Merge commit '63cc8c75156462d4b42cbdd76c293b7eee7ddbfe':
[sfrench/cifs-2.6.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "iodev.h"
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44
45 #include <asm/processor.h>
46 #include <asm/io.h>
47 #include <asm/uaccess.h>
48 #include <asm/pgtable.h>
49
50 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
51 #include "coalesced_mmio.h"
52 #endif
53
54 MODULE_AUTHOR("Qumranet");
55 MODULE_LICENSE("GPL");
56
57 DEFINE_SPINLOCK(kvm_lock);
58 LIST_HEAD(vm_list);
59
60 static cpumask_t cpus_hardware_enabled;
61
62 struct kmem_cache *kvm_vcpu_cache;
63 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
64
65 static __read_mostly struct preempt_ops kvm_preempt_ops;
66
67 struct dentry *kvm_debugfs_dir;
68
69 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
70                            unsigned long arg);
71
72 bool kvm_rebooting;
73
74 static inline int valid_vcpu(int n)
75 {
76         return likely(n >= 0 && n < KVM_MAX_VCPUS);
77 }
78
79 /*
80  * Switches to specified vcpu, until a matching vcpu_put()
81  */
82 void vcpu_load(struct kvm_vcpu *vcpu)
83 {
84         int cpu;
85
86         mutex_lock(&vcpu->mutex);
87         cpu = get_cpu();
88         preempt_notifier_register(&vcpu->preempt_notifier);
89         kvm_arch_vcpu_load(vcpu, cpu);
90         put_cpu();
91 }
92
93 void vcpu_put(struct kvm_vcpu *vcpu)
94 {
95         preempt_disable();
96         kvm_arch_vcpu_put(vcpu);
97         preempt_notifier_unregister(&vcpu->preempt_notifier);
98         preempt_enable();
99         mutex_unlock(&vcpu->mutex);
100 }
101
102 static void ack_flush(void *_completed)
103 {
104 }
105
106 void kvm_flush_remote_tlbs(struct kvm *kvm)
107 {
108         int i, cpu, me;
109         cpumask_t cpus;
110         struct kvm_vcpu *vcpu;
111
112         me = get_cpu();
113         cpus_clear(cpus);
114         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
115                 vcpu = kvm->vcpus[i];
116                 if (!vcpu)
117                         continue;
118                 if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
119                         continue;
120                 cpu = vcpu->cpu;
121                 if (cpu != -1 && cpu != me)
122                         cpu_set(cpu, cpus);
123         }
124         if (cpus_empty(cpus))
125                 goto out;
126         ++kvm->stat.remote_tlb_flush;
127         smp_call_function_mask(cpus, ack_flush, NULL, 1);
128 out:
129         put_cpu();
130 }
131
132 void kvm_reload_remote_mmus(struct kvm *kvm)
133 {
134         int i, cpu, me;
135         cpumask_t cpus;
136         struct kvm_vcpu *vcpu;
137
138         me = get_cpu();
139         cpus_clear(cpus);
140         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
141                 vcpu = kvm->vcpus[i];
142                 if (!vcpu)
143                         continue;
144                 if (test_and_set_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
145                         continue;
146                 cpu = vcpu->cpu;
147                 if (cpu != -1 && cpu != me)
148                         cpu_set(cpu, cpus);
149         }
150         if (cpus_empty(cpus))
151                 goto out;
152         smp_call_function_mask(cpus, ack_flush, NULL, 1);
153 out:
154         put_cpu();
155 }
156
157
158 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
159 {
160         struct page *page;
161         int r;
162
163         mutex_init(&vcpu->mutex);
164         vcpu->cpu = -1;
165         vcpu->kvm = kvm;
166         vcpu->vcpu_id = id;
167         init_waitqueue_head(&vcpu->wq);
168
169         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
170         if (!page) {
171                 r = -ENOMEM;
172                 goto fail;
173         }
174         vcpu->run = page_address(page);
175
176         r = kvm_arch_vcpu_init(vcpu);
177         if (r < 0)
178                 goto fail_free_run;
179         return 0;
180
181 fail_free_run:
182         free_page((unsigned long)vcpu->run);
183 fail:
184         return r;
185 }
186 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
187
188 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
189 {
190         kvm_arch_vcpu_uninit(vcpu);
191         free_page((unsigned long)vcpu->run);
192 }
193 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
194
195 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
196 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
197 {
198         return container_of(mn, struct kvm, mmu_notifier);
199 }
200
201 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
202                                              struct mm_struct *mm,
203                                              unsigned long address)
204 {
205         struct kvm *kvm = mmu_notifier_to_kvm(mn);
206         int need_tlb_flush;
207
208         /*
209          * When ->invalidate_page runs, the linux pte has been zapped
210          * already but the page is still allocated until
211          * ->invalidate_page returns. So if we increase the sequence
212          * here the kvm page fault will notice if the spte can't be
213          * established because the page is going to be freed. If
214          * instead the kvm page fault establishes the spte before
215          * ->invalidate_page runs, kvm_unmap_hva will release it
216          * before returning.
217          *
218          * The sequence increase only need to be seen at spin_unlock
219          * time, and not at spin_lock time.
220          *
221          * Increasing the sequence after the spin_unlock would be
222          * unsafe because the kvm page fault could then establish the
223          * pte after kvm_unmap_hva returned, without noticing the page
224          * is going to be freed.
225          */
226         spin_lock(&kvm->mmu_lock);
227         kvm->mmu_notifier_seq++;
228         need_tlb_flush = kvm_unmap_hva(kvm, address);
229         spin_unlock(&kvm->mmu_lock);
230
231         /* we've to flush the tlb before the pages can be freed */
232         if (need_tlb_flush)
233                 kvm_flush_remote_tlbs(kvm);
234
235 }
236
237 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
238                                                     struct mm_struct *mm,
239                                                     unsigned long start,
240                                                     unsigned long end)
241 {
242         struct kvm *kvm = mmu_notifier_to_kvm(mn);
243         int need_tlb_flush = 0;
244
245         spin_lock(&kvm->mmu_lock);
246         /*
247          * The count increase must become visible at unlock time as no
248          * spte can be established without taking the mmu_lock and
249          * count is also read inside the mmu_lock critical section.
