/* * CRISv32 kernel startup code. * * Copyright (C) 2003, Axis Communications AB */ #define ASSEMBLER_MACROS_ONLY /* * The macros found in mmu_defs_asm.h uses the ## concatenation operator, so * -traditional must not be used when assembling this file. */ #include #include #include #include #include #include #define CRAMFS_MAGIC 0x28cd3d45 #define JHEAD_MAGIC 0x1FF528A6 #define JHEAD_SIZE 8 #define RAM_INIT_MAGIC 0x56902387 #define COMMAND_LINE_MAGIC 0x87109563 #define NAND_BOOT_MAGIC 0x9a9db001 ;; NOTE: R8 and R9 carry information from the decompressor (if the ;; kernel was compressed). They must not be used in the code below ;; until they are read! ;; Exported symbols. .global etrax_irv .global romfs_start .global romfs_length .global romfs_in_flash .global nand_boot .global swapper_pg_dir ;; Dummy section to make it bootable with current VCS simulator #ifdef CONFIG_ETRAX_VCS_SIM .section ".boot", "ax" ba tstart nop #endif .text tstart: ;; This is the entry point of the kernel. The CPU is currently in ;; supervisor mode. ;; ;; 0x00000000 if flash. ;; 0x40004000 if DRAM. ;; di START_CLOCKS SETUP_WAIT_STATES #ifdef CONFIG_SMP secondary_cpu_entry: /* Entry point for secondary CPUs */ di #endif ;; Setup and enable the MMU. Use same configuration for both the data ;; and the instruction MMU. ;; ;; Note; 3 cycles is needed for a bank-select to take effect. Further; ;; bank 1 is the instruction MMU, bank 2 is the data MMU. #ifndef CONFIG_ETRAX_VCS_SIM move.d REG_FIELD(mmu, rw_mm_kbase_hi, base_e, 8) \ | REG_FIELD(mmu, rw_mm_kbase_hi, base_c, 4) \ | REG_FIELD(mmu, rw_mm_kbase_hi, base_b, 0xb), $r0 #else ;; Map the virtual DRAM to the RW eprom area at address 0. ;; Also map 0xa for the hook calls, move.d REG_FIELD(mmu, rw_mm_kbase_hi, base_e, 8) \ | REG_FIELD(mmu, rw_mm_kbase_hi, base_c, 4) \ | REG_FIELD(mmu, rw_mm_kbase_hi, base_b, 0xb) \ | REG_FIELD(mmu, rw_mm_kbase_hi, base_a, 0xa), $r0 #endif ;; Temporary map of 0x40 -> 0x40 and 0x00 -> 0x00. move.d REG_FIELD(mmu, rw_mm_kbase_lo, base_4, 4) \ | REG_FIELD(mmu, rw_mm_kbase_lo, base_0, 0), $r1 ;; Enable certain page protections and setup linear mapping ;; for f,e,c,b,4,0. #ifndef CONFIG_ETRAX_VCS_SIM move.d REG_STATE(mmu, rw_mm_cfg, we, on) \ | REG_STATE(mmu, rw_mm_cfg, acc, on) \ | REG_STATE(mmu, rw_mm_cfg, ex, on) \ | REG_STATE(mmu, rw_mm_cfg, inv, on) \ | REG_STATE(mmu, rw_mm_cfg, seg_f, linear) \ | REG_STATE(mmu, rw_mm_cfg, seg_e, linear) \ | REG_STATE(mmu, rw_mm_cfg, seg_d, page) \ | REG_STATE(mmu, rw_mm_cfg, seg_c, linear) \ | REG_STATE(mmu, rw_mm_cfg, seg_b, linear) \ | REG_STATE(mmu, rw_mm_cfg, seg_a, page) \ | REG_STATE(mmu, rw_mm_cfg, seg_9, page) \ | REG_STATE(mmu, rw_mm_cfg, seg_8, page) \ | REG_STATE(mmu, rw_mm_cfg, seg_7, page) \ | REG_STATE(mmu, rw_mm_cfg, seg_6, page) \ | REG_STATE(mmu, rw_mm_cfg, seg_5, page) \ | REG_STATE(mmu, rw_mm_cfg, seg_4, linear) \ | REG_STATE(mmu, rw_mm_cfg, seg_3, page) \ | REG_STATE(mmu, rw_mm_cfg, seg_2, page) \ | REG_STATE(mmu, rw_mm_cfg, seg_1, page) \ | REG_STATE(mmu, rw_mm_cfg, seg_0, linear), $r2 #else move.d REG_STATE(mmu, rw_mm_cfg, we, on) \ | REG_STATE(mmu, rw_mm_cfg, acc, on) \ | REG_STATE(mmu, rw_mm_cfg, ex, on) \ | REG_STATE(mmu, rw_mm_cfg, inv, on) \ | REG_STATE(mmu, rw_mm_cfg, seg_f, linear) \ | REG_STATE(mmu, rw_mm_cfg, seg_e, linear) \ | REG_STATE(mmu, rw_mm_cfg, seg_d, page) \ | REG_STATE(mmu, rw_mm_cfg, seg_c, linear) \ | REG_STATE(mmu, rw_mm_cfg, seg_b, linear) \ | REG_STATE(mmu, rw_mm_cfg, seg_a, linear) \ | REG_STATE(mmu, rw_mm_cfg, seg_9, page) \ | REG_STATE(mmu, rw_mm_cfg, seg_8, page) \ | REG_STATE(mmu, rw_mm_cfg, seg_7, page) \ | REG_STATE(mmu, rw_mm_cfg, seg_6, page) \ | REG_STATE(mmu, rw_mm_cfg, seg_5, page) \ | REG_STATE(mmu, rw_mm_cfg, seg_4, linear) \ | REG_STATE(mmu, rw_mm_cfg, seg_3, page) \ | REG_STATE(mmu, rw_mm_cfg, seg_2, page) \ | REG_STATE(mmu, rw_mm_cfg, seg_1, page) \ | REG_STATE(mmu, rw_mm_cfg, seg_0, linear), $r2 #endif ;; Update instruction MMU. move 1, $srs nop nop nop move $r0, $s2 ; kbase_hi. move $r1, $s1 ; kbase_lo. move $r2, $s0 ; mm_cfg, virtual memory configuration. ;; Update data MMU. move 2, $srs nop nop nop move $r0, $s2 ; kbase_hi. move $r1, $s1 ; kbase_lo move $r2, $s0 ; mm_cfg, virtual memory configuration. ;; Enable data and instruction MMU. move 0, $srs moveq 0xf, $r0 ; IMMU, DMMU, DCache, Icache on nop nop nop move $r0, $s0 nop nop nop #ifdef CONFIG_SMP ;; Read CPU ID move 0, $srs nop nop nop move $s12, $r0 cmpq 0, $r0 beq master_cpu nop slave_cpu: ; Time to boot-up. Get stack location provided by master CPU. move.d smp_init_current_idle_thread, $r1 move.d [$r1], $sp add.d 8192, $sp move.d ebp_start, $r0 ; Defined in linker-script. move $r0, $ebp jsr smp_callin nop master_cpu: /* Set up entry point for secondary CPUs. The boot ROM has set up * EBP at start of internal memory. The CPU will get there * later when we issue an IPI to them... */ move.d MEM_INTMEM_START + IPI_INTR_VECT * 4, $r0 move.d secondary_cpu_entry, $r1 move.d $r1, [$r0] #endif #ifndef CONFIG_ETRAX_VCS_SIM ; Check if starting from DRAM (network->RAM boot or unpacked ; compressed kernel), or directly from flash. lapcq ., $r0 and.d 0x7fffffff, $r0 ; Mask off the non-cache bit. cmp.d 0x10000, $r0 ; Arbitrary, something above this code. blo _inflash0 nop #endif jump _inram ; Jump to cached RAM. nop ;; Jumpgate. _inflash0: jump _inflash nop ;; Put the following in a section so that storage for it can be ;; reclaimed after init is finished. .section ".init.text", "ax" _inflash: ;; Initialize DRAM. cmp.d RAM_INIT_MAGIC, $r8 ; Already initialized? beq _dram_initialized nop #include "../mach/dram_init.S" _dram_initialized: ;; Copy the text and data section to DRAM. This depends on that the ;; variables used below are correctly set up by the linker script. ;; The calculated value stored in R4 is used below. ;; Leave the cramfs file system (piggybacked after the kernel) in flash. moveq 0, $r0 ; Source. move.d text_start, $r1 ; Destination. move.d __vmlinux_end, $r2 move.d $r2, $r4 sub.d $r1, $r4 