ".");
        }
@@ -1095,7 +1629,7 @@ int cgroup_add_file(struct cgroup *cont,
        dentry = lookup_one_len(name, dir, strlen(name));
        if (!IS_ERR(dentry)) {
                error = cgroup_create_file(dentry, 0644 | S_IFREG,
-                                               cont->root->sb);
+                                               cgrp->root->sb);
                if (!error)
                        dentry->d_fsdata = (void *)cft;
                dput(dentry);
@@ -1104,96 +1638,394 @@ int cgroup_add_file(struct cgroup *cont,
        return error;
 }
 
-int cgroup_add_files(struct cgroup *cont,
+int cgroup_add_files(struct cgroup *cgrp,
                        struct cgroup_subsys *subsys,
                        const struct cftype cft[],
                        int count)
 {
        int i, err;
        for (i = 0; i < count; i++) {
-               err = cgroup_add_file(cont, subsys, &cft[i]);
+               err = cgroup_add_file(cgrp, subsys, &cft[i]);
                if (err)
                        return err;
        }
        return 0;
 }
 
-/* Count the number of tasks in a cgroup. Could be made more
- * time-efficient but less space-efficient with more linked lists
- * running through each cgroup and the css_set structures that
- * referenced it. Must be called with tasklist_lock held for read or
- * write or in an rcu critical section.
+/**
+ * cgroup_task_count - count the number of tasks in a cgroup.
+ * @cgrp: the cgroup in question
+ *
+ * Return the number of tasks in the cgroup.
  */
-int __cgroup_task_count(const struct cgroup *cont)
+int cgroup_task_count(const struct cgroup *cgrp)
 {
        int count = 0;
-       struct task_struct *g, *p;
-       struct cgroup_subsys_state *css;
-       int subsys_id;
-
-       get_first_subsys(cont, &css, &subsys_id);
-       do_each_thread(g, p) {
-               if (task_subsys_state(p, subsys_id) == css)
-                       count ++;
-       } while_each_thread(g, p);
+       struct list_head *l;
+
+       read_lock(&css_set_lock);
+       l = cgrp->css_sets.next;
+       while (l != &cgrp->css_sets) {
+               struct cg_cgroup_link *link =
+                       list_entry(l, struct cg_cgroup_link, cgrp_link_list);
+               count += atomic_read(&link->cg->ref.refcount);
+               l = l->next;
+       }
+       read_unlock(&css_set_lock);
        return count;
 }
 
 /*
- * Stuff for reading the 'tasks' file.
- *
- * Reading this file can return large amounts of data if a cgroup has
- * *lots* of attached tasks. So it may need several calls to read(),
- * but we cannot guarantee that the information we produce is correct
- * unless we produce it entirely atomically.
- *
- * Upon tasks file open(), a struct ctr_struct is allocated, that
- * will have a pointer to an array (also allocated here).  The struct
- * ctr_struct * is stored in file->private_data.  Its resources will
- * be freed by release() when the file is closed.  The array is used
- * to sprintf the PIDs and then used by read().
+ * Advance a list_head iterator.  The iterator should be positioned at
+ * the start of a css_set
  */
-struct ctr_struct {
-       char *buf;
-       int bufsz;
-};
+static void cgroup_advance_iter(struct cgroup *cgrp,
+                                         struct cgroup_iter *it)
+{
+       struct list_head *l = it->cg_link;
+       struct cg_cgroup_link *link;
+       struct css_set *cg;
+
+       /* Advance to the next non-empty css_set */
+       do {
+               l = l->next;
+               if (l == &cgrp->css_sets) {
+                       it->cg_link = NULL;
+                       return;
+               }
+               link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
+               cg = link->cg;
+       } while (list_empty(&cg->tasks));
+       it->cg_link = l;
+       it->task = cg->tasks.next;
+}
 
 /*
- * Load into 'pidarray' up to 'npids' of the tasks using cgroup
- * 'cont'.  Return actual number of pids loaded.  No need to
- * task_lock(p) when reading out p->cgroup, since we're in an RCU
- * read section, so the css_set can't go away, and is
- * immutable after creation.
+ * To reduce the fork() overhead for systems that are not actually
+ * using their cgroups capability, we don't maintain the lists running
+ * through each css_set to its tasks until we see the list actually
+ * used - in other words after the first call to cgroup_iter_start().
+ *
+ * The tasklist_lock is not held here, as do_each_thread() and
+ * while_each_thread() are protected by RCU.
  */
-static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cont)
+void cgroup_enable_task_cg_lists(void)
 {
-       int n = 0;
-       struct task_struct *g, *p;
-       struct cgroup_subsys_state *css;
-       int subsys_id;
-
-       get_first_subsys(cont, &css, &subsys_id);
-       rcu_read_lock();
+       struct task_struct *p, *g;
+       write_lock(&css_set_lock);
+       use_task_css_set_links = 1;
        do_each_thread(g, p) {
-               if (task_subsys_state(p, subsys_id) == css) {
-                       pidarray[n++] = pid_nr(task_pid(p));
-                       if (unlikely(n == npids))
-                               goto array_full;
-               }
+               task_lock(p);
+               if (list_empty(&p->cg_list))
+                       list_add(&p->cg_list, &p->cgroups->tasks);
+               task_unlock(p);
        } while_each_thread(g, p);
-
-array_full:
-       rcu_read_unlock();
-       return n;
+       write_unlock(&css_set_lock);
 }
 
-static int cmppid(const void *a, const void *b)
+void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
 {
-       return *(pid_t *)a - *(pid_t *)b;
+       /*
+        * The first time anyone tries to iterate across a cgroup,
+        * we need to enable the list linking each css_set to its
+        * tasks, and fix up all existing tasks.
+        */
+       if (!use_task_css_set_links)
+               cgroup_enable_task_cg_lists();
+
+       read_lock(&css_set_lock);
+       it->cg_link = &cgrp->css_sets;
+       cgroup_advance_iter(cgrp, it);
 }
 