250          */
251         kvm->mmu_notifier_count++;
252         for (; start < end; start += PAGE_SIZE)
253                 need_tlb_flush |= kvm_unmap_hva(kvm, start);
254         spin_unlock(&kvm->mmu_lock);
255
256         /* we've to flush the tlb before the pages can be freed */
257         if (need_tlb_flush)
258                 kvm_flush_remote_tlbs(kvm);
259 }
260
261 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
262                                                   struct mm_struct *mm,
263                                                   unsigned long start,
264                                                   unsigned long end)
265 {
266         struct kvm *kvm = mmu_notifier_to_kvm(mn);
267
268         spin_lock(&kvm->mmu_lock);
269         /*
270          * This sequence increase will notify the kvm page fault that
271          * the page that is going to be mapped in the spte could have
272          * been freed.
273          */
274         kvm->mmu_notifier_seq++;
275         /*
276          * The above sequence increase must be visible before the
277          * below count decrease but both values are read by the kvm
278          * page fault under mmu_lock spinlock so we don't need to add
279          * a smb_wmb() here in between the two.
280          */
281         kvm->mmu_notifier_count--;
282         spin_unlock(&kvm->mmu_lock);
283
284         BUG_ON(kvm->mmu_notifier_count < 0);
285 }
286
287 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
288                                               struct mm_struct *mm,
289                                               unsigned long address)
290 {
291         struct kvm *kvm = mmu_notifier_to_kvm(mn);
292         int young;
293
294         spin_lock(&kvm->mmu_lock);
295         young = kvm_age_hva(kvm, address);
296         spin_unlock(&kvm->mmu_lock);
297
298         if (young)
299                 kvm_flush_remote_tlbs(kvm);
300
301         return young;
302 }
303
304 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
305         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
306         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
307         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
308         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
309 };
310 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
311
312 static struct kvm *kvm_create_vm(void)
313 {
314         struct kvm *kvm = kvm_arch_create_vm();
315 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
316         struct page *page;
317 #endif
318
319         if (IS_ERR(kvm))
320                 goto out;
321
322 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
323         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
324         if (!page) {
325                 kfree(kvm);
326                 return ERR_PTR(-ENOMEM);
327         }
328         kvm->coalesced_mmio_ring =
329                         (struct kvm_coalesced_mmio_ring *)page_address(page);
330 #endif
331
332 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
333         {
334                 int err;
335                 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
336                 err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
337                 if (err) {
338 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
339                         put_page(page);
340 #endif
341                         kfree(kvm);
342                         return ERR_PTR(err);
343                 }
344         }
345 #endif
346
347         kvm->mm = current->mm;
348         atomic_inc(&kvm->mm->mm_count);
349         spin_lock_init(&kvm->mmu_lock);
350         kvm_io_bus_init(&kvm->pio_bus);
351         mutex_init(&kvm->lock);
352         kvm_io_bus_init(&kvm->mmio_bus);
353         init_rwsem(&kvm->slots_lock);
354         atomic_set(&kvm->users_count, 1);
355         spin_lock(&kvm_lock);
356         list_add(&kvm->vm_list, &vm_list);
357         spin_unlock(&kvm_lock);
358 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
359         kvm_coalesced_mmio_init(kvm);
360 #endif
361 out:
362         return kvm;
363 }
364
365 /*
366  * Free any memory in @free but not in @dont.
367  */
368 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
369                                   struct kvm_memory_slot *dont)
370 {
371         if (!dont || free->rmap != dont->rmap)
372                 vfree(free->rmap);
373
374         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
375                 vfree(free->dirty_bitmap);
376
377         if (!dont || free->lpage_info != dont->lpage_info)
378                 vfree(free->lpage_info);
379
380         free->npages = 0;
381         free->dirty_bitmap = NULL;
382         free->rmap = NULL;
383         free->lpage_info = NULL;
384 }
385
386 void kvm_free_physmem(struct kvm *kvm)
387 {
388         int i;
389
390         for (i = 0; i < kvm->nmemslots; ++i)
391                 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
392 }
393
394 static void kvm_destroy_vm(struct kvm *kvm)
395 {
396         struct mm_struct *mm = kvm->mm;
397
398         spin_lock(&kvm_lock);
399         list_del(&kvm->vm_list);
400         spin_unlock(&kvm_lock);
401         kvm_io_bus_destroy(&kvm->pio_bus);
402         kvm_io_bus_destroy(&kvm->mmio_bus);
403 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
404         if (kvm->coalesced_mmio_ring != NULL)
405                 free_page((unsigned long)kvm->coalesced_mmio_ring);
406 #endif
407 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
408         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
409 #endif
410         kvm_arch_destroy_vm(kvm);
411         mmdrop(mm);
412 }
413
414 void kvm_get_kvm(struct kvm *kvm)
415 {
416         atomic_inc(&kvm->users_count);
417 }
418 EXPORT_SYMBOL_GPL(kvm_get_kvm);
419
420 void kvm_put_kvm(struct kvm *kvm)
421 {
422         if (atomic_dec_and_test(&kvm->users_count))
423                 kvm_destroy_vm(kvm);
424 }
425 EXPORT_SYMBOL_GPL(kvm_put_kvm);
426
427
428 static int kvm_vm_release(struct inode *inode, struct file *filp)
429 {
430         struct kvm *kvm = filp->private_data;
431
432         kvm_put_kvm(kvm);
433         return 0;
434 }
435
436 /*
437  * Allocate some memory and give it an address in the guest physical address
438  * space.
439  *
440  * Discontiguous memory is allowed, mostly for framebuffers.
441  *
442  * Must be called holding mmap_sem for write.
