Merge tag 'docs/v5.3-1' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[sfrench/cifs-2.6.git] / Documentation / admin-guide / device-mapper / dm-integrity.rst
diff --git a/Documentation/admin-guide/device-mapper/dm-integrity.rst b/Documentation/admin-guide/device-mapper/dm-integrity.rst
new file mode 100644 (file)
index 0000000..a30aa91
--- /dev/null
@@ -0,0 +1,259 @@
+============
+dm-integrity
+============
+
+The dm-integrity target emulates a block device that has additional
+per-sector tags that can be used for storing integrity information.
+
+A general problem with storing integrity tags with every sector is that
+writing the sector and the integrity tag must be atomic - i.e. in case of
+crash, either both sector and integrity tag or none of them is written.
+
+To guarantee write atomicity, the dm-integrity target uses journal, it
+writes sector data and integrity tags into a journal, commits the journal
+and then copies the data and integrity tags to their respective location.
+
+The dm-integrity target can be used with the dm-crypt target - in this
+situation the dm-crypt target creates the integrity data and passes them
+to the dm-integrity target via bio_integrity_payload attached to the bio.
+In this mode, the dm-crypt and dm-integrity targets provide authenticated
+disk encryption - if the attacker modifies the encrypted device, an I/O
+error is returned instead of random data.
+
+The dm-integrity target can also be used as a standalone target, in this
+mode it calculates and verifies the integrity tag internally. In this
+mode, the dm-integrity target can be used to detect silent data
+corruption on the disk or in the I/O path.
+
+There's an alternate mode of operation where dm-integrity uses bitmap
+instead of a journal. If a bit in the bitmap is 1, the corresponding
+region's data and integrity tags are not synchronized - if the machine
+crashes, the unsynchronized regions will be recalculated. The bitmap mode
+is faster than the journal mode, because we don't have to write the data
+twice, but it is also less reliable, because if data corruption happens
+when the machine crashes, it may not be detected.
+
+When loading the target for the first time, the kernel driver will format
+the device. But it will only format the device if the superblock contains
+zeroes. If the superblock is neither valid nor zeroed, the dm-integrity
+target can't be loaded.
+
+To use the target for the first time:
+
+1. overwrite the superblock with zeroes
+2. load the dm-integrity target with one-sector size, the kernel driver
+   will format the device
+3. unload the dm-integrity target
+4. read the "provided_data_sectors" value from the superblock
+5. load the dm-integrity target with the the target size
+   "provided_data_sectors"
+6. if you want to use dm-integrity with dm-crypt, load the dm-crypt target
+   with the size "provided_data_sectors"
+
+
+Target arguments:
+
+1. the underlying block device
+
+2. the number of reserved sector at the beginning of the device - the
+   dm-integrity won't read of write these sectors
+
+3. the size of the integrity tag (if "-" is used, the size is taken from
+   the internal-hash algorithm)
+
+4. mode:
+
+       D - direct writes (without journal)
+               in this mode, journaling is
+               not used and data sectors and integrity tags are written
+               separately. In case of crash, it is possible that the data
+               and integrity tag doesn't match.
+       J - journaled writes
+               data and integrity tags are written to the
+               journal and atomicity is guaranteed. In case of crash,
+               either both data and tag or none of them are written. The
+               journaled mode degrades write throughput twice because the
+               data have to be written twice.
+       B - bitmap mode - data and metadata are written without any
+               synchronization, the driver maintains a bitmap of dirty
+               regions where data and metadata don't match. This mode can
+               only be used with internal hash.
+       R - recovery mode - in this mode, journal is not replayed,
+               checksums are not checked and writes to the device are not
+               allowed. This mode is useful for data recovery if the
+               device cannot be activated in any of the other standard
+               modes.
+
+5. the number of additional arguments
+
+Additional arguments:
+
+journal_sectors:number
+       The size of journal, this argument is used only if formatting the
+       device. If the device is already formatted, the value from the
+       superblock is used.
+
+interleave_sectors:number
+       The number of interleaved sectors. This values is rounded down to
+       a power of two. If the device is already formatted, the value from
+       the superblock is used.
+
+meta_device:device
+       Don't interleave the data and metadata on on device. Use a
+       separate device for metadata.
+
+buffer_sectors:number
+       The number of sectors in one buffer. The value is rounded down to
+       a power of two.
+
+       The tag area is accessed using buffers, the buffer size is
+       configurable. The large buffer size means that the I/O size will
+       be larger, but there could be less I/Os issued.
+
+journal_watermark:number
+       The journal watermark in percents. When the size of the journal
+       exceeds this watermark, the thread that flushes the journal will
+       be started.
+
+commit_time:number
+       Commit time in milliseconds. When this time passes, the journal is
+       written. The journal is also written immediatelly if the FLUSH
+       request is received.
+
+internal_hash:algorithm(:key)  (the key is optional)
+       Use internal hash or crc.
