#include <linux/seccomp.h>
#include <linux/nodemask.h>
#include <linux/rcupdate.h>
+#include <linux/refcount.h>
#include <linux/resource.h>
#include <linux/latencytop.h>
#include <linux/sched/prio.h>
* For cfs_rq, it is the aggregated load_avg of all runnable and
* blocked sched_entities.
*
- * load_avg may also take frequency scaling into account:
- *
- * load_avg = runnable% * scale_load_down(load) * freq%
- *
- * where freq% is the CPU frequency normalized to the highest frequency.
- *
* [util_avg definition]
*
* util_avg = running% * SCHED_CAPACITY_SCALE
* a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
* and blocked sched_entities.
*
- * util_avg may also factor frequency scaling and CPU capacity scaling:
+ * load_avg and util_avg don't direcly factor frequency scaling and CPU
+ * capacity scaling. The scaling is done through the rq_clock_pelt that
+ * is used for computing those signals (see update_rq_clock_pelt())
*
- * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
- *
- * where freq% is the same as above, and capacity% is the CPU capacity
- * normalized to the greatest capacity (due to uarch differences, etc).
- *
- * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
- * themselves are in the range of [0, 1]. To do fixed point arithmetics,
- * we therefore scale them to as large a range as necessary. This is for
- * example reflected by util_avg's SCHED_CAPACITY_SCALE.
+ * N.B., the above ratios (runnable% and running%) themselves are in the
+ * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
+ * to as large a range as necessary. This is for example reflected by
+ * util_avg's SCHED_CAPACITY_SCALE.
*
* [Overflow issue]
*
randomized_struct_fields_start
void *stack;
- atomic_t usage;
+ refcount_t usage;
/* Per task flags (PF_*), defined further below: */
unsigned int flags;
unsigned int ptrace;
#endif
#ifdef CONFIG_THREAD_INFO_IN_TASK
/* A live task holds one reference: */
- atomic_t stack_refcount;
+ refcount_t stack_refcount;
#endif
#ifdef CONFIG_LIVEPATCH
int patch_state;
#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
#define PF_MEMALLOC_NOCMA 0x10000000 /* All allocation request will have _GFP_MOVABLE cleared */
-#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
+#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
#define TASK_PFA_TEST(name, func) \
static inline bool task_##func(struct task_struct *p) \
TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
+TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
+TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
+TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
+
TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
static inline unsigned int task_cpu(const struct task_struct *p)
{
#ifdef CONFIG_THREAD_INFO_IN_TASK
- return p->cpu;
+ return READ_ONCE(p->cpu);
#else
- return task_thread_info(p)->cpu;
+ return READ_ONCE(task_thread_info(p)->cpu);
#endif
}