-/*
- * Convert array 'a' of 'npids' pid_t's to a string of newline separated
+struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
+                                       struct cgroup_iter *it)
+{
+       struct task_struct *res;
+       struct list_head *l = it->task;
+
+       /* If the iterator cg is NULL, we have no tasks */
+       if (!it->cg_link)
+               return NULL;
+       res = list_entry(l, struct task_struct, cg_list);
+       /* Advance iterator to find next entry */
+       l = l->next;
+       if (l == &res->cgroups->tasks) {
+               /* We reached the end of this task list - move on to
+                * the next cg_cgroup_link */
+               cgroup_advance_iter(cgrp, it);
+       } else {
+               it->task = l;
+       }
+       return res;
+}
+
+void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
+{
+       read_unlock(&css_set_lock);
+}
+
+static inline int started_after_time(struct task_struct *t1,
+                                    struct timespec *time,
+                                    struct task_struct *t2)
+{
+       int start_diff = timespec_compare(&t1->start_time, time);
+       if (start_diff > 0) {
+               return 1;
+       } else if (start_diff < 0) {
+               return 0;
+       } else {
+               /*
+                * Arbitrarily, if two processes started at the same
+                * time, we'll say that the lower pointer value
+                * started first. Note that t2 may have exited by now
+                * so this may not be a valid pointer any longer, but
+                * that's fine - it still serves to distinguish
+                * between two tasks started (effectively) simultaneously.
+                */
+               return t1 > t2;
+       }
+}
+
+/*
+ * This function is a callback from heap_insert() and is used to order
+ * the heap.
+ * In this case we order the heap in descending task start time.
+ */
+static inline int started_after(void *p1, void *p2)
+{
+       struct task_struct *t1 = p1;
+       struct task_struct *t2 = p2;
+       return started_after_time(t1, &t2->start_time, t2);
+}
+
+/**
+ * cgroup_scan_tasks - iterate though all the tasks in a cgroup
+ * @scan: struct cgroup_scanner containing arguments for the scan
+ *
+ * Arguments include pointers to callback functions test_task() and
+ * process_task().
+ * Iterate through all the tasks in a cgroup, calling test_task() for each,
+ * and if it returns true, call process_task() for it also.
+ * The test_task pointer may be NULL, meaning always true (select all tasks).
+ * Effectively duplicates cgroup_iter_{start,next,end}()
+ * but does not lock css_set_lock for the call to process_task().
+ * The struct cgroup_scanner may be embedded in any structure of the caller's
+ * creation.
+ * It is guaranteed that process_task() will act on every task that
+ * is a member of the cgroup for the duration of this call. This
+ * function may or may not call process_task() for tasks that exit
+ * or move to a different cgroup during the call, or are forked or
+ * move into the cgroup during the call.
+ *
+ * Note that test_task() may be called with locks held, and may in some
+ * situations be called multiple times for the same task, so it should
+ * be cheap.
+ * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
+ * pre-allocated and will be used for heap operations (and its "gt" member will
+ * be overwritten), else a temporary heap will be used (allocation of which
+ * may cause this function to fail).
+ */
+int cgroup_scan_tasks(struct cgroup_scanner *scan)
+{
+       int retval, i;
+       struct cgroup_iter it;
+       struct task_struct *p, *dropped;
+       /* Never dereference latest_task, since it's not refcounted */
+       struct task_struct *latest_task = NULL;
+       struct ptr_heap tmp_heap;
+       struct ptr_heap *heap;
+       struct timespec latest_time = { 0, 0 };
+
+       if (scan->heap) {
+               /* The caller supplied our heap and pre-allocated its memory */
+               heap = scan->heap;
+               heap->gt = &started_after;
+       } else {
+               /* We need to allocate our own heap memory */
+               heap = &tmp_heap;
+               retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
+               if (retval)
+                       /* cannot allocate the heap */
+                       return retval;
+       }
+
+ again:
+       /*
+        * Scan tasks in the cgroup, using the scanner's "test_task" callback
+        * to determine which are of interest, and using the scanner's
+        * "process_task" callback to process any of them that need an update.
+        * Since we don't want to hold any locks during the task updates,
+        * gather tasks to be processed in a heap structure.
+        * The heap is sorted by descending task start time.
+        * If the statically-sized heap fills up, we overflow tasks that
+        * started later, and in future iterations only consider tasks that
+        * started after the latest task in the previous pass. This
+        * guarantees forward progress and that we don't miss any tasks.
+        */
+       heap->size = 0;
+       cgroup_iter_start(scan->cg, &it);
+       while ((p = cgroup_iter_next(scan->cg, &it))) {
+               /*
+                * Only affect tasks that qualify per the caller's callback,
+                * if he provided one
+                */
+               if (scan->test_task && !scan->test_task(p, scan))
+                       continue;
+               /*
+                * Only process tasks that started after the last task
+                * we processed
+                */
+               if (!started_after_time(p, &latest_time, latest_task))
+                       continue;
+               dropped = heap_insert(heap, p);
+               if (dropped == NULL) {
+                       /*
+                        * The new task was inserted; the heap wasn't
+                        * previously full
+                        */
+                       get_task_struct(p);
+               } else if (dropped != p) {
+                       /*
+                        * The new task was inserted, and pushed out a
+                        * different task
+                        */
+                       get_task_struct(p);
+                       put_task_struct(dropped);
+               }
+               /*
+                * Else the new task was newer than anything already in
+                * the heap and wasn't inserted
+                */
+       }
+       cgroup_iter_end(scan->cg, &it);
+
+       if (heap->size) {
+               for (i = 0; i < heap->size; i++) {
+                       struct task_struct *p = heap->ptrs[i];
+                       if (i == 0) {
+                               latest_time = p->start_time;
+                               latest_task = p;
+                       }
+                       /* Process the task per the caller's callback */
+                       scan->process_task(p, scan);
+                       put_task_struct(p);
+               }
+               /*
+                * If we had to process any tasks at all, scan again
+                * in case some of them were in the middle of forking
+                * children that didn't get processed.
+                * Not the most efficient way to do it, but it avoids
+                * having to take callback_mutex in the fork path
+                */
+               goto again;
+       }
+       if (heap == &tmp_heap)
+               heap_free(&tmp_heap);
+       return 0;
+}
+
+/*
+ * Stuff for reading the 'tasks' file.
+ *
+ * Reading this file can return large amounts of data if a cgroup has
+ * *lots* of attached tasks. So it may need several calls to read(),
+ * but we cannot guarantee that the information we produce is correct
+ * unless we produce it entirely atomically.
+ *
+ * Upon tasks file open(), a struct ctr_struct is allocated, that
+ * will have a pointer to an array (also allocated here).  The struct
+ * ctr_struct * is stored in file->private_data.  Its resources will
+ * be freed by release() when the file is closed.  The array is used
+ * to sprintf the PIDs and then used by read().
+ */
+struct ctr_struct {
+       char *buf;
+       int bufsz;
+};
+
+/*
+ * Load into 'pidarray' up to 'npids' of the tasks using cgroup
+ * 'cgrp'.  Return actual number of pids loaded.  No need to
+ * task_lock(p) when reading out p->cgroup, since we're in an RCU
+ * read section, so the css_set can't go away, and is
+ * immutable after creation.
+ */
+static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
+{
+       int n = 0;
+       struct cgroup_iter it;
+       struct task_struct *tsk;
+       cgroup_iter_start(cgrp, &it);
+       while ((tsk = cgroup_iter_next(cgrp, &it))) {
+               if (unlikely(n == npids))
+                       break;
+               pidarray[n++] = task_pid_vnr(tsk);
+       }
+       cgroup_iter_end(cgrp, &it);
+       return n;
+}
+
+/**
+ * cgroupstats_build - build and fill cgroupstats
+ * @stats: cgroupstats to fill information into
+ * @dentry: A dentry entry belonging to the cgroup for which stats have
+ * been requested.
+ *
+ * Build and fill cgroupstats so that taskstats can export it to user
+ * space.
+ */
+int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
+{
+       int ret = -EINVAL;
+       struct cgroup *cgrp;
+       struct cgroup_iter it;
+       struct task_struct *tsk;
+       /*
+        * Validate dentry by checking the superblock operations
+        */
+       if (dentry->d_sb->s_op != &cgroup_ops)
+                goto err;
+
+       ret = 0;
+       cgrp = dentry->d_fsdata;
+       rcu_read_lock();
+
+       cgroup_iter_start(cgrp, &it);
+       while ((tsk = cgroup_iter_next(cgrp, &it))) {
+               switch (tsk->state) {
+               case TASK_RUNNING:
+                       stats->nr_running++;
+                       break;
+               case TASK_INTERRUPTIBLE:
+                       stats->nr_sleeping++;
+                       break;
+               case TASK_UNINTERRUPTIBLE:
+                       stats->nr_uninterruptible++;
+                       break;
+               case TASK_STOPPED:
+                       stats->nr_stopped++;
+                       break;
+               default:
+                       if (delayacct_is_task_waiting_on_io(tsk))
+                               stats->nr_io_wait++;
+                       break;
+               }
+       }
+       cgroup_iter_end(cgrp, &it);
+
+       rcu_read_unlock();
+err:
+       return ret;
+}
+
+static int cmppid(const void *a, const void *b)
+{
+       return *(pid_t *)a - *(pid_t *)b;
+}
+
+/*
+ * Convert array 'a' of 'npids' pid_t's to a string of newline separated
  * decimal pids in 'buf'.  Don't write more than 'sz' chars, but return
  * count 'cnt' of how many chars would be written if buf were large enough.
  */
@@ -1215,7 +2047,7 @@ static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
  */
 static int cgroup_tasks_open(struct inode *unused, struct file *file)
 {
-       struct cgroup *cont = __d_cont(file->f_dentry->d_parent);
+       struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
        struct ctr_struct *ctr;
        pid_t *pidarray;
        int npids;
@@ -1234,13 +2066,13 @@ static int cgroup_tasks_open(struct inode *unused, struct file *file)
         * caller from the case that the additional cgroup users didn't
         * show up until sometime later on.
         */
-       npids = cgroup_task_count(cont);
+       npids = cgroup_task_count(cgrp);
        if (npids) {
                pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
                if (!pidarray)
                        goto err1;
 