1: move.w [$r0+], $r3 move.w $r3, [$r1+] cmp.d $r2, $r1 blo 1b nop ;; Check for cramfs. moveq 0, $r0 move.d romfs_length, $r1 move.d $r0, [$r1] move.d [$r4], $r0 ; cramfs_super.magic cmp.d CRAMFS_MAGIC, $r0 bne 1f nop ;; Set length and start of cramfs, set romfs_in_flash flag addoq +4, $r4, $acr move.d [$acr], $r0 move.d romfs_length, $r1 move.d $r0, [$r1] add.d 0xf0000000, $r4 ; Add cached flash start in virtual memory. move.d romfs_start, $r1 move.d $r4, [$r1] 1: moveq 1, $r0 move.d romfs_in_flash, $r1 move.d $r0, [$r1] jump _start_it ; Jump to cached code. nop _inram: ;; Check if booting from NAND flash; if so, set appropriate flags ;; and move on. cmp.d NAND_BOOT_MAGIC, $r12 bne move_cramfs ; not nand, jump moveq 1, $r0 move.d nand_boot, $r1 ; tell axisflashmap we're booting from NAND move.d $r0, [$r1] moveq 0, $r0 ; tell axisflashmap romfs is not in move.d romfs_in_flash, $r1 ; (directly accessed) flash move.d $r0, [$r1] jump _start_it ; continue with boot nop move_cramfs: ;; kernel is in DRAM. ;; Must figure out if there is a piggybacked rootfs image or not. ;; Set romfs_length to 0 => no rootfs image available by default. moveq 0, $r0 move.d romfs_length, $r1 move.d $r0, [$r1] #ifndef CONFIG_ETRAX_VCS_SIM ;; The kernel could have been unpacked to DRAM by the loader, but ;; the cramfs image could still be in the flash immediately ;; following the compressed kernel image. The loader passes the address ;; of the byte succeeding the last compressed byte in the flash in ;; register R9 when starting the kernel. cmp.d 0x0ffffff8, $r9 bhs _no_romfs_in_flash ; R9 points outside the flash area. nop #else ba _no_romfs_in_flash nop #endif ;; cramfs rootfs might to be in flash. Check for it. move.d [$r9], $r0 ; cramfs_super.magic cmp.d CRAMFS_MAGIC, $r0 bne _no_romfs_in_flash nop ;; found cramfs in flash. set address and size, and romfs_in_flash flag. addoq +4, $r9, $acr move.d [$acr], $r0 move.d romfs_length, $r1 move.d $r0, [$r1] add.d 0xf0000000, $r9 ; Add cached flash start in virtual memory. move.d romfs_start, $r1 move.d $r9, [$r1] moveq 1, $r0 move.d romfs_in_flash, $r1 move.d $r0, [$r1] jump _start_it ; Jump to cached code. nop _no_romfs_in_flash: ;; No romfs in flash, so look for cramfs, or jffs2 with jhead, ;; after kernel in RAM, as is the case with network->RAM boot. ;; For cramfs, partition starts with magic and length. ;; For jffs2, a jhead is prepended which contains with magic and length. ;; The jhead is not part of the jffs2 partition however. #ifndef CONFIG_ETRAXFS_SIM move.d __vmlinux_end, $r0 #else move.d __end, $r0 #endif move.d [$r0], $r1 cmp.d CRAMFS_MAGIC, $r1 ; cramfs magic? beq 2f ; yes, jump nop cmp.d JHEAD_MAGIC, $r1 ; jffs2 (jhead) magic? bne 4f ; no, skip copy nop addq 4, $r0 ; location of jffs2 size move.d [$r0+], $r2 ; fetch jffs2 size -> r2 ; r0 now points to start of jffs2 ba 3f nop 2: addoq +4, $r0, $acr ; location of cramfs size move.d [$acr], $r2 ; fetch cramfs size -> r2 ; r0 still points to start of cramfs 3: ;; Now, move the root fs to after kernel's BSS move.d _end, $r1 ; start of cramfs -> r1 move.d romfs_start, $r3 move.d $r1, [$r3] ; store at romfs_start (for axisflashmap) move.d romfs_length, $r3 move.d $r2, [$r3] ; store size at romfs_length #ifndef CONFIG_ETRAX_VCS_SIM add.d $r2, $r0 ; copy from end and downwards add.d $r2, $r1 lsrq 1, $r2 ; Size is in bytes, we copy words. addq 1, $r2 1: move.w [$r0], $r3 move.w $r3, [$r1] subq 2, $r0 subq 2, $r1 subq 1, $r2 bne 1b nop #endif 4: ;; BSS move done. ;; Clear romfs_in_flash flag, as we now know romfs is in DRAM ;; Also clear nand_boot flag; if we got here, we know we've not ;; booted from NAND flash. moveq 0, $r0 move.d romfs_in_flash, $r1 move.d $r0, [$r1] moveq 0, $r0 move.d nand_boot, $r1 move.d $r0, [$r1] jump _start_it ; Jump to cached code. nop _start_it: ;; Check if kernel command line is supplied cmp.d COMMAND_LINE_MAGIC, $r10 bne no_command_line nop move.d 256, $r13 move.d cris_command_line, $r10 or.d 0x80000000, $r11 ; Make it virtual 1: move.b [$r11+], $r1 move.b $r1, [$r10+] subq 1, $r13 bne 1b nop no_command_line: ;; The kernel stack contains a task structure for each task. This ;; the initial kernel stack is in the same page as the init_task, ;; but starts at the top of the page, i.e. + 8192 bytes. move.d init_thread_union + 8192, $sp move.d ebp_start, $r0 ; Defined in linker-script. move $r0, $ebp move.d etrax_irv, $r1 ; Set the exception base register and pointer. move.d $r0, [$r1] #ifndef CONFIG_ETRAX_VCS_SIM ;; Clear the BSS region from _bss_start to _end. move.d __bss_start, $r0 move.d _end, $r1 1: clear.d [$r0+] cmp.d $r1, $r0 blo 1b nop #endif #ifdef CONFIG_ETRAX_VCS_SIM /* Set the watchdog timeout to something big. Will be removed when */ /* watchdog can be disabled with command line option */ move.d 0x7fffffff, $r10 jsr CPU_WATCHDOG_TIMEOUT nop #endif ; Initialize registers to increase determinism move.d __bss_start, $r0 movem [$r0], $r13 #ifdef CONFIG_ETRAX_L2CACHE jsr l2cache_init nop #endif jump start_kernel ; Jump to start_kernel() in init/main.c. nop .data etrax_irv: .dword 0 ; Variables for communication with the Axis flash map driver (axisflashmap), ; and for setting up memory in arch/cris/kernel/setup.c . ; romfs_start is set to the start of the root file system, if it exists ; in directly accessible memory (i.e. NOR Flash when booting from Flash, ; or RAM when booting directly from a network-downloaded RAM image) romfs_start: .dword 0 ; romfs_length is set to the size of the root file system image, if it exists ; in directly accessible memory (see romfs_start). Otherwise it is set to 0. romfs_length: .dword 0 ; romfs_in_flash is set to 1 if the root file system resides in directly ; accessible flash memory (i.e. NOR flash). It is set to 0 for RAM boot ; or NAND flash boot. romfs_in_flash: .dword 0 ; nand_boot is set to 1 when the kernel has been booted from NAND flash nand_boot: .dword 0 swapper_pg_dir = 0xc0002000 .section ".init.data", "aw" #include "../mach/hw_settings.S"