Merge branch 'linus' into x86/urgent, to pick up dependent commits
[sfrench/cifs-2.6.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88
89 /*
90  * Ordering of locks:
91  *
92  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93  */
94
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115                            unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118                                   unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
122
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
124
125 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
126
127 __visible bool kvm_rebooting;
128 EXPORT_SYMBOL_GPL(kvm_rebooting);
129
130 static bool largepages_enabled = true;
131
132 #define KVM_EVENT_CREATE_VM 0
133 #define KVM_EVENT_DESTROY_VM 1
134 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
135 static unsigned long long kvm_createvm_count;
136 static unsigned long long kvm_active_vms;
137
138 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
139                 unsigned long start, unsigned long end)
140 {
141 }
142
143 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
144 {
145         if (pfn_valid(pfn))
146                 return PageReserved(pfn_to_page(pfn));
147
148         return true;
149 }
150
151 /*
152  * Switches to specified vcpu, until a matching vcpu_put()
153  */
154 int vcpu_load(struct kvm_vcpu *vcpu)
155 {
156         int cpu;
157
158         if (mutex_lock_killable(&vcpu->mutex))
159                 return -EINTR;
160         cpu = get_cpu();
161         preempt_notifier_register(&vcpu->preempt_notifier);
162         kvm_arch_vcpu_load(vcpu, cpu);
163         put_cpu();
164         return 0;
165 }
166 EXPORT_SYMBOL_GPL(vcpu_load);
167
168 void vcpu_put(struct kvm_vcpu *vcpu)
169 {
170         preempt_disable();
171         kvm_arch_vcpu_put(vcpu);
172         preempt_notifier_unregister(&vcpu->preempt_notifier);
173         preempt_enable();
174         mutex_unlock(&vcpu->mutex);
175 }
176 EXPORT_SYMBOL_GPL(vcpu_put);
177
178 /* TODO: merge with kvm_arch_vcpu_should_kick */
179 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
180 {
181         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
182
183         /*
184          * We need to wait for the VCPU to reenable interrupts and get out of
185          * READING_SHADOW_PAGE_TABLES mode.
186          */
187         if (req & KVM_REQUEST_WAIT)
188                 return mode != OUTSIDE_GUEST_MODE;
189
190         /*
191          * Need to kick a running VCPU, but otherwise there is nothing to do.
192          */
193         return mode == IN_GUEST_MODE;
194 }
195
196 static void ack_flush(void *_completed)
197 {
198 }
199
200 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
201 {
202         if (unlikely(!cpus))
203                 cpus = cpu_online_mask;
204
205         if (cpumask_empty(cpus))
206                 return false;
207
208         smp_call_function_many(cpus, ack_flush, NULL, wait);
209         return true;
210 }
211
212 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
213 {
214         int i, cpu, me;
215         cpumask_var_t cpus;
216         bool called;
217         struct kvm_vcpu *vcpu;
218
219         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
220
221         me = get_cpu();
222         kvm_for_each_vcpu(i, vcpu, kvm) {
223                 kvm_make_request(req, vcpu);
224                 cpu = vcpu->cpu;
225
226                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
227                         continue;
228
229                 if (cpus != NULL && cpu != -1 && cpu != me &&
230                     kvm_request_needs_ipi(vcpu, req))
231                         __cpumask_set_cpu(cpu, cpus);
232         }
233         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
234         put_cpu();
235         free_cpumask_var(cpus);
236         return called;
237 }
238
239 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
240 void kvm_flush_remote_tlbs(struct kvm *kvm)
241 {
242         /*
243          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
244          * kvm_make_all_cpus_request.
245          */
246         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
247
248         /*
249          * We want to publish modifications to the page tables before reading
250          * mode. Pairs with a memory barrier in arch-specific code.
251          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
252          * and smp_mb in walk_shadow_page_lockless_begin/end.
253          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
254          *
255          * There is already an smp_mb__after_atomic() before
256          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
257          * barrier here.
258          */
259         if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
260                 ++kvm->stat.remote_tlb_flush;
261         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
262 }
263 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
264 #endif
265
266 void kvm_reload_remote_mmus(struct kvm *kvm)
267 {
268         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
269 }
270
271 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
272 {
273         struct page *page;
274         int r;
275
276         mutex_init(&vcpu->mutex);
277         vcpu->cpu = -1;
278         vcpu->kvm = kvm;
279         vcpu->vcpu_id = id;
280         vcpu->pid = NULL;
281         init_swait_queue_head(&vcpu->wq);
282         kvm_async_pf_vcpu_init(vcpu);
283
284         vcpu->pre_pcpu = -1;
285         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
286
287         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
288         if (!page) {
289                 r = -ENOMEM;
290                 goto fail;
291         }
292         vcpu->run = page_address(page);
293
294         kvm_vcpu_set_in_spin_loop(vcpu, false);
295         kvm_vcpu_set_dy_eligible(vcpu, false);
296         vcpu->preempted = false;
297
298         r = kvm_arch_vcpu_init(vcpu);
299         if (r < 0)
300                 goto fail_free_run;
301         return 0;
302
303 fail_free_run:
304         free_page((unsigned long)vcpu->run);
305 fail:
306         return r;
307 }
308 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
309
310 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
311 {
312         /*
313          * no need for rcu_read_lock as VCPU_RUN is the only place that
314          * will change the vcpu->pid pointer and on uninit all file
315          * descriptors are already gone.
316          */
317         put_pid(rcu_dereference_protected(vcpu->pid, 1));
318         kvm_arch_vcpu_uninit(vcpu);
319         free_page((unsigned long)vcpu->run);
320 }
321 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
322
323 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
324 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
325 {
326         return container_of(mn, struct kvm, mmu_notifier);
327 }
328
329 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
330                                         struct mm_struct *mm,
331                                         unsigned long address,
332                                         pte_t pte)
333 {
334         struct kvm *kvm = mmu_notifier_to_kvm(mn);
335         int idx;
336
337         idx = srcu_read_lock(&kvm->srcu);
338         spin_lock(&kvm->mmu_lock);
339         kvm->mmu_notifier_seq++;
340         kvm_set_spte_hva(kvm, address, pte);
341         spin_unlock(&kvm->mmu_lock);
342         srcu_read_unlock(&kvm->srcu, idx);
343 }
344
345 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
346                                                     struct mm_struct *mm,
347                                                     unsigned long start,
348                                                     unsigned long end)
349 {
350         struct kvm *kvm = mmu_notifier_to_kvm(mn);
351         int need_tlb_flush = 0, idx;
352
353         idx = srcu_read_lock(&kvm->srcu);
354         spin_lock(&kvm->mmu_lock);
355         /*
356          * The count increase must become visible at unlock time as no
357          * spte can be established without taking the mmu_lock and
358          * count is also read inside the mmu_lock critical section.
359          */
360         kvm->mmu_notifier_count++;
361         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
362         need_tlb_flush |= kvm->tlbs_dirty;
363         /* we've to flush the tlb before the pages can be freed */
364         if (need_tlb_flush)
365                 kvm_flush_remote_tlbs(kvm);
366
367         spin_unlock(&kvm->mmu_lock);
368
369         kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
370
371         srcu_read_unlock(&kvm->srcu, idx);
372 }
373
374 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
375                                                   struct mm_struct *mm,
376                                                   unsigned long start,
377                                                   unsigned long end)
378 {
379         struct kvm *kvm = mmu_notifier_to_kvm(mn);
380
381         spin_lock(&kvm->mmu_lock);
382         /*
383          * This sequence increase will notify the kvm page fault that
384          * the page that is going to be mapped in the spte could have
385          * been freed.
386          */
387         kvm->mmu_notifier_seq++;
388         smp_wmb();
389         /*
390          * The above sequence increase must be visible before the
391          * below count decrease, which is ensured by the smp_wmb above
392          * in conjunction with the smp_rmb in mmu_notifier_retry().
393          */
394         kvm->mmu_notifier_count--;
395         spin_unlock(&kvm->mmu_lock);
396
397         BUG_ON(kvm->mmu_notifier_count < 0);
398 }
399
400 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
401                                               struct mm_struct *mm,
402                                               unsigned long start,
403                                               unsigned long end)
404 {
405         struct kvm *kvm = mmu_notifier_to_kvm(mn);
406         int young, idx;
407
408         idx = srcu_read_lock(&kvm->srcu);
409         spin_lock(&kvm->mmu_lock);
410
411         young = kvm_age_hva(kvm, start, end);
412         if (young)
413                 kvm_flush_remote_tlbs(kvm);
414
415         spin_unlock(&kvm->mmu_lock);
416         srcu_read_unlock(&kvm->srcu, idx);
417
418         return young;
419 }
420
421 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
422                                         struct mm_struct *mm,
423                                         unsigned long start,
424                                         unsigned long end)
425 {
426         struct kvm *kvm = mmu_notifier_to_kvm(mn);
427         int young, idx;
428
429         idx = srcu_read_lock(&kvm->srcu);
430         spin_lock(&kvm->mmu_lock);
431         /*
432          * Even though we do not flush TLB, this will still adversely
433          * affect performance on pre-Haswell Intel EPT, where there is
434          * no EPT Access Bit to clear so that we have to tear down EPT
435          * tables instead. If we find this unacceptable, we can always
436          * add a parameter to kvm_age_hva so that it effectively doesn't
437          * do anything on clear_young.
438          *
439          * Also note that currently we never issue secondary TLB flushes
440          * from clear_young, leaving this job up to the regular system
441          * cadence. If we find this inaccurate, we might come up with a
442          * more sophisticated heuristic later.
443          */
444         young = kvm_age_hva(kvm, start, end);
445         spin_unlock(&kvm->mmu_lock);
446         srcu_read_unlock(&kvm->srcu, idx);
447
448         return young;
449 }
450
451 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
452                                        struct mm_struct *mm,
453                                        unsigned long address)
454 {
455         struct kvm *kvm = mmu_notifier_to_kvm(mn);
456         int young, idx;
457
458         idx = srcu_read_lock(&kvm->srcu);
459         spin_lock(&kvm->mmu_lock);
460         young = kvm_test_age_hva(kvm, address);
461         spin_unlock(&kvm->mmu_lock);
462         srcu_read_unlock(&kvm->srcu, idx);
463
464         return young;
465 }
466
467 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
468                                      struct mm_struct *mm)
469 {
470         struct kvm *kvm = mmu_notifier_to_kvm(mn);
471         int idx;
472
473         idx = srcu_read_lock(&kvm->srcu);
474         kvm_arch_flush_shadow_all(kvm);
475         srcu_read_unlock(&kvm->srcu, idx);
476 }
477
478 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
479         .flags                  = MMU_INVALIDATE_DOES_NOT_BLOCK,
480         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
481         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
482         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
483         .clear_young            = kvm_mmu_notifier_clear_young,
484         .test_young             = kvm_mmu_notifier_test_young,
485         .change_pte             = kvm_mmu_notifier_change_pte,
486         .release                = kvm_mmu_notifier_release,
487 };
488
489 static int kvm_init_mmu_notifier(struct kvm *kvm)
490 {
491         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
492         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
493 }
494
495 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
496
497 static int kvm_init_mmu_notifier(struct kvm *kvm)
498 {
499         return 0;
500 }
501
502 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
503
504 static struct kvm_memslots *kvm_alloc_memslots(void)
505 {
506         int i;
507         struct kvm_memslots *slots;
508
509         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
510         if (!slots)
511                 return NULL;
512
513         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
514                 slots->id_to_index[i] = slots->memslots[i].id = i;
515
516         return slots;
517 }
518
519 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
520 {
521         if (!memslot->dirty_bitmap)
522                 return;
523
524         kvfree(memslot->dirty_bitmap);
525         memslot->dirty_bitmap = NULL;
526 }
527
528 /*
529  * Free any memory in @free but not in @dont.
530  */
531 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
532                               struct kvm_memory_slot *dont)
533 {
534         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
535                 kvm_destroy_dirty_bitmap(free);
536
537         kvm_arch_free_memslot(kvm, free, dont);
538
539         free->npages = 0;
540 }
541
542 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
543 {
544         struct kvm_memory_slot *memslot;
545
546         if (!slots)
547                 return;
548
549         kvm_for_each_memslot(memslot, slots)
550                 kvm_free_memslot(kvm, memslot, NULL);
551
552         kvfree(slots);
553 }
554
555 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
556 {
557         int i;
558
559         if (!kvm->debugfs_dentry)
560                 return;
561
562         debugfs_remove_recursive(kvm->debugfs_dentry);
563
564         if (kvm->debugfs_stat_data) {
565                 for (i = 0; i < kvm_debugfs_num_entries; i++)
566                         kfree(kvm->debugfs_stat_data[i]);
567                 kfree(kvm->debugfs_stat_data);
568         }
569 }
570
571 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
572 {
573         char dir_name[ITOA_MAX_LEN * 2];
574         struct kvm_stat_data *stat_data;
575         struct kvm_stats_debugfs_item *p;
576
577         if (!debugfs_initialized())
578                 return 0;
579
580         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
581         kvm->debugfs_dentry = debugfs_create_dir(dir_name,
582                                                  kvm_debugfs_dir);
583         if (!kvm->debugfs_dentry)
584                 return -ENOMEM;
585
586         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
587                                          sizeof(*kvm->debugfs_stat_data),
588                                          GFP_KERNEL);
589         if (!kvm->debugfs_stat_data)
590                 return -ENOMEM;
591
592         for (p = debugfs_entries; p->name; p++) {
593                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
594                 if (!stat_data)
595                         return -ENOMEM;
596
597                 stat_data->kvm = kvm;
598                 stat_data->offset = p->offset;
599                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
600                 if (!debugfs_create_file(p->name, 0644,
601                                          kvm->debugfs_dentry,
602                                          stat_data,
603                                          stat_fops_per_vm[p->kind]))
604                         return -ENOMEM;
605         }
606         return 0;
607 }
608
609 static struct kvm *kvm_create_vm(unsigned long type)
610 {
611         int r, i;
612         struct kvm *kvm = kvm_arch_alloc_vm();
613
614         if (!kvm)
615                 return ERR_PTR(-ENOMEM);
616
617         spin_lock_init(&kvm->mmu_lock);
618         mmgrab(current->mm);
619         kvm->mm = current->mm;
620         kvm_eventfd_init(kvm);
621         mutex_init(&kvm->lock);
622         mutex_init(&kvm->irq_lock);
623         mutex_init(&kvm->slots_lock);
624         refcount_set(&kvm->users_count, 1);
625         INIT_LIST_HEAD(&kvm->devices);
626
627         r = kvm_arch_init_vm(kvm, type);
628         if (r)
629                 goto out_err_no_disable;
630
631         r = hardware_enable_all();
632         if (r)
633                 goto out_err_no_disable;
634
635 #ifdef CONFIG_HAVE_KVM_IRQFD
636         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
637 #endif
638
639         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
640
641         r = -ENOMEM;
642         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
643                 struct kvm_memslots *slots = kvm_alloc_memslots();
644                 if (!slots)
645                         goto out_err_no_srcu;
646                 /*
647                  * Generations must be different for each address space.