-               npids = pid_array_load(pidarray, npids, cont);
+               npids = pid_array_load(pidarray, npids, cgrp);
                sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
 
                /* Call pid_array_to_buf() twice, first just to get bufsz */
@@ -1266,7 +2098,7 @@ err0:
        return -ENOMEM;
 }
 
-static ssize_t cgroup_tasks_read(struct cgroup *cont,
+static ssize_t cgroup_tasks_read(struct cgroup *cgrp,
                                    struct cftype *cft,
                                    struct file *file, char __user *buf,
                                    size_t nbytes, loff_t *ppos)
@@ -1289,32 +2121,70 @@ static int cgroup_tasks_release(struct inode *unused_inode,
        return 0;
 }
 
+static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
+                                           struct cftype *cft)
+{
+       return notify_on_release(cgrp);
+}
+
+static u64 cgroup_read_releasable(struct cgroup *cgrp, struct cftype *cft)
+{
+       return test_bit(CGRP_RELEASABLE, &cgrp->flags);
+}
+
 /*
  * for the common functions, 'private' gives the type of file
  */
-static struct cftype cft_tasks = {
-       .name = "tasks",
-       .open = cgroup_tasks_open,
-       .read = cgroup_tasks_read,
+static struct cftype files[] = {
+       {
+               .name = "tasks",
+               .open = cgroup_tasks_open,
+               .read = cgroup_tasks_read,
+               .write = cgroup_common_file_write,
+               .release = cgroup_tasks_release,
+               .private = FILE_TASKLIST,
+       },
+
+       {
+               .name = "notify_on_release",
+               .read_uint = cgroup_read_notify_on_release,
+               .write = cgroup_common_file_write,
+               .private = FILE_NOTIFY_ON_RELEASE,
+       },
+
+       {
+               .name = "releasable",
+               .read_uint = cgroup_read_releasable,
+               .private = FILE_RELEASABLE,
+       }
+};
+
+static struct cftype cft_release_agent = {
+       .name = "release_agent",
+       .read = cgroup_common_file_read,
        .write = cgroup_common_file_write,
-       .release = cgroup_tasks_release,
-       .private = FILE_TASKLIST,
+       .private = FILE_RELEASE_AGENT,
 };
 
-static int cgroup_populate_dir(struct cgroup *cont)
+static int cgroup_populate_dir(struct cgroup *cgrp)
 {
        int err;
        struct cgroup_subsys *ss;
 