443  */
444 int __kvm_set_memory_region(struct kvm *kvm,
445                             struct kvm_userspace_memory_region *mem,
446                             int user_alloc)
447 {
448         int r;
449         gfn_t base_gfn;
450         unsigned long npages;
451         unsigned long i;
452         struct kvm_memory_slot *memslot;
453         struct kvm_memory_slot old, new;
454
455         r = -EINVAL;
456         /* General sanity checks */
457         if (mem->memory_size & (PAGE_SIZE - 1))
458                 goto out;
459         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
460                 goto out;
461         if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
462                 goto out;
463         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
464                 goto out;
465
466         memslot = &kvm->memslots[mem->slot];
467         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
468         npages = mem->memory_size >> PAGE_SHIFT;
469
470         if (!npages)
471                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
472
473         new = old = *memslot;
474
475         new.base_gfn = base_gfn;
476         new.npages = npages;
477         new.flags = mem->flags;
478
479         /* Disallow changing a memory slot's size. */
480         r = -EINVAL;
481         if (npages && old.npages && npages != old.npages)
482                 goto out_free;
483
484         /* Check for overlaps */
485         r = -EEXIST;
486         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
487                 struct kvm_memory_slot *s = &kvm->memslots[i];
488
489                 if (s == memslot)
490                         continue;
491                 if (!((base_gfn + npages <= s->base_gfn) ||
492                       (base_gfn >= s->base_gfn + s->npages)))
493                         goto out_free;
494         }
495
496         /* Free page dirty bitmap if unneeded */
497         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
498                 new.dirty_bitmap = NULL;
499
500         r = -ENOMEM;
501
502         /* Allocate if a slot is being created */
503 #ifndef CONFIG_S390
504         if (npages && !new.rmap) {
505                 new.rmap = vmalloc(npages * sizeof(struct page *));
506
507                 if (!new.rmap)
508                         goto out_free;
509
510                 memset(new.rmap, 0, npages * sizeof(*new.rmap));
511
512                 new.user_alloc = user_alloc;
513                 /*
514                  * hva_to_rmmap() serialzies with the mmu_lock and to be
515                  * safe it has to ignore memslots with !user_alloc &&
516                  * !userspace_addr.
517                  */
518                 if (user_alloc)
519                         new.userspace_addr = mem->userspace_addr;
520                 else
521                         new.userspace_addr = 0;
522         }
523         if (npages && !new.lpage_info) {
524                 int largepages = npages / KVM_PAGES_PER_HPAGE;
525                 if (npages % KVM_PAGES_PER_HPAGE)
526                         largepages++;
527                 if (base_gfn % KVM_PAGES_PER_HPAGE)
528                         largepages++;
529
530                 new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
531
532                 if (!new.lpage_info)
533                         goto out_free;
534
535                 memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
536
537                 if (base_gfn % KVM_PAGES_PER_HPAGE)
538                         new.lpage_info[0].write_count = 1;
539                 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
540                         new.lpage_info[largepages-1].write_count = 1;
541         }
542
543         /* Allocate page dirty bitmap if needed */
544         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
545                 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
546
547                 new.dirty_bitmap = vmalloc(dirty_bytes);
548                 if (!new.dirty_bitmap)
549                         goto out_free;
550                 memset(new.dirty_bitmap, 0, dirty_bytes);
551         }
552 #endif /* not defined CONFIG_S390 */
553
554         if (!npages)
555                 kvm_arch_flush_shadow(kvm);
556
557         spin_lock(&kvm->mmu_lock);
558         if (mem->slot >= kvm->nmemslots)
559                 kvm->nmemslots = mem->slot + 1;
560
561         *memslot = new;
562         spin_unlock(&kvm->mmu_lock);
563
564         r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
565         if (r) {
566                 spin_lock(&kvm->mmu_lock);
567                 *memslot = old;
568                 spin_unlock(&kvm->mmu_lock);
569                 goto out_free;
570         }
571
572         kvm_free_physmem_slot(&old, &new);
573         return 0;
574
575 out_free:
576         kvm_free_physmem_slot(&new, &old);
577 out:
578         return r;
579
580 }
581 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
582
583 int kvm_set_memory_region(struct kvm *kvm,
584                           struct kvm_userspace_memory_region *mem,
585                           int user_alloc)
586 {
587         int r;
588
589         down_write(&kvm->slots_lock);
590         r = __kvm_set_memory_region(kvm, mem, user_alloc);
591         up_write(&kvm->slots_lock);
592         return r;
593 }
594 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
595
596 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
597                                    struct
598                                    kvm_userspace_memory_region *mem,
599                                    int user_alloc)
600 {
601         if (mem->slot >= KVM_MEMORY_SLOTS)
602                 return -EINVAL;
603         return kvm_set_memory_region(kvm, mem, user_alloc);
604 }
605
606 int kvm_get_dirty_log(struct kvm *kvm,
607                         struct kvm_dirty_log *log, int *is_dirty)
608 {
609         struct kvm_memory_slot *memslot;
610         int r, i;
611         int n;
612         unsigned long any = 0;
613
614         r = -EINVAL;
615         if (log->slot >= KVM_MEMORY_SLOTS)
616                 goto out;
617
618         memslot = &kvm->memslots[log->slot];
619         r = -ENOENT;
620         if (!memslot->dirty_bitmap)
621                 goto out;
622
623         n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
624
625         for (i = 0; !any && i < n/sizeof(long); ++i)
626                 any = memslot->dirty_bitmap[i];
627
628         r = -EFAULT;
629         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
630                 goto out;
631
632         if (any)
633                 *is_dirty = 1;
634
635         r = 0;
636 out:
637         return r;
638 }
639
640 int is_error_page(struct page *page)
641 {
642         return page == bad_page;
643 }
644 EXPORT_SYMBOL_GPL(is_error_page);
645
646 int is_error_pfn(pfn_t pfn)
647 {
648         return pfn == bad_pfn;
649 }
650 EXPORT_SYMBOL_GPL(is_error_pfn);
651
652 static inline unsigned long bad_hva(void)
653 {
654         return PAGE_OFFSET;
655 }
656
657 int kvm_is_error_hva(unsigned long addr)
658 {
659         return addr == bad_hva();
660 }
661 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
662
663 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
664 {
665         int i;
666
667         for (i = 0; i < kvm->nmemslots; ++i) {
