Merge branch 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88
89 /*
90  * Ordering of locks:
91  *
92  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93  */
94
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115                            unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118                                   unsigned long arg);
119 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
120 #else
121 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
122                                 unsigned long arg) { return -EINVAL; }
123 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl
124 #endif
125 static int hardware_enable_all(void);
126 static void hardware_disable_all(void);
127
128 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
129
130 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
131
132 __visible bool kvm_rebooting;
133 EXPORT_SYMBOL_GPL(kvm_rebooting);
134
135 static bool largepages_enabled = true;
136
137 #define KVM_EVENT_CREATE_VM 0
138 #define KVM_EVENT_DESTROY_VM 1
139 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
140 static unsigned long long kvm_createvm_count;
141 static unsigned long long kvm_active_vms;
142
143 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
144                 unsigned long start, unsigned long end, bool blockable)
145 {
146         return 0;
147 }
148
149 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
150 {
151         if (pfn_valid(pfn))
152                 return PageReserved(pfn_to_page(pfn));
153
154         return true;
155 }
156
157 /*
158  * Switches to specified vcpu, until a matching vcpu_put()
159  */
160 void vcpu_load(struct kvm_vcpu *vcpu)
161 {
162         int cpu = get_cpu();
163         preempt_notifier_register(&vcpu->preempt_notifier);
164         kvm_arch_vcpu_load(vcpu, cpu);
165         put_cpu();
166 }
167 EXPORT_SYMBOL_GPL(vcpu_load);
168
169 void vcpu_put(struct kvm_vcpu *vcpu)
170 {
171         preempt_disable();
172         kvm_arch_vcpu_put(vcpu);
173         preempt_notifier_unregister(&vcpu->preempt_notifier);
174         preempt_enable();
175 }
176 EXPORT_SYMBOL_GPL(vcpu_put);
177
178 /* TODO: merge with kvm_arch_vcpu_should_kick */
179 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
180 {
181         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
182
183         /*
184          * We need to wait for the VCPU to reenable interrupts and get out of
185          * READING_SHADOW_PAGE_TABLES mode.
186          */
187         if (req & KVM_REQUEST_WAIT)
188                 return mode != OUTSIDE_GUEST_MODE;
189
190         /*
191          * Need to kick a running VCPU, but otherwise there is nothing to do.
192          */
193         return mode == IN_GUEST_MODE;
194 }
195
196 static void ack_flush(void *_completed)
197 {
198 }
199
200 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
201 {
202         if (unlikely(!cpus))
203                 cpus = cpu_online_mask;
204
205         if (cpumask_empty(cpus))
206                 return false;
207
208         smp_call_function_many(cpus, ack_flush, NULL, wait);
209         return true;
210 }
211
212 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
213                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
214 {
215         int i, cpu, me;
216         struct kvm_vcpu *vcpu;
217         bool called;
218
219         me = get_cpu();
220
221         kvm_for_each_vcpu(i, vcpu, kvm) {
222                 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
223                         continue;
224
225                 kvm_make_request(req, vcpu);
226                 cpu = vcpu->cpu;
227
228                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
229                         continue;
230
231                 if (tmp != NULL && cpu != -1 && cpu != me &&
232                     kvm_request_needs_ipi(vcpu, req))
233                         __cpumask_set_cpu(cpu, tmp);
234         }
235
236         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
237         put_cpu();
238
239         return called;
240 }
241
242 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
243 {
244         cpumask_var_t cpus;
245         bool called;
246
247         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
248
249         called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
250
251         free_cpumask_var(cpus);
252         return called;
253 }
254
255 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
256 void kvm_flush_remote_tlbs(struct kvm *kvm)
257 {
258         /*
259          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
260          * kvm_make_all_cpus_request.
261          */
262         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
263
264         /*
265          * We want to publish modifications to the page tables before reading
266          * mode. Pairs with a memory barrier in arch-specific code.
267          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
268          * and smp_mb in walk_shadow_page_lockless_begin/end.
269          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
270          *
271          * There is already an smp_mb__after_atomic() before
272          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
273          * barrier here.