        /* First clear out any existing files */
-       cgroup_clear_directory(cont->dentry);
+       cgroup_clear_directory(cgrp->dentry);
 
-       err = cgroup_add_file(cont, NULL, &cft_tasks);
+       err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
        if (err < 0)
                return err;
 
-       for_each_subsys(cont->root, ss) {
-               if (ss->populate && (err = ss->populate(ss, cont)) < 0)
+       if (cgrp == cgrp->top_cgroup) {
+               if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
+                       return err;
+       }
+
+       for_each_subsys(cgrp->root, ss) {
+               if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
                        return err;
        }
 
@@ -1323,37 +2193,36 @@ static int cgroup_populate_dir(struct cgroup *cont)
 
 static void init_cgroup_css(struct cgroup_subsys_state *css,
                               struct cgroup_subsys *ss,
-                              struct cgroup *cont)
+                              struct cgroup *cgrp)
 {
-       css->cgroup = cont;
+       css->cgroup = cgrp;
        atomic_set(&css->refcnt, 0);
        css->flags = 0;
-       if (cont == dummytop)
+       if (cgrp == dummytop)
                set_bit(CSS_ROOT, &css->flags);
-       BUG_ON(cont->subsys[ss->subsys_id]);
-       cont->subsys[ss->subsys_id] = css;
+       BUG_ON(cgrp->subsys[ss->subsys_id]);
+       cgrp->subsys[ss->subsys_id] = css;
 }
 
 /*
- *     cgroup_create - create a cgroup
- *     parent: cgroup that will be parent of the new cgroup.
- *     name:           name of the new cgroup. Will be strcpy'ed.
- *     mode:           mode to set on new inode
+ * cgroup_create - create a cgroup
+ * @parent: cgroup that will be parent of the new cgroup
+ * @dentry: dentry of the new cgroup
+ * @mode: mode to set on new inode
  *
- *     Must be called with the mutex on the parent inode held
+ * Must be called with the mutex on the parent inode held
  */
-
 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
                             int mode)
 {
-       struct cgroup *cont;
+       struct cgroup *cgrp;
        struct cgroupfs_root *root = parent->root;
        int err = 0;
        struct cgroup_subsys *ss;
        struct super_block *sb = root->sb;
 
-       cont = kzalloc(sizeof(*cont), GFP_KERNEL);
-       if (!cont)
+       cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
+       if (!cgrp)
                return -ENOMEM;
 
        /* Grab a reference on the superblock so the hierarchy doesn't
@@ -1365,51 +2234,53 @@ static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
 
        mutex_lock(&cgroup_mutex);
 
-       cont->flags = 0;
-       INIT_LIST_HEAD(&cont->sibling);
-       INIT_LIST_HEAD(&cont->children);
+       cgrp->flags = 0;
+       INIT_LIST_HEAD(&cgrp->sibling);
+       INIT_LIST_HEAD(&cgrp->children);
+       INIT_LIST_HEAD(&cgrp->css_sets);
+       INIT_LIST_HEAD(&cgrp->release_list);
 
-       cont->parent = parent;
-       cont->root = parent->root;
-       cont->top_cgroup = parent->top_cgroup;
+       cgrp->parent = parent;
+       cgrp->root = parent->root;
+       cgrp->top_cgroup = parent->top_cgroup;
 
        for_each_subsys(root, ss) {
-               struct cgroup_subsys_state *css = ss->create(ss, cont);
+               struct cgroup_subsys_state *css = ss->create(ss, cgrp);
                if (IS_ERR(css)) {
                        err = PTR_ERR(css);
                        goto err_destroy;
                }
-               init_cgroup_css(css, ss, cont);
+               init_cgroup_css(css, ss, cgrp);
        }
 
-       list_add(&cont->sibling, &cont->parent->children);
+       list_add(&cgrp->sibling, &cgrp->parent->children);
        root->number_of_cgroups++;
 
-       err = cgroup_create_dir(cont, dentry, mode);
+       err = cgroup_create_dir(cgrp, dentry, mode);
        if (err < 0)
                goto err_remove;
 
        /* The cgroup directory was pre-locked for us */
-       BUG_ON(!mutex_is_locked(&cont->dentry->d_inode->i_mutex));
+       BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
 
-       err = cgroup_populate_dir(cont);
+       err = cgroup_populate_dir(cgrp);
        /* If err < 0, we have a half-filled directory - oh well ;) */
 
        mutex_unlock(&cgroup_mutex);
-       mutex_unlock(&cont->dentry->d_inode->i_mutex);
+       mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
 
        return 0;
 
  err_remove:
 
-       list_del(&cont->sibling);
+       list_del(&cgrp->sibling);
        root->number_of_cgroups--;
 
  err_destroy:
 
        for_each_subsys(root, ss) {
-               if (cont->subsys[ss->subsys_id])
-                       ss->destroy(ss, cont);
+               if (cgrp->subsys[ss->subsys_id])
+                       ss->destroy(ss, cgrp);
        }
 
        mutex_unlock(&cgroup_mutex);
@@ -1417,7 +2288,7 @@ static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
        /* Release the reference count that we took on the superblock */
        deactivate_super(sb);
 
-       kfree(cont);
+       kfree(cgrp);
        return err;
 }
 
@@ -1429,79 +2300,100 @@ static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
        return cgroup_create(c_parent, dentry, mode | S_IFDIR);
 }
 
+static inline int cgroup_has_css_refs(struct cgroup *cgrp)
+{
+       /* Check the reference count on each subsystem. Since we
+        * already established that there are no tasks in the
+        * cgroup, if the css refcount is also 0, then there should
+        * be no outstanding references, so the subsystem is safe to
+        * destroy. We scan across all subsystems rather than using
+        * the per-hierarchy linked list of mounted subsystems since
+        * we can be called via check_for_release() with no
+        * synchronization other than RCU, and the subsystem linked
+        * list isn't RCU-safe */
+       int i;
+       for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
+               struct cgroup_subsys *ss = subsys[i];
+               struct cgroup_subsys_state *css;
+               /* Skip subsystems not in this hierarchy */
+               if (ss->root != cgrp->root)
+                       continue;
+               css = cgrp->subsys[ss->subsys_id];
+               /* When called from check_for_release() it's possible
+                * that by this point the cgroup has been removed
+                * and the css deleted. But a false-positive doesn't
+                * matter, since it can only happen if the cgroup
+                * has been deleted and hence no longer needs the
+                * release agent to be called anyway. */
+               if (css && atomic_read(&css->refcnt))
+                       return 1;
+       }
+       return 0;
+}
+
 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
 {
-       struct cgroup *cont = dentry->d_fsdata;
+       struct cgroup *cgrp = dentry->d_fsdata;
        struct dentry *d;
        struct cgroup *parent;
-       struct cgroup_subsys *ss;
        struct super_block *sb;
        struct cgroupfs_root *root;
-       int css_busy = 0;
 
