/* DO NOT EDIT - Generated automatically by script_asm.pl */ static u32 SCRIPT[] = { /* ; 53c710 driver. Modified from Drew Eckhardts driver ; for 53c810 by Richard Hirst [richard@sleepie.demon.co.uk] ; ; I have left the script for the 53c8xx family in here, as it is likely ; to be useful to see what I changed when bug hunting. ; NCR 53c810 driver, main script ; Sponsored by ; iX Multiuser Multitasking Magazine ; hm@ix.de ; ; Copyright 1993, 1994, 1995 Drew Eckhardt ; Visionary Computing ; (Unix and Linux consulting and custom programming) ; drew@PoohSticks.ORG ; +1 (303) 786-7975 ; ; TolerANT and SCSI SCRIPTS are registered trademarks of NCR Corporation. ; ; PRE-ALPHA ; ; For more information, please consult ; ; NCR 53C810 ; PCI-SCSI I/O Processor ; Data Manual ; ; NCR 53C710 ; SCSI I/O Processor ; Programmers Guide ; ; NCR Microelectronics ; 1635 Aeroplaza Drive ; Colorado Springs, CO 80916 ; 1+ (719) 578-3400 ; ; Toll free literature number ; +1 (800) 334-5454 ; ; IMPORTANT : This code is self modifying due to the limitations of ; the NCR53c7,8xx series chips. Persons debugging this code with ; the remote debugger should take this into account, and NOT set ; breakpoints in modified instructions. ; ; Design: ; The NCR53c7,8xx family of SCSI chips are busmasters with an onboard ; microcontroller using a simple instruction set. ; ; So, to minimize the effects of interrupt latency, and to maximize ; throughput, this driver offloads the practical maximum amount ; of processing to the SCSI chip while still maintaining a common ; structure. ; ; Where tradeoffs were needed between efficiency on the older ; chips and the newer NCR53c800 series, the NCR53c800 series ; was chosen. ; ; While the NCR53c700 and NCR53c700-66 lacked the facilities to fully ; automate SCSI transfers without host processor intervention, this ; isn't the case with the NCR53c710 and newer chips which allow ; ; - reads and writes to the internal registers from within the SCSI ; scripts, allowing the SCSI SCRIPTS(tm) code to save processor ; state so that multiple threads of execution are possible, and also ; provide an ALU for loop control, etc. ; ; - table indirect addressing for some instructions. This allows ; pointers to be located relative to the DSA ((Data Structure ; Address) register. ; ; These features make it possible to implement a mailbox style interface, ; where the same piece of code is run to handle I/O for multiple threads ; at once minimizing our need to relocate code. Since the NCR53c700/ ; NCR53c800 series have a unique combination of features, making a ; a standard ingoing/outgoing mailbox system, costly, I've modified it. ; ; - Mailboxes are a mixture of code and data. This lets us greatly ; simplify the NCR53c810 code and do things that would otherwise ; not be possible. ; ; The saved data pointer is now implemented as follows : ; ; Control flow has been architected such that if control reaches ; munge_save_data_pointer, on a restore pointers message or ; reconnection, a jump to the address formerly in the TEMP register ; will allow the SCSI command to resume execution. ; ; ; Note : the DSA structures must be aligned on 32 bit boundaries, ; since the source and destination of MOVE MEMORY instructions ; must share the same alignment and this is the alignment of the ; NCR registers. ; ; For some systems (MVME166, for example) dmode is always the same, so don't ; waste time writing it ABSOLUTE dsa_temp_lun = 0 ; Patch to lun for current dsa ABSOLUTE dsa_temp_next = 0 ; Patch to dsa next for current dsa ABSOLUTE dsa_temp_addr_next = 0 ; Patch to address of dsa next address ; for current dsa ABSOLUTE dsa_temp_sync = 0 ; Patch to address of per-target ; sync routine ABSOLUTE dsa_sscf_710 = 0 ; Patch to address of per-target ; sscf value (53c710) ABSOLUTE dsa_temp_target = 0 ; Patch to id for current dsa ABSOLUTE dsa_temp_addr_saved_pointer = 0; Patch to address of per-command ; saved data pointer ABSOLUTE dsa_temp_addr_residual = 0 ; Patch to address of per-command ; current residual code ABSOLUTE dsa_temp_addr_saved_residual = 0; Patch to address of per-command ; saved residual code ABSOLUTE dsa_temp_addr_new_value = 0 ; Address of value for JUMP operand ABSOLUTE dsa_temp_addr_array_value = 0 ; Address to copy to ABSOLUTE dsa_temp_addr_dsa_value = 0 ; Address of this DSA value ; ; Once a device has initiated reselection, we need to compare it ; against the singly linked list of commands which have disconnected ; and are pending reselection. These commands are maintained in ; an unordered singly linked list of DSA structures, through the ; DSA pointers at their 'centers' headed by the reconnect_dsa_head ; pointer. ; ; To avoid complications in removing commands from the list, ; I minimize the amount of expensive (at eight operations per ; addition @ 500-600ns each) pointer operations which must ; be done in the NCR driver by precomputing them on the ; host processor during dsa structure generation. ; ; The fixed-up per DSA code knows how to recognize the nexus ; associated with the corresponding SCSI command, and modifies ; the source and destination pointers for the MOVE MEMORY ; instruction which is executed when reselected_ok is called ; to remove the command from the list. Similarly, DSA is ; loaded with the address of the next DSA structure and ; reselected_check_next is called if a failure occurs. ; ; Perhaps more concisely, the net effect of the mess is ; ; for (dsa = reconnect_dsa_head, dest = &reconnect_dsa_head, ; src = NULL; dsa; dest = &dsa->next, dsa = dsa->next) { ; src = &dsa->next; ; if (target_id == dsa->id && target_lun == dsa->lun) { ; *dest = *src; ; break; ; } ; } ; ; if (!dsa) ; error (int_err_unexpected_reselect); ; else ; longjmp (dsa->jump_resume, 0); ; ; ; Define DSA structure used for mailboxes ENTRY dsa_code_template dsa_code_template: ENTRY dsa_code_begin dsa_code_begin: ; RGH: Don't care about TEMP and DSA here MOVE MEMORY 4, dsa_temp_addr_dsa_value, addr_scratch at 0x00000000 : */ 0xc0000004,0x00000000,0x00000000, /* MOVE MEMORY 4, addr_scratch, saved_dsa at 0x00000003 : */ 0xc0000004,0x00000000,0x00000000, /* ; We are about to go and select the device, so must set SSCF bits MOVE MEMORY 4, dsa_sscf_710, addr_scratch at 0x00000006 : */ 0xc0000004,0x00000000,0x00000000, /* MOVE SCRATCH3 TO SFBR at 0x00000009 : */ 0x72370000,0x00000000, /* MOVE SFBR TO SBCL at 0x0000000b : */ 0x6a0b0000,0x00000000, /* MOVE MEMORY 4, saved_dsa, addr_dsa at 0x0000000d : */ 0xc0000004,0x00000000,0x00000000, /* CALL select at 0x00000010 : */ 0x88080000,0x000001f8, /* ; Handle the phase mismatch which may have resulted from the ; MOVE FROM dsa_msgout if we returned here. The CLEAR ATN ; may or may not be necessary, and we should update script_asm.pl ; to handle multiple pieces. CLEAR ATN at 0x00000012 : */ 0x60000008,0x00000000, /* CLEAR ACK at 0x00000014 : */ 0x60000040,0x00000000, /* ; Replace second operand with address of JUMP instruction dest operand ; in schedule table for this DSA. Becomes dsa_jump_dest in 53c7,8xx.c. ENTRY dsa_code_fix_jump dsa_code_fix_jump: MOVE MEMORY 4, NOP_insn, 0 at 0x00000016 : */ 0xc0000004,0x00000000,0x00000000, /* JUMP select_done at 0x00000019 : */ 0x80080000,0x00000230, /* ; wrong_dsa loads the DSA register with the value of the dsa_next ; field. ; wrong_dsa: ; NOTE DSA is corrupt when we arrive here! ; Patch the MOVE MEMORY INSTRUCTION such that ; the destination address is the address of the OLD ; next pointer. ; MOVE MEMORY 4, dsa_temp_addr_next, reselected_ok_patch + 8 at 0x0000001b : */ 