274          */
275         if (!kvm_arch_flush_remote_tlb(kvm)
276             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
277                 ++kvm->stat.remote_tlb_flush;
278         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
279 }
280 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
281 #endif
282
283 void kvm_reload_remote_mmus(struct kvm *kvm)
284 {
285         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
286 }
287
288 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
289 {
290         struct page *page;
291         int r;
292
293         mutex_init(&vcpu->mutex);
294         vcpu->cpu = -1;
295         vcpu->kvm = kvm;
296         vcpu->vcpu_id = id;
297         vcpu->pid = NULL;
298         init_swait_queue_head(&vcpu->wq);
299         kvm_async_pf_vcpu_init(vcpu);
300
301         vcpu->pre_pcpu = -1;
302         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
303
304         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
305         if (!page) {
306                 r = -ENOMEM;
307                 goto fail;
308         }
309         vcpu->run = page_address(page);
310
311         kvm_vcpu_set_in_spin_loop(vcpu, false);
312         kvm_vcpu_set_dy_eligible(vcpu, false);
313         vcpu->preempted = false;
314
315         r = kvm_arch_vcpu_init(vcpu);
316         if (r < 0)
317                 goto fail_free_run;
318         return 0;
319
320 fail_free_run:
321         free_page((unsigned long)vcpu->run);
322 fail:
323         return r;
324 }
325 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
326
327 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
328 {
329         /*
330          * no need for rcu_read_lock as VCPU_RUN is the only place that
331          * will change the vcpu->pid pointer and on uninit all file
332          * descriptors are already gone.
333          */
334         put_pid(rcu_dereference_protected(vcpu->pid, 1));
335         kvm_arch_vcpu_uninit(vcpu);
336         free_page((unsigned long)vcpu->run);
337 }
338 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
339
340 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
341 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
342 {
343         return container_of(mn, struct kvm, mmu_notifier);
344 }
345
346 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
347                                         struct mm_struct *mm,
348                                         unsigned long address,
349                                         pte_t pte)
350 {
351         struct kvm *kvm = mmu_notifier_to_kvm(mn);
352         int idx;
353
354         idx = srcu_read_lock(&kvm->srcu);
355         spin_lock(&kvm->mmu_lock);
356         kvm->mmu_notifier_seq++;
357
358         if (kvm_set_spte_hva(kvm, address, pte))
359                 kvm_flush_remote_tlbs(kvm);
360
361         spin_unlock(&kvm->mmu_lock);
362         srcu_read_unlock(&kvm->srcu, idx);
363 }
364
365 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
366                                         const struct mmu_notifier_range *range)
367 {
368         struct kvm *kvm = mmu_notifier_to_kvm(mn);
369         int need_tlb_flush = 0, idx;
370         int ret;
371
372         idx = srcu_read_lock(&kvm->srcu);
373         spin_lock(&kvm->mmu_lock);
374         /*
375          * The count increase must become visible at unlock time as no
376          * spte can be established without taking the mmu_lock and
377          * count is also read inside the mmu_lock critical section.
378          */
379         kvm->mmu_notifier_count++;
380         need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
381         need_tlb_flush |= kvm->tlbs_dirty;
382         /* we've to flush the tlb before the pages can be freed */
383         if (need_tlb_flush)
384                 kvm_flush_remote_tlbs(kvm);
385
386         spin_unlock(&kvm->mmu_lock);
387
388         ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
389                                         range->end, range->blockable);
390
391         srcu_read_unlock(&kvm->srcu, idx);
392
393         return ret;
394 }
395
396 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
397                                         const struct mmu_notifier_range *range)
398 {
399         struct kvm *kvm = mmu_notifier_to_kvm(mn);
400
401         spin_lock(&kvm->mmu_lock);
402         /*
403          * This sequence increase will notify the kvm page fault that
404          * the page that is going to be mapped in the spte could have
405          * been freed.
406          */
407         kvm->mmu_notifier_seq++;
408         smp_wmb();
409         /*
410          * The above sequence increase must be visible before the
411          * below count decrease, which is ensured by the smp_wmb above
412          * in conjunction with the smp_rmb in mmu_notifier_retry().