648                  * Init kvm generation close to the maximum to easily test the
649                  * code of handling generation number wrap-around.
650                  */
651                 slots->generation = i * 2 - 150;
652                 rcu_assign_pointer(kvm->memslots[i], slots);
653         }
654
655         if (init_srcu_struct(&kvm->srcu))
656                 goto out_err_no_srcu;
657         if (init_srcu_struct(&kvm->irq_srcu))
658                 goto out_err_no_irq_srcu;
659         for (i = 0; i < KVM_NR_BUSES; i++) {
660                 rcu_assign_pointer(kvm->buses[i],
661                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
662                 if (!kvm->buses[i])
663                         goto out_err;
664         }
665
666         r = kvm_init_mmu_notifier(kvm);
667         if (r)
668                 goto out_err;
669
670         spin_lock(&kvm_lock);
671         list_add(&kvm->vm_list, &vm_list);
672         spin_unlock(&kvm_lock);
673
674         preempt_notifier_inc();
675
676         return kvm;
677
678 out_err:
679         cleanup_srcu_struct(&kvm->irq_srcu);
680 out_err_no_irq_srcu:
681         cleanup_srcu_struct(&kvm->srcu);
682 out_err_no_srcu:
683         hardware_disable_all();
684 out_err_no_disable:
685         refcount_set(&kvm->users_count, 0);
686         for (i = 0; i < KVM_NR_BUSES; i++)
687                 kfree(kvm_get_bus(kvm, i));
688         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
689                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
690         kvm_arch_free_vm(kvm);
691         mmdrop(current->mm);
692         return ERR_PTR(r);
693 }
694
695 static void kvm_destroy_devices(struct kvm *kvm)
696 {
697         struct kvm_device *dev, *tmp;
698
699         /*
700          * We do not need to take the kvm->lock here, because nobody else
701          * has a reference to the struct kvm at this point and therefore
702          * cannot access the devices list anyhow.
703          */
704         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
705                 list_del(&dev->vm_node);
706                 dev->ops->destroy(dev);
707         }
708 }
709
710 static void kvm_destroy_vm(struct kvm *kvm)
711 {
712         int i;
713         struct mm_struct *mm = kvm->mm;
714
715         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
716         kvm_destroy_vm_debugfs(kvm);
717         kvm_arch_sync_events(kvm);
718         spin_lock(&kvm_lock);
719         list_del(&kvm->vm_list);
720         spin_unlock(&kvm_lock);
721         kvm_free_irq_routing(kvm);
722         for (i = 0; i < KVM_NR_BUSES; i++) {
723                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
724
725                 if (bus)
726                         kvm_io_bus_destroy(bus);
727                 kvm->buses[i] = NULL;
728         }
729         kvm_coalesced_mmio_free(kvm);
730 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
731         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
732 #else
733         kvm_arch_flush_shadow_all(kvm);
734 #endif
735         kvm_arch_destroy_vm(kvm);
736         kvm_destroy_devices(kvm);
737         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
738                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
739         cleanup_srcu_struct(&kvm->irq_srcu);
740         cleanup_srcu_struct(&kvm->srcu);
741         kvm_arch_free_vm(kvm);
742         preempt_notifier_dec();
743         hardware_disable_all();
744         mmdrop(mm);
745 }
746
747 void kvm_get_kvm(struct kvm *kvm)
748 {
749         refcount_inc(&kvm->users_count);
750 }
751 EXPORT_SYMBOL_GPL(kvm_get_kvm);
752
753 void kvm_put_kvm(struct kvm *kvm)
754 {
755         if (refcount_dec_and_test(&kvm->users_count))
756                 kvm_destroy_vm(kvm);
757 }
758 EXPORT_SYMBOL_GPL(kvm_put_kvm);
759
760
761 static int kvm_vm_release(struct inode *inode, struct file *filp)
762 {
763         struct kvm *kvm = filp->private_data;
764
765         kvm_irqfd_release(kvm);
766
767         kvm_put_kvm(kvm);
768         return 0;
769 }
770
771 /*
772  * Allocation size is twice as large as the actual dirty bitmap size.
773  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
774  */
775 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
776 {
777         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
778
779         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
780         if (!memslot->dirty_bitmap)
781                 return -ENOMEM;
782
783         return 0;
784 }
785
786 /*
787  * Insert memslot and re-sort memslots based on their GFN,
788  * so binary search could be used to lookup GFN.
789  * Sorting algorithm takes advantage of having initially
790  * sorted array and known changed memslot position.
791  */
792 static void update_memslots(struct kvm_memslots *slots,
793                             struct kvm_memory_slot *new)
794 {
795         int id = new->id;
796         int i = slots->id_to_index[id];
797         struct kvm_memory_slot *mslots = slots->memslots;
798
799         WARN_ON(mslots[i].id != id);
800         if (!new->npages) {
801                 WARN_ON(!mslots[i].npages);
802                 if (mslots[i].npages)
803                         slots->used_slots--;
804         } else {
805                 if (!mslots[i].npages)
806                         slots->used_slots++;
807         }
808
809         while (i < KVM_MEM_SLOTS_NUM - 1 &&
810                new->base_gfn <= mslots[i + 1].base_gfn) {
811                 if (!mslots[i + 1].npages)
812                         break;
813                 mslots[i] = mslots[i + 1];
814                 slots->id_to_index[mslots[i].id] = i;
815                 i++;
816         }
817
818         /*
819          * The ">=" is needed when creating a slot with base_gfn == 0,
820          * so that it moves before all those with base_gfn == npages == 0.
821          *
822          * On the other hand, if new->npages is zero, the above loop has
823          * already left i pointing to the beginning of the empty part of
824          * mslots, and the ">=" would move the hole backwards in this
825          * case---which is wrong.  So skip the loop when deleting a slot.
826          */
827         if (new->npages) {
828                 while (i > 0 &&
829                        new->base_gfn >= mslots[i - 1].base_gfn) {
830                         mslots[i] = mslots[i - 1];
831                         slots->id_to_index[mslots[i].id] = i;
832                         i--;
833                 }
834         } else
835                 WARN_ON_ONCE(i != slots->used_slots);
836
837         mslots[i] = *new;
838         slots->id_to_index[mslots[i].id] = i;
839 }
840
841 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
842 {
843         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
844
845 #ifdef __KVM_HAVE_READONLY_MEM
846         valid_flags |= KVM_MEM_READONLY;
847 #endif
848
849         if (mem->flags & ~valid_flags)
850                 return -EINVAL;
851
852         return 0;
853 }
854
855 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
856                 int as_id, struct kvm_memslots *slots)
857 {
858         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
859
860         /*
861          * Set the low bit in the generation, which disables SPTE caching
862          * until the end of synchronize_srcu_expedited.
863          */
864         WARN_ON(old_memslots->generation & 1);
865         slots->generation = old_memslots->generation + 1;
866
867         rcu_assign_pointer(kvm->memslots[as_id], slots);
868         synchronize_srcu_expedited(&kvm->srcu);
869
870         /*
871          * Increment the new memslot generation a second time. This prevents
872          * vm exits that race with memslot updates from caching a memslot
873          * generation that will (potentially) be valid forever.
874          *
875          * Generations must be unique even across address spaces.  We do not need
876          * a global counter for that, instead the generation space is evenly split
877          * across address spaces.  For example, with two address spaces, address
878          * space 0 will use generations 0, 4, 8, ... while * address space 1 will
879          * use generations 2, 6, 10, 14, ...
880          */
881         slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
882
883         kvm_arch_memslots_updated(kvm, slots);
884
885         return old_memslots;
886 }
887
888 /*
889  * Allocate some memory and give it an address in the guest physical address
890  * space.
891  *
892  * Discontiguous memory is allowed, mostly for framebuffers.
893  *
894  * Must be called holding kvm->slots_lock for write.
895  */
896 int __kvm_set_memory_region(struct kvm *kvm,
897                             const struct kvm_userspace_memory_region *mem)
898 {
899         int r;
900         gfn_t base_gfn;
901         unsigned long npages;
902         struct kvm_memory_slot *slot;
903         struct kvm_memory_slot old, new;
904         struct kvm_memslots *slots = NULL, *old_memslots;
905         int as_id, id;
906         enum kvm_mr_change change;
907
908         r = check_memory_region_flags(mem);
909         if (r)
910                 goto out;
911
912         r = -EINVAL;
913         as_id = mem->slot >> 16;
914         id = (u16)mem->slot;
915
916         /* General sanity checks */
917         if (mem->memory_size & (PAGE_SIZE - 1))
918                 goto out;
919         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
920                 goto out;
921         /* We can read the guest memory with __xxx_user() later on. */
922         if ((id < KVM_USER_MEM_SLOTS) &&
923             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
924              !access_ok(VERIFY_WRITE,
925                         (void __user *)(unsigned long)mem->userspace_addr,
926                         mem->memory_size)))
927                 goto out;
928         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
929                 goto out;
930         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
931                 goto out;
932
933         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
934         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
935         npages = mem->memory_size >> PAGE_SHIFT;
936
937         if (npages > KVM_MEM_MAX_NR_PAGES)
938                 goto out;
939
940         new = old = *slot;
941
942         new.id = id;
943         new.base_gfn = base_gfn;
944         new.npages = npages;
945         new.flags = mem->flags;
946
947         if (npages) {
948                 if (!old.npages)
949                         change = KVM_MR_CREATE;
950                 else { /* Modify an existing slot. */
951                         if ((mem->userspace_addr != old.userspace_addr) ||
952                             (npages != old.npages) ||
953                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
954                                 goto out;
955
956                         if (base_gfn != old.base_gfn)
957                                 change = KVM_MR_MOVE;
958                         else if (new.flags != old.flags)
959                                 change = KVM_MR_FLAGS_ONLY;
960                         else { /* Nothing to change. */
961                                 r = 0;
962                                 goto out;
963                         }
964                 }
965         } else {
966                 if (!old.npages)
967                         goto out;
968
969                 change = KVM_MR_DELETE;
970                 new.base_gfn = 0;
971                 new.flags = 0;
972         }
973
974         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
975                 /* Check for overlaps */
976                 r = -EEXIST;
977                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
978                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
979                             (slot->id == id))
980                                 continue;
981                         if (!((base_gfn + npages <= slot->base_gfn) ||
982                               (base_gfn >= slot->base_gfn + slot->npages)))
983                                 goto out;
984                 }
985         }
986
987         /* Free page dirty bitmap if unneeded */
988         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
989                 new.dirty_bitmap = NULL;
990
991         r = -ENOMEM;
992         if (change == KVM_MR_CREATE) {
993                 new.userspace_addr = mem->userspace_addr;
994
995                 if (kvm_arch_create_memslot(kvm, &new, npages))
996                         goto out_free;
997         }
998
999         /* Allocate page dirty bitmap if needed */
1000         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1001                 if (kvm_create_dirty_bitmap(&new) < 0)
1002                         goto out_free;
1003         }
1004
1005         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1006         if (!slots)
1007                 goto out_free;
1008         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1009
1010         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1011                 slot = id_to_memslot(slots, id);
1012                 slot->flags |= KVM_MEMSLOT_INVALID;
1013
1014                 old_memslots = install_new_memslots(kvm, as_id, slots);
1015
1016                 /* From this point no new shadow pages pointing to a deleted,
1017                  * or moved, memslot will be created.
1018                  *
1019                  * validation of sp->gfn happens in:
1020                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1021                  *      - kvm_is_visible_gfn (mmu_check_roots)
1022                  */
1023                 kvm_arch_flush_shadow_memslot(kvm, slot);
1024
1025                 /*
1026                  * We can re-use the old_memslots from above, the only difference
1027                  * from the currently installed memslots is the invalid flag.  This
1028                  * will get overwritten by update_memslots anyway.