668                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
669
670                 if (gfn >= memslot->base_gfn
671                     && gfn < memslot->base_gfn + memslot->npages)
672                         return memslot;
673         }
674         return NULL;
675 }
676
677 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
678 {
679         gfn = unalias_gfn(kvm, gfn);
680         return __gfn_to_memslot(kvm, gfn);
681 }
682
683 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
684 {
685         int i;
686
687         gfn = unalias_gfn(kvm, gfn);
688         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
689                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
690
691                 if (gfn >= memslot->base_gfn
692                     && gfn < memslot->base_gfn + memslot->npages)
693                         return 1;
694         }
695         return 0;
696 }
697 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
698
699 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
700 {
701         struct kvm_memory_slot *slot;
702
703         gfn = unalias_gfn(kvm, gfn);
704         slot = __gfn_to_memslot(kvm, gfn);
705         if (!slot)
706                 return bad_hva();
707         return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
708 }
709 EXPORT_SYMBOL_GPL(gfn_to_hva);
710
711 /*
712  * Requires current->mm->mmap_sem to be held
713  */
714 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
715 {
716         struct page *page[1];
717         unsigned long addr;
718         int npages;
719         pfn_t pfn;
720
721         might_sleep();
722
723         addr = gfn_to_hva(kvm, gfn);
724         if (kvm_is_error_hva(addr)) {
725                 get_page(bad_page);
726                 return page_to_pfn(bad_page);
727         }
728
729         npages = get_user_pages(current, current->mm, addr, 1, 1, 1, page,
730                                 NULL);
731
732         if (unlikely(npages != 1)) {
733                 struct vm_area_struct *vma;
734
735                 vma = find_vma(current->mm, addr);
736                 if (vma == NULL || addr < vma->vm_start ||
737                     !(vma->vm_flags & VM_PFNMAP)) {
738                         get_page(bad_page);
739                         return page_to_pfn(bad_page);
740                 }
741
742                 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
743                 BUG_ON(pfn_valid(pfn));
744         } else
745                 pfn = page_to_pfn(page[0]);
746
747         return pfn;
748 }
749
750 EXPORT_SYMBOL_GPL(gfn_to_pfn);
751
752 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
753 {
754         pfn_t pfn;
755
756         pfn = gfn_to_pfn(kvm, gfn);
757         if (pfn_valid(pfn))
758                 return pfn_to_page(pfn);
759
760         WARN_ON(!pfn_valid(pfn));
761
762         get_page(bad_page);
763         return bad_page;
764 }
765
766 EXPORT_SYMBOL_GPL(gfn_to_page);
767
768 void kvm_release_page_clean(struct page *page)
769 {
770         kvm_release_pfn_clean(page_to_pfn(page));
771 }
772 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
773
774 void kvm_release_pfn_clean(pfn_t pfn)
775 {
776         if (pfn_valid(pfn))
777                 put_page(pfn_to_page(pfn));
778 }
779 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
780
781 void kvm_release_page_dirty(struct page *page)
782 {
783         kvm_release_pfn_dirty(page_to_pfn(page));
784 }
785 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
786
787 void kvm_release_pfn_dirty(pfn_t pfn)
788 {
789         kvm_set_pfn_dirty(pfn);
790         kvm_release_pfn_clean(pfn);
791 }
792 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
793
794 void kvm_set_page_dirty(struct page *page)
795 {
796         kvm_set_pfn_dirty(page_to_pfn(page));
797 }
798 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
799
800 void kvm_set_pfn_dirty(pfn_t pfn)
801 {
802         if (pfn_valid(pfn)) {
803                 struct page *page = pfn_to_page(pfn);
804                 if (!PageReserved(page))
805                         SetPageDirty(page);
806         }
807 }
808 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
809
810 void kvm_set_pfn_accessed(pfn_t pfn)
811 {
812         if (pfn_valid(pfn))
813                 mark_page_accessed(pfn_to_page(pfn));
814 }
815 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
816
817 void kvm_get_pfn(pfn_t pfn)
818 {
819         if (pfn_valid(pfn))
820                 get_page(pfn_to_page(pfn));
821 }
822 EXPORT_SYMBOL_GPL(kvm_get_pfn);
823
824 static int next_segment(unsigned long len, int offset)
825 {
826         if (len > PAGE_SIZE - offset)
827                 return PAGE_SIZE - offset;
828         else
829                 return len;
830 }
831
832 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
833                         int len)
834 {
835         int r;
836         unsigned long addr;
837
838         addr = gfn_to_hva(kvm, gfn);
839         if (kvm_is_error_hva(addr))
840                 return -EFAULT;
841         r = copy_from_user(data, (void __user *)addr + offset, len);
842         if (r)
843                 return -EFAULT;
844         return 0;
845 }
846 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
847
848 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
849 {
850         gfn_t gfn = gpa >> PAGE_SHIFT;
851         int seg;
852         int offset = offset_in_page(gpa);
853         int ret;
854
855         while ((seg = next_segment(len, offset)) != 0) {
856                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
857                 if (ret < 0)
858                         return ret;
859                 offset = 0;
860                 len -= seg;
861                 data += seg;
862                 ++gfn;
863         }
864         return 0;
865 }
866 EXPORT_SYMBOL_GPL(kvm_read_guest);
867
868 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
869                           unsigned long len)
870 {
871         int r;
872         unsigned long addr;
873         gfn_t gfn = gpa >> PAGE_SHIFT;
874         int offset = offset_in_page(gpa);
875
876         addr = gfn_to_hva(kvm, gfn);
877         if (kvm_is_error_hva(addr))
878                 return -EFAULT;
879         pagefault_disable();
880         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
881         pagefault_enable();
882         if (r)
883                 return -EFAULT;
884         return 0;
885 }
886 EXPORT_SYMBOL(kvm_read_guest_atomic);
887
888 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
889                          int offset, int len)
890 {
891         int r;
892         unsigned long addr;
893
894         addr = gfn_to_hva(kvm, gfn);
895         if (kvm_is_error_hva(addr))
896                 return -EFAULT;
897         r = copy_to_user((void __user *)addr + offset, data, len);
898         if (r)
899                 return -EFAULT;
900         mark_page_dirty(kvm, gfn);
901         return 0;
902 }
903 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
904
905 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
906                     unsigned long len)
907 {
908         gfn_t gfn = gpa >> PAGE_SHIFT;
909         int seg;
910         int offset = offset_in_page(gpa);
911         int ret;
912
913         while ((seg = next_segment(len, offset)) != 0) {
914                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