0xc0000004,0x00000000,0x000007ec, /* ; ; Move the _contents_ of the next pointer into the DSA register as ; the next I_T_L or I_T_L_Q tupple to check against the established ; nexus. ; MOVE MEMORY 4, dsa_temp_next, addr_scratch at 0x0000001e : */ 0xc0000004,0x00000000,0x00000000, /* MOVE MEMORY 4, addr_scratch, saved_dsa at 0x00000021 : */ 0xc0000004,0x00000000,0x00000000, /* MOVE MEMORY 4, saved_dsa, addr_dsa at 0x00000024 : */ 0xc0000004,0x00000000,0x00000000, /* JUMP reselected_check_next at 0x00000027 : */ 0x80080000,0x000006f0, /* ABSOLUTE dsa_save_data_pointer = 0 ENTRY dsa_code_save_data_pointer dsa_code_save_data_pointer: ; When we get here, TEMP has been saved in jump_temp+4, DSA is corrupt ; We MUST return with DSA correct MOVE MEMORY 4, jump_temp+4, dsa_temp_addr_saved_pointer at 0x00000029 : */ 0xc0000004,0x000009c8,0x00000000, /* ; HARD CODED : 24 bytes needs to agree with 53c7,8xx.h MOVE MEMORY 24, dsa_temp_addr_residual, dsa_temp_addr_saved_residual at 0x0000002c : */ 0xc0000018,0x00000000,0x00000000, /* CLEAR ACK at 0x0000002f : */ 0x60000040,0x00000000, /* MOVE MEMORY 4, saved_dsa, addr_dsa at 0x00000031 : */ 0xc0000004,0x00000000,0x00000000, /* JUMP jump_temp at 0x00000034 : */ 0x80080000,0x000009c4, /* ABSOLUTE dsa_restore_pointers = 0 ENTRY dsa_code_restore_pointers dsa_code_restore_pointers: ; TEMP and DSA are corrupt when we get here, but who cares! MOVE MEMORY 4, dsa_temp_addr_saved_pointer, jump_temp + 4 at 0x00000036 : */ 0xc0000004,0x00000000,0x000009c8, /* ; HARD CODED : 24 bytes needs to agree with 53c7,8xx.h MOVE MEMORY 24, dsa_temp_addr_saved_residual, dsa_temp_addr_residual at 0x00000039 : */ 0xc0000018,0x00000000,0x00000000, /* CLEAR ACK at 0x0000003c : */ 0x60000040,0x00000000, /* ; Restore DSA, note we don't care about TEMP MOVE MEMORY 4, saved_dsa, addr_dsa at 0x0000003e : */ 0xc0000004,0x00000000,0x00000000, /* JUMP jump_temp at 0x00000041 : */ 0x80080000,0x000009c4, /* ABSOLUTE dsa_check_reselect = 0 ; dsa_check_reselect determines whether or not the current target and ; lun match the current DSA ENTRY dsa_code_check_reselect dsa_code_check_reselect: MOVE LCRC TO SFBR ; LCRC has our ID and his ID bits set at 0x00000043 : */ 0x72230000,0x00000000, /* JUMP REL (wrong_dsa), IF NOT dsa_temp_target, AND MASK 0x80 at 0x00000045 : */ 0x80848000,0x00ffff50, /* ; ; Hack - move to scratch first, since SFBR is not writeable ; via the CPU and hence a MOVE MEMORY instruction. ; MOVE MEMORY 1, reselected_identify, addr_scratch at 0x00000047 : */ 0xc0000001,0x00000000,0x00000000, /* ; BIG ENDIAN ON MVME16x MOVE SCRATCH3 TO SFBR at 0x0000004a : */ 0x72370000,0x00000000, /* ; FIXME : we need to accommodate bit fielded and binary here for '7xx/'8xx chips ; Are you sure about that? richard@sleepie.demon.co.uk JUMP REL (wrong_dsa), IF NOT dsa_temp_lun, AND MASK 0xf8 at 0x0000004c : */ 0x8084f800,0x00ffff34, /* ; Patch the MOVE MEMORY INSTRUCTION such that ; the source address is the address of this dsa's ; next pointer. MOVE MEMORY 4, dsa_temp_addr_next, reselected_ok_patch + 4 at 0x0000004e : */ 0xc0000004,0x00000000,0x000007e8, /* CALL reselected_ok at 0x00000051 : */ 0x88080000,0x00000798, /* ; Restore DSA following memory moves in reselected_ok ; dsa_temp_sync doesn't really care about DSA, but it has an ; optional debug INT so a valid DSA is a good idea. MOVE MEMORY 4, saved_dsa, addr_dsa at 0x00000053 : */ 0xc0000004,0x00000000,0x00000000, /* CALL dsa_temp_sync at 0x00000056 : */ 0x88080000,0x00000000, /* ; Release ACK on the IDENTIFY message _after_ we've set the synchronous ; transfer parameters! CLEAR ACK at 0x00000058 : */ 0x60000040,0x00000000, /* ; Implicitly restore pointers on reselection, so a RETURN ; will transfer control back to the right spot. CALL REL (dsa_code_restore_pointers) at 0x0000005a : */ 0x88880000,0x00ffff68, /* RETURN at 0x0000005c : */ 0x90080000,0x00000000, /* ENTRY dsa_zero dsa_zero: ENTRY dsa_code_template_end dsa_code_template_end: ; Perform sanity check for dsa_fields_start == dsa_code_template_end - ; dsa_zero, puke. ABSOLUTE dsa_fields_start = 0 ; Sanity marker ; pad 48 bytes (fix this RSN) ABSOLUTE dsa_next = 48 ; len 4 Next DSA ; del 4 Previous DSA address ABSOLUTE dsa_cmnd = 56 ; len 4 Scsi_Cmnd * for this thread. ABSOLUTE dsa_select = 60 ; len 4 Device ID, Period, Offset for ; table indirect select ABSOLUTE dsa_msgout = 64 ; len 8 table indirect move parameter for ; select message ABSOLUTE dsa_cmdout = 72 ; len 8 table indirect move parameter for ; command ABSOLUTE dsa_dataout = 80 ; len 4 code pointer for dataout ABSOLUTE dsa_datain = 84 ; len 4 code pointer for datain ABSOLUTE dsa_msgin = 88 ; len 8 table indirect move for msgin ABSOLUTE dsa_status = 96 ; len 8 table indirect move for status byte ABSOLUTE dsa_msgout_other = 104 ; len 8 table indirect for normal message out ; (Synchronous transfer negotiation, etc). ABSOLUTE dsa_end = 112 ABSOLUTE schedule = 0 ; Array of JUMP dsa_begin or JUMP (next), ; terminated by a call to JUMP wait_reselect ; Linked lists of DSA structures ABSOLUTE reconnect_dsa_head = 0 ; Link list of DSAs which can reconnect ABSOLUTE addr_reconnect_dsa_head = 0 ; Address of variable containing ; address of reconnect_dsa_head ; These select the source and destination of a MOVE MEMORY instruction ABSOLUTE dmode_memory_to_memory = 0x0 ABSOLUTE dmode_memory_to_ncr = 0x0 ABSOLUTE dmode_ncr_to_memory = 0x0 ABSOLUTE addr_scratch = 0x0 ABSOLUTE addr_temp = 0x0 ABSOLUTE saved_dsa = 0x0 ABSOLUTE emulfly = 0x0 ABSOLUTE addr_dsa = 0x0 ; Interrupts - ; MSB indicates type ; 0 handle error condition ; 1 handle message ; 2 handle normal condition ; 3 debugging interrupt ; 4 testing interrupt ; Next byte indicates specific error ; XXX not yet implemented, I'm not sure if I want to - ; Next byte indicates the routine the error occurred in ; The LSB indicates the specific place the error occurred ABSOLUTE int_err_unexpected_phase = 0x00000000 ; Unexpected phase encountered ABSOLUTE int_err_selected = 0x00010000 ; SELECTED (nee RESELECTED) ABSOLUTE int_err_unexpected_reselect = 0x00020000 ABSOLUTE int_err_check_condition = 0x00030000 ABSOLUTE int_err_no_phase = 0x00040000 ABSOLUTE int_msg_wdtr = 0x01000000 ; WDTR message received ABSOLUTE int_msg_sdtr = 0x01010000 ; SDTR received ABSOLUTE int_msg_1 = 0x01020000 ; single byte special message ; received ABSOLUTE int_norm_select_complete = 0x02000000 ; Select complete, reprogram ; registers. ABSOLUTE int_norm_reselect_complete = 0x02010000 ; Nexus established ABSOLUTE int_norm_command_complete = 0x02020000 ; Command complete ABSOLUTE int_norm_disconnected = 0x02030000 ; Disconnected ABSOLUTE int_norm_aborted =0x02040000 ; Aborted *dsa ABSOLUTE int_norm_reset = 0x02050000 ; Generated BUS reset. ABSOLUTE int_norm_emulateintfly = 0x02060000 ; 53C710 Emulated intfly ABSOLUTE int_debug_break = 0x03000000 ; Break point ABSOLUTE int_debug_panic = 0x030b0000 ; Panic driver ABSOLUTE int_test_1 = 0x04000000 ; Test 1 complete ABSOLUTE int_test_2 = 0x04010000 ; Test 2 complete ABSOLUTE int_test_3 = 0x04020000 ; Test 3 complete ; These should start with 0x05000000, with low bits incrementing for ; each one. ABSOLUTE NCR53c7xx_msg_abort = 0 ; Pointer to abort message ABSOLUTE NCR53c7xx_msg_reject = 0 ; Pointer to reject message ABSOLUTE NCR53c7xx_zero = 0 ; long with zero in it, use for source ABSOLUTE NCR53c7xx_sink = 0 ; long to dump worthless data in ABSOLUTE NOP_insn = 0 ; NOP instruction ; Pointer to message, potentially multi-byte ABSOLUTE msg_buf = 0 ; Pointer to holding area for reselection information ABSOLUTE reselected_identify = 0 ABSOLUTE