        /* the vfs holds both inode->i_mutex already */
 
        mutex_lock(&cgroup_mutex);
-       if (atomic_read(&cont->count) != 0) {
+       if (atomic_read(&cgrp->count) != 0) {
                mutex_unlock(&cgroup_mutex);
                return -EBUSY;
        }
-       if (!list_empty(&cont->children)) {
+       if (!list_empty(&cgrp->children)) {
                mutex_unlock(&cgroup_mutex);
                return -EBUSY;
        }
 
-       parent = cont->parent;
-       root = cont->root;
+       parent = cgrp->parent;
+       root = cgrp->root;
        sb = root->sb;
 
-       /* Check the reference count on each subsystem. Since we
-        * already established that there are no tasks in the
-        * cgroup, if the css refcount is also 0, then there should
-        * be no outstanding references, so the subsystem is safe to
-        * destroy */
-       for_each_subsys(root, ss) {
-               struct cgroup_subsys_state *css;
-               css = cont->subsys[ss->subsys_id];
-               if (atomic_read(&css->refcnt)) {
-                       css_busy = 1;
-                       break;
-               }
-       }
-       if (css_busy) {
+       /*
+        * Call pre_destroy handlers of subsys. Notify subsystems
+        * that rmdir() request comes.
+        */
+       cgroup_call_pre_destroy(cgrp);
+
+       if (cgroup_has_css_refs(cgrp)) {
                mutex_unlock(&cgroup_mutex);
                return -EBUSY;
        }
 
-       for_each_subsys(root, ss) {
-               if (cont->subsys[ss->subsys_id])
-                       ss->destroy(ss, cont);
-       }
-
-       set_bit(CONT_REMOVED, &cont->flags);
+       spin_lock(&release_list_lock);
+       set_bit(CGRP_REMOVED, &cgrp->flags);
+       if (!list_empty(&cgrp->release_list))
+               list_del(&cgrp->release_list);
+       spin_unlock(&release_list_lock);
        /* delete my sibling from parent->children */
-       list_del(&cont->sibling);
-       spin_lock(&cont->dentry->d_lock);
-       d = dget(cont->dentry);
-       cont->dentry = NULL;
+       list_del(&cgrp->sibling);
+       spin_lock(&cgrp->dentry->d_lock);
+       d = dget(cgrp->dentry);
+       cgrp->dentry = NULL;
        spin_unlock(&d->d_lock);
 
        cgroup_d_remove_dir(d);
        dput(d);
-       root->number_of_cgroups--;
+
+       set_bit(CGRP_RELEASABLE, &parent->flags);
+       check_for_release(parent);
 
        mutex_unlock(&cgroup_mutex);
-       /* Drop the active superblock reference that we took when we
-        * created the cgroup */
-       deactivate_super(sb);
        return 0;
 }
 
 static void cgroup_init_subsys(struct cgroup_subsys *ss)
 {
-       struct task_struct *g, *p;
        struct cgroup_subsys_state *css;
-       printk(KERN_ERR "Initializing cgroup subsys %s\n", ss->name);
+       struct list_head *l;
+
+       printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
 
        /* Create the top cgroup state for this subsystem */
        ss->root = &rootnode;
@@ -1510,26 +2402,32 @@ static void cgroup_init_subsys(struct cgroup_subsys *ss)
        BUG_ON(IS_ERR(css));
        init_cgroup_css(css, ss, dummytop);
 
-       /* Update all tasks to contain a subsys pointer to this state
-        * - since the subsystem is newly registered, all tasks are in
-        * the subsystem's top cgroup. */
+       /* Update all cgroup groups to contain a subsys
+        * pointer to this state - since the subsystem is
+        * newly registered, all tasks and hence all cgroup
+        * groups are in the subsystem's top cgroup. */
+       write_lock(&css_set_lock);
+       l = &init_css_set.list;
+       do {
+               struct css_set *cg =
+                       list_entry(l, struct css_set, list);
+               cg->subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
+               l = l->next;
+       } while (l != &init_css_set.list);
+       write_unlock(&css_set_lock);
 
        /* If this subsystem requested that it be notified with fork
         * events, we should send it one now for every process in the
         * system */
+       if (ss->fork) {
+               struct task_struct *g, *p;
 
-       read_lock(&tasklist_lock);
-       init_task.cgroups.subsys[ss->subsys_id] = css;
-       if (ss->fork)
-               ss->fork(ss, &init_task);
-
-       do_each_thread(g, p) {
-               printk(KERN_INFO "Setting task %p css to %p (%d)\n", css, p, p->pid);
-               p->cgroups.subsys[ss->subsys_id] = css;
-               if (ss->fork)
+               read_lock(&tasklist_lock);
+               do_each_thread(g, p) {
                        ss->fork(ss, p);
-       } while_each_thread(g, p);
-       read_unlock(&tasklist_lock);
+               } while_each_thread(g, p);
+               read_unlock(&tasklist_lock);
+       }
 
        need_forkexit_callback |= ss->fork || ss->exit;
 
@@ -1537,14 +2435,30 @@ static void cgroup_init_subsys(struct cgroup_subsys *ss)
 }
 