413          */
414         kvm->mmu_notifier_count--;
415         spin_unlock(&kvm->mmu_lock);
416
417         BUG_ON(kvm->mmu_notifier_count < 0);
418 }
419
420 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
421                                               struct mm_struct *mm,
422                                               unsigned long start,
423                                               unsigned long end)
424 {
425         struct kvm *kvm = mmu_notifier_to_kvm(mn);
426         int young, idx;
427
428         idx = srcu_read_lock(&kvm->srcu);
429         spin_lock(&kvm->mmu_lock);
430
431         young = kvm_age_hva(kvm, start, end);
432         if (young)
433                 kvm_flush_remote_tlbs(kvm);
434
435         spin_unlock(&kvm->mmu_lock);
436         srcu_read_unlock(&kvm->srcu, idx);
437
438         return young;
439 }
440
441 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
442                                         struct mm_struct *mm,
443                                         unsigned long start,
444                                         unsigned long end)
445 {
446         struct kvm *kvm = mmu_notifier_to_kvm(mn);
447         int young, idx;
448
449         idx = srcu_read_lock(&kvm->srcu);
450         spin_lock(&kvm->mmu_lock);
451         /*
452          * Even though we do not flush TLB, this will still adversely
453          * affect performance on pre-Haswell Intel EPT, where there is
454          * no EPT Access Bit to clear so that we have to tear down EPT
455          * tables instead. If we find this unacceptable, we can always
456          * add a parameter to kvm_age_hva so that it effectively doesn't
457          * do anything on clear_young.
458          *
459          * Also note that currently we never issue secondary TLB flushes
460          * from clear_young, leaving this job up to the regular system
461          * cadence. If we find this inaccurate, we might come up with a
462          * more sophisticated heuristic later.
463          */
464         young = kvm_age_hva(kvm, start, end);
465         spin_unlock(&kvm->mmu_lock);
466         srcu_read_unlock(&kvm->srcu, idx);
467
468         return young;
469 }
470
471 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
472                                        struct mm_struct *mm,
473                                        unsigned long address)
474 {
475         struct kvm *kvm = mmu_notifier_to_kvm(mn);
476         int young, idx;
477
478         idx = srcu_read_lock(&kvm->srcu);
479         spin_lock(&kvm->mmu_lock);
480         young = kvm_test_age_hva(kvm, address);
481         spin_unlock(&kvm->mmu_lock);
482         srcu_read_unlock(&kvm->srcu, idx);
483
484         return young;
485 }
486
487 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
488                                      struct mm_struct *mm)
489 {
490         struct kvm *kvm = mmu_notifier_to_kvm(mn);
491         int idx;
492
493         idx = srcu_read_lock(&kvm->srcu);
494         kvm_arch_flush_shadow_all(kvm);
495         srcu_read_unlock(&kvm->srcu, idx);
496 }
497
498 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
499         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
500         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
501         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
502         .clear_young            = kvm_mmu_notifier_clear_young,
503         .test_young             = kvm_mmu_notifier_test_young,
504         .change_pte             = kvm_mmu_notifier_change_pte,
505         .release                = kvm_mmu_notifier_release,
506 };
507
508 static int kvm_init_mmu_notifier(struct kvm *kvm)
509 {
510         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
511         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
512 }
513
514 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
515
516 static int kvm_init_mmu_notifier(struct kvm *kvm)
517 {
518         return 0;
519 }
520
521 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
522
523 static struct kvm_memslots *kvm_alloc_memslots(void)
524 {
525         int i;
526         struct kvm_memslots *slots;
527
528         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
529         if (!slots)
530                 return NULL;
531
532         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
533                 slots->id_to_index[i] = slots->memslots[i].id = i;
534
535         return slots;
536 }
537
538 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
539 {
540         if (!memslot->dirty_bitmap)
541                 return;
542
543         kvfree(memslot->dirty_bitmap);
544         memslot->dirty_bitmap = NULL;
545 }
546
547 /*
548  * Free any memory in @free but not in @dont.