reselected_tag = 0 ; Request sense command pointer, it's a 6 byte command, should ; be constant for all commands since we always want 16 bytes of ; sense and we don't need to change any fields as we did under ; SCSI-I when we actually cared about the LUN field. ;EXTERNAL NCR53c7xx_sense ; Request sense command ; dsa_schedule ; PURPOSE : after a DISCONNECT message has been received, and pointers ; saved, insert the current DSA structure at the head of the ; disconnected queue and fall through to the scheduler. ; ; CALLS : OK ; ; INPUTS : dsa - current DSA structure, reconnect_dsa_head - list ; of disconnected commands ; ; MODIFIES : SCRATCH, reconnect_dsa_head ; ; EXITS : always passes control to schedule ENTRY dsa_schedule dsa_schedule: ; ; Calculate the address of the next pointer within the DSA ; structure of the command that is currently disconnecting ; ; Read what should be the current DSA from memory - actual DSA ; register is probably corrupt MOVE MEMORY 4, saved_dsa, addr_scratch at 0x0000005e : */ 0xc0000004,0x00000000,0x00000000, /* MOVE SCRATCH0 + dsa_next TO SCRATCH0 at 0x00000061 : */ 0x7e343000,0x00000000, /* MOVE SCRATCH1 + 0 TO SCRATCH1 WITH CARRY at 0x00000063 : */ 0x7f350000,0x00000000, /* MOVE SCRATCH2 + 0 TO SCRATCH2 WITH CARRY at 0x00000065 : */ 0x7f360000,0x00000000, /* MOVE SCRATCH3 + 0 TO SCRATCH3 WITH CARRY at 0x00000067 : */ 0x7f370000,0x00000000, /* ; Point the next field of this DSA structure at the current disconnected ; list MOVE MEMORY 4, addr_scratch, dsa_schedule_insert + 8 at 0x00000069 : */ 0xc0000004,0x00000000,0x000001b8, /* dsa_schedule_insert: MOVE MEMORY 4, reconnect_dsa_head, 0 at 0x0000006c : */ 0xc0000004,0x00000000,0x00000000, /* ; And update the head pointer. ; Read what should be the current DSA from memory - actual DSA ; register is probably corrupt MOVE MEMORY 4, saved_dsa, addr_scratch at 0x0000006f : */ 0xc0000004,0x00000000,0x00000000, /* MOVE MEMORY 4, addr_scratch, reconnect_dsa_head at 0x00000072 : */ 0xc0000004,0x00000000,0x00000000, /* CLEAR ACK at 0x00000075 : */ 0x60000040,0x00000000, /* ; Time to correct DSA following memory move MOVE MEMORY 4, saved_dsa, addr_dsa at 0x00000077 : */ 0xc0000004,0x00000000,0x00000000, /* WAIT DISCONNECT at 0x0000007a : */ 0x48000000,0x00000000, /* JUMP schedule at 0x0000007c : */ 0x80080000,0x00000000, /* ; ; select ; ; PURPOSE : establish a nexus for the SCSI command referenced by DSA. ; On success, the current DSA structure is removed from the issue ; queue. Usually, this is entered as a fall-through from schedule, ; although the contingent allegiance handling code will write ; the select entry address to the DSP to restart a command as a ; REQUEST SENSE. A message is sent (usually IDENTIFY, although ; additional SDTR or WDTR messages may be sent). COMMAND OUT ; is handled. ; ; INPUTS : DSA - SCSI command, issue_dsa_head ; ; CALLS : NOT OK ; ; MODIFIES : SCRATCH, issue_dsa_head ; ; EXITS : on reselection or selection, go to select_failed ; otherwise, RETURN so control is passed back to ; dsa_begin. ; ENTRY select select: CLEAR TARGET at 0x0000007e : */ 0x60000200,0x00000000, /* ; XXX ; ; In effect, SELECTION operations are backgrounded, with execution ; continuing until code which waits for REQ or a fatal interrupt is ; encountered. ; ; So, for more performance, we could overlap the code which removes ; the command from the NCRs issue queue with the selection, but ; at this point I don't want to deal with the error recovery. ; ; Enable selection timer MOVE CTEST7 & 0xef TO CTEST7 at 0x00000080 : */ 0x7c1bef00,0x00000000, /* SELECT ATN FROM dsa_select, select_failed at 0x00000082 : */ 0x4300003c,0x00000828, /* JUMP select_msgout, WHEN MSG_OUT at 0x00000084 : */ 0x860b0000,0x00000218, /* ENTRY select_msgout select_msgout: ; Disable selection timer MOVE CTEST7 | 0x10 TO CTEST7 at 0x00000086 : */ 0x7a1b1000,0x00000000, /* MOVE FROM dsa_msgout, WHEN MSG_OUT at 0x00000088 : */ 0x1e000000,0x00000040, /* RETURN at 0x0000008a : */ 0x90080000,0x00000000, /* ; ; select_done ; ; PURPOSE: continue on to normal data transfer; called as the exit ; point from dsa_begin. ; ; INPUTS: dsa ; ; CALLS: OK ; ; select_done: ; NOTE DSA is corrupt when we arrive here! MOVE MEMORY 4, saved_dsa, addr_dsa at 0x0000008c : */ 0xc0000004,0x00000000,0x00000000, /* ; After a successful selection, we should get either a CMD phase or ; some transfer request negotiation message. JUMP cmdout, WHEN CMD at 0x0000008f : */ 0x820b0000,0x0000025c, /* INT int_err_unexpected_phase, WHEN NOT MSG_IN at 0x00000091 : */ 0x9f030000,0x00000000, /* select_msg_in: CALL msg_in, WHEN MSG_IN at 0x00000093 : */ 0x8f0b0000,0x0000041c, /* JUMP select_msg_in, WHEN MSG_IN at 0x00000095 : */ 0x870b0000,0x0000024c, /* cmdout: INT int_err_unexpected_phase, WHEN NOT CMD at 0x00000097 : */ 0x9a030000,0x00000000, /* ENTRY cmdout_cmdout cmdout_cmdout: MOVE FROM dsa_cmdout, WHEN CMD at 0x00000099 : */ 0x1a000000,0x00000048, /* ; ; data_transfer ; other_out ; other_in ; other_transfer ; ; PURPOSE : handle the main data transfer for a SCSI command in ; several parts. In the first part, data_transfer, DATA_IN ; and DATA_OUT phases are allowed, with the user provided ; code (usually dynamically generated based on the scatter/gather ; list associated with a SCSI command) called to handle these ; phases. ; ; After control has passed to one of the user provided ; DATA_IN or DATA_OUT routines, back calls are made to ; other_transfer_in or other_transfer_out to handle non-DATA IN ; and DATA OUT phases respectively, with the state of the active ; data pointer being preserved in TEMP. ; ; On completion, the user code passes control to other_transfer ; which causes DATA_IN and DATA_OUT to result in unexpected_phase ; interrupts so that data overruns may be trapped. ; ; INPUTS : DSA - SCSI command ; ; CALLS : OK in data_transfer_start, not ok in other_out and other_in, ok in ; other_transfer ; ; MODIFIES : SCRATCH ; ; EXITS : if STATUS IN is detected, signifying command completion, ; the NCR jumps to command_complete. If MSG IN occurs, a ; CALL is made to msg_in. Otherwise, other_transfer runs in ; an infinite loop. ; ENTRY data_transfer data_transfer: JUMP cmdout_cmdout, WHEN CMD at 0x0000009b : */ 0x820b0000,0x00000264, /* CALL msg_in, WHEN MSG_IN at 0x0000009d : */ 0x8f0b0000,0x0000041c, /* INT int_err_unexpected_phase, WHEN MSG_OUT at 0x0000009f : */ 0x9e0b0000,0x00000000, /* JUMP do_dataout, WHEN DATA_OUT at 0x000000a1 : */ 0x800b0000,0x000002a4, /* JUMP do_datain, WHEN DATA_IN at 0x000000a3 : */ 0x810b0000,0x000002fc, /* JUMP command_complete, WHEN STATUS at 0x000000a5 : */ 0x830b0000,0x0000065c, /* JUMP data_transfer at 0x000000a7 : */ 0x80080000,0x0000026c, /* ENTRY end_data_transfer end_data_transfer: ; ; FIXME: On NCR53c700 and NCR53c700-66 chips, do_dataout/do_datain ; should be fixed up whenever the nexus changes so it can point to the ; correct routine for that command. ; ; Nasty jump to dsa->dataout do_dataout: MOVE MEMORY 4, saved_dsa, addr_scratch at 0x000000a9 : */ 0xc0000004,0x00000000,0x00000000, /* MOVE SCRATCH0 + dsa_dataout TO SCRATCH0 at 0x000000ac : */ 0x7e345000,0x00000000, /* MOVE SCRATCH1 + 0 TO SCRATCH1 WITH CARRY at 0x000000ae : */ 0x7f350000,0x00000000, /* MOVE SCRATCH2 + 0 TO SCRATCH2 WITH CARRY at 0x000000b0 : */ 0x7f360000,0x00000000, /* MOVE SCRATCH3 + 0 TO SCRATCH3 WITH CARRY at 0x000000b2 : */ 0x7f370000,0x00000000, /* MOVE MEMORY 4, addr_scratch, dataout_to_jump + 4 at 0x000000b4 : */ 0xc0000004,0x00000000,0x000002e0, /* dataout_to_jump: MOVE MEMORY 4, 0, dataout_jump + 4 at 0x000000b7 : */ 0xc0000004,0x00000000,0x000002f8, /* ; Time to correct DSA following memory move MOVE MEMORY 4, saved_dsa, addr_dsa at 0x000000ba : */ 0xc0000004,0x00000000,0x00000000, /* dataout_jump: JUMP 0 at 0x000000bd : */ 0x80080000,0x00000000, /* ; Nasty jump to dsa->dsain do_datain: MOVE MEMORY 4, saved_dsa, addr_scratch at 0x000000bf : */ 0xc0000004,0x00000000,0x00000000, /* MOVE SCRATCH0 + dsa_datain TO SCRATCH0 at 0x000000c2 : */ 0x7e345400,0x00000000, /* MOVE SCRATCH1 + 0 TO SCRATCH1 WITH CARRY at 0x000000c4 : */ 0x7f350000,0x00000000, /* MOVE SCRATCH2 + 0 TO SCRATCH2 WITH CARRY at 0x000000c6 : */ 0x7f360000,0x00000000, /* MOVE SCRATCH3 + 0 TO SCRATCH3 WITH CARRY at 0x000000c8 : */ 0x7f370000,0x00000000, /* MOVE MEMORY 4, addr_scratch, datain_to_jump + 4 at 0x000000ca : */ 0xc0000004,0x00000000,0x00000338, /* ENTRY datain_to_jump datain_to_jump: MOVE MEMORY 4, 0, datain_jump + 4 at 0x000000cd : */ 0xc0000004,0x00000000,0x00000350, /* ; Time to correct DSA following memory move MOVE MEMORY 4, saved_dsa, addr_dsa at 0x000000d0 : */ 0xc0000004,0x00000000,0x00000000, /* datain_jump: JUMP 0 at 0x000000d3 : */ 0x80080000,0x00000000, /* ; Note that other_out and other_in loop until a non-data phase ; is discovered, so we only execute return statements when we ; can go on to the next data phase block move statement. ENTRY other_out other_out: INT int_err_unexpected_phase, WHEN CMD at 0x000000d5 : */ 0x9a0b0000,0x00000000, /* JUMP msg_in_restart, WHEN MSG_IN at 0x000000d7 : */ 0x870b0000,0x000003fc, /* INT int_err_unexpected_phase, WHEN MSG_OUT at 0x000000d9 : */ 0x9e0b0000,0x00000000, /* INT int_err_unexpected_phase, WHEN DATA_IN at 0x000000db : */ 0x990b0000,0x00000000, /* JUMP command_complete, WHEN STATUS at 0x000000dd : */ 0x830b0000,0x0000065c, /* JUMP other_out, WHEN NOT DATA_OUT at 0x000000df : */ 0x80030000,0x00000354, /* ; TEMP should be OK, as we got here from a call in the user dataout code. RETURN at 0x000000e1 : */ 0x90080000,0x00000000, /* ENTRY other_in other_in: INT int_err_unexpected_phase, WHEN CMD at 0x000000e3 : */ 0x9a0b0000,0x00000000, /* JUMP msg_in_restart, WHEN MSG_IN at 0x000000e5 : */ 0x870b0000,0x000003fc, /* INT int_err_unexpected_phase, WHEN MSG_OUT at 0x000000e7 : */ 0x9e0b0000,0x00000000, /* INT int_err_unexpected_phase, WHEN DATA_OUT at 0x000000e9 : */ 0x980b0000,0x00000000, /* JUMP command_complete, WHEN STATUS at 0x000000eb : */ 0x830b0000,0x0000065c, /* JUMP other_in, WHEN NOT DATA_IN at 0x000000ed : */ 0x81030000,0x0000038c, /* ; TEMP should be OK, as we got here from a call in the user datain code. RETURN at 0x000000ef : */ 0x90080000,0x00000000, /* ENTRY other_transfer other_transfer: INT int_err_unexpected_phase, WHEN CMD at 0x000000f1 : */ 0x9a0b0000,0x00000000, /* CALL msg_in, WHEN MSG_IN at 0x000000f3 : */ 0x8f0b0000,0x0000041c, /* INT int_err_unexpected_phase, WHEN MSG_OUT at 0x000000f5 : */ 0x9e0b0000,0x00000000, /* INT int_err_unexpected_phase, WHEN DATA_OUT at 0x000000f7 : */ 0x980b0000,0x00000000, /* INT int_err_unexpected_phase, WHEN DATA_IN at 0x000000f9 : */ 0x990b0000,0x00000000, /* JUMP command_complete, WHEN STATUS at 0x000000fb : */ 0x830b0000,0x0000065c, /* JUMP other_transfer at 0x000000fd : */ 0x80080000,0x000003c4, /* ; ; msg_in_restart ; msg_in ; munge_msg ; ; PURPOSE : process messages from a target. msg_in is called when the ; caller hasn't read the first byte of the message. munge_message ; is called when the caller has read the first byte of the message, ; and left it in SFBR. msg_in_restart is called when the caller ; hasn't read the first byte of the message, and wishes RETURN ; to transfer control back to the address of the conditional ; CALL instruction rather than to the instruction after it. ; ; Various int_* interrupts are generated when the host system ; needs to intervene, as is the case with SDTR, WDTR, and ; INITIATE RECOVERY messages. ; ; When the host system handles one of these interrupts, ; it can respond by reentering at reject_message, ; which rejects the message and returns control to ; the caller of msg_in or munge_msg, accept_message ; which clears ACK and returns control, or reply_message ; which sends the message pointed to by the DSA ; msgout_other table indirect field. ; ; DISCONNECT messages are handled by moving the command ; to the reconnect_dsa_queue. ; NOTE: DSA should be valid when we get here - we cannot save both it ; and TEMP in this routine. ; ; INPUTS : DSA - SCSI COMMAND, SFBR - first byte of message (munge_msg ; only) ; ; CALLS : NO. The TEMP register isn't backed up to allow nested calls. ; ; MODIFIES : SCRATCH, DSA on DISCONNECT ; ; EXITS : On receipt of SAVE DATA POINTER, RESTORE POINTERS, ; and normal return from message handlers running under ; Linux, control is returned to the caller. Receipt ; of DISCONNECT messages pass control to dsa_schedule. ; ENTRY msg_in_restart msg_in_restart: ; XXX - hackish ; ; Since it's easier to debug changes to the statically ; compiled code, rather than the dynamically generated ; stuff, such as ; ; MOVE x, y, WHEN data_phase ; CALL other_z, WHEN NOT data_phase ; MOVE x, y, WHEN data_phase ; ; I'd like to have certain routines (notably the message handler) ; restart on the conditional call rather than the next instruction. ; ; So, subtract 8 from the return address MOVE TEMP0 + 0xf8 TO TEMP0 at 0x000000ff : */ 0x7e1cf800,0x00000000, /* MOVE TEMP1 + 0xff TO TEMP1 WITH CARRY at 0x00000101 : */ 0x7f1dff00,0x00000000, /* MOVE TEMP2 + 0xff TO TEMP2 WITH CARRY at 0x00000103 : */ 0x7f1eff00,0x00000000, /* MOVE TEMP3 + 0xff TO TEMP3 WITH CARRY at 0x00000105 : */ 0x7f1fff00,0x00000000, /* ENTRY msg_in msg_in: MOVE 1, msg_buf, WHEN MSG_IN at 0x00000107 : */ 0x0f000001,0x00000000, /* munge_msg: JUMP munge_extended, IF 0x01 ; EXTENDED MESSAGE at 0x00000109 : */ 0x800c0001,0x00000574, /* JUMP munge_2, IF 0x20, AND MASK 0xdf ; two byte message at 0x0000010b : */ 0x800cdf20,0x00000464, /* ; ; XXX - I've seen a handful of broken SCSI devices which fail to issue ; a SAVE POINTERS message before disconnecting in the middle of ; a transfer, assuming that the DATA POINTER will be implicitly ; restored. ; ; Historically, I've often done an implicit save when the DISCONNECT ; message is processed. We may want to consider having the option of ; doing that here. ; JUMP munge_save_data_pointer, IF 0x02 ; SAVE DATA POINTER at 0x0000010d : */ 0x800c0002,0x0000046c, /* JUMP munge_restore_pointers, IF 0x03 ; RESTORE POINTERS at 0x0000010f : */ 0x800c0003,0x00000518, /* JUMP munge_disconnect, IF 0x04 ; DISCONNECT at 0x00000111 : */ 0x800c0004,0x0000056c, /* INT int_msg_1, IF 0x07 ; MESSAGE REJECT at 0x00000113 : */ 0x980c0007,0x01020000, /* INT int_msg_1, IF 0x0f ; INITIATE RECOVERY at 0x00000115 : */ 0x980c000f,0x01020000, /* JUMP reject_message at 0x00000117 : */ 0x80080000,0x00000604, /* munge_2: JUMP reject_message at 0x00000119 : */ 0x80080000,0x00000604, /* ; ; The SCSI standard allows targets to recover from transient ; error conditions by backing up the data pointer with a ; RESTORE POINTERS message. ; ; So, we must save and restore the _residual_ code as well as ; the current instruction pointer. Because of this messiness, ; it is simpler to put dynamic code in the dsa for this and to ; just do a simple jump down there. ; munge_save_data_pointer: ; We have something in TEMP here, so first we must save that MOVE TEMP0 TO SFBR at 0x0000011b : */ 0x721c0000,0x00000000, /* MOVE SFBR TO SCRATCH0 at 0x0000011d : */ 0x6a340000,0x00000000, /* MOVE TEMP1 TO SFBR at 0x0000011f : */ 0x721d0000,0x00000000, /* MOVE SFBR TO SCRATCH1 