 /**
- * cgroup_init_early - initialize cgroups at system boot, and
- * initialize any subsystems that request early init.
+ * cgroup_init_early - cgroup initialization at system boot
+ *
+ * Initialize cgroups at system boot, and initialize any
+ * subsystems that request early init.
  */
 int __init cgroup_init_early(void)
 {
        int i;
+       kref_init(&init_css_set.ref);
+       kref_get(&init_css_set.ref);
+       INIT_LIST_HEAD(&init_css_set.list);
+       INIT_LIST_HEAD(&init_css_set.cg_links);
+       INIT_LIST_HEAD(&init_css_set.tasks);
+       css_set_count = 1;
        init_cgroup_root(&rootnode);
        list_add(&rootnode.root_list, &roots);
+       root_count = 1;
+       init_task.cgroups = &init_css_set;
+
+       init_css_set_link.cg = &init_css_set;
+       list_add(&init_css_set_link.cgrp_link_list,
+                &rootnode.top_cgroup.css_sets);
+       list_add(&init_css_set_link.cg_link_list,
+                &init_css_set.cg_links);
 
        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
                struct cgroup_subsys *ss = subsys[i];
@@ -1554,7 +2468,7 @@ int __init cgroup_init_early(void)
                BUG_ON(!ss->create);
                BUG_ON(!ss->destroy);
                if (ss->subsys_id != i) {
-                       printk(KERN_ERR "Subsys %s id == %d\n",
+                       printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
                               ss->name, ss->subsys_id);
                        BUG();
                }
@@ -1566,13 +2480,20 @@ int __init cgroup_init_early(void)
 }
 
 /**
- * cgroup_init - register cgroup filesystem and /proc file, and
- * initialize any subsystems that didn't request early init.
+ * cgroup_init - cgroup initialization
+ *
+ * Register cgroup filesystem and /proc file, and initialize
+ * any subsystems that didn't request early init.
  */
 int __init cgroup_init(void)
 {
        int err;
        int i;
+       struct proc_dir_entry *entry;
+
+       err = bdi_init(&cgroup_backing_dev_info);
+       if (err)
+               return err;
 
        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
                struct cgroup_subsys *ss = subsys[i];
@@ -1584,6 +2505,508 @@ int __init cgroup_init(void)
        if (err < 0)
                goto out;
 