549  */
550 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
551                               struct kvm_memory_slot *dont)
552 {
553         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
554                 kvm_destroy_dirty_bitmap(free);
555
556         kvm_arch_free_memslot(kvm, free, dont);
557
558         free->npages = 0;
559 }
560
561 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
562 {
563         struct kvm_memory_slot *memslot;
564
565         if (!slots)
566                 return;
567
568         kvm_for_each_memslot(memslot, slots)
569                 kvm_free_memslot(kvm, memslot, NULL);
570
571         kvfree(slots);
572 }
573
574 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
575 {
576         int i;
577
578         if (!kvm->debugfs_dentry)
579                 return;
580
581         debugfs_remove_recursive(kvm->debugfs_dentry);
582
583         if (kvm->debugfs_stat_data) {
584                 for (i = 0; i < kvm_debugfs_num_entries; i++)
585                         kfree(kvm->debugfs_stat_data[i]);
586                 kfree(kvm->debugfs_stat_data);
587         }
588 }
589
590 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
591 {
592         char dir_name[ITOA_MAX_LEN * 2];
593         struct kvm_stat_data *stat_data;
594         struct kvm_stats_debugfs_item *p;
595
596         if (!debugfs_initialized())
597                 return 0;
598
599         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
600         kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
601
602         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
603                                          sizeof(*kvm->debugfs_stat_data),
604                                          GFP_KERNEL);
605         if (!kvm->debugfs_stat_data)
606                 return -ENOMEM;
607
608         for (p = debugfs_entries; p->name; p++) {
609                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
610                 if (!stat_data)
611                         return -ENOMEM;
612
613                 stat_data->kvm = kvm;
614                 stat_data->offset = p->offset;
615                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
616                 debugfs_create_file(p->name, 0644, kvm->debugfs_dentry,
617                                     stat_data, stat_fops_per_vm[p->kind]);
618         }
619         return 0;
620 }
621
622 static struct kvm *kvm_create_vm(unsigned long type)
623 {
624         int r, i;
625         struct kvm *kvm = kvm_arch_alloc_vm();
626
627         if (!kvm)
628                 return ERR_PTR(-ENOMEM);
629
630         spin_lock_init(&kvm->mmu_lock);
631         mmgrab(current->mm);
632         kvm->mm = current->mm;
633         kvm_eventfd_init(kvm);
634         mutex_init(&kvm->lock);
635         mutex_init(&kvm->irq_lock);
636         mutex_init(&kvm->slots_lock);
637         refcount_set(&kvm->users_count, 1);
638         INIT_LIST_HEAD(&kvm->devices);
639
640         r = kvm_arch_init_vm(kvm, type);
641         if (r)
642                 goto out_err_no_disable;
643
644         r = hardware_enable_all();
645         if (r)
646                 goto out_err_no_disable;
647
648 #ifdef CONFIG_HAVE_KVM_IRQFD
649         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
650 #endif
651
652         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
653
654         r = -ENOMEM;
655         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
656                 struct kvm_memslots *slots = kvm_alloc_memslots();
657                 if (!slots)
658                         goto out_err_no_srcu;
659                 /*
660                  * Generations must be different for each address space.
661                  * Init kvm generation close to the maximum to easily test the
662                  * code of handling generation number wrap-around.