+       When this argument is used, the dm-integrity target won't accept
+       integrity tags from the upper target, but it will automatically
+       generate and verify the integrity tags.
+
+       You can use a crc algorithm (such as crc32), then integrity target
+       will protect the data against accidental corruption.
+       You can also use a hmac algorithm (for example
+       "hmac(sha256):0123456789abcdef"), in this mode it will provide
+       cryptographic authentication of the data without encryption.
+
+       When this argument is not used, the integrity tags are accepted
+       from an upper layer target, such as dm-crypt. The upper layer
+       target should check the validity of the integrity tags.
+
+recalculate
+       Recalculate the integrity tags automatically. It is only valid
+       when using internal hash.
+
+journal_crypt:algorithm(:key)  (the key is optional)
+       Encrypt the journal using given algorithm to make sure that the
+       attacker can't read the journal. You can use a block cipher here
+       (such as "cbc(aes)") or a stream cipher (for example "chacha20",
+       "salsa20", "ctr(aes)" or "ecb(arc4)").
+
+       The journal contains history of last writes to the block device,
+       an attacker reading the journal could see the last sector nubmers
+       that were written. From the sector numbers, the attacker can infer
+       the size of files that were written. To protect against this
+       situation, you can encrypt the journal.
+
+journal_mac:algorithm(:key)    (the key is optional)
+       Protect sector numbers in the journal from accidental or malicious
+       modification. To protect against accidental modification, use a
+       crc algorithm, to protect against malicious modification, use a
+       hmac algorithm with a key.
+
+       This option is not needed when using internal-hash because in this
+       mode, the integrity of journal entries is checked when replaying
+       the journal. Thus, modified sector number would be detected at
+       this stage.
+
+block_size:number
+       The size of a data block in bytes.  The larger the block size the
+       less overhead there is for per-block integrity metadata.
+       Supported values are 512, 1024, 2048 and 4096 bytes.  If not
+       specified the default block size is 512 bytes.
+
+sectors_per_bit:number
+       In the bitmap mode, this parameter specifies the number of
+       512-byte sectors that corresponds to one bitmap bit.
+
+bitmap_flush_interval:number
+       The bitmap flush interval in milliseconds. The metadata buffers
+       are synchronized when this interval expires.
+
+
+The journal mode (D/J), buffer_sectors, journal_watermark, commit_time can
+be changed when reloading the target (load an inactive table and swap the
+tables with suspend and resume). The other arguments should not be changed
+when reloading the target because the layout of disk data depend on them
+and the reloaded target would be non-functional.
+
+
+The layout of the formatted block device:
+
+* reserved sectors
+    (they are not used by this target, they can be used for
+    storing LUKS metadata or for other purpose), the size of the reserved
+    area is specified in the target arguments
+
+* superblock (4kiB)
+       * magic string - identifies that the device was formatted
+       * version
+       * log2(interleave sectors)
+       * integrity tag size
+       * the number of journal sections
+       * provided data sectors - the number of sectors that this target
+         provides (i.e. the size of the device minus the size of all
+         metadata and padding). The user of this target should not send
+         bios that access data beyond the "provided data sectors" limit.
+       * flags
+           SB_FLAG_HAVE_JOURNAL_MAC
+               - a flag is set if journal_mac is used
+           SB_FLAG_RECALCULATING
+               - recalculating is in progress
+           SB_FLAG_DIRTY_BITMAP
+               - journal area contains the bitmap of dirty
+                 blocks
+       * log2(sectors per block)
+       * a position where recalculating finished
+* journal
+       The journal is divided into sections, each section contains:
+
+       * metadata area (4kiB), it contains journal entries
+
+         - every journal entry contains:
+
+               * logical sector (specifies where the data and tag should
+                 be written)
+               * last 8 bytes of data
+               * integrity tag (the size is specified in the superblock)
+
+         - every metadata sector ends with
+
+               * mac (8-bytes), all the macs in 8 metadata sectors form a
+                 64-byte value. It is used to store hmac of sector
+                 numbers in the journal section, to protect against a
+                 possibility that the attacker tampers with sector
+                 numbers in the journal.
+               * commit id
+
+       * data area (the size is variable; it depends on how many journal
+         entries fit into the metadata area)
+
+           - every sector in the data area contains:
+
+               * data (504 bytes of data, the last 8 bytes are stored in
+                 the journal entry)
+               * commit id
+
+       To test if the whole journal section was written correctly, every
+       512-byte sector of the journal ends with 8-byte commit id. If the
+       commit id matches on all sectors in a journal section, then it is
+       assumed that the section was written correctly. If the commit id
+       doesn't match, the section was written partially and it should not
+       be replayed.
+
+* one or more runs of interleaved tags and data.
+    Each run contains:
+
+       * tag area - it contains integrity tags. There is one tag for each
+         sector in the data area
+       * data area - it contains data sectors. The number of data sectors
+         in one run must be a power of two. log2 of this value is stored
+         in the superblock.