+       entry = create_proc_entry("cgroups", 0, NULL);
+       if (entry)
+               entry->proc_fops = &proc_cgroupstats_operations;
+
 out:
+       if (err)
+               bdi_destroy(&cgroup_backing_dev_info);
+
        return err;
 }
+
+/*
+ * proc_cgroup_show()
+ *  - Print task's cgroup paths into seq_file, one line for each hierarchy
+ *  - Used for /proc/<pid>/cgroup.
+ *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
+ *    doesn't really matter if tsk->cgroup changes after we read it,
+ *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
+ *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
+ *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
+ *    cgroup to top_cgroup.
+ */
+
+/* TODO: Use a proper seq_file iterator */
+static int proc_cgroup_show(struct seq_file *m, void *v)
+{
+       struct pid *pid;
+       struct task_struct *tsk;
+       char *buf;
+       int retval;
+       struct cgroupfs_root *root;
+
+       retval = -ENOMEM;
+       buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
+       if (!buf)
+               goto out;
+
+       retval = -ESRCH;
+       pid = m->private;
+       tsk = get_pid_task(pid, PIDTYPE_PID);
+       if (!tsk)
+               goto out_free;
+
+       retval = 0;
+
+       mutex_lock(&cgroup_mutex);
+
+       for_each_root(root) {
+               struct cgroup_subsys *ss;
+               struct cgroup *cgrp;
+               int subsys_id;
+               int count = 0;
+
+               /* Skip this hierarchy if it has no active subsystems */
+               if (!root->actual_subsys_bits)
+                       continue;
+               for_each_subsys(root, ss)
+                       seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
+               seq_putc(m, ':');
+               get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
+               cgrp = task_cgroup(tsk, subsys_id);
+               retval = cgroup_path(cgrp, buf, PAGE_SIZE);
+               if (retval < 0)
+                       goto out_unlock;
+               seq_puts(m, buf);
+               seq_putc(m, '\n');
+       }
+
+out_unlock:
+       mutex_unlock(&cgroup_mutex);
+       put_task_struct(tsk);
+out_free:
+       kfree(buf);
+out:
+       return retval;
+}
+
+static int cgroup_open(struct inode *inode, struct file *file)
+{
+       struct pid *pid = PROC_I(inode)->pid;
+       return single_open(file, proc_cgroup_show, pid);
+}
+
+struct file_operations proc_cgroup_operations = {
+       .open           = cgroup_open,
+       .read           = seq_read,
+       .llseek         = seq_lseek,
+       .release        = single_release,
+};
+
+/* Display information about each subsystem and each hierarchy */
+static int proc_cgroupstats_show(struct seq_file *m, void *v)
+{
+       int i;
+
+       seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\n");
+       mutex_lock(&cgroup_mutex);
+       for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
+               struct cgroup_subsys *ss = subsys[i];
+               seq_printf(m, "%s\t%lu\t%d\n",
+                          ss->name, ss->root->subsys_bits,
+                          ss->root->number_of_cgroups);
+       }
+       mutex_unlock(&cgroup_mutex);
+       return 0;
+}
+
+static int cgroupstats_open(struct inode *inode, struct file *file)
+{
+       return single_open(file, proc_cgroupstats_show, 0);
+}
+
+static struct file_operations proc_cgroupstats_operations = {
+       .open = cgroupstats_open,
+       .read = seq_read,
+       .llseek = seq_lseek,
+       .release = single_release,
+};
+
+/**
+ * cgroup_fork - attach newly forked task to its parents cgroup.
+ * @child: pointer to task_struct of forking parent process.
+ *
+ * Description: A task inherits its parent's cgroup at fork().
+ *
+ * A pointer to the shared css_set was automatically copied in
+ * fork.c by dup_task_struct().  However, we ignore that copy, since
+ * it was not made under the protection of RCU or cgroup_mutex, so
+ * might no longer be a valid cgroup pointer.  cgroup_attach_task() might
+ * have already changed current->cgroups, allowing the previously
+ * referenced cgroup group to be removed and freed.
+ *
+ * At the point that cgroup_fork() is called, 'current' is the parent
+ * task, and the passed argument 'child' points to the child task.
+ */
+void cgroup_fork(struct task_struct *child)
+{
+       task_lock(current);
+       child->cgroups = current->cgroups;
+       get_css_set(child->cgroups);
+       task_unlock(current);
+       INIT_LIST_HEAD(&child->cg_list);
+}
+
+/**
+ * cgroup_fork_callbacks - run fork callbacks
+ * @child: the new task
+ *
+ * Called on a new task very soon before adding it to the
+ * tasklist. No need to take any locks since no-one can
+ * be operating on this task.
+ */
+void cgroup_fork_callbacks(struct task_struct *child)
+{
+       if (need_forkexit_callback) {
+               int i;
+               for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
+                       struct cgroup_subsys *ss = subsys[i];
+                       if (ss->fork)
+                               ss->fork(ss, child);
+               }
+       }
+}
+
+/**
+ * cgroup_post_fork - called on a new task after adding it to the task list
+ * @child: the task in question
+ *
+ * Adds the task to the list running through its css_set if necessary.
+ * Has to be after the task is visible on the task list in case we race
+ * with the first call to cgroup_iter_start() - to guarantee that the
+ * new task ends up on its list.
+ */
+void cgroup_post_fork(struct task_struct *child)
+{
+       if (use_task_css_set_links) {
+               write_lock(&css_set_lock);
+               if (list_empty(&child->cg_list))
+                       list_add(&child->cg_list, &child->cgroups->tasks);
+               write_unlock(&css_set_lock);
+       }
+}
+/**
+ * cgroup_exit - detach cgroup from exiting task
+ * @tsk: pointer to task_struct of exiting process
+ * @run_callback: run exit callbacks?
+ *
+ * Description: Detach cgroup from @tsk and release it.
+ *
+ * Note that cgroups marked notify_on_release force every task in
+ * them to take the global cgroup_mutex mutex when exiting.
+ * This could impact scaling on very large systems.  Be reluctant to
+ * use notify_on_release cgroups where very high task exit scaling
+ * is required on large systems.
+ *
+ * the_top_cgroup_hack:
+ *
+ *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
+ *
+ *    We call cgroup_exit() while the task is still competent to
+ *    handle notify_on_release(), then leave the task attached to the
+ *    root cgroup in each hierarchy for the remainder of its exit.
+ *
+ *    To do this properly, we would increment the reference count on
+ *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
+ *    code we would add a second cgroup function call, to drop that
+ *    reference.  This would just create an unnecessary hot spot on
+ *    the top_cgroup reference count, to no avail.
+ *
+ *    Normally, holding a reference to a cgroup without bumping its
+ *    count is unsafe.   The cgroup could go away, or someone could
+ *    attach us to a different cgroup, decrementing the count on
+ *    the first cgroup that we never incremented.  But in this case,
+ *    top_cgroup isn't going away, and either task has PF_EXITING set,
+ *    which wards off any cgroup_attach_task() attempts, or task is a failed
+ *    fork, never visible to cgroup_attach_task.
+ */
+void cgroup_exit(struct task_struct *tsk, int run_callbacks)
+{
+       int i;
+       struct css_set *cg;
+
+       if (run_callbacks && need_forkexit_callback) {
+               for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
+                       struct cgroup_subsys *ss = subsys[i];
+                       if (ss->exit)
+                               ss->exit(ss, tsk);
+               }
+       }
+
+       /*
+        * Unlink from the css_set task list if necessary.
+        * Optimistically check cg_list before taking
+        * css_set_lock
+        */
+       if (!list_empty(&tsk->cg_list)) {
+               write_lock(&css_set_lock);
+               if (!list_empty(&tsk->cg_list))
+                       list_del(&tsk->cg_list);
+               write_unlock(&css_set_lock);
+       }
+
+       /* Reassign the task to the init_css_set. */
+       task_lock(tsk);
+       cg = tsk->cgroups;
+       tsk->cgroups = &init_css_set;
+       task_unlock(tsk);
+       if (cg)
+               put_css_set_taskexit(cg);
+}
+
+/**
+ * cgroup_clone - clone the cgroup the given subsystem is attached to
+ * @tsk: the task to be moved
+ * @subsys: the given subsystem
+ *
+ * Duplicate the current cgroup in the hierarchy that the given
+ * subsystem is attached to, and move this task into the new
+ * child.
+ */
+int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys)
+{
+       struct dentry *dentry;