663                  */
664                 slots->generation = i * 2 - 150;
665                 rcu_assign_pointer(kvm->memslots[i], slots);
666         }
667
668         if (init_srcu_struct(&kvm->srcu))
669                 goto out_err_no_srcu;
670         if (init_srcu_struct(&kvm->irq_srcu))
671                 goto out_err_no_irq_srcu;
672         for (i = 0; i < KVM_NR_BUSES; i++) {
673                 rcu_assign_pointer(kvm->buses[i],
674                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
675                 if (!kvm->buses[i])
676                         goto out_err;
677         }
678
679         r = kvm_init_mmu_notifier(kvm);
680         if (r)
681                 goto out_err;
682
683         spin_lock(&kvm_lock);
684         list_add(&kvm->vm_list, &vm_list);
685         spin_unlock(&kvm_lock);
686
687         preempt_notifier_inc();
688
689         return kvm;
690
691 out_err:
692         cleanup_srcu_struct(&kvm->irq_srcu);
693 out_err_no_irq_srcu:
694         cleanup_srcu_struct(&kvm->srcu);
695 out_err_no_srcu:
696         hardware_disable_all();
697 out_err_no_disable:
698         refcount_set(&kvm->users_count, 0);
699         for (i = 0; i < KVM_NR_BUSES; i++)
700                 kfree(kvm_get_bus(kvm, i));
701         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
702                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
703         kvm_arch_free_vm(kvm);
704         mmdrop(current->mm);
705         return ERR_PTR(r);
706 }
707
708 static void kvm_destroy_devices(struct kvm *kvm)
709 {
710         struct kvm_device *dev, *tmp;
711
712         /*
713          * We do not need to take the kvm->lock here, because nobody else
714          * has a reference to the struct kvm at this point and therefore
715          * cannot access the devices list anyhow.
716          */
717         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
718                 list_del(&dev->vm_node);
719                 dev->ops->destroy(dev);
720         }
721 }
722
723 static void kvm_destroy_vm(struct kvm *kvm)
724 {
725         int i;
726         struct mm_struct *mm = kvm->mm;
727
728         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
729         kvm_destroy_vm_debugfs(kvm);
730         kvm_arch_sync_events(kvm);
731         spin_lock(&kvm_lock);
732         list_del(&kvm->vm_list);
733         spin_unlock(&kvm_lock);
734         kvm_free_irq_routing(kvm);
735         for (i = 0; i < KVM_NR_BUSES; i++) {
736                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
737
738                 if (bus)
739                         kvm_io_bus_destroy(bus);
740                 kvm->buses[i] = NULL;
741         }
742         kvm_coalesced_mmio_free(kvm);
743 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
744         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
745 #else
746         kvm_arch_flush_shadow_all(kvm);
747 #endif
748         kvm_arch_destroy_vm(kvm);
749         kvm_destroy_devices(kvm);
750         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
751                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
752         cleanup_srcu_struct(&kvm->irq_srcu);
753         cleanup_srcu_struct(&kvm->srcu);
754         kvm_arch_free_vm(kvm);
755         preempt_notifier_dec();
756         hardware_disable_all();
757         mmdrop(mm);
758 }
759
760 void kvm_get_kvm(struct kvm *kvm)
761 {
762         refcount_inc(&kvm->users_count);
763 }
764 EXPORT_SYMBOL_GPL(kvm_get_kvm);
765
766 void kvm_put_kvm(struct kvm *kvm)
767 {
768         if (refcount_dec_and_test(&kvm->users_count))
769                 kvm_destroy_vm(kvm);
770 }
771 EXPORT_SYMBOL_GPL(kvm_put_kvm);
772
773
774 static int kvm_vm_release(struct inode *inode, struct file *filp)
775 {
776         struct kvm *kvm = filp->private_data;
777
778         kvm_irqfd_release(kvm);
779
780         kvm_put_kvm(kvm);
781         return 0;
782 }
783
784 /*
785  * Allocation size is twice as large as the actual dirty bitmap size.
786  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
787  */
788 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
789 {
790         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
791
792         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
793         if (!memslot->dirty_bitmap)
794                 return -ENOMEM;
795
796         return 0;
797 }
798
799 /*
800  * Insert memslot and re-sort memslots based on their GFN,
801  * so binary search could be used to lookup GFN.
802  * Sorting algorithm takes advantage of having initially
803  * sorted array and known changed memslot position.