at 0x00000121 : */ 0x6a350000,0x00000000, /* MOVE TEMP2 TO SFBR at 0x00000123 : */ 0x721e0000,0x00000000, /* MOVE SFBR TO SCRATCH2 at 0x00000125 : */ 0x6a360000,0x00000000, /* MOVE TEMP3 TO SFBR at 0x00000127 : */ 0x721f0000,0x00000000, /* MOVE SFBR TO SCRATCH3 at 0x00000129 : */ 0x6a370000,0x00000000, /* MOVE MEMORY 4, addr_scratch, jump_temp + 4 at 0x0000012b : */ 0xc0000004,0x00000000,0x000009c8, /* ; Now restore DSA MOVE MEMORY 4, saved_dsa, addr_dsa at 0x0000012e : */ 0xc0000004,0x00000000,0x00000000, /* MOVE DSA0 + dsa_save_data_pointer TO SFBR at 0x00000131 : */ 0x76100000,0x00000000, /* MOVE SFBR TO SCRATCH0 at 0x00000133 : */ 0x6a340000,0x00000000, /* MOVE DSA1 + 0xff TO SFBR WITH CARRY at 0x00000135 : */ 0x7711ff00,0x00000000, /* MOVE SFBR TO SCRATCH1 at 0x00000137 : */ 0x6a350000,0x00000000, /* MOVE DSA2 + 0xff TO SFBR WITH CARRY at 0x00000139 : */ 0x7712ff00,0x00000000, /* MOVE SFBR TO SCRATCH2 at 0x0000013b : */ 0x6a360000,0x00000000, /* MOVE DSA3 + 0xff TO SFBR WITH CARRY at 0x0000013d : */ 0x7713ff00,0x00000000, /* MOVE SFBR TO SCRATCH3 at 0x0000013f : */ 0x6a370000,0x00000000, /* MOVE MEMORY 4, addr_scratch, jump_dsa_save + 4 at 0x00000141 : */ 0xc0000004,0x00000000,0x00000514, /* jump_dsa_save: JUMP 0 at 0x00000144 : */ 0x80080000,0x00000000, /* munge_restore_pointers: ; The code at dsa_restore_pointers will RETURN, but we don't care ; about TEMP here, as it will overwrite it anyway. MOVE DSA0 + dsa_restore_pointers TO SFBR at 0x00000146 : */ 0x76100000,0x00000000, /* MOVE SFBR TO SCRATCH0 at 0x00000148 : */ 0x6a340000,0x00000000, /* MOVE DSA1 + 0xff TO SFBR WITH CARRY at 0x0000014a : */ 0x7711ff00,0x00000000, /* MOVE SFBR TO SCRATCH1 at 0x0000014c : */ 0x6a350000,0x00000000, /* MOVE DSA2 + 0xff TO SFBR WITH CARRY at 0x0000014e : */ 0x7712ff00,0x00000000, /* MOVE SFBR TO SCRATCH2 at 0x00000150 : */ 0x6a360000,0x00000000, /* MOVE DSA3 + 0xff TO SFBR WITH CARRY at 0x00000152 : */ 0x7713ff00,0x00000000, /* MOVE SFBR TO SCRATCH3 at 0x00000154 : */ 0x6a370000,0x00000000, /* MOVE MEMORY 4, addr_scratch, jump_dsa_restore + 4 at 0x00000156 : */ 0xc0000004,0x00000000,0x00000568, /* jump_dsa_restore: JUMP 0 at 0x00000159 : */ 0x80080000,0x00000000, /* munge_disconnect: JUMP dsa_schedule at 0x0000015b : */ 0x80080000,0x00000178, /* munge_extended: CLEAR ACK at 0x0000015d : */ 0x60000040,0x00000000, /* INT int_err_unexpected_phase, WHEN NOT MSG_IN at 0x0000015f : */ 0x9f030000,0x00000000, /* MOVE 1, msg_buf + 1, WHEN MSG_IN at 0x00000161 : */ 0x0f000001,0x00000001, /* JUMP munge_extended_2, IF 0x02 at 0x00000163 : */ 0x800c0002,0x000005a4, /* JUMP munge_extended_3, IF 0x03 at 0x00000165 : */ 0x800c0003,0x000005d4, /* JUMP reject_message at 0x00000167 : */ 0x80080000,0x00000604, /* munge_extended_2: CLEAR ACK at 0x00000169 : */ 0x60000040,0x00000000, /* MOVE 1, msg_buf + 2, WHEN MSG_IN at 0x0000016b : */ 0x0f000001,0x00000002, /* JUMP reject_message, IF NOT 0x02 ; Must be WDTR at 0x0000016d : */ 0x80040002,0x00000604, /* CLEAR ACK at 0x0000016f : */ 0x60000040,0x00000000, /* MOVE 1, msg_buf + 3, WHEN MSG_IN at 0x00000171 : */ 0x0f000001,0x00000003, /* INT int_msg_wdtr at 0x00000173 : */ 0x98080000,0x01000000, /* munge_extended_3: CLEAR ACK at 0x00000175 : */ 0x60000040,0x00000000, /* MOVE 1, msg_buf + 2, WHEN MSG_IN at 0x00000177 : */ 0x0f000001,0x00000002, /* JUMP reject_message, IF NOT 0x01 ; Must be SDTR at 0x00000179 : */ 0x80040001,0x00000604, /* CLEAR ACK at 0x0000017b : */ 0x60000040,0x00000000, /* MOVE 2, msg_buf + 3, WHEN MSG_IN at 0x0000017d : */ 0x0f000002,0x00000003, /* INT int_msg_sdtr at 0x0000017f : */ 0x98080000,0x01010000, /* ENTRY reject_message reject_message: SET ATN at 0x00000181 : */ 0x58000008,0x00000000, /* CLEAR ACK at 0x00000183 : */ 0x60000040,0x00000000, /* MOVE 1, NCR53c7xx_msg_reject, WHEN MSG_OUT at 0x00000185 : */ 0x0e000001,0x00000000, /* RETURN at 0x00000187 : */ 0x90080000,0x00000000, /* ENTRY accept_message accept_message: CLEAR ATN at 0x00000189 : */ 0x60000008,0x00000000, /* CLEAR ACK at 0x0000018b : */ 0x60000040,0x00000000, /* RETURN at 0x0000018d : */ 0x90080000,0x00000000, /* ENTRY respond_message respond_message: SET ATN at 0x0000018f : */ 0x58000008,0x00000000, /* CLEAR ACK at 0x00000191 : */ 0x60000040,0x00000000, /* MOVE FROM dsa_msgout_other, WHEN MSG_OUT at 0x00000193 : */ 0x1e000000,0x00000068, /* RETURN at 0x00000195 : */ 0x90080000,0x00000000, /* ; ; command_complete ; ; PURPOSE : handle command termination when STATUS IN is detected by reading ; a status byte followed by a command termination message. ; ; Normal termination results in an INTFLY instruction, and ; the host system can pick out which command terminated by ; examining the MESSAGE and STATUS buffers of all currently ; executing commands; ; ; Abnormal (CHECK_CONDITION) termination results in an ; int_err_check_condition interrupt so that a REQUEST SENSE ; command can be issued out-of-order so that no other command ; clears the contingent allegiance condition. ; ; ; INPUTS : DSA - command ; ; CALLS : OK ; ; EXITS : On successful termination, control is passed to schedule. ; On abnormal termination, the user will usually modify the ; DSA fields and corresponding buffers and return control ; to select. ; ENTRY command_complete command_complete: MOVE FROM dsa_status, WHEN STATUS at 0x00000197 : */ 0x1b000000,0x00000060, /* MOVE SFBR TO SCRATCH0 ; Save status at 0x00000199 : */ 0x6a340000,0x00000000, /* ENTRY command_complete_msgin command_complete_msgin: MOVE FROM dsa_msgin, WHEN MSG_IN at 0x0000019b : */ 0x1f000000,0x00000058, /* ; Indicate that we should be expecting a disconnect ; Above code cleared the Unexpected Disconnect bit, what do we do? CLEAR ACK at 0x0000019d : */ 0x60000040,0x00000000, /* WAIT DISCONNECT at 0x0000019f : */ 0x48000000,0x00000000, /* ; ; The SCSI specification states that when a UNIT ATTENTION condition ; is pending, as indicated by a CHECK CONDITION status message, ; the target shall revert to asynchronous transfers. Since ; synchronous transfers parameters are maintained on a per INITIATOR/TARGET ; basis, and returning control to our scheduler could work on a command ; running on another lun on that target using the old parameters, we must ; interrupt the host processor to get them changed, or change them ourselves. ; ; Once SCSI-II tagged queueing is implemented, things will be even more ; hairy, since contingent allegiance conditions exist on a per-target/lun ; basis, and issuing a new command with a different tag would clear it. ; In these cases, we must interrupt the host processor to get a request ; added to the HEAD of the queue with the request sense command, or we ; must automatically issue the request sense command. INT int_norm_emulateintfly at 0x000001a1 : */ 0x98080000,0x02060000, /* ; Time to correct DSA following memory move MOVE MEMORY 4, saved_dsa, addr_dsa at 0x000001a3 : */ 0xc0000004,0x00000000,0x00000000, /* JUMP schedule at 0x000001a6 : */ 0x80080000,0x00000000, /* command_failed: INT int_err_check_condition at 0x000001a8 : */ 0x98080000,0x00030000, /* ; ; wait_reselect ; ; PURPOSE : This is essentially the idle routine, where control lands ; when there are no new processes to schedule. wait_reselect ; waits for reselection, selection, and new commands. ; ; When a successful reselection occurs, with the aid ; of fixed up code in each DSA, wait_reselect walks the ; reconnect_dsa_queue, asking each dsa if the target ID ; and LUN match its. ; ; If a match is found, a call is made back to reselected_ok, ; which through the miracles of self modifying code, extracts ; the found