1029                  */
1030                 slots = old_memslots;
1031         }
1032
1033         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1034         if (r)
1035                 goto out_slots;
1036
1037         /* actual memory is freed via old in kvm_free_memslot below */
1038         if (change == KVM_MR_DELETE) {
1039                 new.dirty_bitmap = NULL;
1040                 memset(&new.arch, 0, sizeof(new.arch));
1041         }
1042
1043         update_memslots(slots, &new);
1044         old_memslots = install_new_memslots(kvm, as_id, slots);
1045
1046         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1047
1048         kvm_free_memslot(kvm, &old, &new);
1049         kvfree(old_memslots);
1050         return 0;
1051
1052 out_slots:
1053         kvfree(slots);
1054 out_free:
1055         kvm_free_memslot(kvm, &new, &old);
1056 out:
1057         return r;
1058 }
1059 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1060
1061 int kvm_set_memory_region(struct kvm *kvm,
1062                           const struct kvm_userspace_memory_region *mem)
1063 {
1064         int r;
1065
1066         mutex_lock(&kvm->slots_lock);
1067         r = __kvm_set_memory_region(kvm, mem);
1068         mutex_unlock(&kvm->slots_lock);
1069         return r;
1070 }
1071 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1072
1073 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1074                                           struct kvm_userspace_memory_region *mem)
1075 {
1076         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1077                 return -EINVAL;
1078
1079         return kvm_set_memory_region(kvm, mem);
1080 }
1081
1082 int kvm_get_dirty_log(struct kvm *kvm,
1083                         struct kvm_dirty_log *log, int *is_dirty)
1084 {
1085         struct kvm_memslots *slots;
1086         struct kvm_memory_slot *memslot;
1087         int i, as_id, id;
1088         unsigned long n;
1089         unsigned long any = 0;
1090
1091         as_id = log->slot >> 16;
1092         id = (u16)log->slot;
1093         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1094                 return -EINVAL;
1095
1096         slots = __kvm_memslots(kvm, as_id);
1097         memslot = id_to_memslot(slots, id);
1098         if (!memslot->dirty_bitmap)
1099                 return -ENOENT;
1100
1101         n = kvm_dirty_bitmap_bytes(memslot);
1102
1103         for (i = 0; !any && i < n/sizeof(long); ++i)
1104                 any = memslot->dirty_bitmap[i];
1105
1106         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1107                 return -EFAULT;
1108
1109         if (any)
1110                 *is_dirty = 1;
1111         return 0;
1112 }
1113 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1114
1115 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1116 /**
1117  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1118  *      are dirty write protect them for next write.
1119  * @kvm:        pointer to kvm instance
1120  * @log:        slot id and address to which we copy the log
1121  * @is_dirty:   flag set if any page is dirty
1122  *
1123  * We need to keep it in mind that VCPU threads can write to the bitmap
1124  * concurrently. So, to avoid losing track of dirty pages we keep the
1125  * following order:
1126  *
1127  *    1. Take a snapshot of the bit and clear it if needed.
1128  *    2. Write protect the corresponding page.
1129  *    3. Copy the snapshot to the userspace.
1130  *    4. Upon return caller flushes TLB's if needed.
1131  *
1132  * Between 2 and 4, the guest may write to the page using the remaining TLB
1133  * entry.  This is not a problem because the page is reported dirty using
1134  * the snapshot taken before and step 4 ensures that writes done after
1135  * exiting to userspace will be logged for the next call.
1136  *
1137  */
1138 int kvm_get_dirty_log_protect(struct kvm *kvm,
1139                         struct kvm_dirty_log *log, bool *is_dirty)
1140 {
1141         struct kvm_memslots *slots;
1142         struct kvm_memory_slot *memslot;
1143         int i, as_id, id;
1144         unsigned long n;
1145         unsigned long *dirty_bitmap;
1146         unsigned long *dirty_bitmap_buffer;
1147
1148         as_id = log->slot >> 16;
1149         id = (u16)log->slot;
1150         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1151                 return -EINVAL;
1152
1153         slots = __kvm_memslots(kvm, as_id);
1154         memslot = id_to_memslot(slots, id);
1155
1156         dirty_bitmap = memslot->dirty_bitmap;
1157         if (!dirty_bitmap)
1158                 return -ENOENT;
1159
1160         n = kvm_dirty_bitmap_bytes(memslot);
1161
1162         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1163         memset(dirty_bitmap_buffer, 0, n);
1164
1165         spin_lock(&kvm->mmu_lock);
1166         *is_dirty = false;
1167         for (i = 0; i < n / sizeof(long); i++) {
1168                 unsigned long mask;
1169                 gfn_t offset;
1170
1171                 if (!dirty_bitmap[i])
1172                         continue;
1173
1174                 *is_dirty = true;
1175
1176                 mask = xchg(&dirty_bitmap[i], 0);
1177                 dirty_bitmap_buffer[i] = mask;
1178
1179                 if (mask) {
1180                         offset = i * BITS_PER_LONG;
1181                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1182                                                                 offset, mask);
1183                 }
1184         }
1185
1186         spin_unlock(&kvm->mmu_lock);
1187         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1188                 return -EFAULT;
1189         return 0;
1190 }
1191 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1192 #endif
1193
1194 bool kvm_largepages_enabled(void)
1195 {
1196         return largepages_enabled;
1197 }
1198
1199 void kvm_disable_largepages(void)
1200 {
1201         largepages_enabled = false;
1202 }
1203 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1204
1205 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1206 {
1207         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1208 }
1209 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1210
1211 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1212 {
1213         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1214 }
1215
1216 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1217 {
1218         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1219
1220         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1221               memslot->flags & KVM_MEMSLOT_INVALID)
1222                 return false;
1223
1224         return true;
1225 }
1226 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1227
1228 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1229 {
1230         struct vm_area_struct *vma;
1231         unsigned long addr, size;
1232
1233         size = PAGE_SIZE;
1234
1235         addr = gfn_to_hva(kvm, gfn);
1236         if (kvm_is_error_hva(addr))
1237                 return PAGE_SIZE;
1238
1239         down_read(&current->mm->mmap_sem);
1240         vma = find_vma(current->mm, addr);
1241         if (!vma)
1242                 goto out;
1243
1244         size = vma_kernel_pagesize(vma);
1245
1246 out:
1247         up_read(&current->mm->mmap_sem);
1248
1249         return size;
1250 }
1251
1252 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1253 {
1254         return slot->flags & KVM_MEM_READONLY;
1255 }
1256
1257 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1258                                        gfn_t *nr_pages, bool write)
1259 {
1260         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1261                 return KVM_HVA_ERR_BAD;
1262
1263         if (memslot_is_readonly(slot) && write)
1264                 return KVM_HVA_ERR_RO_BAD;
1265
1266         if (nr_pages)
1267                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1268
1269         return __gfn_to_hva_memslot(slot, gfn);
1270 }
1271
1272 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1273                                      gfn_t *nr_pages)
1274 {
1275         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1276 }
1277
1278 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1279                                         gfn_t gfn)
1280 {
1281         return gfn_to_hva_many(slot, gfn, NULL);
1282 }
1283 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1284
1285 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1286 {
1287         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1288 }
1289 EXPORT_SYMBOL_GPL(gfn_to_hva);
1290
1291 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1292 {
1293         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1294 }
1295 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1296
1297 /*
1298  * If writable is set to false, the hva returned by this function is only
1299  * allowed to be read.
1300  */
1301 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1302                                       gfn_t gfn, bool *writable)
1303 {
1304         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1305
1306         if (!kvm_is_error_hva(hva) && writable)
1307                 *writable = !memslot_is_readonly(slot);
1308
1309         return hva;
1310 }
1311
1312 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1313 {
1314         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1315
1316         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1317 }
1318
1319 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1320 {
1321         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1322
1323         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1324 }
1325
1326 static inline int check_user_page_hwpoison(unsigned long addr)
1327 {
1328         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1329
1330         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1331         return rc == -EHWPOISON;
1332 }
1333
1334 /*
1335  * The atomic path to get the writable pfn which will be stored in @pfn,
1336  * true indicates success, otherwise false is returned.
1337  */
1338 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1339                             bool write_fault, bool *writable, kvm_pfn_t *pfn)
1340 {
1341         struct page *page[1];
1342         int npages;
1343
1344         if (!(async || atomic))
1345                 return false;
1346
1347         /*
1348          * Fast pin a writable pfn only if it is a write fault request
1349          * or the caller allows to map a writable pfn for a read fault
1350          * request.
1351          */
1352         if (!(write_fault || writable))
1353                 return false;
1354
1355         npages = __get_user_pages_fast(addr, 1, 1, page);
1356         if (npages == 1) {
1357                 *pfn = page_to_pfn(page[0]);
1358
1359                 if (writable)
1360                         *writable = true;
1361                 return true;
1362         }
1363
1364         return false;
1365 }
1366
1367 /*
1368  * The slow path to get the pfn of the specified host virtual address,
1369  * 1 indicates success, -errno is returned if error is detected.
1370  */
1371 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1372                            bool *writable, kvm_pfn_t *pfn)
1373 {
1374         unsigned int flags = FOLL_HWPOISON;
1375         struct page *page;
1376         int npages = 0;
1377
1378         might_sleep();
1379
1380         if (writable)
1381                 *writable = write_fault;
1382
1383         if (write_fault)
1384                 flags |= FOLL_WRITE;
1385         if (async)
1386                 flags |= FOLL_NOWAIT;
1387
1388         npages = get_user_pages_unlocked(addr, 1, &page, flags);
1389         if (npages != 1)
1390                 return npages;
1391
1392         /* map read fault as writable if possible */
1393         if (unlikely(!write_fault) && writable) {
1394                 struct page *wpage;
1395
1396                 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1397                         *writable = true;
1398                         put_page(page);
1399                         page = wpage;
1400                 }
1401         }
1402         *pfn = page_to_pfn(page);
1403         return npages;
1404 }
1405
1406 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1407 {
1408         if (unlikely(!(vma->vm_flags & VM_READ)))
1409                 return false;
1410
1411         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1412                 return false;
1413
1414         return true;
1415 }
1416
1417 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1418                                unsigned long addr, bool *async,
1419                                bool write_fault, kvm_pfn_t *p_pfn)
1420 {
1421         unsigned long pfn;
1422         int r;
1423
1424         r = follow_pfn(vma, addr, &pfn);
1425         if (r) {
1426                 /*
1427                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1428                  * not call the fault handler, so do it here.
1429                  */
1430                 bool unlocked = false;
1431                 r = fixup_user_fault(current, current->mm, addr,
1432                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1433                                      &unlocked);
1434                 if (unlocked)
1435                         return -EAGAIN;
1436                 if (r)
1437                         return r;
1438
1439                 r = follow_pfn(vma, addr, &pfn);
1440                 if (r)
1441                         return r;
1442
1443         }
1444
1445
1446         /*
1447          * Get a reference here because callers of *hva_to_pfn* and
1448          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1449          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1450          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1451          * simply do nothing for reserved pfns.
1452          *
1453          * Whoever called remap_pfn_range is also going to call e.g.
1454          * unmap_mapping_range before the underlying pages are freed,
1455          * causing a call to our MMU notifier.
1456          */ 
1457         kvm_get_pfn(pfn);
1458
1459         *p_pfn = pfn;
1460         return 0;
1461 }
1462
1463 /*
1464  * Pin guest page in memory and return its pfn.
1465  * @addr: host virtual address which maps memory to the guest
1466  * @atomic: whether this function can sleep
1467  * @async: whether this function need to wait IO complete if the
1468  *         host page is not in the memory
1469  * @write_fault: whether we should get a writable host page
1470  * @writable: whether it allows to map a writable host page for !@write_fault
1471  *
1472  * The function will map a writable host page for these two cases:
1473  * 1): @write_fault = true
1474  * 2): @write_fault = false && @writable, @writable will tell the caller
1475  *     whether the mapping is writable.