804  */
805 static void update_memslots(struct kvm_memslots *slots,
806                             struct kvm_memory_slot *new,
807                             enum kvm_mr_change change)
808 {
809         int id = new->id;
810         int i = slots->id_to_index[id];
811         struct kvm_memory_slot *mslots = slots->memslots;
812
813         WARN_ON(mslots[i].id != id);
814         switch (change) {
815         case KVM_MR_CREATE:
816                 slots->used_slots++;
817                 WARN_ON(mslots[i].npages || !new->npages);
818                 break;
819         case KVM_MR_DELETE:
820                 slots->used_slots--;
821                 WARN_ON(new->npages || !mslots[i].npages);
822                 break;
823         default:
824                 break;
825         }
826
827         while (i < KVM_MEM_SLOTS_NUM - 1 &&
828                new->base_gfn <= mslots[i + 1].base_gfn) {
829                 if (!mslots[i + 1].npages)
830                         break;
831                 mslots[i] = mslots[i + 1];
832                 slots->id_to_index[mslots[i].id] = i;
833                 i++;
834         }
835
836         /*
837          * The ">=" is needed when creating a slot with base_gfn == 0,
838          * so that it moves before all those with base_gfn == npages == 0.
839          *
840          * On the other hand, if new->npages is zero, the above loop has
841          * already left i pointing to the beginning of the empty part of
842          * mslots, and the ">=" would move the hole backwards in this
843          * case---which is wrong.  So skip the loop when deleting a slot.
844          */
845         if (new->npages) {
846                 while (i > 0 &&
847                        new->base_gfn >= mslots[i - 1].base_gfn) {
848                         mslots[i] = mslots[i - 1];
849                         slots->id_to_index[mslots[i].id] = i;
850                         i--;
851                 }
852         } else
853                 WARN_ON_ONCE(i != slots->used_slots);
854
855         mslots[i] = *new;
856         slots->id_to_index[mslots[i].id] = i;
857 }
858
859 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
860 {
861         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
862
863 #ifdef __KVM_HAVE_READONLY_MEM
864         valid_flags |= KVM_MEM_READONLY;
865 #endif
866
867         if (mem->flags & ~valid_flags)
868                 return -EINVAL;
869
870         return 0;
871 }
872
873 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
874                 int as_id, struct kvm_memslots *slots)
875 {
876         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
877
878         /*
879          * Set the low bit in the generation, which disables SPTE caching
880          * until the end of synchronize_srcu_expedited.
881          */
882         WARN_ON(old_memslots->generation & 1);
883         slots->generation = old_memslots->generation + 1;
884
885         rcu_assign_pointer(kvm->memslots[as_id], slots);
886         synchronize_srcu_expedited(&kvm->srcu);
887
888         /*
889          * Increment the new memslot generation a second time. This prevents
890          * vm exits that race with memslot updates from caching a memslot
891          * generation that will (potentially) be valid forever.
892          *
893          * Generations must be unique even across address spaces.  We do not need
894          * a global counter for that, instead the generation space is evenly split
895          * across address spaces.  For example, with two address spaces, address
896          * space 0 will use generations 0, 4, 8, ... while * address space 1 will
897          * use generations 2, 6, 10, 14, ...
898          */
899         slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
900
901         kvm_arch_memslots_updated(kvm, slots);
902
903         return old_memslots;
904 }
905
906 /*
907  * Allocate some memory and give it an address in the guest physical address
908  * space.
909  *
910  * Discontiguous memory is allowed, mostly for framebuffers.
911  *
912  * Must be called holding kvm->slots_lock for write.