DSA from the reconnect_dsa_queue and then ; returns control to the DSAs thread of execution. ; ; INPUTS : NONE ; ; CALLS : OK ; ; MODIFIES : DSA, ; ; EXITS : On successful reselection, control is returned to the ; DSA which called reselected_ok. If the WAIT RESELECT ; was interrupted by a new commands arrival signaled by ; SIG_P, control is passed to schedule. If the NCR is ; selected, the host system is interrupted with an ; int_err_selected which is usually responded to by ; setting DSP to the target_abort address. ENTRY wait_reselect wait_reselect: WAIT RESELECT wait_reselect_failed at 0x000001aa : */ 0x50000000,0x00000800, /* reselected: CLEAR TARGET at 0x000001ac : */ 0x60000200,0x00000000, /* ; Read all data needed to reestablish the nexus - MOVE 1, reselected_identify, WHEN MSG_IN at 0x000001ae : */ 0x0f000001,0x00000000, /* ; We used to CLEAR ACK here. ; Point DSA at the current head of the disconnected queue. MOVE MEMORY 4, reconnect_dsa_head, addr_scratch at 0x000001b0 : */ 0xc0000004,0x00000000,0x00000000, /* MOVE MEMORY 4, addr_scratch, saved_dsa at 0x000001b3 : */ 0xc0000004,0x00000000,0x00000000, /* ; Fix the update-next pointer so that the reconnect_dsa_head ; pointer is the one that will be updated if this DSA is a hit ; and we remove it from the queue. MOVE MEMORY 4, addr_reconnect_dsa_head, reselected_ok_patch + 8 at 0x000001b6 : */ 0xc0000004,0x00000000,0x000007ec, /* ; Time to correct DSA following memory move MOVE MEMORY 4, saved_dsa, addr_dsa at 0x000001b9 : */ 0xc0000004,0x00000000,0x00000000, /* ENTRY reselected_check_next reselected_check_next: ; Check for a NULL pointer. MOVE DSA0 TO SFBR at 0x000001bc : */ 0x72100000,0x00000000, /* JUMP reselected_not_end, IF NOT 0 at 0x000001be : */ 0x80040000,0x00000738, /* MOVE DSA1 TO SFBR at 0x000001c0 : */ 0x72110000,0x00000000, /* JUMP reselected_not_end, IF NOT 0 at 0x000001c2 : */ 0x80040000,0x00000738, /* MOVE DSA2 TO SFBR at 0x000001c4 : */ 0x72120000,0x00000000, /* JUMP reselected_not_end, IF NOT 0 at 0x000001c6 : */ 0x80040000,0x00000738, /* MOVE DSA3 TO SFBR at 0x000001c8 : */ 0x72130000,0x00000000, /* JUMP reselected_not_end, IF NOT 0 at 0x000001ca : */ 0x80040000,0x00000738, /* INT int_err_unexpected_reselect at 0x000001cc : */ 0x98080000,0x00020000, /* reselected_not_end: ; ; XXX the ALU is only eight bits wide, and the assembler ; wont do the dirt work for us. As long as dsa_check_reselect ; is negative, we need to sign extend with 1 bits to the full ; 32 bit width of the address. ; ; A potential work around would be to have a known alignment ; of the DSA structure such that the base address plus ; dsa_check_reselect doesn't require carrying from bytes ; higher than the LSB. ; MOVE DSA0 TO SFBR at 0x000001ce : */ 0x72100000,0x00000000, /* MOVE SFBR + dsa_check_reselect TO SCRATCH0 at 0x000001d0 : */ 0x6e340000,0x00000000, /* MOVE DSA1 TO SFBR at 0x000001d2 : */ 0x72110000,0x00000000, /* MOVE SFBR + 0xff TO SCRATCH1 WITH CARRY at 0x000001d4 : */ 0x6f35ff00,0x00000000, /* MOVE DSA2 TO SFBR at 0x000001d6 : */ 0x72120000,0x00000000, /* MOVE SFBR + 0xff TO SCRATCH2 WITH CARRY at 0x000001d8 : */ 0x6f36ff00,0x00000000, /* MOVE DSA3 TO SFBR at 0x000001da : */ 0x72130000,0x00000000, /* MOVE SFBR + 0xff TO SCRATCH3 WITH CARRY at 0x000001dc : */ 0x6f37ff00,0x00000000, /* MOVE MEMORY 4, addr_scratch, reselected_check + 4 at 0x000001de : */ 0xc0000004,0x00000000,0x00000794, /* ; Time to correct DSA following memory move MOVE MEMORY 4, saved_dsa, addr_dsa at 0x000001e1 : */ 0xc0000004,0x00000000,0x00000000, /* reselected_check: JUMP 0 at 0x000001e4 : */ 0x80080000,0x00000000, /* ; ; ; We have problems here - the memory move corrupts TEMP and DSA. This ; routine is called from DSA code, and patched from many places. Scratch ; is probably free when it is called. ; We have to: ; copy temp to scratch, one byte at a time ; write scratch to patch a jump in place of the return ; do the move memory ; jump to the patched in return address ; DSA is corrupt when we get here, and can be left corrupt ENTRY reselected_ok reselected_ok: MOVE TEMP0 TO SFBR at 0x000001e6 : */ 0x721c0000,0x00000000, /* MOVE SFBR TO SCRATCH0 at 0x000001e8 : */ 0x6a340000,0x00000000, /* MOVE TEMP1 TO SFBR at 0x000001ea : */ 0x721d0000,0x00000000, /* MOVE SFBR TO SCRATCH1 at 0x000001ec : */ 0x6a350000,0x00000000, /* MOVE TEMP2 TO SFBR at 0x000001ee : */ 0x721e0000,0x00000000, /* MOVE SFBR TO SCRATCH2 at 0x000001f0 : */ 0x6a360000,0x00000000, /* MOVE TEMP3 TO SFBR at 0x000001f2 : */ 0x721f0000,0x00000000, /* MOVE SFBR TO SCRATCH3 at 0x000001f4 : */ 0x6a370000,0x00000000, /* MOVE MEMORY 4, addr_scratch, reselected_ok_jump + 4 at 0x000001f6 : */ 0xc0000004,0x00000000,0x000007f4, /* reselected_ok_patch: MOVE MEMORY 4, 0, 0 at 0x000001f9 : */ 0xc0000004,0x00000000,0x00000000, /* reselected_ok_jump: JUMP 0 at 0x000001fc : */ 0x80080000,0x00000000, /* selected: INT int_err_selected; at 0x000001fe : */ 0x98080000,0x00010000, /* ; ; A select or reselect failure can be caused by one of two conditions : ; 1. SIG_P was set. This will be the case if the user has written ; a new value to a previously NULL head of the issue queue. ; ; 2. The NCR53c810 was selected or reselected by another device. ; ; 3. The bus was already busy since we were selected or reselected ; before starting the command. wait_reselect_failed: ; Check selected bit. ; Must work out how to tell if we are selected.... ; Reading CTEST2 clears the SIG_P bit in the ISTAT register. MOVE CTEST2 & 0x40 TO SFBR at 0x00000200 : */ 0x74164000,0x00000000, /* JUMP schedule, IF 0x40 at 0x00000202 : */ 0x800c0040,0x00000000, /* ; Check connected bit. ; FIXME: this needs to change if we support target mode MOVE ISTAT & 0x08 TO SFBR at 0x00000204 : */ 0x74210800,0x00000000, /* JUMP reselected, IF 0x08 at 0x00000206 : */ 0x800c0008,0x000006b0, /* ; FIXME : Something bogus happened, and we shouldn't fail silently. INT int_debug_panic at 0x00000208 : */ 0x98080000,0x030b0000, /* select_failed: ; Disable selection timer MOVE CTEST7 | 0x10 TO CTEST7 at 0x0000020a : */ 0x7a1b1000,0x00000000, /* ; Otherwise, mask the selected and reselected bits off SIST0 ; Let's assume we don't get selected for now MOVE SSTAT0 & 0x10 TO SFBR at 0x0000020c : */ 0x740d1000,0x00000000, /* JUMP reselected, IF 0x10 at 0x0000020e : */ 0x800c0010,0x000006b0, /* ; If SIGP is set, the user just gave us another command, and ; we should restart or return to the scheduler. ; Reading CTEST2 clears the SIG_P bit in the ISTAT register. MOVE CTEST2 & 0x40 TO SFBR at 0x00000210 : */ 0x74164000,0x00000000, /* JUMP select, IF 0x40 at 0x00000212 : */ 0x800c0040,0x000001f8, /* ; Check connected bit. ; FIXME: this needs to change if we support target mode ; FIXME: is this really necessary? MOVE ISTAT & 0x08 TO SFBR at 0x00000214 : */ 0x74210800,0x00000000, /* JUMP reselected, IF 0x08 at 0x00000216 : */ 0x800c0008,0x000006b0, /* ; FIXME : Something bogus happened, and we shouldn't fail silently. INT int_debug_panic at 0x00000218 : */ 0x98080000,0x030b0000, /* ; ; test_1 ; test_2 ; ; PURPOSE : run some verification tests on the NCR. test_1 ; copies test_src to test_dest and interrupts the host ; processor, testing for cache coherency and interrupt ; problems in the processes. ; ; test_2 runs a command with offsets relative to the ; DSA on entry, and is useful for miscellaneous experimentation. ; ; Verify that interrupts are working correctly and that we don't ; have a cache invalidation problem. ABSOLUTE test_src = 0, test_dest = 0 ENTRY test_1 test_1: MOVE MEMORY 4, test_src, test_dest at 0x0000021a : */ 