915                 if (ret < 0)
916                         return ret;
917                 offset = 0;
918                 len -= seg;
919                 data += seg;
920                 ++gfn;
921         }
922         return 0;
923 }
924
925 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
926 {
927         return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
928 }
929 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
930
931 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
932 {
933         gfn_t gfn = gpa >> PAGE_SHIFT;
934         int seg;
935         int offset = offset_in_page(gpa);
936         int ret;
937
938         while ((seg = next_segment(len, offset)) != 0) {
939                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
940                 if (ret < 0)
941                         return ret;
942                 offset = 0;
943                 len -= seg;
944                 ++gfn;
945         }
946         return 0;
947 }
948 EXPORT_SYMBOL_GPL(kvm_clear_guest);
949
950 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
951 {
952         struct kvm_memory_slot *memslot;
953
954         gfn = unalias_gfn(kvm, gfn);
955         memslot = __gfn_to_memslot(kvm, gfn);
956         if (memslot && memslot->dirty_bitmap) {
957                 unsigned long rel_gfn = gfn - memslot->base_gfn;
958
959                 /* avoid RMW */
960                 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
961                         set_bit(rel_gfn, memslot->dirty_bitmap);
962         }
963 }
964
965 /*
966  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
967  */
968 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
969 {
970         DEFINE_WAIT(wait);
971
972         for (;;) {
973                 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
974
975                 if (kvm_cpu_has_interrupt(vcpu))
976                         break;
977                 if (kvm_cpu_has_pending_timer(vcpu))
978                         break;
979                 if (kvm_arch_vcpu_runnable(vcpu))
980                         break;
981                 if (signal_pending(current))
982                         break;
983
984                 vcpu_put(vcpu);
985                 schedule();
986                 vcpu_load(vcpu);
987         }
988
989         finish_wait(&vcpu->wq, &wait);
990 }
991
992 void kvm_resched(struct kvm_vcpu *vcpu)
993 {
994         if (!need_resched())
995                 return;
996         cond_resched();
997 }
998 EXPORT_SYMBOL_GPL(kvm_resched);
999
1000 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1001 {
1002         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1003         struct page *page;
1004
1005         if (vmf->pgoff == 0)
1006                 page = virt_to_page(vcpu->run);
1007 #ifdef CONFIG_X86
1008         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1009                 page = virt_to_page(vcpu->arch.pio_data);
1010 #endif
1011 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1012         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1013                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1014 #endif
1015         else
1016                 return VM_FAULT_SIGBUS;
1017         get_page(page);
1018         vmf->page = page;
1019         return 0;
1020 }
1021
1022 static struct vm_operations_struct kvm_vcpu_vm_ops = {
1023         .fault = kvm_vcpu_fault,
1024 };
1025
1026 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1027 {
1028         vma->vm_ops = &kvm_vcpu_vm_ops;
1029         return 0;
1030 }
1031
1032 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1033 {
1034         struct kvm_vcpu *vcpu = filp->private_data;
1035
1036         kvm_put_kvm(vcpu->kvm);
1037         return 0;
1038 }
1039
1040 static const struct file_operations kvm_vcpu_fops = {
1041         .release        = kvm_vcpu_release,
1042         .unlocked_ioctl = kvm_vcpu_ioctl,
1043         .compat_ioctl   = kvm_vcpu_ioctl,
1044         .mmap           = kvm_vcpu_mmap,
1045 };
1046
1047 /*
1048  * Allocates an inode for the vcpu.
1049  */
1050 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1051 {
1052         int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
1053         if (fd < 0)
1054                 kvm_put_kvm(vcpu->kvm);
1055         return fd;
1056 }
1057
1058 /*
1059  * Creates some virtual cpus.  Good luck creating more than one.
1060  */
1061 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
1062 {
1063         int r;
1064         struct kvm_vcpu *vcpu;
1065
1066         if (!valid_vcpu(n))
1067                 return -EINVAL;
1068
1069         vcpu = kvm_arch_vcpu_create(kvm, n);
1070         if (IS_ERR(vcpu))
1071                 return PTR_ERR(vcpu);
1072
1073         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1074
1075         r = kvm_arch_vcpu_setup(vcpu);
1076         if (r)
1077                 goto vcpu_destroy;
1078
1079         mutex_lock(&kvm->lock);
1080         if (kvm->vcpus[n]) {
1081                 r = -EEXIST;
1082                 mutex_unlock(&kvm->lock);
1083                 goto vcpu_destroy;
1084         }
1085         kvm->vcpus[n] = vcpu;
1086         mutex_unlock(&kvm->lock);
1087
1088         /* Now it's all set up, let userspace reach it */
1089         kvm_get_kvm(kvm);
1090         r = create_vcpu_fd(vcpu);
1091         if (r < 0)
1092                 goto unlink;
1093         return r;
1094
1095 unlink:
1096         mutex_lock(&kvm->lock);
1097         kvm->vcpus[n] = NULL;
1098         mutex_unlock(&kvm->lock);
1099 vcpu_destroy:
1100         kvm_arch_vcpu_destroy(vcpu);
1101         return r;
1102 }
1103
1104 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1105 {
1106         if (sigset) {
1107                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1108                 vcpu->sigset_active = 1;
1109                 vcpu->sigset = *sigset;
1110         } else
1111                 vcpu->sigset_active = 0;
1112         return 0;
1113 }
1114
1115 static long kvm_vcpu_ioctl(struct file *filp,
1116                            unsigned int ioctl, unsigned long arg)
1117 {
1118         struct kvm_vcpu *vcpu = filp->private_data;
1119         void __user *argp = (void __user *)arg;
1120         int r;
1121
1122         if (vcpu->kvm->mm != current->mm)
1123                 return -EIO;
1124         switch (ioctl) {
1125         case KVM_RUN:
1126                 r = -EINVAL;
1127                 if (arg)
1128                         goto out;
1129                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1130                 break;
1131         case KVM_GET_REGS: {
1132                 struct kvm_regs *kvm_regs;
1133
1134                 r = -ENOMEM;
1135                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1136                 if (!kvm_regs)
1137                         goto out;
1138                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1139                 if (r)
1140                         goto out_free1;
1141                 r = -EFAULT;
1142                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1143                         goto out_free1;
1144                 r = 0;
1145 out_free1:
1146                 kfree(kvm_regs);
1147                 break;
1148         }
1149         case KVM_SET_REGS: {
1150                 struct kvm_regs *kvm_regs;