913  */
914 int __kvm_set_memory_region(struct kvm *kvm,
915                             const struct kvm_userspace_memory_region *mem)
916 {
917         int r;
918         gfn_t base_gfn;
919         unsigned long npages;
920         struct kvm_memory_slot *slot;
921         struct kvm_memory_slot old, new;
922         struct kvm_memslots *slots = NULL, *old_memslots;
923         int as_id, id;
924         enum kvm_mr_change change;
925
926         r = check_memory_region_flags(mem);
927         if (r)
928                 goto out;
929
930         r = -EINVAL;
931         as_id = mem->slot >> 16;
932         id = (u16)mem->slot;
933
934         /* General sanity checks */
935         if (mem->memory_size & (PAGE_SIZE - 1))
936                 goto out;
937         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
938                 goto out;
939         /* We can read the guest memory with __xxx_user() later on. */
940         if ((id < KVM_USER_MEM_SLOTS) &&
941             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
942              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
943                         mem->memory_size)))
944                 goto out;
945         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
946                 goto out;
947         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
948                 goto out;
949
950         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
951         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
952         npages = mem->memory_size >> PAGE_SHIFT;
953
954         if (npages > KVM_MEM_MAX_NR_PAGES)
955                 goto out;
956
957         new = old = *slot;
958
959         new.id = id;
960         new.base_gfn = base_gfn;
961         new.npages = npages;
962         new.flags = mem->flags;
963
964         if (npages) {
965                 if (!old.npages)
966                         change = KVM_MR_CREATE;
967                 else { /* Modify an existing slot. */
968                         if ((mem->userspace_addr != old.userspace_addr) ||
969                             (npages != old.npages) ||
970                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
971                                 goto out;
972
973                         if (base_gfn != old.base_gfn)
974                                 change = KVM_MR_MOVE;
975                         else if (new.flags != old.flags)
976                                 change = KVM_MR_FLAGS_ONLY;
977                         else { /* Nothing to change. */
978                                 r = 0;
979                                 goto out;
980                         }
981                 }
982         } else {
983                 if (!old.npages)
984                         goto out;
985
986                 change = KVM_MR_DELETE;
987                 new.base_gfn = 0;
988                 new.flags = 0;
989         }
990
991         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
992                 /* Check for overlaps */
993                 r = -EEXIST;
994                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
995                         if (slot->id == id)
996                                 continue;
997                         if (!((base_gfn + npages <= slot->base_gfn) ||
998                               (base_gfn >= slot->base_gfn + slot->npages)))
999                                 goto out;
1000                 }
1001         }
1002
1003         /* Free page dirty bitmap if unneeded */
1004         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1005                 new.dirty_bitmap = NULL;
1006
1007         r = -ENOMEM;
1008         if (change == KVM_MR_CREATE) {
1009                 new.userspace_addr = mem->userspace_addr;
1010
1011                 if (kvm_arch_create_memslot(kvm, &new, npages))
1012                         goto out_free;
1013         }
1014
1015         /* Allocate page dirty bitmap if needed */
1016         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1017                 if (kvm_create_dirty_bitmap(&new) < 0)
1018                         goto out_free;
1019         }
1020
1021         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1022         if (!slots)
1023                 goto out_free;
1024         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1025
1026         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1027                 slot = id_to_memslot(slots, id);
1028                 slot->flags |= KVM_MEMSLOT_INVALID;
1029
1030                 old_memslots = install_new_memslots(kvm, as_id, slots);
1031
1032                 /* From this point no new shadow pages pointing to a deleted,
1033                  * or moved, memslot will be created.
1034                  *
1035                  * validation of sp->gfn happens in:
1036                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1037                  *      - kvm_is_visible_gfn (mmu_check_roots)
1038                  */
1039                 kvm_arch_flush_shadow_memslot(kvm, slot);
1040
1041                 /*
1042                  * We can re-use the old_memslots from above, the only difference
1043                  * from the currently installed memslots is the invalid flag.  This
1044                  * will get overwritten by update_memslots anyway.