1476  */
1477 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1478                         bool write_fault, bool *writable)
1479 {
1480         struct vm_area_struct *vma;
1481         kvm_pfn_t pfn = 0;
1482         int npages, r;
1483
1484         /* we can do it either atomically or asynchronously, not both */
1485         BUG_ON(atomic && async);
1486
1487         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1488                 return pfn;
1489
1490         if (atomic)
1491                 return KVM_PFN_ERR_FAULT;
1492
1493         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1494         if (npages == 1)
1495                 return pfn;
1496
1497         down_read(&current->mm->mmap_sem);
1498         if (npages == -EHWPOISON ||
1499               (!async && check_user_page_hwpoison(addr))) {
1500                 pfn = KVM_PFN_ERR_HWPOISON;
1501                 goto exit;
1502         }
1503
1504 retry:
1505         vma = find_vma_intersection(current->mm, addr, addr + 1);
1506
1507         if (vma == NULL)
1508                 pfn = KVM_PFN_ERR_FAULT;
1509         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1510                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1511                 if (r == -EAGAIN)
1512                         goto retry;
1513                 if (r < 0)
1514                         pfn = KVM_PFN_ERR_FAULT;
1515         } else {
1516                 if (async && vma_is_valid(vma, write_fault))
1517                         *async = true;
1518                 pfn = KVM_PFN_ERR_FAULT;
1519         }
1520 exit:
1521         up_read(&current->mm->mmap_sem);
1522         return pfn;
1523 }
1524
1525 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1526                                bool atomic, bool *async, bool write_fault,
1527                                bool *writable)
1528 {
1529         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1530
1531         if (addr == KVM_HVA_ERR_RO_BAD) {
1532                 if (writable)
1533                         *writable = false;
1534                 return KVM_PFN_ERR_RO_FAULT;
1535         }
1536
1537         if (kvm_is_error_hva(addr)) {
1538                 if (writable)
1539                         *writable = false;
1540                 return KVM_PFN_NOSLOT;
1541         }
1542
1543         /* Do not map writable pfn in the readonly memslot. */
1544         if (writable && memslot_is_readonly(slot)) {
1545                 *writable = false;
1546                 writable = NULL;
1547         }
1548
1549         return hva_to_pfn(addr, atomic, async, write_fault,
1550                           writable);
1551 }
1552 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1553
1554 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1555                       bool *writable)
1556 {
1557         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1558                                     write_fault, writable);
1559 }
1560 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1561
1562 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1563 {
1564         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1565 }
1566 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1567
1568 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1569 {
1570         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1571 }
1572 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1573
1574 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1575 {
1576         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1577 }
1578 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1579
1580 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1581 {
1582         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1583 }
1584 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1585
1586 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1587 {
1588         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1589 }
1590 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1591
1592 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1593 {
1594         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1595 }
1596 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1597
1598 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1599                             struct page **pages, int nr_pages)
1600 {
1601         unsigned long addr;
1602         gfn_t entry = 0;
1603
1604         addr = gfn_to_hva_many(slot, gfn, &entry);
1605         if (kvm_is_error_hva(addr))
1606                 return -1;
1607
1608         if (entry < nr_pages)
1609                 return 0;
1610
1611         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1612 }
1613 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1614
1615 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1616 {
1617         if (is_error_noslot_pfn(pfn))
1618                 return KVM_ERR_PTR_BAD_PAGE;
1619
1620         if (kvm_is_reserved_pfn(pfn)) {
1621                 WARN_ON(1);
1622                 return KVM_ERR_PTR_BAD_PAGE;
1623         }
1624
1625         return pfn_to_page(pfn);
1626 }
1627
1628 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1629 {
1630         kvm_pfn_t pfn;
1631
1632         pfn = gfn_to_pfn(kvm, gfn);
1633
1634         return kvm_pfn_to_page(pfn);
1635 }
1636 EXPORT_SYMBOL_GPL(gfn_to_page);
1637
1638 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1639 {
1640         kvm_pfn_t pfn;
1641
1642         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1643
1644         return kvm_pfn_to_page(pfn);
1645 }
1646 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1647
1648 void kvm_release_page_clean(struct page *page)
1649 {
1650         WARN_ON(is_error_page(page));
1651
1652         kvm_release_pfn_clean(page_to_pfn(page));
1653 }
1654 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1655
1656 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1657 {
1658         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1659                 put_page(pfn_to_page(pfn));
1660 }
1661 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1662
1663 void kvm_release_page_dirty(struct page *page)
1664 {
1665         WARN_ON(is_error_page(page));
1666
1667         kvm_release_pfn_dirty(page_to_pfn(page));
1668 }
1669 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1670
1671 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1672 {
1673         kvm_set_pfn_dirty(pfn);
1674         kvm_release_pfn_clean(pfn);
1675 }
1676 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1677
1678 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1679 {
1680         if (!kvm_is_reserved_pfn(pfn)) {
1681                 struct page *page = pfn_to_page(pfn);
1682
1683                 if (!PageReserved(page))
1684                         SetPageDirty(page);
1685         }
1686 }
1687 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1688
1689 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1690 {
1691         if (!kvm_is_reserved_pfn(pfn))
1692                 mark_page_accessed(pfn_to_page(pfn));
1693 }
1694 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1695
1696 void kvm_get_pfn(kvm_pfn_t pfn)
1697 {
1698         if (!kvm_is_reserved_pfn(pfn))
1699                 get_page(pfn_to_page(pfn));
1700 }
1701 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1702
1703 static int next_segment(unsigned long len, int offset)
1704 {
1705         if (len > PAGE_SIZE - offset)
1706                 return PAGE_SIZE - offset;
1707         else
1708                 return len;
1709 }
1710
1711 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1712                                  void *data, int offset, int len)
1713 {
1714         int r;
1715         unsigned long addr;
1716
1717         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1718         if (kvm_is_error_hva(addr))
1719                 return -EFAULT;
1720         r = __copy_from_user(data, (void __user *)addr + offset, len);
1721         if (r)
1722                 return -EFAULT;
1723         return 0;
1724 }
1725
1726 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1727                         int len)
1728 {
1729         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1730
1731         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1732 }
1733 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1734
1735 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1736                              int offset, int len)
1737 {
1738         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1739
1740         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1741 }
1742 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1743
1744 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1745 {
1746         gfn_t gfn = gpa >> PAGE_SHIFT;
1747         int seg;
1748         int offset = offset_in_page(gpa);
1749         int ret;
1750
1751         while ((seg = next_segment(len, offset)) != 0) {
1752                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1753                 if (ret < 0)
1754                         return ret;
1755                 offset = 0;
1756                 len -= seg;
1757                 data += seg;
1758                 ++gfn;
1759         }
1760         return 0;
1761 }
1762 EXPORT_SYMBOL_GPL(kvm_read_guest);
1763
1764 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1765 {
1766         gfn_t gfn = gpa >> PAGE_SHIFT;
1767         int seg;
1768         int offset = offset_in_page(gpa);
1769         int ret;
1770
1771         while ((seg = next_segment(len, offset)) != 0) {
1772                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1773                 if (ret < 0)
1774                         return ret;
1775                 offset = 0;
1776                 len -= seg;
1777                 data += seg;
1778                 ++gfn;
1779         }
1780         return 0;
1781 }
1782 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1783
1784 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1785                                    void *data, int offset, unsigned long len)
1786 {
1787         int r;
1788         unsigned long addr;
1789
1790         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1791         if (kvm_is_error_hva(addr))
1792                 return -EFAULT;
1793         pagefault_disable();
1794         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1795         pagefault_enable();
1796         if (r)
1797                 return -EFAULT;
1798         return 0;
1799 }
1800
1801 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1802                           unsigned long len)
1803 {
1804         gfn_t gfn = gpa >> PAGE_SHIFT;
1805         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1806         int offset = offset_in_page(gpa);
1807
1808         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1809 }
1810 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1811
1812 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1813                                void *data, unsigned long len)
1814 {
1815         gfn_t gfn = gpa >> PAGE_SHIFT;
1816         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1817         int offset = offset_in_page(gpa);
1818
1819         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1820 }
1821 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1822
1823 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1824                                   const void *data, int offset, int len)
1825 {
1826         int r;
1827         unsigned long addr;
1828
1829         addr = gfn_to_hva_memslot(memslot, gfn);
1830         if (kvm_is_error_hva(addr))
1831                 return -EFAULT;
1832         r = __copy_to_user((void __user *)addr + offset, data, len);
1833         if (r)
1834                 return -EFAULT;
1835         mark_page_dirty_in_slot(memslot, gfn);
1836         return 0;
1837 }
1838
1839 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1840                          const void *data, int offset, int len)
1841 {
1842         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1843
1844         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1845 }
1846 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1847
1848 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1849                               const void *data, int offset, int len)
1850 {
1851         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1852
1853         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1854 }
1855 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1856
1857 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1858                     unsigned long len)
1859 {
1860         gfn_t gfn = gpa >> PAGE_SHIFT;
1861         int seg;
1862         int offset = offset_in_page(gpa);
1863         int ret;
1864
1865         while ((seg = next_segment(len, offset)) != 0) {
1866                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1867                 if (ret < 0)
1868                         return ret;
1869                 offset = 0;
1870                 len -= seg;
1871                 data += seg;
1872                 ++gfn;
1873         }
1874         return 0;
1875 }
1876 EXPORT_SYMBOL_GPL(kvm_write_guest);
1877
1878 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1879                          unsigned long len)
1880 {
1881         gfn_t gfn = gpa >> PAGE_SHIFT;
1882         int seg;
1883         int offset = offset_in_page(gpa);
1884         int ret;
1885
1886         while ((seg = next_segment(len, offset)) != 0) {
1887                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1888                 if (ret < 0)
1889                         return ret;
1890                 offset = 0;
1891                 len -= seg;
1892                 data += seg;
1893                 ++gfn;
1894         }
1895         return 0;
1896 }
1897 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1898
1899 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1900                                        struct gfn_to_hva_cache *ghc,
1901                                        gpa_t gpa, unsigned long len)
1902 {
1903         int offset = offset_in_page(gpa);
1904         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1905         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1906         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1907         gfn_t nr_pages_avail;
1908
1909         ghc->gpa = gpa;
1910         ghc->generation = slots->generation;
1911         ghc->len = len;
1912         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1913         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1914         if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1915                 ghc->hva += offset;
1916         } else {
1917                 /*
1918                  * If the requested region crosses two memslots, we still
1919                  * verify that the entire region is valid here.
1920                  */
1921                 while (start_gfn <= end_gfn) {
1922                         nr_pages_avail = 0;
1923                         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1924                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1925                                                    &nr_pages_avail);
1926                         if (kvm_is_error_hva(ghc->hva))
1927                                 return -EFAULT;
1928                         start_gfn += nr_pages_avail;
1929                 }
1930                 /* Use the slow path for cross page reads and writes. */
1931                 ghc->memslot = NULL;
1932         }
1933         return 0;
1934 }
1935
1936 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1937                               gpa_t gpa, unsigned long len)
1938 {
1939         struct kvm_memslots *slots = kvm_memslots(kvm);
1940         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1941 }
1942 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1943
1944 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1945                            void *data, int offset, unsigned long len)
1946 {
1947         struct kvm_memslots *slots = kvm_memslots(kvm);
1948         int r;
1949         gpa_t gpa = ghc->gpa + offset;
1950
1951         BUG_ON(len + offset > ghc->len);
1952
1953         if (slots->generation != ghc->generation)
1954                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1955
1956         if (unlikely(!ghc->memslot))
1957                 return kvm_write_guest(kvm, gpa, data, len);
1958
1959         if (kvm_is_error_hva(ghc->hva))
1960                 return -EFAULT;
1961
1962         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1963         if (r)
1964                 return -EFAULT;
1965         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1966
1967         return 0;
1968 }
1969 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1970
1971 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1972                            void *data, unsigned long len)
1973 {
1974         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
1975 }
1976 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1977
1978 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1979                            void *data, unsigned long len)
1980 {
1981         struct kvm_memslots *slots = kvm_memslots(kvm);
1982         int r;
1983
1984         BUG_ON(len > ghc->len);
1985
1986         if (slots->generation != ghc->generation)
1987                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1988
1989         if (unlikely(!ghc->memslot))
1990                 return kvm_read_guest(kvm, ghc->gpa, data, len);
1991
1992         if (kvm_is_error_hva(ghc->hva))
1993                 return -EFAULT;
1994
1995         r = __copy_from_user(data, (void __user *)ghc->hva, len);
1996         if (r)
1997                 return -EFAULT;
1998
1999         return 0;
2000 }
2001 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2002
2003 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2004 {
2005         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2006
2007         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2008 }
2009 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2010
2011 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2012 {
2013         gfn_t gfn = gpa >> PAGE_SHIFT;
2014         int seg;
2015         int offset = offset_in_page(gpa);
2016         int ret;
2017
2018         while ((seg = next_segment(len, offset)) != 0) {
2019                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2020                 if (ret < 0)
2021                         return ret;
2022                 offset = 0;
2023                 len -= seg;
2024                 ++gfn;
2025         }
2026         return 0;
2027 }
2028 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2029
2030 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2031                                     gfn_t gfn)
2032 {
2033         if (memslot && memslot->dirty_bitmap) {
2034                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2035
2036                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2037         }
2038 }
2039
2040 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2041 {
2042         struct kvm_memory_slot *memslot;
2043
2044         memslot = gfn_to_memslot(kvm, gfn);
2045         mark_page_dirty_in_slot(memslot, gfn);
2046 }
2047 EXPORT_SYMBOL_GPL(mark_page_dirty);
2048
2049 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2050 {
2051         struct kvm_memory_slot *memslot;
2052
2053         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2054         mark_page_dirty_in_slot(memslot, gfn);
2055 }
2056 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2057
2058 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2059 {
2060         if (!vcpu->sigset_active)
2061                 return;
2062
2063         /*
2064          * This does a lockless modification of ->real_blocked, which is fine
2065          * because, only current can change ->real_blocked and all readers of
2066          * ->real_blocked don't care as long ->real_blocked is always a subset
2067          * of ->blocked.
2068          */
2069         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2070 }
2071
2072 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2073 {
2074         if (!vcpu->sigset_active)
2075                 return;
2076
2077         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2078         sigemptyset(&current->real_blocked);
2079 }
2080
2081 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2082 {
2083         unsigned int old, val, grow;
2084
2085         old = val = vcpu->halt_poll_ns;
2086         grow = READ_ONCE(halt_poll_ns_grow);
2087         /* 10us base */
2088         if (val == 0 && grow)
2089                 val = 10000;
2090         else
2091                 val *= grow;
2092
2093         if (val > halt_poll_ns)
2094                 val = halt_poll_ns;
2095
2096         vcpu->halt_poll_ns = val;
2097         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2098 }
2099
2100 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2101 {
2102         unsigned int old, val, shrink;
2103
2104         old = val = vcpu->halt_poll_ns;
2105         shrink = READ_ONCE(halt_poll_ns_shrink);
2106         if (shrink == 0)
2107                 val = 0;
2108         else
2109                 val /= shrink;
2110
2111         vcpu->halt_poll_ns = val;
2112         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2113 }
2114
2115 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2116 {
2117         if (kvm_arch_vcpu_runnable(vcpu)) {
2118                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2119                 return -EINTR;
2120         }
2121         if (kvm_cpu_has_pending_timer(vcpu))
2122                 return -EINTR;
2123         if (signal_pending(current))
2124                 return -EINTR;
2125
2126         return 0;
2127 }
2128
2129 /*
2130  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2131  */
2132 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2133 {
2134         ktime_t start, cur;
2135         DECLARE_SWAITQUEUE(wait);
2136         bool waited = false;
2137         u64 block_ns;
2138
2139         start = cur = ktime_get();
2140         if (vcpu->halt_poll_ns) {
2141                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2142
2143                 ++vcpu->stat.halt_attempted_poll;
2144                 do {
2145                         /*
2146                          * This sets KVM_REQ_UNHALT if an interrupt
2147                          * arrives.