0xc0000004,0x00000000,0x00000000, /* INT int_test_1 at 0x0000021d : */ 0x98080000,0x04000000, /* ; ; Run arbitrary commands, with test code establishing a DSA ; ENTRY test_2 test_2: CLEAR TARGET at 0x0000021f : */ 0x60000200,0x00000000, /* ; Enable selection timer MOVE CTEST7 & 0xef TO CTEST7 at 0x00000221 : */ 0x7c1bef00,0x00000000, /* SELECT ATN FROM 0, test_2_fail at 0x00000223 : */ 0x43000000,0x000008dc, /* JUMP test_2_msgout, WHEN MSG_OUT at 0x00000225 : */ 0x860b0000,0x0000089c, /* ENTRY test_2_msgout test_2_msgout: ; Disable selection timer MOVE CTEST7 | 0x10 TO CTEST7 at 0x00000227 : */ 0x7a1b1000,0x00000000, /* MOVE FROM 8, WHEN MSG_OUT at 0x00000229 : */ 0x1e000000,0x00000008, /* MOVE FROM 16, WHEN CMD at 0x0000022b : */ 0x1a000000,0x00000010, /* MOVE FROM 24, WHEN DATA_IN at 0x0000022d : */ 0x19000000,0x00000018, /* MOVE FROM 32, WHEN STATUS at 0x0000022f : */ 0x1b000000,0x00000020, /* MOVE FROM 40, WHEN MSG_IN at 0x00000231 : */ 0x1f000000,0x00000028, /* CLEAR ACK at 0x00000233 : */ 0x60000040,0x00000000, /* WAIT DISCONNECT at 0x00000235 : */ 0x48000000,0x00000000, /* test_2_fail: ; Disable selection timer MOVE CTEST7 | 0x10 TO CTEST7 at 0x00000237 : */ 0x7a1b1000,0x00000000, /* INT int_test_2 at 0x00000239 : */ 0x98080000,0x04010000, /* ENTRY debug_break debug_break: INT int_debug_break at 0x0000023b : */ 0x98080000,0x03000000, /* ; ; initiator_abort ; target_abort ; ; PURPOSE : Abort the currently established nexus from with initiator ; or target mode. ; ; ENTRY target_abort target_abort: SET TARGET at 0x0000023d : */ 0x58000200,0x00000000, /* DISCONNECT at 0x0000023f : */ 0x48000000,0x00000000, /* CLEAR TARGET at 0x00000241 : */ 0x60000200,0x00000000, /* JUMP schedule at 0x00000243 : */ 0x80080000,0x00000000, /* ENTRY initiator_abort initiator_abort: SET ATN at 0x00000245 : */ 0x58000008,0x00000000, /* ; ; The SCSI-I specification says that targets may go into MSG out at ; their leisure upon receipt of the ATN single. On all versions of the ; specification, we can't change phases until REQ transitions true->false, ; so we need to sink/source one byte of data to allow the transition. ; ; For the sake of safety, we'll only source one byte of data in all ; cases, but to accommodate the SCSI-I dain bramage, we'll sink an ; arbitrary number of bytes. JUMP spew_cmd, WHEN CMD at 0x00000247 : */ 0x820b0000,0x0000094c, /* JUMP eat_msgin, WHEN MSG_IN at 0x00000249 : */ 0x870b0000,0x0000095c, /* JUMP eat_datain, WHEN DATA_IN at 0x0000024b : */ 0x810b0000,0x0000098c, /* JUMP eat_status, WHEN STATUS at 0x0000024d : */ 0x830b0000,0x00000974, /* JUMP spew_dataout, WHEN DATA_OUT at 0x0000024f : */ 0x800b0000,0x000009a4, /* JUMP sated at 0x00000251 : */ 0x80080000,0x000009ac, /* spew_cmd: MOVE 1, NCR53c7xx_zero, WHEN CMD at 0x00000253 : */ 0x0a000001,0x00000000, /* JUMP sated at 0x00000255 : */ 0x80080000,0x000009ac, /* eat_msgin: MOVE 1, NCR53c7xx_sink, WHEN MSG_IN at 0x00000257 : */ 0x0f000001,0x00000000, /* JUMP eat_msgin, WHEN MSG_IN at 0x00000259 : */ 0x870b0000,0x0000095c, /* JUMP sated at 0x0000025b : */ 0x80080000,0x000009ac, /* eat_status: MOVE 1, NCR53c7xx_sink, WHEN STATUS at 0x0000025d : */ 0x0b000001,0x00000000, /* JUMP eat_status, WHEN STATUS at 0x0000025f : */ 0x830b0000,0x00000974, /* JUMP sated at 0x00000261 : */ 0x80080000,0x000009ac, /* eat_datain: MOVE 1, NCR53c7xx_sink, WHEN DATA_IN at 0x00000263 : */ 0x09000001,0x00000000, /* JUMP eat_datain, WHEN DATA_IN at 0x00000265 : */ 0x810b0000,0x0000098c, /* JUMP sated at 0x00000267 : */ 0x80080000,0x000009ac, /* spew_dataout: MOVE 1, NCR53c7xx_zero, WHEN DATA_OUT at 0x00000269 : */ 0x08000001,0x00000000, /* sated: MOVE 1, NCR53c7xx_msg_abort, WHEN MSG_OUT at 0x0000026b : */ 0x0e000001,0x00000000, /* WAIT DISCONNECT at 0x0000026d : */ 0x48000000,0x00000000, /* INT int_norm_aborted at 0x0000026f : */ 0x98080000,0x02040000, /* ; Little patched jump, used to overcome problems with TEMP getting ; corrupted on memory moves. jump_temp: JUMP 0 at 0x00000271 : */ 0x80080000,0x00000000, }; #define A_NCR53c7xx_msg_abort 0x00000000 static u32 A_NCR53c7xx_msg_abort_used[] __attribute((unused)) = { 0x0000026c, }; #define A_NCR53c7xx_msg_reject 0x00000000 static u32 A_NCR53c7xx_msg_reject_used[] __attribute((unused)) = { 0x00000186, }; #define A_NCR53c7xx_sink 0x00000000 static u32 A_NCR53c7xx_sink_used[] __attribute((unused)) = { 0x00000258, 0x0000025e, 0x00000264, }; #define A_NCR53c7xx_zero 0x00000000 static u32 A_NCR53c7xx_zero_used[] __attribute((unused)) = { 0x00000254, 0x0000026a, }; #define A_NOP_insn 0x00000000 static u32 A_NOP_insn_used[] __attribute((unused)) = { 0x00000017, }; #define A_addr_dsa 0x00000000 static u32 A_addr_dsa_used[] __attribute((unused)) = { 0x0000000f, 0x00000026, 0x00000033, 0x00000040, 0x00000055, 0x00000079, 0x0000008e, 0x000000bc, 0x000000d2, 0x00000130, 0x000001a5, 0x000001bb, 0x000001e3, }; #define A_addr_reconnect_dsa_head 0x00000000 static u32 A_addr_reconnect_dsa_head_used[] __attribute((unused)) = { 0x000001b7, }; #define A_addr_scratch 0x00000000 static u32 A_addr_scratch_used[] __attribute((unused)) = { 0x00000002, 0x00000004, 0x00000008, 0x00000020, 0x00000022, 0x00000049, 0x00000060, 0x0000006a, 0x00000071, 0x00000073, 0x000000ab, 0x000000b5, 0x000000c1, 0x000000cb, 0x0000012c, 0x00000142, 0x00000157, 0x000001b2, 0x000001b4, 0x000001df, 0x000001f7, }; #define A_addr_temp 0x00000000 static u32 A_addr_temp_used[] __attribute((unused)) = { }; #define A_dmode_memory_to_memory 0x00000000 static u32 A_dmode_memory_to_memory_used[] __attribute((unused)) = { }; #define A_dmode_memory_to_ncr 0x00000000 static u32 A_dmode_memory_to_ncr_used[] __attribute((unused)) = { }; #define A_dmode_ncr_to_memory 0x00000000 static u32 A_dmode_ncr_to_memory_used[] __attribute((unused)) = { }; #define A_dsa_check_reselect 0x00000000 static u32 A_dsa_check_reselect_used[] __attribute((unused)) = { 0x000001d0, }; #define A_dsa_cmdout 0x00000048 static u32 A_dsa_cmdout_used[] __attribute((unused)) = { 0x0000009a, }; #define A_dsa_cmnd 0x00000038 static u32 A_dsa_cmnd_used[] __attribute((unused)) = { }; #define A_dsa_datain 0x00000054 static u32 A_dsa_datain_used[] __attribute((unused)) = { 0x000000c2, }; #define A_dsa_dataout 0x00000050 static u32 A_dsa_dataout_used[] __attribute((unused)) = { 0x000000ac, }; #define A_dsa_end 0x00000070 static u32 A_dsa_end_used[] __attribute((unused)) = { }; #define A_dsa_fields_start 0x00000000 static u32 A_dsa_fields_start_used[] __attribute((unused)) = { }; #define A_dsa_msgin 0x00000058 static u32 A_dsa_msgin_used[] __attribute((unused)) = { 0x0000019c, }; #define A_dsa_msgout 0x00000040 static u32 A_dsa_msgout_used[] __attribute((unused)) = { 0x00000089, }; #define A_dsa_msgout_other 0x00000068 static u32 A_dsa_msgout_other_used[] __attribute((unused)) = { 0x00000194, }; #define A_dsa_next 0x00000030 static u32 A_dsa_next_used[] __attribute((unused)) = { 0x00000061, }; #define A_dsa_restore_pointers 0x00000000 static u32 A_dsa_restore_pointers_used[] __attribute((unused)) = { 0x00000146, }; #define A_dsa_save_data_pointer 0x00000000 static u32 A_dsa_save_data_pointer_used[] __attribute((unused)) = { 0x00000131, }; #define A_dsa_select 0x0000003c static u32 A_dsa_select_used[] __attribute((unused)) = { 0x00000082, }; #define A_dsa_sscf_710 0x00000000 static u32 A_dsa_sscf_710_used[] __attribute((unused)) = { 0x00000007, }; #define A_dsa_status 0x00000060 static u32 A_dsa_status_used[] __attribute((unused)) = { 0x00000198, }; #define A_dsa_temp_addr_array_value 0x00000000 static u32 A_dsa_temp_addr_array_value_used[] __attribute((unused)) = { }; #define