1151
1152                 r = -ENOMEM;
1153                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1154                 if (!kvm_regs)
1155                         goto out;
1156                 r = -EFAULT;
1157                 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1158                         goto out_free2;
1159                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1160                 if (r)
1161                         goto out_free2;
1162                 r = 0;
1163 out_free2:
1164                 kfree(kvm_regs);
1165                 break;
1166         }
1167         case KVM_GET_SREGS: {
1168                 struct kvm_sregs kvm_sregs;
1169
1170                 memset(&kvm_sregs, 0, sizeof kvm_sregs);
1171                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
1172                 if (r)
1173                         goto out;
1174                 r = -EFAULT;
1175                 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
1176                         goto out;
1177                 r = 0;
1178                 break;
1179         }
1180         case KVM_SET_SREGS: {
1181                 struct kvm_sregs kvm_sregs;
1182
1183                 r = -EFAULT;
1184                 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
1185                         goto out;
1186                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
1187                 if (r)
1188                         goto out;
1189                 r = 0;
1190                 break;
1191         }
1192         case KVM_GET_MP_STATE: {
1193                 struct kvm_mp_state mp_state;
1194
1195                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1196                 if (r)
1197                         goto out;
1198                 r = -EFAULT;
1199                 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1200                         goto out;
1201                 r = 0;
1202                 break;
1203         }
1204         case KVM_SET_MP_STATE: {
1205                 struct kvm_mp_state mp_state;
1206
1207                 r = -EFAULT;
1208                 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1209                         goto out;
1210                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1211                 if (r)
1212                         goto out;
1213                 r = 0;
1214                 break;
1215         }
1216         case KVM_TRANSLATE: {
1217                 struct kvm_translation tr;
1218
1219                 r = -EFAULT;
1220                 if (copy_from_user(&tr, argp, sizeof tr))
1221                         goto out;
1222                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1223                 if (r)
1224                         goto out;
1225                 r = -EFAULT;
1226                 if (copy_to_user(argp, &tr, sizeof tr))
1227                         goto out;
1228                 r = 0;
1229                 break;
1230         }
1231         case KVM_DEBUG_GUEST: {
1232                 struct kvm_debug_guest dbg;
1233
1234                 r = -EFAULT;
1235                 if (copy_from_user(&dbg, argp, sizeof dbg))
1236                         goto out;
1237                 r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
1238                 if (r)
1239                         goto out;
1240                 r = 0;
1241                 break;
1242         }
1243         case KVM_SET_SIGNAL_MASK: {
1244                 struct kvm_signal_mask __user *sigmask_arg = argp;
1245                 struct kvm_signal_mask kvm_sigmask;
1246                 sigset_t sigset, *p;
1247
1248                 p = NULL;
1249                 if (argp) {
1250                         r = -EFAULT;
1251                         if (copy_from_user(&kvm_sigmask, argp,
1252                                            sizeof kvm_sigmask))
1253                                 goto out;
1254                         r = -EINVAL;
1255                         if (kvm_sigmask.len != sizeof sigset)
1256                                 goto out;
1257                         r = -EFAULT;
1258                         if (copy_from_user(&sigset, sigmask_arg->sigset,
1259                                            sizeof sigset))
1260                                 goto out;
1261                         p = &sigset;
1262                 }
1263                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1264                 break;
1265         }
1266         case KVM_GET_FPU: {
1267                 struct kvm_fpu fpu;
1268
1269                 memset(&fpu, 0, sizeof fpu);
1270                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, &fpu);
1271                 if (r)
1272                         goto out;
1273                 r = -EFAULT;
1274                 if (copy_to_user(argp, &fpu, sizeof fpu))
1275                         goto out;
1276                 r = 0;
1277                 break;
1278         }
1279         case KVM_SET_FPU: {
1280                 struct kvm_fpu fpu;
1281
1282                 r = -EFAULT;
1283                 if (copy_from_user(&fpu, argp, sizeof fpu))
1284                         goto out;
1285                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, &fpu);
1286                 if (r)
1287                         goto out;
1288                 r = 0;
1289                 break;
1290         }
1291         default:
1292                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1293         }
1294 out:
1295         return r;
1296 }
1297
1298 static long kvm_vm_ioctl(struct file *filp,
1299                            unsigned int ioctl, unsigned long arg)
1300 {
1301         struct kvm *kvm = filp->private_data;
1302         void __user *argp = (void __user *)arg;
1303         int r;
1304
1305         if (kvm->mm != current->mm)
1306                 return -EIO;
1307         switch (ioctl) {
1308         case KVM_CREATE_VCPU:
1309                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1310                 if (r < 0)
1311                         goto out;
1312                 break;
1313         case KVM_SET_USER_MEMORY_REGION: {
1314                 struct kvm_userspace_memory_region kvm_userspace_mem;
1315
1316                 r = -EFAULT;
1317                 if (copy_from_user(&kvm_userspace_mem, argp,
1318                                                 sizeof kvm_userspace_mem))
1319                         goto out;
1320
1321                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1322                 if (r)
1323                         goto out;
1324                 break;
1325         }
1326         case KVM_GET_DIRTY_LOG: {
1327                 struct kvm_dirty_log log;
1328
1329                 r = -EFAULT;
1330                 if (copy_from_user(&log, argp, sizeof log))
1331                         goto out;
1332                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1333                 if (r)
1334                         goto out;
1335                 break;
1336         }
1337 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1338         case KVM_REGISTER_COALESCED_MMIO: {
1339                 struct kvm_coalesced_mmio_zone zone;
1340                 r = -EFAULT;
1341                 if (copy_from_user(&zone, argp, sizeof zone))