+       int ret = 0;
+       char nodename[MAX_CGROUP_TYPE_NAMELEN];
+       struct cgroup *parent, *child;
+       struct inode *inode;
+       struct css_set *cg;
+       struct cgroupfs_root *root;
+       struct cgroup_subsys *ss;
+
+       /* We shouldn't be called by an unregistered subsystem */
+       BUG_ON(!subsys->active);
+
+       /* First figure out what hierarchy and cgroup we're dealing
+        * with, and pin them so we can drop cgroup_mutex */
+       mutex_lock(&cgroup_mutex);
+ again:
+       root = subsys->root;
+       if (root == &rootnode) {
+               printk(KERN_INFO
+                      "Not cloning cgroup for unused subsystem %s\n",
+                      subsys->name);
+               mutex_unlock(&cgroup_mutex);
+               return 0;
+       }
+       cg = tsk->cgroups;
+       parent = task_cgroup(tsk, subsys->subsys_id);
+
+       snprintf(nodename, MAX_CGROUP_TYPE_NAMELEN, "node_%d", tsk->pid);
+
+       /* Pin the hierarchy */
+       atomic_inc(&parent->root->sb->s_active);
+
+       /* Keep the cgroup alive */
+       get_css_set(cg);
+       mutex_unlock(&cgroup_mutex);
+
+       /* Now do the VFS work to create a cgroup */
+       inode = parent->dentry->d_inode;
+
+       /* Hold the parent directory mutex across this operation to
+        * stop anyone else deleting the new cgroup */
+       mutex_lock(&inode->i_mutex);
+       dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
+       if (IS_ERR(dentry)) {
+               printk(KERN_INFO
+                      "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
+                      PTR_ERR(dentry));
+               ret = PTR_ERR(dentry);
+               goto out_release;
+       }
+
+       /* Create the cgroup directory, which also creates the cgroup */
+       ret = vfs_mkdir(inode, dentry, S_IFDIR | 0755);
+       child = __d_cgrp(dentry);
+       dput(dentry);
+       if (ret) {
+               printk(KERN_INFO
+                      "Failed to create cgroup %s: %d\n", nodename,
+                      ret);
+               goto out_release;
+       }
+
+       if (!child) {
+               printk(KERN_INFO
+                      "Couldn't find new cgroup %s\n", nodename);
+               ret = -ENOMEM;
+               goto out_release;
+       }
+
+       /* The cgroup now exists. Retake cgroup_mutex and check
+        * that we're still in the same state that we thought we
+        * were. */
+       mutex_lock(&cgroup_mutex);
+       if ((root != subsys->root) ||
+           (parent != task_cgroup(tsk, subsys->subsys_id))) {
+               /* Aargh, we raced ... */
+               mutex_unlock(&inode->i_mutex);
+               put_css_set(cg);
+
+               deactivate_super(parent->root->sb);
+               /* The cgroup is still accessible in the VFS, but
+                * we're not going to try to rmdir() it at this
+                * point. */
+               printk(KERN_INFO
+                      "Race in cgroup_clone() - leaking cgroup %s\n",
+                      nodename);
+               goto again;
+       }
+
+       /* do any required auto-setup */
+       for_each_subsys(root, ss) {
+               if (ss->post_clone)
+                       ss->post_clone(ss, child);
+       }
+
+       /* All seems fine. Finish by moving the task into the new cgroup */
+       ret = cgroup_attach_task(child, tsk);
+       mutex_unlock(&cgroup_mutex);
+
+ out_release:
+       mutex_unlock(&inode->i_mutex);
+
+       mutex_lock(&cgroup_mutex);
+       put_css_set(cg);
+       mutex_unlock(&cgroup_mutex);
+       deactivate_super(parent->root->sb);
+       return ret;
+}
+
+/**
+ * cgroup_is_descendant - see if @cgrp is a descendant of current task's cgrp
+ * @cgrp: the cgroup in question
+ *
+ * See if @cgrp is a descendant of the current task's cgroup in
+ * the appropriate hierarchy.
+ *
+ * If we are sending in dummytop, then presumably we are creating
+ * the top cgroup in the subsystem.
+ *
+ * Called only by the ns (nsproxy) cgroup.
+ */
+int cgroup_is_descendant(const struct cgroup *cgrp)
+{
+       int ret;
+       struct cgroup *target;
+       int subsys_id;
+
+       if (cgrp == dummytop)
+               return 1;
+
+       get_first_subsys(cgrp, NULL, &subsys_id);
+       target = task_cgroup(current, subsys_id);
+       while (cgrp != target && cgrp!= cgrp->top_cgroup)
+               cgrp = cgrp->parent;
+       ret = (cgrp == target);
+       return ret;
+}
+
+static void check_for_release(struct cgroup *cgrp)
+{
+       /* All of these checks rely on RCU to keep the cgroup
+        * structure alive */
+       if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
+           && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
+               /* Control Group is currently removeable. If it's not
+                * already queued for a userspace notification, queue
+                * it now */
+               int need_schedule_work = 0;
+               spin_lock(&release_list_lock);
+               if (!cgroup_is_removed(cgrp) &&
+                   list_empty(&cgrp->release_list)) {
+                       list_add(&cgrp->release_list, &release_list);
+                       need_schedule_work = 1;
+               }
+               spin_unlock(&release_list_lock);
+               if (need_schedule_work)
+                       schedule_work(&release_agent_work);
+       }
+}
+
+void __css_put(struct cgroup_subsys_state *css)
+{
+       struct cgroup *cgrp = css->cgroup;
+       rcu_read_lock();
+       if (atomic_dec_and_test(&css->refcnt) && notify_on_release(cgrp)) {
+               set_bit(CGRP_RELEASABLE, &cgrp->flags);
+               check_for_release(cgrp);
+       }
+       rcu_read_unlock();
+}
+
+/*
+ * Notify userspace when a cgroup is released, by running the
+ * configured release agent with the name of the cgroup (path
+ * relative to the root of cgroup file system) as the argument.
+ *
+ * Most likely, this user command will try to rmdir this cgroup.
+ *
+ * This races with the possibility that some other task will be
+ * attached to this cgroup before it is removed, or that some other
+ * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
+ * The presumed 'rmdir' will fail quietly if this cgroup is no longer
+ * unused, and this cgroup will be reprieved from its death sentence,
+ * to continue to serve a useful existence.  Next time it's released,
+ * we will get notified again, if it still has 'notify_on_release' set.
+ *
+ * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
+ * means only wait until the task is successfully execve()'d.  The
+ * separate release agent task is forked by call_usermodehelper(),
+ * then control in this thread returns here, without waiting for the
+ * release agent task.  We don't bother to wait because the caller of
+ * this routine has no use for the exit status of the release agent
+ * task, so no sense holding our caller up for that.
+ */
+static void cgroup_release_agent(struct work_struct *work)
+{
+       BUG_ON(work != &release_agent_work);
+       mutex_lock(&cgroup_mutex);
+       spin_lock(&release_list_lock);
+       while (!list_empty(&release_list)) {
+               char *argv[3], *envp[3];
+               int i;
+               char *pathbuf;
+               struct cgroup *cgrp = list_entry(release_list.next,
+                                                   struct cgroup,
+                                                   release_list);
+               list_del_init(&cgrp->release_list);
+               spin_unlock(&release_list_lock);
+               pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
+               if (!pathbuf) {
+                       spin_lock(&release_list_lock);
+                       continue;
+               }
+
+               if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0) {
+                       kfree(pathbuf);
+                       spin_lock(&release_list_lock);
+                       continue;
+               }
+
+               i = 0;
+               argv[i++] = cgrp->root->release_agent_path;
+               argv[i++] = (char *)pathbuf;
+               argv[i] = NULL;
+
+               i = 0;
+               /* minimal command environment */
+               envp[i++] = "HOME=/";
+               envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
+               envp[i] = NULL;
+
+               /* Drop the lock while we invoke the usermode helper,
+                * since the exec could involve hitting disk and hence
+                * be a slow process */
+               mutex_unlock(&cgroup_mutex);
+               call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
+               kfree(pathbuf);
+               mutex_lock(&cgroup_mutex);
+               spin_lock(&release_list_lock);
+       }
+       spin_unlock(&release_list_lock);
+       mutex_unlock(&cgroup_mutex);
+}