2148                          */
2149                         if (kvm_vcpu_check_block(vcpu) < 0) {
2150                                 ++vcpu->stat.halt_successful_poll;
2151                                 if (!vcpu_valid_wakeup(vcpu))
2152                                         ++vcpu->stat.halt_poll_invalid;
2153                                 goto out;
2154                         }
2155                         cur = ktime_get();
2156                 } while (single_task_running() && ktime_before(cur, stop));
2157         }
2158
2159         kvm_arch_vcpu_blocking(vcpu);
2160
2161         for (;;) {
2162                 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2163
2164                 if (kvm_vcpu_check_block(vcpu) < 0)
2165                         break;
2166
2167                 waited = true;
2168                 schedule();
2169         }
2170
2171         finish_swait(&vcpu->wq, &wait);
2172         cur = ktime_get();
2173
2174         kvm_arch_vcpu_unblocking(vcpu);
2175 out:
2176         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2177
2178         if (!vcpu_valid_wakeup(vcpu))
2179                 shrink_halt_poll_ns(vcpu);
2180         else if (halt_poll_ns) {
2181                 if (block_ns <= vcpu->halt_poll_ns)
2182                         ;
2183                 /* we had a long block, shrink polling */
2184                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2185                         shrink_halt_poll_ns(vcpu);
2186                 /* we had a short halt and our poll time is too small */
2187                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2188                         block_ns < halt_poll_ns)
2189                         grow_halt_poll_ns(vcpu);
2190         } else
2191                 vcpu->halt_poll_ns = 0;
2192
2193         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2194         kvm_arch_vcpu_block_finish(vcpu);
2195 }
2196 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2197
2198 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2199 {
2200         struct swait_queue_head *wqp;
2201
2202         wqp = kvm_arch_vcpu_wq(vcpu);
2203         if (swq_has_sleeper(wqp)) {
2204                 swake_up(wqp);
2205                 ++vcpu->stat.halt_wakeup;
2206                 return true;
2207         }
2208
2209         return false;
2210 }
2211 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2212
2213 #ifndef CONFIG_S390
2214 /*
2215  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2216  */
2217 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2218 {
2219         int me;
2220         int cpu = vcpu->cpu;
2221
2222         if (kvm_vcpu_wake_up(vcpu))
2223                 return;
2224
2225         me = get_cpu();
2226         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2227                 if (kvm_arch_vcpu_should_kick(vcpu))
2228                         smp_send_reschedule(cpu);
2229         put_cpu();
2230 }
2231 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2232 #endif /* !CONFIG_S390 */
2233
2234 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2235 {
2236         struct pid *pid;
2237         struct task_struct *task = NULL;
2238         int ret = 0;
2239
2240         rcu_read_lock();
2241         pid = rcu_dereference(target->pid);
2242         if (pid)
2243                 task = get_pid_task(pid, PIDTYPE_PID);
2244         rcu_read_unlock();
2245         if (!task)
2246                 return ret;
2247         ret = yield_to(task, 1);
2248         put_task_struct(task);
2249
2250         return ret;
2251 }
2252 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2253
2254 /*
2255  * Helper that checks whether a VCPU is eligible for directed yield.
2256  * Most eligible candidate to yield is decided by following heuristics:
2257  *
2258  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2259  *  (preempted lock holder), indicated by @in_spin_loop.
2260  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2261  *
2262  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2263  *  chance last time (mostly it has become eligible now since we have probably
2264  *  yielded to lockholder in last iteration. This is done by toggling
2265  *  @dy_eligible each time a VCPU checked for eligibility.)
2266  *
2267  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2268  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2269  *  burning. Giving priority for a potential lock-holder increases lock
2270  *  progress.
2271  *
2272  *  Since algorithm is based on heuristics, accessing another VCPU data without
2273  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2274  *  and continue with next VCPU and so on.
2275  */
2276 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2277 {
2278 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2279         bool eligible;
2280
2281         eligible = !vcpu->spin_loop.in_spin_loop ||
2282                     vcpu->spin_loop.dy_eligible;
2283
2284         if (vcpu->spin_loop.in_spin_loop)
2285                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2286
2287         return eligible;
2288 #else
2289         return true;
2290 #endif
2291 }
2292
2293 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2294 {
2295         struct kvm *kvm = me->kvm;
2296         struct kvm_vcpu *vcpu;
2297         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2298         int yielded = 0;
2299         int try = 3;
2300         int pass;
2301         int i;
2302
2303         kvm_vcpu_set_in_spin_loop(me, true);
2304         /*
2305          * We boost the priority of a VCPU that is runnable but not
2306          * currently running, because it got preempted by something
2307          * else and called schedule in __vcpu_run.  Hopefully that
2308          * VCPU is holding the lock that we need and will release it.
2309          * We approximate round-robin by starting at the last boosted VCPU.
2310          */
2311         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2312                 kvm_for_each_vcpu(i, vcpu, kvm) {
2313                         if (!pass && i <= last_boosted_vcpu) {
2314                                 i = last_boosted_vcpu;
2315                                 continue;
2316                         } else if (pass && i > last_boosted_vcpu)
2317                                 break;
2318                         if (!READ_ONCE(vcpu->preempted))
2319                                 continue;
2320                         if (vcpu == me)
2321                                 continue;
2322                         if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2323                                 continue;
2324                         if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2325                                 continue;
2326                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2327                                 continue;
2328
2329                         yielded = kvm_vcpu_yield_to(vcpu);
2330                         if (yielded > 0) {
2331                                 kvm->last_boosted_vcpu = i;
2332                                 break;
2333                         } else if (yielded < 0) {
2334                                 try--;
2335                                 if (!try)
2336                                         break;
2337                         }
2338                 }
2339         }
2340         kvm_vcpu_set_in_spin_loop(me, false);
2341
2342         /* Ensure vcpu is not eligible during next spinloop */
2343         kvm_vcpu_set_dy_eligible(me, false);
2344 }
2345 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2346
2347 static int kvm_vcpu_fault(struct vm_fault *vmf)
2348 {
2349         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2350         struct page *page;
2351
2352         if (vmf->pgoff == 0)
2353                 page = virt_to_page(vcpu->run);
2354 #ifdef CONFIG_X86
2355         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2356                 page = virt_to_page(vcpu->arch.pio_data);
2357 #endif
2358 #ifdef CONFIG_KVM_MMIO
2359         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2360                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2361 #endif
2362         else
2363                 return kvm_arch_vcpu_fault(vcpu, vmf);
2364         get_page(page);
2365         vmf->page = page;
2366         return 0;
2367 }
2368
2369 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2370         .fault = kvm_vcpu_fault,
2371 };
2372
2373 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2374 {
2375         vma->vm_ops = &kvm_vcpu_vm_ops;
2376         return 0;
2377 }
2378
2379 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2380 {
2381         struct kvm_vcpu *vcpu = filp->private_data;
2382
2383         debugfs_remove_recursive(vcpu->debugfs_dentry);
2384         kvm_put_kvm(vcpu->kvm);
2385         return 0;
2386 }
2387
2388 static struct file_operations kvm_vcpu_fops = {
2389         .release        = kvm_vcpu_release,
2390         .unlocked_ioctl = kvm_vcpu_ioctl,
2391 #ifdef CONFIG_KVM_COMPAT
2392         .compat_ioctl   = kvm_vcpu_compat_ioctl,
2393 #endif
2394         .mmap           = kvm_vcpu_mmap,
2395         .llseek         = noop_llseek,
2396 };
2397
2398 /*
2399  * Allocates an inode for the vcpu.
2400  */
2401 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2402 {
2403         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2404 }
2405
2406 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2407 {
2408         char dir_name[ITOA_MAX_LEN * 2];
2409         int ret;
2410
2411         if (!kvm_arch_has_vcpu_debugfs())
2412                 return 0;
2413
2414         if (!debugfs_initialized())
2415                 return 0;
2416
2417         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2418         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2419                                                                 vcpu->kvm->debugfs_dentry);
2420         if (!vcpu->debugfs_dentry)
2421                 return -ENOMEM;
2422
2423         ret = kvm_arch_create_vcpu_debugfs(vcpu);
2424         if (ret < 0) {
2425                 debugfs_remove_recursive(vcpu->debugfs_dentry);
2426                 return ret;
2427         }
2428
2429         return 0;
2430 }
2431
2432 /*
2433  * Creates some virtual cpus.  Good luck creating more than one.
2434  */
2435 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2436 {
2437         int r;
2438         struct kvm_vcpu *vcpu;
2439
2440         if (id >= KVM_MAX_VCPU_ID)
2441                 return -EINVAL;
2442
2443         mutex_lock(&kvm->lock);
2444         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2445                 mutex_unlock(&kvm->lock);
2446                 return -EINVAL;
2447         }
2448
2449         kvm->created_vcpus++;
2450         mutex_unlock(&kvm->lock);
2451
2452         vcpu = kvm_arch_vcpu_create(kvm, id);
2453         if (IS_ERR(vcpu)) {
2454                 r = PTR_ERR(vcpu);
2455                 goto vcpu_decrement;
2456         }
2457
2458         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2459
2460         r = kvm_arch_vcpu_setup(vcpu);
2461         if (r)
2462                 goto vcpu_destroy;
2463
2464         r = kvm_create_vcpu_debugfs(vcpu);
2465         if (r)
2466                 goto vcpu_destroy;
2467
2468         mutex_lock(&kvm->lock);
2469         if (kvm_get_vcpu_by_id(kvm, id)) {
2470                 r = -EEXIST;
2471                 goto unlock_vcpu_destroy;
2472         }
2473
2474         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2475
2476         /* Now it's all set up, let userspace reach it */
2477         kvm_get_kvm(kvm);
2478         r = create_vcpu_fd(vcpu);
2479         if (r < 0) {
2480                 kvm_put_kvm(kvm);
2481                 goto unlock_vcpu_destroy;
2482         }
2483
2484         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2485
2486         /*
2487          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2488          * before kvm->online_vcpu's incremented value.
2489          */
2490         smp_wmb();
2491         atomic_inc(&kvm->online_vcpus);
2492
2493         mutex_unlock(&kvm->lock);
2494         kvm_arch_vcpu_postcreate(vcpu);
2495         return r;
2496
2497 unlock_vcpu_destroy:
2498         mutex_unlock(&kvm->lock);
2499         debugfs_remove_recursive(vcpu->debugfs_dentry);
2500 vcpu_destroy:
2501         kvm_arch_vcpu_destroy(vcpu);
2502 vcpu_decrement:
2503         mutex_lock(&kvm->lock);
2504         kvm->created_vcpus--;
2505         mutex_unlock(&kvm->lock);
2506         return r;
2507 }
2508
2509 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2510 {
2511         if (sigset) {
2512                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2513                 vcpu->sigset_active = 1;
2514                 vcpu->sigset = *sigset;
2515         } else
2516                 vcpu->sigset_active = 0;
2517         return 0;
2518 }
2519
2520 static long kvm_vcpu_ioctl(struct file *filp,
2521                            unsigned int ioctl, unsigned long arg)
2522 {
2523         struct kvm_vcpu *vcpu = filp->private_data;
2524         void __user *argp = (void __user *)arg;
2525         int r;
2526         struct kvm_fpu *fpu = NULL;
2527         struct kvm_sregs *kvm_sregs = NULL;
2528
2529         if (vcpu->kvm->mm != current->mm)
2530                 return -EIO;
2531
2532         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2533                 return -EINVAL;
2534
2535 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2536         /*
2537          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2538          * so vcpu_load() would break it.