1342                         goto out;
1343                 r = -ENXIO;
1344                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1345                 if (r)
1346                         goto out;
1347                 r = 0;
1348                 break;
1349         }
1350         case KVM_UNREGISTER_COALESCED_MMIO: {
1351                 struct kvm_coalesced_mmio_zone zone;
1352                 r = -EFAULT;
1353                 if (copy_from_user(&zone, argp, sizeof zone))
1354                         goto out;
1355                 r = -ENXIO;
1356                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1357                 if (r)
1358                         goto out;
1359                 r = 0;
1360                 break;
1361         }
1362 #endif
1363         default:
1364                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1365         }
1366 out:
1367         return r;
1368 }
1369
1370 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1371 {
1372         struct kvm *kvm = vma->vm_file->private_data;
1373         struct page *page;
1374
1375         if (!kvm_is_visible_gfn(kvm, vmf->pgoff))
1376                 return VM_FAULT_SIGBUS;
1377         page = gfn_to_page(kvm, vmf->pgoff);
1378         if (is_error_page(page)) {
1379                 kvm_release_page_clean(page);
1380                 return VM_FAULT_SIGBUS;
1381         }
1382         vmf->page = page;
1383         return 0;
1384 }
1385
1386 static struct vm_operations_struct kvm_vm_vm_ops = {
1387         .fault = kvm_vm_fault,
1388 };
1389
1390 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1391 {
1392         vma->vm_ops = &kvm_vm_vm_ops;
1393         return 0;
1394 }
1395
1396 static const struct file_operations kvm_vm_fops = {
1397         .release        = kvm_vm_release,
1398         .unlocked_ioctl = kvm_vm_ioctl,
1399         .compat_ioctl   = kvm_vm_ioctl,
1400         .mmap           = kvm_vm_mmap,
1401 };
1402
1403 static int kvm_dev_ioctl_create_vm(void)
1404 {
1405         int fd;
1406         struct kvm *kvm;
1407
1408         kvm = kvm_create_vm();
1409         if (IS_ERR(kvm))
1410                 return PTR_ERR(kvm);
1411         fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
1412         if (fd < 0)
1413                 kvm_put_kvm(kvm);
1414
1415         return fd;
1416 }
1417
1418 static long kvm_dev_ioctl(struct file *filp,
1419                           unsigned int ioctl, unsigned long arg)
1420 {
1421         long r = -EINVAL;
1422
1423         switch (ioctl) {
1424         case KVM_GET_API_VERSION:
1425                 r = -EINVAL;
1426                 if (arg)
1427                         goto out;
1428                 r = KVM_API_VERSION;
1429                 break;
1430         case KVM_CREATE_VM:
1431                 r = -EINVAL;
1432                 if (arg)
1433                         goto out;
1434                 r = kvm_dev_ioctl_create_vm();
1435                 break;
1436         case KVM_CHECK_EXTENSION:
1437                 r = kvm_dev_ioctl_check_extension(arg);
1438                 break;
1439         case KVM_GET_VCPU_MMAP_SIZE:
1440                 r = -EINVAL;
1441                 if (arg)
1442                         goto out;
1443                 r = PAGE_SIZE;     /* struct kvm_run */
1444 #ifdef CONFIG_X86
1445                 r += PAGE_SIZE;    /* pio data page */
1446 #endif
1447 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1448                 r += PAGE_SIZE;    /* coalesced mmio ring page */
1449 #endif
1450                 break;
1451         case KVM_TRACE_ENABLE:
1452         case KVM_TRACE_PAUSE:
1453         case KVM_TRACE_DISABLE:
1454                 r = kvm_trace_ioctl(ioctl, arg);
1455                 break;
1456         default:
1457                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
1458         }
1459 out:
1460         return r;
1461 }
1462
1463 static struct file_operations kvm_chardev_ops = {
1464         .unlocked_ioctl = kvm_dev_ioctl,
1465         .compat_ioctl   = kvm_dev_ioctl,
1466 };
1467
1468 static struct miscdevice kvm_dev = {
1469         KVM_MINOR,
1470         "kvm",
1471         &kvm_chardev_ops,
1472 };
1473
1474 static void hardware_enable(void *junk)
1475 {
1476         int cpu = raw_smp_processor_id();
1477
1478         if (cpu_isset(cpu, cpus_hardware_enabled))
1479                 return;
1480         cpu_set(cpu, cpus_hardware_enabled);
1481         kvm_arch_hardware_enable(NULL);
1482 }
1483
1484 static void hardware_disable(void *junk)
1485 {
1486         int cpu = raw_smp_processor_id();
1487
1488         if (!cpu_isset(cpu, cpus_hardware_enabled))
1489                 return;
1490         cpu_clear(cpu, cpus_hardware_enabled);
1491         kvm_arch_hardware_disable(NULL);
1492 }
1493
1494 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
1495                            void *v)
1496 {
1497         int cpu = (long)v;
1498
1499         val &= ~CPU_TASKS_FROZEN;
1500         switch (val) {
1501         case CPU_DYING:
1502                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1503                        cpu);
1504                 hardware_disable(NULL);
1505                 break;
1506         case CPU_UP_CANCELED:
1507                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1508                        cpu);
1509                 smp_call_function_single(cpu, hardware_disable, NULL, 1);
1510                 break;
1511         case CPU_ONLINE:
1512                 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
1513                        cpu);
1514                 smp_call_function_single(cpu, hardware_enable, NULL, 1);
1515                 break;
1516         }
1517         return NOTIFY_OK;
1518 }
1519
1520
1521 asmlinkage void kvm_handle_fault_on_reboot(void)
1522 {
1523         if (kvm_rebooting)
1524                 /* spin while reset goes on */
1525                 while (true)
1526                         ;
1527         /* Fault while not rebooting.  We want the trace. */
1528         BUG();
1529 }
1530 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
1531
1532 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1533                       void *v)
1534 {
1535         if (val == SYS_RESTART) {
1536                 /*
1537                  * Some (well, at least mine) BIOSes hang on reboot if
1538                  * in vmx root mode.
1539                  */
1540                 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1541                 kvm_rebooting = true;
1542                 on_each_cpu(hardware_disable, NULL, 1);
1543         }
1544         return NOTIFY_OK;
1545 }
1546
1547 static struct notifier_block kvm_reboot_notifier = {
1548         .notifier_call = kvm_reboot,
1549         .priority = 0,
1550 };
1551
1552 void kvm_io_bus_init(struct kvm_io_bus *bus)
1553 {
1554         memset(bus, 0, sizeof(*bus));
1555 }
1556
1557 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
1558 {
1559         int i;
1560
1561         for (i = 0; i < bus->dev_count; i++) {
1562                 struct kvm_io_device *pos = bus->devs[i];
1563
1564                 kvm_iodevice_destructor(pos);
1565         }
1566 }
1567
1568 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
1569                                           gpa_t addr, int len, int is_write)
1570 {
1571         int i;
1572