A_dsa_temp_addr_dsa_value 0x00000000 static u32 A_dsa_temp_addr_dsa_value_used[] __attribute((unused)) = { 0x00000001, }; #define A_dsa_temp_addr_new_value 0x00000000 static u32 A_dsa_temp_addr_new_value_used[] __attribute((unused)) = { }; #define A_dsa_temp_addr_next 0x00000000 static u32 A_dsa_temp_addr_next_used[] __attribute((unused)) = { 0x0000001c, 0x0000004f, }; #define A_dsa_temp_addr_residual 0x00000000 static u32 A_dsa_temp_addr_residual_used[] __attribute((unused)) = { 0x0000002d, 0x0000003b, }; #define A_dsa_temp_addr_saved_pointer 0x00000000 static u32 A_dsa_temp_addr_saved_pointer_used[] __attribute((unused)) = { 0x0000002b, 0x00000037, }; #define A_dsa_temp_addr_saved_residual 0x00000000 static u32 A_dsa_temp_addr_saved_residual_used[] __attribute((unused)) = { 0x0000002e, 0x0000003a, }; #define A_dsa_temp_lun 0x00000000 static u32 A_dsa_temp_lun_used[] __attribute((unused)) = { 0x0000004c, }; #define A_dsa_temp_next 0x00000000 static u32 A_dsa_temp_next_used[] __attribute((unused)) = { 0x0000001f, }; #define A_dsa_temp_sync 0x00000000 static u32 A_dsa_temp_sync_used[] __attribute((unused)) = { 0x00000057, }; #define A_dsa_temp_target 0x00000000 static u32 A_dsa_temp_target_used[] __attribute((unused)) = { 0x00000045, }; #define A_emulfly 0x00000000 static u32 A_emulfly_used[] __attribute((unused)) = { }; #define A_int_debug_break 0x03000000 static u32 A_int_debug_break_used[] __attribute((unused)) = { 0x0000023c, }; #define A_int_debug_panic 0x030b0000 static u32 A_int_debug_panic_used[] __attribute((unused)) = { 0x00000209, 0x00000219, }; #define A_int_err_check_condition 0x00030000 static u32 A_int_err_check_condition_used[] __attribute((unused)) = { 0x000001a9, }; #define A_int_err_no_phase 0x00040000 static u32 A_int_err_no_phase_used[] __attribute((unused)) = { }; #define A_int_err_selected 0x00010000 static u32 A_int_err_selected_used[] __attribute((unused)) = { 0x000001ff, }; #define A_int_err_unexpected_phase 0x00000000 static u32 A_int_err_unexpected_phase_used[] __attribute((unused)) = { 0x00000092, 0x00000098, 0x000000a0, 0x000000d6, 0x000000da, 0x000000dc, 0x000000e4, 0x000000e8, 0x000000ea, 0x000000f2, 0x000000f6, 0x000000f8, 0x000000fa, 0x00000160, }; #define A_int_err_unexpected_reselect 0x00020000 static u32 A_int_err_unexpected_reselect_used[] __attribute((unused)) = { 0x000001cd, }; #define A_int_msg_1 0x01020000 static u32 A_int_msg_1_used[] __attribute((unused)) = { 0x00000114, 0x00000116, }; #define A_int_msg_sdtr 0x01010000 static u32 A_int_msg_sdtr_used[] __attribute((unused)) = { 0x00000180, }; #define A_int_msg_wdtr 0x01000000 static u32 A_int_msg_wdtr_used[] __attribute((unused)) = { 0x00000174, }; #define A_int_norm_aborted 0x02040000 static u32 A_int_norm_aborted_used[] __attribute((unused)) = { 0x00000270, }; #define A_int_norm_command_complete 0x02020000 static u32 A_int_norm_command_complete_used[] __attribute((unused)) = { }; #define A_int_norm_disconnected 0x02030000 static u32 A_int_norm_disconnected_used[] __attribute((unused)) = { }; #define A_int_norm_emulateintfly 0x02060000 static u32 A_int_norm_emulateintfly_used[] __attribute((unused)) = { 0x000001a2, }; #define A_int_norm_reselect_complete 0x02010000 static u32 A_int_norm_reselect_complete_used[] __attribute((unused)) = { }; #define A_int_norm_reset 0x02050000 static u32 A_int_norm_reset_used[] __attribute((unused)) = { }; #define A_int_norm_select_complete 0x02000000 static u32 A_int_norm_select_complete_used[] __attribute((unused)) = { }; #define A_int_test_1 0x04000000 static u32 A_int_test_1_used[] __attribute((unused)) = { 0x0000021e, }; #define A_int_test_2 0x04010000 static u32 A_int_test_2_used[] __attribute((unused)) = { 0x0000023a, }; #define A_int_test_3 0x04020000 static u32 A_int_test_3_used[] __attribute((unused)) = { }; #define A_msg_buf 0x00000000 static u32 A_msg_buf_used[] __attribute((unused)) = { 0x00000108, 0x00000162, 0x0000016c, 0x00000172, 0x00000178, 0x0000017e, }; #define A_reconnect_dsa_head 0x00000000 static u32 A_reconnect_dsa_head_used[] __attribute((unused)) = { 0x0000006d, 0x00000074, 0x000001b1, }; #define A_reselected_identify 0x00000000 static u32 A_reselected_identify_used[] __attribute((unused)) = { 0x00000048, 0x000001af, }; #define A_reselected_tag 0x00000000 static u32 A_reselected_tag_used[] __attribute((unused)) = { }; #define A_saved_dsa 0x00000000 static u32 A_saved_dsa_used[] __attribute((unused)) = { 0x00000005, 0x0000000e, 0x00000023, 0x00000025, 0x00000032, 0x0000003f, 0x00000054, 0x0000005f, 0x00000070, 0x00000078, 0x0000008d, 0x000000aa, 0x000000bb, 0x000000c0, 0x000000d1, 0x0000012f, 0x000001a4, 0x000001b5, 0x000001ba, 0x000001e2, }; #define A_schedule 0x00000000 static u32 A_schedule_used[] __attribute((unused)) = { 0x0000007d, 0x000001a7, 0x00000203, 0x00000244, }; #define A_test_dest 0x00000000 static u32 A_test_dest_used[] __attribute((unused)) = { 0x0000021c, }; #define A_test_src 0x00000000 static u32 A_test_src_used[] __attribute((unused)) = { 0x0000021b, }; #define Ent_accept_message 0x00000624 #define Ent_cmdout_cmdout 0x00000264 #define Ent_command_complete 0x0000065c #define Ent_command_complete_msgin 0x0000066c #define Ent_data_transfer 0x0000026c #define Ent_datain_to_jump 0x00000334 #define Ent_debug_break 0x000008ec #define Ent_dsa_code_begin 0x00000000 #define Ent_dsa_code_check_reselect 0x0000010c #define Ent_dsa_code_fix_jump 0x00000058 #define Ent_dsa_code_restore_pointers 0x000000d8 #define Ent_dsa_code_save_data_pointer 0x000000a4 #define Ent_dsa_code_template 0x00000000 #define Ent_dsa_code_template_end 0x00000178 #define Ent_dsa_schedule 0x00000178 #define Ent_dsa_zero 0x00000178 #define Ent_end_data_transfer 0x000002a4 #define Ent_initiator_abort 0x00000914 #define Ent_msg_in 0x0000041c #define Ent_msg_in_restart 0x000003fc #define Ent_other_in 0x0000038c #define Ent_other_out 0x00000354 #define Ent_other_transfer 0x000003c4 #define Ent_reject_message 0x00000604 #define Ent_reselected_check_next 0x000006f0 #define Ent_reselected_ok 0x00000798 #define Ent_respond_message 0x0000063c #define Ent_select 0x000001f8 #define Ent_select_msgout 0x00000218 #define Ent_target_abort 0x000008f4 #define Ent_test_1 0x00000868 #define Ent_test_2 0x0000087c #define Ent_test_2_msgout 0x0000089c #define Ent_wait_reselect 0x000006a8 static u32 LABELPATCHES[] __attribute((unused)) = { 0x00000011, 0x0000001a, 0x0000001d, 0x00000028, 0x0000002a, 0x00000035, 0x00000038, 0x00000042, 0x00000050, 0x00000052, 0x0000006b, 0x00000083, 0x00000085, 0x00000090, 0x00000094, 0x00000096, 0x0000009c, 0x0000009e, 0x000000a2, 0x000000a4, 0x000000a6, 0x000000a8, 0x000000b6, 0x000000b9, 0x000000cc, 0x000000cf, 0x000000d8, 0x000000de, 0x000000e0, 0x000000e6, 0x000000ec, 0x000000ee, 0x000000f4, 0x000000fc, 0x000000fe, 0x0000010a, 0x0000010c, 0x0000010e, 0x00000110, 0x00000112, 0x00000118, 0x0000011a, 0x0000012d, 0x00000143, 0x00000158, 0x0000015c, 0x00000164, 0x00000166, 0x00000168, 0x0000016e, 0x0000017a, 0x000001ab, 0x000001b8, 0x000001bf, 0x000001c3, 0x000001c7, 0x000001cb, 0x000001e0, 0x000001f8, 0x00000207, 0x0000020f, 0x00000213, 0x00000217, 0x00000224, 0x00000226, 0x00000248, 0x0000024a, 0x0000024c, 0x0000024e, 0x00000250, 0x00000252, 0x00000256, 0x0000025a, 0x0000025c, 0x00000260, 0x00000262, 0x00000266, 0x00000268, }; static struct { u32 offset; void *address; } EXTERNAL_PATCHES[] __attribute((unused)) = { }; static u32 INSTRUCTIONS __attribute((unused)) = 290; static u32 PATCHES __attribute((unused)) = 78; static u32 EXTERNAL_PATCHES_LEN __attribute((unused)) = 0;