2539          */
2540         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2541                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2542 #endif
2543
2544
2545         r = vcpu_load(vcpu);
2546         if (r)
2547                 return r;
2548         switch (ioctl) {
2549         case KVM_RUN: {
2550                 struct pid *oldpid;
2551                 r = -EINVAL;
2552                 if (arg)
2553                         goto out;
2554                 oldpid = rcu_access_pointer(vcpu->pid);
2555                 if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
2556                         /* The thread running this VCPU changed. */
2557                         struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2558
2559                         rcu_assign_pointer(vcpu->pid, newpid);
2560                         if (oldpid)
2561                                 synchronize_rcu();
2562                         put_pid(oldpid);
2563                 }
2564                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2565                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2566                 break;
2567         }
2568         case KVM_GET_REGS: {
2569                 struct kvm_regs *kvm_regs;
2570
2571                 r = -ENOMEM;
2572                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2573                 if (!kvm_regs)
2574                         goto out;
2575                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2576                 if (r)
2577                         goto out_free1;
2578                 r = -EFAULT;
2579                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2580                         goto out_free1;
2581                 r = 0;
2582 out_free1:
2583                 kfree(kvm_regs);
2584                 break;
2585         }
2586         case KVM_SET_REGS: {
2587                 struct kvm_regs *kvm_regs;
2588
2589                 r = -ENOMEM;
2590                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2591                 if (IS_ERR(kvm_regs)) {
2592                         r = PTR_ERR(kvm_regs);
2593                         goto out;
2594                 }
2595                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2596                 kfree(kvm_regs);
2597                 break;
2598         }
2599         case KVM_GET_SREGS: {
2600                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2601                 r = -ENOMEM;
2602                 if (!kvm_sregs)
2603                         goto out;
2604                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2605                 if (r)
2606                         goto out;
2607                 r = -EFAULT;
2608                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2609                         goto out;
2610                 r = 0;
2611                 break;
2612         }
2613         case KVM_SET_SREGS: {
2614                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2615                 if (IS_ERR(kvm_sregs)) {
2616                         r = PTR_ERR(kvm_sregs);
2617                         kvm_sregs = NULL;
2618                         goto out;
2619                 }
2620                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2621                 break;
2622         }
2623         case KVM_GET_MP_STATE: {
2624                 struct kvm_mp_state mp_state;
2625
2626                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2627                 if (r)
2628                         goto out;
2629                 r = -EFAULT;
2630                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2631                         goto out;
2632                 r = 0;
2633                 break;
2634         }
2635         case KVM_SET_MP_STATE: {
2636                 struct kvm_mp_state mp_state;
2637
2638                 r = -EFAULT;
2639                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2640                         goto out;
2641                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2642                 break;
2643         }
2644         case KVM_TRANSLATE: {
2645                 struct kvm_translation tr;
2646
2647                 r = -EFAULT;
2648                 if (copy_from_user(&tr, argp, sizeof(tr)))
2649                         goto out;
2650                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2651                 if (r)
2652                         goto out;
2653                 r = -EFAULT;
2654                 if (copy_to_user(argp, &tr, sizeof(tr)))
2655                         goto out;
2656                 r = 0;
2657                 break;
2658         }
2659         case KVM_SET_GUEST_DEBUG: {
2660                 struct kvm_guest_debug dbg;
2661
2662                 r = -EFAULT;
2663                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2664                         goto out;
2665                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2666                 break;
2667         }
2668         case KVM_SET_SIGNAL_MASK: {
2669                 struct kvm_signal_mask __user *sigmask_arg = argp;
2670                 struct kvm_signal_mask kvm_sigmask;
2671                 sigset_t sigset, *p;
2672
2673                 p = NULL;
2674                 if (argp) {
2675                         r = -EFAULT;
2676                         if (copy_from_user(&kvm_sigmask, argp,
2677                                            sizeof(kvm_sigmask)))
2678                                 goto out;
2679                         r = -EINVAL;
2680                         if (kvm_sigmask.len != sizeof(sigset))
2681                                 goto out;
2682                         r = -EFAULT;
2683                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2684                                            sizeof(sigset)))
2685                                 goto out;
2686                         p = &sigset;
2687                 }
2688                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2689                 break;
2690         }
2691         case KVM_GET_FPU: {
2692                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2693                 r = -ENOMEM;
2694                 if (!fpu)
2695                         goto out;
2696                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2697                 if (r)
2698                         goto out;
2699                 r = -EFAULT;
2700                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2701                         goto out;
2702                 r = 0;
2703                 break;
2704         }
2705         case KVM_SET_FPU: {
2706                 fpu = memdup_user(argp, sizeof(*fpu));
2707                 if (IS_ERR(fpu)) {
2708                         r = PTR_ERR(fpu);
2709                         fpu = NULL;
2710                         goto out;
2711                 }
2712                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2713                 break;
2714         }
2715         default:
2716                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2717         }
2718 out:
2719         vcpu_put(vcpu);
2720         kfree(fpu);
2721         kfree(kvm_sregs);
2722         return r;
2723 }
2724
2725 #ifdef CONFIG_KVM_COMPAT
2726 static long kvm_vcpu_compat_ioctl(struct file *filp,
2727                                   unsigned int ioctl, unsigned long arg)
2728 {
2729         struct kvm_vcpu *vcpu = filp->private_data;
2730         void __user *argp = compat_ptr(arg);
2731         int r;
2732
2733         if (vcpu->kvm->mm != current->mm)
2734                 return -EIO;
2735
2736         switch (ioctl) {
2737         case KVM_SET_SIGNAL_MASK: {
2738                 struct kvm_signal_mask __user *sigmask_arg = argp;
2739                 struct kvm_signal_mask kvm_sigmask;
2740                 sigset_t sigset;
2741
2742                 if (argp) {
2743                         r = -EFAULT;
2744                         if (copy_from_user(&kvm_sigmask, argp,
2745                                            sizeof(kvm_sigmask)))
2746                                 goto out;
2747                         r = -EINVAL;
2748                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
2749                                 goto out;
2750                         r = -EFAULT;
2751                         if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2752                                 goto out;
2753                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2754                 } else
2755                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2756                 break;
2757         }
2758         default:
2759                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2760         }
2761
2762 out:
2763         return r;
2764 }
2765 #endif
2766
2767 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2768                                  int (*accessor)(struct kvm_device *dev,
2769                                                  struct kvm_device_attr *attr),
2770                                  unsigned long arg)
2771 {
2772         struct kvm_device_attr attr;
2773
2774         if (!accessor)
2775                 return -EPERM;
2776
2777         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2778                 return -EFAULT;
2779
2780         return accessor(dev, &attr);
2781 }
2782
2783 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2784                              unsigned long arg)
2785 {
2786         struct kvm_device *dev = filp->private_data;
2787
2788         switch (ioctl) {
2789         case KVM_SET_DEVICE_ATTR:
2790                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2791         case KVM_GET_DEVICE_ATTR:
2792                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2793         case KVM_HAS_DEVICE_ATTR:
2794                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2795         default:
2796                 if (dev->ops->ioctl)
2797                         return dev->ops->ioctl(dev, ioctl, arg);
2798
2799                 return -ENOTTY;
2800         }
2801 }
2802
2803 static int kvm_device_release(struct inode *inode, struct file *filp)
2804 {
2805         struct kvm_device *dev = filp->private_data;
2806         struct kvm *kvm = dev->kvm;
2807
2808         kvm_put_kvm(kvm);
2809         return 0;
2810 }
2811
2812 static const struct file_operations kvm_device_fops = {
2813         .unlocked_ioctl = kvm_device_ioctl,
2814 #ifdef CONFIG_KVM_COMPAT
2815         .compat_ioctl = kvm_device_ioctl,
2816 #endif
2817         .release = kvm_device_release,
2818 };
2819
2820 struct kvm_device *kvm_device_from_filp(struct file *filp)
2821 {
2822         if (filp->f_op != &kvm_device_fops)
2823                 return NULL;
2824
2825         return filp->private_data;
2826 }
2827
2828 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2829 #ifdef CONFIG_KVM_MPIC
2830         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2831         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2832 #endif
2833 };
2834
2835 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2836 {
2837         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2838                 return -ENOSPC;
2839
2840         if (kvm_device_ops_table[type] != NULL)
2841                 return -EEXIST;
2842
2843         kvm_device_ops_table[type] = ops;
2844         return 0;
2845 }
2846
2847 void kvm_unregister_device_ops(u32 type)
2848 {
2849         if (kvm_device_ops_table[type] != NULL)
2850                 kvm_device_ops_table[type] = NULL;
2851 }
2852
2853 static int kvm_ioctl_create_device(struct kvm *kvm,
2854                                    struct kvm_create_device *cd)
2855 {
2856         struct kvm_device_ops *ops = NULL;
2857         struct kvm_device *dev;
2858         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2859         int ret;
2860
2861         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2862                 return -ENODEV;
2863
2864         ops = kvm_device_ops_table[cd->type];
2865         if (ops == NULL)
2866                 return -ENODEV;
2867
2868         if (test)
2869                 return 0;
2870
2871         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2872         if (!dev)
2873                 return -ENOMEM;
2874
2875         dev->ops = ops;
2876         dev->kvm = kvm;
2877
2878         mutex_lock(&kvm->lock);
2879         ret = ops->create(dev, cd->type);
2880         if (ret < 0) {
2881                 mutex_unlock(&kvm->lock);
2882                 kfree(dev);
2883                 return ret;
2884         }
2885         list_add(&dev->vm_node, &kvm->devices);
2886         mutex_unlock(&kvm->lock);
2887
2888         if (ops->init)
2889                 ops->init(dev);
2890
2891         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2892         if (ret < 0) {
2893                 mutex_lock(&kvm->lock);
2894                 list_del(&dev->vm_node);
2895                 mutex_unlock(&kvm->lock);
2896                 ops->destroy(dev);
2897                 return ret;
2898         }
2899
2900         kvm_get_kvm(kvm);
2901         cd->fd = ret;
2902         return 0;
2903 }
2904
2905 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2906 {
2907         switch (arg) {
2908         case KVM_CAP_USER_MEMORY:
2909         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2910         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2911         case KVM_CAP_INTERNAL_ERROR_DATA:
2912 #ifdef CONFIG_HAVE_KVM_MSI
2913         case KVM_CAP_SIGNAL_MSI:
2914 #endif
2915 #ifdef CONFIG_HAVE_KVM_IRQFD
2916         case KVM_CAP_IRQFD:
2917         case KVM_CAP_IRQFD_RESAMPLE:
2918 #endif
2919         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2920         case KVM_CAP_CHECK_EXTENSION_VM:
2921                 return 1;
2922 #ifdef CONFIG_KVM_MMIO
2923         case KVM_CAP_COALESCED_MMIO:
2924                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
2925 #endif
2926 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2927         case KVM_CAP_IRQ_ROUTING:
2928                 return KVM_MAX_IRQ_ROUTES;
2929 #endif
2930 #if KVM_ADDRESS_SPACE_NUM > 1
2931         case KVM_CAP_MULTI_ADDRESS_SPACE:
2932                 return KVM_ADDRESS_SPACE_NUM;
2933 #endif
2934         case KVM_CAP_MAX_VCPU_ID:
2935                 return KVM_MAX_VCPU_ID;
2936         default:
2937                 break;
2938         }
2939         return kvm_vm_ioctl_check_extension(kvm, arg);
2940 }
2941
2942 static long kvm_vm_ioctl(struct file *filp,
2943                            unsigned int ioctl, unsigned long arg)
2944 {
2945         struct kvm *kvm = filp->private_data;
2946         void __user *argp = (void __user *)arg;
2947         int r;
2948
2949         if (kvm->mm != current->mm)
2950                 return -EIO;
2951         switch (ioctl) {
2952         case KVM_CREATE_VCPU:
2953                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2954                 break;
2955         case KVM_SET_USER_MEMORY_REGION: {
2956                 struct kvm_userspace_memory_region kvm_userspace_mem;
2957
2958                 r = -EFAULT;
2959                 if (copy_from_user(&kvm_userspace_mem, argp,
2960                                                 sizeof(kvm_userspace_mem)))
2961                         goto out;
2962
2963                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2964                 break;
2965         }
2966         case KVM_GET_DIRTY_LOG: {
2967                 struct kvm_dirty_log log;
2968
2969                 r = -EFAULT;
2970                 if (copy_from_user(&log, argp, sizeof(log)))
2971                         goto out;
2972                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2973                 break;
2974         }
2975 #ifdef CONFIG_KVM_MMIO
2976         case KVM_REGISTER_COALESCED_MMIO: {
2977                 struct kvm_coalesced_mmio_zone zone;
2978
2979                 r = -EFAULT;
2980                 if (copy_from_user(&zone, argp, sizeof(zone)))
2981                         goto out;
2982                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2983                 break;
2984         }
2985         case KVM_UNREGISTER_COALESCED_MMIO: {
2986                 struct kvm_coalesced_mmio_zone zone;
2987
2988                 r = -EFAULT;
2989                 if (copy_from_user(&zone, argp, sizeof(zone)))
2990                         goto out;
2991                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2992                 break;
2993         }
2994 #endif
2995         case KVM_IRQFD: {
2996                 struct kvm_irqfd data;
2997
2998                 r = -EFAULT;
2999                 if (copy_from_user(&data, argp, sizeof(data)))
3000                         goto out;
3001                 r = kvm_irqfd(kvm, &data);
3002                 break;
3003         }
3004         case KVM_IOEVENTFD: {
3005                 struct kvm_ioeventfd data;
3006
3007                 r = -EFAULT;
3008                 if (copy_from_user(&data, argp, sizeof(data)))
3009                         goto out;
3010                 r = kvm_ioeventfd(kvm, &data);
3011                 break;
3012         }
3013 #ifdef CONFIG_HAVE_KVM_MSI
3014         case KVM_SIGNAL_MSI: {
3015                 struct kvm_msi msi;
3016
3017                 r = -EFAULT;
3018                 if (copy_from_user(&msi, argp, sizeof(msi)))
3019                         goto out;
3020                 r = kvm_send_userspace_msi(kvm, &msi);
3021                 break;
3022         }
3023 #endif
3024 #ifdef __KVM_HAVE_IRQ_LINE
3025         case KVM_IRQ_LINE_STATUS:
3026         case KVM_IRQ_LINE: {
3027                 struct kvm_irq_level irq_event;
3028
3029                 r = -EFAULT;
3030                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3031                         goto out;
3032
3033                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3034                                         ioctl == KVM_IRQ_LINE_STATUS);
3035                 if (r)
3036                         goto out;
3037
3038                 r = -EFAULT;
3039                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3040                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3041                                 goto out;
3042                 }
3043
3044                 r = 0;
3045                 break;
3046         }
3047 #endif
3048 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3049         case KVM_SET_GSI_ROUTING: {
3050                 struct kvm_irq_routing routing;
3051                 struct kvm_irq_routing __user *urouting;
3052                 struct kvm_irq_routing_entry *entries = NULL;
3053
3054                 r = -EFAULT;
3055                 if (copy_from_user(&routing, argp, sizeof(routing)))
3056                         goto out;
3057                 r = -EINVAL;
3058                 if (!kvm_arch_can_set_irq_routing(kvm))
3059                         goto out;
3060                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3061                         goto out;
3062                 if (routing.flags)
3063                         goto out;
3064                 if (routing.nr) {
3065                         r = -ENOMEM;
3066                         entries = vmalloc(routing.nr * sizeof(*entries));
3067                         if (!entries)
3068                                 goto out;
3069                         r = -EFAULT;
3070                         urouting = argp;
3071                         if (copy_from_user(entries, urouting->entries,
3072                                            routing.nr * sizeof(*entries)))
3073                                 goto out_free_irq_routing;
3074                 }
3075                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3076                                         routing.flags);
3077 out_free_irq_routing:
3078                 vfree(entries);
3079                 break;
3080         }
3081 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3082         case KVM_CREATE_DEVICE: {
3083                 struct kvm_create_device cd;
3084
3085                 r = -EFAULT;
3086                 if (copy_from_user(&cd, argp, sizeof(cd)))
3087                         goto out;
3088
3089                 r = kvm_ioctl_create_device(kvm, &cd);
3090                 if (r)
3091                         goto out;
3092
3093                 r = -EFAULT;
3094                 if (copy_to_user(argp, &cd, sizeof(cd)))
3095                         goto out;
3096
3097                 r = 0;
3098                 break;
3099         }
3100         case KVM_CHECK_EXTENSION:
3101                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3102                 break;
3103         default:
3104                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3105         }
3106 out:
3107         return r;
3108 }
3109
3110 #ifdef CONFIG_KVM_COMPAT
3111 struct compat_kvm_dirty_log {
3112         __u32 slot;
3113         __u32 padding1;
3114         union {
3115                 compat_uptr_t dirty_bitmap; /* one bit per page */
3116                 __u64 padding2;
3117         };
3118 };
3119
3120 static long kvm_vm_compat_ioctl(struct file *filp,
3121                            unsigned int ioctl, unsigned long arg)
3122 {
3123         struct kvm *kvm = filp->private_data;
3124         int r;
3125
3126         if (kvm->mm != current->mm)
3127                 return -EIO;
3128         switch (ioctl) {
3129         case KVM_GET_DIRTY_LOG: {
3130                 struct compat_kvm_dirty_log compat_log;
3131                 struct kvm_dirty_log log;
3132
3133                 if (copy_from_user(&compat_log, (void __user *)arg,
3134                                    sizeof(compat_log)))
3135                         return -EFAULT;
3136                 log.slot         = compat_log.slot;
3137                 log.padding1     = compat_log.padding1;
3138                 log.padding2     = compat_log.padding2;
3139                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3140
3141                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3142                 break;
3143         }
3144         default:
3145                 r = kvm_vm_ioctl(filp, ioctl, arg);
3146         }
3147         return r;
3148 }
3149 #endif
3150
3151 static struct file_operations kvm_vm_fops = {
3152         .release        = kvm_vm_release,
3153         .unlocked_ioctl = kvm_vm_ioctl,
3154 #ifdef CONFIG_KVM_COMPAT
3155         .compat_ioctl   = kvm_vm_compat_ioctl,
3156 #endif
3157         .llseek         = noop_llseek,
3158 };
3159
3160 static int kvm_dev_ioctl_create_vm(unsigned long type)
3161 {
3162         int r;
3163         struct kvm *kvm;
3164         struct file *file;
3165
3166         kvm = kvm_create_vm(type);
3167         if (IS_ERR(kvm))
3168                 return PTR_ERR(kvm);
3169 #ifdef CONFIG_KVM_MMIO
3170         r = kvm_coalesced_mmio_init(kvm);
3171         if (r < 0) {
3172                 kvm_put_kvm(kvm);
3173                 return r;
3174         }
3175 #endif
3176         r = get_unused_fd_flags(O_CLOEXEC);
3177         if (r < 0) {
3178                 kvm_put_kvm(kvm);
3179                 return r;
3180         }
3181         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3182         if (IS_ERR(file)) {
3183                 put_unused_fd(r);
3184                 kvm_put_kvm(kvm);
3185                 return PTR_ERR(file);
3186         }
3187
3188         /*
3189          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3190          * already set, with ->release() being kvm_vm_release().  In error
3191          * cases it will be called by the final fput(file) and will take
3192          * care of doing kvm_put_kvm(kvm).