1573         for (i = 0; i < bus->dev_count; i++) {
1574                 struct kvm_io_device *pos = bus->devs[i];
1575
1576                 if (pos->in_range(pos, addr, len, is_write))
1577                         return pos;
1578         }
1579
1580         return NULL;
1581 }
1582
1583 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
1584 {
1585         BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
1586
1587         bus->devs[bus->dev_count++] = dev;
1588 }
1589
1590 static struct notifier_block kvm_cpu_notifier = {
1591         .notifier_call = kvm_cpu_hotplug,
1592         .priority = 20, /* must be > scheduler priority */
1593 };
1594
1595 static int vm_stat_get(void *_offset, u64 *val)
1596 {
1597         unsigned offset = (long)_offset;
1598         struct kvm *kvm;
1599
1600         *val = 0;
1601         spin_lock(&kvm_lock);
1602         list_for_each_entry(kvm, &vm_list, vm_list)
1603                 *val += *(u32 *)((void *)kvm + offset);
1604         spin_unlock(&kvm_lock);
1605         return 0;
1606 }
1607
1608 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
1609
1610 static int vcpu_stat_get(void *_offset, u64 *val)
1611 {
1612         unsigned offset = (long)_offset;
1613         struct kvm *kvm;
1614         struct kvm_vcpu *vcpu;
1615         int i;
1616
1617         *val = 0;
1618         spin_lock(&kvm_lock);
1619         list_for_each_entry(kvm, &vm_list, vm_list)
1620                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
1621                         vcpu = kvm->vcpus[i];
1622                         if (vcpu)
1623                                 *val += *(u32 *)((void *)vcpu + offset);
1624                 }
1625         spin_unlock(&kvm_lock);
1626         return 0;
1627 }
1628
1629 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
1630
1631 static struct file_operations *stat_fops[] = {
1632         [KVM_STAT_VCPU] = &vcpu_stat_fops,
1633         [KVM_STAT_VM]   = &vm_stat_fops,
1634 };
1635
1636 static void kvm_init_debug(void)
1637 {
1638         struct kvm_stats_debugfs_item *p;
1639
1640         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
1641         for (p = debugfs_entries; p->name; ++p)
1642                 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
1643                                                 (void *)(long)p->offset,
1644                                                 stat_fops[p->kind]);
1645 }
1646
1647 static void kvm_exit_debug(void)
1648 {
1649         struct kvm_stats_debugfs_item *p;
1650
1651         for (p = debugfs_entries; p->name; ++p)
1652                 debugfs_remove(p->dentry);
1653         debugfs_remove(kvm_debugfs_dir);
1654 }
1655
1656 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
1657 {
1658         hardware_disable(NULL);
1659         return 0;
1660 }
1661
1662 static int kvm_resume(struct sys_device *dev)
1663 {
1664         hardware_enable(NULL);
1665         return 0;
1666 }
1667
1668 static struct sysdev_class kvm_sysdev_class = {
1669         .name = "kvm",
1670         .suspend = kvm_suspend,
1671         .resume = kvm_resume,
1672 };
1673
1674 static struct sys_device kvm_sysdev = {
1675         .id = 0,
1676         .cls = &kvm_sysdev_class,
1677 };
1678
1679 struct page *bad_page;
1680 pfn_t bad_pfn;
1681
1682 static inline
1683 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
1684 {
1685         return container_of(pn, struct kvm_vcpu, preempt_notifier);
1686 }
1687
1688 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
1689 {
1690         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
1691
1692         kvm_arch_vcpu_load(vcpu, cpu);
1693 }
1694
1695 static void kvm_sched_out(struct preempt_notifier *pn,
1696                           struct task_struct *next)
1697 {
1698         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
1699
1700         kvm_arch_vcpu_put(vcpu);
1701 }
1702
1703 int kvm_init(void *opaque, unsigned int vcpu_size,
1704                   struct module *module)
1705 {
1706         int r;
1707         int cpu;
1708
1709         kvm_init_debug();
1710
1711         r = kvm_arch_init(opaque);
1712         if (r)
1713                 goto out_fail;
1714
1715         bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1716
1717         if (bad_page == NULL) {
1718                 r = -ENOMEM;
1719                 goto out;
1720         }
1721
1722         bad_pfn = page_to_pfn(bad_page);
1723
1724         r = kvm_arch_hardware_setup();
1725         if (r < 0)
1726                 goto out_free_0;
1727
1728         for_each_online_cpu(cpu) {
1729                 smp_call_function_single(cpu,
1730                                 kvm_arch_check_processor_compat,
1731                                 &r, 1);
1732                 if (r < 0)
1733                         goto out_free_1;
1734         }
1735
1736         on_each_cpu(hardware_enable, NULL, 1);
1737         r = register_cpu_notifier(&kvm_cpu_notifier);
1738         if (r)
1739                 goto out_free_2;
1740         register_reboot_notifier(&kvm_reboot_notifier);
1741
1742         r = sysdev_class_register(&kvm_sysdev_class);
1743         if (r)
1744                 goto out_free_3;
1745
1746         r = sysdev_register(&kvm_sysdev);
1747         if (r)
1748                 goto out_free_4;
1749
1750         /* A kmem cache lets us meet the alignment requirements of fx_save. */
1751         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
1752                                            __alignof__(struct kvm_vcpu),
1753                                            0, NULL);
1754         if (!kvm_vcpu_cache) {
1755                 r = -ENOMEM;
1756                 goto out_free_5;
1757         }
1758
1759         kvm_chardev_ops.owner = module;
1760
1761         r = misc_register(&kvm_dev);
1762         if (r) {
1763                 printk(KERN_ERR "kvm: misc device register failed\n");
1764                 goto out_free;
1765         }
1766
1767         kvm_preempt_ops.sched_in = kvm_sched_in;
1768         kvm_preempt_ops.sched_out = kvm_sched_out;
1769
1770         return 0;
1771
1772 out_free:
1773         kmem_cache_destroy(kvm_vcpu_cache);
1774 out_free_5:
1775         sysdev_unregister(&kvm_sysdev);
1776 out_free_4:
1777         sysdev_class_unregister(&kvm_sysdev_class);
1778 out_free_3:
1779         unregister_reboot_notifier(&kvm_reboot_notifier);
1780         unregister_cpu_notifier(&kvm_cpu_notifier);
1781 out_free_2:
1782         on_each_cpu(hardware_disable, NULL, 1);
1783 out_free_1:
1784         kvm_arch_hardware_unsetup();
1785 out_free_0:
1786         __free_page(bad_page);
1787 out:
1788         kvm_arch_exit();
1789         kvm_exit_debug();
1790 out_fail:
1791         return r;
1792 }
1793 EXPORT_SYMBOL_GPL(kvm_init);
1794
1795 void kvm_exit(void)
1796 {
1797         kvm_trace_cleanup();
1798         misc_deregister(&kvm_dev);
1799         kmem_cache_destroy(kvm_vcpu_cache);
1800         sysdev_unregister(&kvm_sysdev);
1801         sysdev_class_unregister(&kvm_sysdev_class);
1802         unregister_reboot_notifier(&kvm_reboot_notifier);
1803         unregister_cpu_notifier(&kvm_cpu_notifier);
1804         on_each_cpu(hardware_disable, NULL, 1);
1805         kvm_arch_hardware_unsetup();
1806         kvm_arch_exit();
1807         kvm_exit_debug();
1808         __free_page(bad_page);
1809 }
1810 EXPORT_SYMBOL_GPL(kvm_exit);