3193          */
3194         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3195                 put_unused_fd(r);
3196                 fput(file);
3197                 return -ENOMEM;
3198         }
3199         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3200
3201         fd_install(r, file);
3202         return r;
3203 }
3204
3205 static long kvm_dev_ioctl(struct file *filp,
3206                           unsigned int ioctl, unsigned long arg)
3207 {
3208         long r = -EINVAL;
3209
3210         switch (ioctl) {
3211         case KVM_GET_API_VERSION:
3212                 if (arg)
3213                         goto out;
3214                 r = KVM_API_VERSION;
3215                 break;
3216         case KVM_CREATE_VM:
3217                 r = kvm_dev_ioctl_create_vm(arg);
3218                 break;
3219         case KVM_CHECK_EXTENSION:
3220                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3221                 break;
3222         case KVM_GET_VCPU_MMAP_SIZE:
3223                 if (arg)
3224                         goto out;
3225                 r = PAGE_SIZE;     /* struct kvm_run */
3226 #ifdef CONFIG_X86
3227                 r += PAGE_SIZE;    /* pio data page */
3228 #endif
3229 #ifdef CONFIG_KVM_MMIO
3230                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3231 #endif
3232                 break;
3233         case KVM_TRACE_ENABLE:
3234         case KVM_TRACE_PAUSE:
3235         case KVM_TRACE_DISABLE:
3236                 r = -EOPNOTSUPP;
3237                 break;
3238         default:
3239                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3240         }
3241 out:
3242         return r;
3243 }
3244
3245 static struct file_operations kvm_chardev_ops = {
3246         .unlocked_ioctl = kvm_dev_ioctl,
3247         .compat_ioctl   = kvm_dev_ioctl,
3248         .llseek         = noop_llseek,
3249 };
3250
3251 static struct miscdevice kvm_dev = {
3252         KVM_MINOR,
3253         "kvm",
3254         &kvm_chardev_ops,
3255 };
3256
3257 static void hardware_enable_nolock(void *junk)
3258 {
3259         int cpu = raw_smp_processor_id();
3260         int r;
3261
3262         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3263                 return;
3264
3265         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3266
3267         r = kvm_arch_hardware_enable();
3268
3269         if (r) {
3270                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3271                 atomic_inc(&hardware_enable_failed);
3272                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3273         }
3274 }
3275
3276 static int kvm_starting_cpu(unsigned int cpu)
3277 {
3278         raw_spin_lock(&kvm_count_lock);
3279         if (kvm_usage_count)
3280                 hardware_enable_nolock(NULL);
3281         raw_spin_unlock(&kvm_count_lock);
3282         return 0;
3283 }
3284
3285 static void hardware_disable_nolock(void *junk)
3286 {
3287         int cpu = raw_smp_processor_id();
3288
3289         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3290                 return;
3291         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3292         kvm_arch_hardware_disable();
3293 }
3294
3295 static int kvm_dying_cpu(unsigned int cpu)
3296 {
3297         raw_spin_lock(&kvm_count_lock);
3298         if (kvm_usage_count)
3299                 hardware_disable_nolock(NULL);
3300         raw_spin_unlock(&kvm_count_lock);
3301         return 0;
3302 }
3303
3304 static void hardware_disable_all_nolock(void)
3305 {
3306         BUG_ON(!kvm_usage_count);
3307
3308         kvm_usage_count--;
3309         if (!kvm_usage_count)
3310                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3311 }
3312
3313 static void hardware_disable_all(void)
3314 {
3315         raw_spin_lock(&kvm_count_lock);
3316         hardware_disable_all_nolock();
3317         raw_spin_unlock(&kvm_count_lock);
3318 }
3319
3320 static int hardware_enable_all(void)
3321 {
3322         int r = 0;
3323
3324         raw_spin_lock(&kvm_count_lock);
3325
3326         kvm_usage_count++;
3327         if (kvm_usage_count == 1) {
3328                 atomic_set(&hardware_enable_failed, 0);
3329                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3330
3331                 if (atomic_read(&hardware_enable_failed)) {
3332                         hardware_disable_all_nolock();
3333                         r = -EBUSY;
3334                 }
3335         }
3336
3337         raw_spin_unlock(&kvm_count_lock);
3338
3339         return r;
3340 }
3341
3342 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3343                       void *v)
3344 {
3345         /*
3346          * Some (well, at least mine) BIOSes hang on reboot if
3347          * in vmx root mode.
3348          *
3349          * And Intel TXT required VMX off for all cpu when system shutdown.
3350          */
3351         pr_info("kvm: exiting hardware virtualization\n");
3352         kvm_rebooting = true;
3353         on_each_cpu(hardware_disable_nolock, NULL, 1);
3354         return NOTIFY_OK;
3355 }
3356
3357 static struct notifier_block kvm_reboot_notifier = {
3358         .notifier_call = kvm_reboot,
3359         .priority = 0,
3360 };
3361
3362 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3363 {
3364         int i;
3365
3366         for (i = 0; i < bus->dev_count; i++) {
3367                 struct kvm_io_device *pos = bus->range[i].dev;
3368
3369                 kvm_iodevice_destructor(pos);
3370         }
3371         kfree(bus);
3372 }
3373
3374 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3375                                  const struct kvm_io_range *r2)
3376 {
3377         gpa_t addr1 = r1->addr;
3378         gpa_t addr2 = r2->addr;
3379
3380         if (addr1 < addr2)
3381                 return -1;
3382
3383         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3384          * accept any overlapping write.  Any order is acceptable for
3385          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3386          * we process all of them.
3387          */
3388         if (r2->len) {
3389                 addr1 += r1->len;
3390                 addr2 += r2->len;
3391         }
3392
3393         if (addr1 > addr2)
3394                 return 1;
3395
3396         return 0;
3397 }
3398
3399 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3400 {
3401         return kvm_io_bus_cmp(p1, p2);
3402 }
3403
3404 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3405                           gpa_t addr, int len)
3406 {
3407         bus->range[bus->dev_count++] = (struct kvm_io_range) {
3408                 .addr = addr,
3409                 .len = len,
3410                 .dev = dev,
3411         };
3412
3413         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3414                 kvm_io_bus_sort_cmp, NULL);
3415
3416         return 0;
3417 }
3418
3419 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3420                              gpa_t addr, int len)
3421 {
3422         struct kvm_io_range *range, key;
3423         int off;
3424
3425         key = (struct kvm_io_range) {
3426                 .addr = addr,
3427                 .len = len,
3428         };
3429
3430         range = bsearch(&key, bus->range, bus->dev_count,
3431                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3432         if (range == NULL)
3433                 return -ENOENT;
3434
3435         off = range - bus->range;
3436
3437         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3438                 off--;
3439
3440         return off;
3441 }
3442
3443 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3444                               struct kvm_io_range *range, const void *val)
3445 {
3446         int idx;
3447
3448         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3449         if (idx < 0)
3450                 return -EOPNOTSUPP;
3451
3452         while (idx < bus->dev_count &&
3453                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3454                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3455                                         range->len, val))
3456                         return idx;
3457                 idx++;
3458         }
3459
3460         return -EOPNOTSUPP;
3461 }
3462
3463 /* kvm_io_bus_write - called under kvm->slots_lock */
3464 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3465                      int len, const void *val)
3466 {
3467         struct kvm_io_bus *bus;
3468         struct kvm_io_range range;
3469         int r;
3470
3471         range = (struct kvm_io_range) {
3472                 .addr = addr,
3473                 .len = len,
3474         };
3475
3476         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3477         if (!bus)
3478                 return -ENOMEM;
3479         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3480         return r < 0 ? r : 0;
3481 }
3482
3483 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3484 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3485                             gpa_t addr, int len, const void *val, long cookie)
3486 {
3487         struct kvm_io_bus *bus;
3488         struct kvm_io_range range;
3489
3490         range = (struct kvm_io_range) {
3491                 .addr = addr,
3492                 .len = len,
3493         };
3494
3495         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3496         if (!bus)
3497                 return -ENOMEM;
3498
3499         /* First try the device referenced by cookie. */
3500         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3501             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3502                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3503                                         val))
3504                         return cookie;
3505
3506         /*
3507          * cookie contained garbage; fall back to search and return the
3508          * correct cookie value.
3509          */
3510         return __kvm_io_bus_write(vcpu, bus, &range, val);
3511 }
3512
3513 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3514                              struct kvm_io_range *range, void *val)
3515 {
3516         int idx;
3517
3518         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3519         if (idx < 0)
3520                 return -EOPNOTSUPP;
3521
3522         while (idx < bus->dev_count &&
3523                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3524                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3525                                        range->len, val))
3526                         return idx;
3527                 idx++;
3528         }
3529
3530         return -EOPNOTSUPP;
3531 }
3532 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3533
3534 /* kvm_io_bus_read - called under kvm->slots_lock */
3535 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3536                     int len, void *val)
3537 {
3538         struct kvm_io_bus *bus;
3539         struct kvm_io_range range;
3540         int r;
3541
3542         range = (struct kvm_io_range) {
3543                 .addr = addr,
3544                 .len = len,
3545         };
3546
3547         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3548         if (!bus)
3549                 return -ENOMEM;
3550         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3551         return r < 0 ? r : 0;
3552 }
3553
3554
3555 /* Caller must hold slots_lock. */
3556 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3557                             int len, struct kvm_io_device *dev)
3558 {
3559         struct kvm_io_bus *new_bus, *bus;
3560
3561         bus = kvm_get_bus(kvm, bus_idx);
3562         if (!bus)
3563                 return -ENOMEM;
3564
3565         /* exclude ioeventfd which is limited by maximum fd */
3566         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3567                 return -ENOSPC;
3568
3569         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3570                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3571         if (!new_bus)
3572                 return -ENOMEM;
3573         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3574                sizeof(struct kvm_io_range)));
3575         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3576         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3577         synchronize_srcu_expedited(&kvm->srcu);
3578         kfree(bus);
3579
3580         return 0;
3581 }
3582
3583 /* Caller must hold slots_lock. */
3584 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3585                                struct kvm_io_device *dev)
3586 {
3587         int i;
3588         struct kvm_io_bus *new_bus, *bus;
3589
3590         bus = kvm_get_bus(kvm, bus_idx);
3591         if (!bus)
3592                 return;
3593
3594         for (i = 0; i < bus->dev_count; i++)
3595                 if (bus->range[i].dev == dev) {
3596                         break;
3597                 }
3598
3599         if (i == bus->dev_count)
3600                 return;
3601
3602         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3603                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3604         if (!new_bus)  {
3605                 pr_err("kvm: failed to shrink bus, removing it completely\n");
3606                 goto broken;
3607         }
3608
3609         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3610         new_bus->dev_count--;
3611         memcpy(new_bus->range + i, bus->range + i + 1,
3612                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3613
3614 broken:
3615         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3616         synchronize_srcu_expedited(&kvm->srcu);
3617         kfree(bus);
3618         return;
3619 }
3620
3621 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3622                                          gpa_t addr)
3623 {
3624         struct kvm_io_bus *bus;
3625         int dev_idx, srcu_idx;
3626         struct kvm_io_device *iodev = NULL;
3627
3628         srcu_idx = srcu_read_lock(&kvm->srcu);
3629
3630         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3631         if (!bus)
3632                 goto out_unlock;
3633
3634         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3635         if (dev_idx < 0)
3636                 goto out_unlock;
3637
3638         iodev = bus->range[dev_idx].dev;
3639
3640 out_unlock:
3641         srcu_read_unlock(&kvm->srcu, srcu_idx);
3642
3643         return iodev;
3644 }
3645 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3646
3647 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3648                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3649                            const char *fmt)
3650 {
3651         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3652                                           inode->i_private;
3653
3654         /* The debugfs files are a reference to the kvm struct which
3655          * is still valid when kvm_destroy_vm is called.
3656          * To avoid the race between open and the removal of the debugfs
3657          * directory we test against the users count.
3658          */
3659         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3660                 return -ENOENT;
3661
3662         if (simple_attr_open(inode, file, get, set, fmt)) {
3663                 kvm_put_kvm(stat_data->kvm);
3664                 return -ENOMEM;
3665         }
3666
3667         return 0;
3668 }
3669
3670 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3671 {
3672         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3673                                           inode->i_private;
3674
3675         simple_attr_release(inode, file);
3676         kvm_put_kvm(stat_data->kvm);
3677
3678         return 0;
3679 }
3680
3681 static int vm_stat_get_per_vm(void *data, u64 *val)
3682 {
3683         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3684
3685         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3686
3687         return 0;
3688 }
3689
3690 static int vm_stat_clear_per_vm(void *data, u64 val)
3691 {
3692         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3693
3694         if (val)
3695                 return -EINVAL;
3696
3697         *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3698
3699         return 0;
3700 }
3701
3702 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3703 {
3704         __simple_attr_check_format("%llu\n", 0ull);
3705         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3706                                 vm_stat_clear_per_vm, "%llu\n");
3707 }
3708
3709 static const struct file_operations vm_stat_get_per_vm_fops = {
3710         .owner   = THIS_MODULE,
3711         .open    = vm_stat_get_per_vm_open,
3712         .release = kvm_debugfs_release,
3713         .read    = simple_attr_read,
3714         .write   = simple_attr_write,
3715         .llseek  = no_llseek,
3716 };
3717
3718 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3719 {
3720         int i;
3721         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3722         struct kvm_vcpu *vcpu;
3723
3724         *val = 0;
3725
3726         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3727                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3728
3729         return 0;
3730 }
3731
3732 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3733 {
3734         int i;
3735         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3736         struct kvm_vcpu *vcpu;
3737
3738         if (val)
3739                 return -EINVAL;
3740
3741         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3742                 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3743
3744         return 0;
3745 }
3746
3747 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3748 {
3749         __simple_attr_check_format("%llu\n", 0ull);
3750         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3751                                  vcpu_stat_clear_per_vm, "%llu\n");
3752 }
3753
3754 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3755         .owner   = THIS_MODULE,
3756         .open    = vcpu_stat_get_per_vm_open,
3757         .release = kvm_debugfs_release,
3758         .read    = simple_attr_read,
3759         .write   = simple_attr_write,
3760         .llseek  = no_llseek,
3761 };
3762
3763 static const struct file_operations *stat_fops_per_vm[] = {
3764         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3765         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3766 };
3767
3768 static int vm_stat_get(void *_offset, u64 *val)
3769 {
3770         unsigned offset = (long)_offset;
3771         struct kvm *kvm;
3772         struct kvm_stat_data stat_tmp = {.offset = offset};
3773         u64 tmp_val;
3774
3775         *val = 0;
3776         spin_lock(&kvm_lock);
3777         list_for_each_entry(kvm, &vm_list, vm_list) {
3778                 stat_tmp.kvm = kvm;
3779                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3780                 *val += tmp_val;
3781         }
3782         spin_unlock(&kvm_lock);
3783         return 0;
3784 }
3785
3786 static int vm_stat_clear(void *_offset, u64 val)
3787 {
3788         unsigned offset = (long)_offset;
3789         struct kvm *kvm;
3790         struct kvm_stat_data stat_tmp = {.offset = offset};
3791
3792         if (val)
3793                 return -EINVAL;
3794
3795         spin_lock(&kvm_lock);
3796         list_for_each_entry(kvm, &vm_list, vm_list) {
3797                 stat_tmp.kvm = kvm;
3798                 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3799         }
3800         spin_unlock(&kvm_lock);
3801
3802         return 0;
3803 }
3804
3805 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3806
3807 static int vcpu_stat_get(void *_offset, u64 *val)
3808 {
3809         unsigned offset = (long)_offset;
3810         struct kvm *kvm;
3811         struct kvm_stat_data stat_tmp = {.offset = offset};
3812         u64 tmp_val;
3813
3814         *val = 0;
3815         spin_lock(&kvm_lock);
3816         list_for_each_entry(kvm, &vm_list, vm_list) {
3817                 stat_tmp.kvm = kvm;
3818                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3819                 *val += tmp_val;
3820         }
3821         spin_unlock(&kvm_lock);
3822         return 0;
3823 }
3824
3825 static int vcpu_stat_clear(void *_offset, u64 val)
3826 {
3827         unsigned offset = (long)_offset;
3828         struct kvm *kvm;
3829         struct kvm_stat_data stat_tmp = {.offset = offset};
3830
3831         if (val)
3832                 return -EINVAL;
3833
3834         spin_lock(&kvm_lock);
3835         list_for_each_entry(kvm, &vm_list, vm_list) {
3836                 stat_tmp.kvm = kvm;
3837                 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3838         }
3839         spin_unlock(&kvm_lock);
3840
3841         return 0;
3842 }
3843
3844 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3845                         "%llu\n");
3846
3847 static const struct file_operations *stat_fops[] = {
3848         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3849         [KVM_STAT_VM]   = &vm_stat_fops,
3850 };
3851
3852 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3853 {
3854         struct kobj_uevent_env *env;
3855         unsigned long long created, active;
3856
3857         if (!kvm_dev.this_device || !kvm)
3858                 return;
3859
3860         spin_lock(&kvm_lock);
3861         if (type == KVM_EVENT_CREATE_VM) {
3862                 kvm_createvm_count++;
3863                 kvm_active_vms++;
3864         } else if (type == KVM_EVENT_DESTROY_VM) {
3865                 kvm_active_vms--;
3866         }
3867         created = kvm_createvm_count;
3868         active = kvm_active_vms;
3869         spin_unlock(&kvm_lock);
3870
3871         env = kzalloc(sizeof(*env), GFP_KERNEL);
3872         if (!env)
3873                 return;
3874
3875         add_uevent_var(env, "CREATED=%llu", created);
3876         add_uevent_var(env, "COUNT=%llu", active);
3877
3878         if (type == KVM_EVENT_CREATE_VM) {
3879                 add_uevent_var(env, "EVENT=create");
3880                 kvm->userspace_pid = task_pid_nr(current);
3881         } else if (type == KVM_EVENT_DESTROY_VM) {
3882                 add_uevent_var(env, "EVENT=destroy");
3883         }
3884         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3885
3886         if (kvm->debugfs_dentry) {
3887                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3888
3889                 if (p) {
3890                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3891                         if (!IS_ERR(tmp))
3892                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
3893                         kfree(p);
3894                 }
3895         }
3896         /* no need for checks, since we are adding at most only 5 keys */
3897         env->envp[env->envp_idx++] = NULL;
3898         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3899         kfree(env);
3900 }
3901
3902 static int kvm_init_debug(void)
3903 {
3904         int r = -EEXIST;
3905         struct kvm_stats_debugfs_item *p;
3906
3907         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3908         if (kvm_debugfs_dir == NULL)
3909                 goto out;
3910
3911         kvm_debugfs_num_entries = 0;
3912         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3913                 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3914                                          (void *)(long)p->offset,
3915                                          stat_fops[p->kind]))
3916                         goto out_dir;
3917         }
3918
3919         return 0;
3920
3921 out_dir:
3922         debugfs_remove_recursive(kvm_debugfs_dir);
3923 out:
3924         return r;
3925 }
3926
3927 static int kvm_suspend(void)
3928 {
3929         if (kvm_usage_count)
3930                 hardware_disable_nolock(NULL);
3931         return 0;
3932 }
3933
3934 static void kvm_resume(void)
3935 {
3936         if (kvm_usage_count) {
3937                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3938                 hardware_enable_nolock(NULL);
3939         }
3940 }
3941
3942 static struct syscore_ops kvm_syscore_ops = {
3943         .suspend = kvm_suspend,
3944         .resume = kvm_resume,
3945 };
3946
3947 static inline
3948 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3949 {
3950         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3951 }
3952
3953 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3954 {
3955         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3956
3957         if (vcpu->preempted)
3958                 vcpu->preempted = false;
3959
3960         kvm_arch_sched_in(vcpu, cpu);
3961
3962         kvm_arch_vcpu_load(vcpu, cpu);
3963 }
3964
3965 static void kvm_sched_out(struct preempt_notifier *pn,
3966                           struct task_struct *next)
3967 {
3968         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3969
3970         if (current->state == TASK_RUNNING)
3971                 vcpu->preempted = true;
3972         kvm_arch_vcpu_put(vcpu);
3973 }
3974
3975 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3976                   struct module *module)
3977 {
3978         int r;
3979         int cpu;
3980
3981         r = kvm_arch_init(opaque);
3982         if (r)
3983                 goto out_fail;
3984
3985         /*
3986          * kvm_arch_init makes sure there's at most one caller
3987          * for architectures that support multiple implementations,
3988          * like intel and amd on x86.
3989          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3990          * conflicts in case kvm is already setup for another implementation.
3991          */
3992         r = kvm_irqfd_init();
3993         if (r)
3994                 goto out_irqfd;
3995
3996         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3997                 r = -ENOMEM;
3998                 goto out_free_0;
3999         }
4000
4001         r = kvm_arch_hardware_setup();
4002         if (r < 0)
4003                 goto out_free_0a;
4004
4005         for_each_online_cpu(cpu) {
4006                 smp_call_function_single(cpu,
4007                                 kvm_arch_check_processor_compat,
4008                                 &r, 1);
4009                 if (r < 0)
4010                         goto out_free_1;
4011         }
4012
4013         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4014                                       kvm_starting_cpu, kvm_dying_cpu);
4015         if (r)
4016                 goto out_free_2;
4017         register_reboot_notifier(&kvm_reboot_notifier);
4018
4019         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4020         if (!vcpu_align)
4021                 vcpu_align = __alignof__(struct kvm_vcpu);
4022         kvm_vcpu_cache =
4023                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4024                                            SLAB_ACCOUNT,
4025                                            offsetof(struct kvm_vcpu, arch),
4026                                            sizeof_field(struct kvm_vcpu, arch),
4027                                            NULL);
4028         if (!kvm_vcpu_cache) {
4029                 r = -ENOMEM;
4030                 goto out_free_3;
4031         }
4032
4033         r = kvm_async_pf_init();
4034         if (r)
4035                 goto out_free;
4036
4037         kvm_chardev_ops.owner = module;
4038         kvm_vm_fops.owner = module;
4039         kvm_vcpu_fops.owner = module;
4040
4041         r = misc_register(&kvm_dev);
4042         if (r) {
4043                 pr_err("kvm: misc device register failed\n");
4044                 goto out_unreg;
4045         }
4046
4047         register_syscore_ops(&kvm_syscore_ops);
4048
4049         kvm_preempt_ops.sched_in = kvm_sched_in;
4050         kvm_preempt_ops.sched_out = kvm_sched_out;
4051
4052         r = kvm_init_debug();
4053         if (r) {
4054                 pr_err("kvm: create debugfs files failed\n");
4055                 goto out_undebugfs;
4056         }
4057
4058         r = kvm_vfio_ops_init();
4059         WARN_ON(r);
4060
4061         return 0;
4062
4063 out_undebugfs:
4064         unregister_syscore_ops(&kvm_syscore_ops);
4065         misc_deregister(&kvm_dev);
4066 out_unreg:
4067         kvm_async_pf_deinit();
4068 out_free:
4069         kmem_cache_destroy(kvm_vcpu_cache);
4070 out_free_3:
4071         unregister_reboot_notifier(&kvm_reboot_notifier);
4072         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4073 out_free_2:
4074 out_free_1:
4075         kvm_arch_hardware_unsetup();
4076 out_free_0a:
4077         free_cpumask_var(cpus_hardware_enabled);
4078 out_free_0:
4079         kvm_irqfd_exit();
4080 out_irqfd:
4081         kvm_arch_exit();
4082 out_fail:
4083         return r;
4084 }
4085 EXPORT_SYMBOL_GPL(kvm_init);
4086
4087 void kvm_exit(void)
4088 {
4089         debugfs_remove_recursive(kvm_debugfs_dir);
4090         misc_deregister(&kvm_dev);
4091         kmem_cache_destroy(kvm_vcpu_cache);
4092         kvm_async_pf_deinit();
4093         unregister_syscore_ops(&kvm_syscore_ops);
4094         unregister_reboot_notifier(&kvm_reboot_notifier);
4095         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4096         on_each_cpu(hardware_disable_nolock, NULL, 1);
4097         kvm_arch_hardware_unsetup();
4098         kvm_arch_exit();
4099         kvm_irqfd_exit();
4100         free_cpumask_var(cpus_hardware_enabled);
4101         kvm_vfio_ops_exit();
4102 }
4103 EXPORT_SYMBOL_GPL(kvm_exit);