1045                  */
1046                 slots = old_memslots;
1047         }
1048
1049         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1050         if (r)
1051                 goto out_slots;
1052
1053         /* actual memory is freed via old in kvm_free_memslot below */
1054         if (change == KVM_MR_DELETE) {
1055                 new.dirty_bitmap = NULL;
1056                 memset(&new.arch, 0, sizeof(new.arch));
1057         }
1058
1059         update_memslots(slots, &new, change);
1060         old_memslots = install_new_memslots(kvm, as_id, slots);
1061
1062         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1063
1064         kvm_free_memslot(kvm, &old, &new);
1065         kvfree(old_memslots);
1066         return 0;
1067
1068 out_slots:
1069         kvfree(slots);
1070 out_free:
1071         kvm_free_memslot(kvm, &new, &old);
1072 out:
1073         return r;
1074 }
1075 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1076
1077 int kvm_set_memory_region(struct kvm *kvm,
1078                           const struct kvm_userspace_memory_region *mem)
1079 {
1080         int r;
1081
1082         mutex_lock(&kvm->slots_lock);
1083         r = __kvm_set_memory_region(kvm, mem);
1084         mutex_unlock(&kvm->slots_lock);
1085         return r;
1086 }
1087 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1088
1089 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1090                                           struct kvm_userspace_memory_region *mem)
1091 {
1092         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1093                 return -EINVAL;
1094
1095         return kvm_set_memory_region(kvm, mem);
1096 }
1097
1098 int kvm_get_dirty_log(struct kvm *kvm,
1099                         struct kvm_dirty_log *log, int *is_dirty)
1100 {
1101         struct kvm_memslots *slots;
1102         struct kvm_memory_slot *memslot;
1103         int i, as_id, id;
1104         unsigned long n;
1105         unsigned long any = 0;
1106
1107         as_id = log->slot >> 16;
1108         id = (u16)log->slot;
1109         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1110                 return -EINVAL;
1111
1112         slots = __kvm_memslots(kvm, as_id);
1113         memslot = id_to_memslot(slots, id);
1114         if (!memslot->dirty_bitmap)
1115                 return -ENOENT;
1116
1117         n = kvm_dirty_bitmap_bytes(memslot);
1118
1119         for (i = 0; !any && i < n/sizeof(long); ++i)
1120                 any = memslot->dirty_bitmap[i];
1121
1122         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1123                 return -EFAULT;
1124
1125         if (any)
1126                 *is_dirty = 1;
1127         return 0;
1128 }
1129 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1130
1131 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1132 /**
1133  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1134  *      and reenable dirty page tracking for the corresponding pages.
1135  * @kvm:        pointer to kvm instance
1136  * @log:        slot id and address to which we copy the log
1137  * @is_dirty:   flag set if any page is dirty
1138  *
1139  * We need to keep it in mind that VCPU threads can write to the bitmap
1140  * concurrently. So, to avoid losing track of dirty pages we keep the
1141  * following order:
1142  *
1143  *    1. Take a snapshot of the bit and clear it if needed.
1144  *    2. Write protect the corresponding page.
1145  *    3. Copy the snapshot to the userspace.
1146  *    4. Upon return caller flushes TLB's if needed.
1147  *
1148  * Between 2 and 4, the guest may write to the page using the remaining TLB
1149  * entry.  This is not a problem because the page is reported dirty using
1150  * the snapshot taken before and step 4 ensures that writes done after
1151  * exiting to userspace will be logged for the next call.
1152  *
1153  */
1154 int kvm_get_dirty_log_protect(struct kvm *kvm,
1155                         struct kvm_dirty_log *log, bool *flush)
1156 {
1157         struct kvm_memslots *slots;
1158         struct kvm_memory_slot *memslot;
1159         int i, as_id, id;
1160         unsigned long n;
1161         unsigned long *dirty_bitmap;
1162         unsigned long *dirty_bitmap_buffer;
1163
1164         as_id = log->slot >> 16;
1165         id = (u16)log->slot;
1166         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1167                 return -EINVAL;
1168
1169         slots = __kvm_memslots(kvm, as_id);
1170         memslot = id_to_memslot(slots, id);
1171
1172         dirty_bitmap = memslot->dirty_bitmap;
1173         if (!dirty_bitmap)
1174                 return -ENOENT;
1175
1176         n = kvm_dirty_bitmap_bytes(memslot);
1177         *flush = false;
1178         if (kvm->manual_dirty_log_protect) {
1179                 /*
1180                  * Unlike kvm_get_dirty_log, we always return false in *flush,
1181                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1182                  * is some code duplication between this function and
1183                  * kvm_get_dirty_log, but hopefully all architecture
1184                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1185                  * can be eliminated.
1186                  */
1187                 dirty_bitmap_buffer = dirty_bitmap;
1188         } else {
1189                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1190                 memset(dirty_bitmap_buffer, 0, n);
1191
1192                 spin_lock(&kvm->mmu_lock);
1193                 for (i = 0; i < n / sizeof(long); i++) {
1194                         unsigned long mask;
1195                         gfn_t offset;
1196
1197                         if (!dirty_bitmap[i])
1198                                 continue;
1199
1200                         *flush = true;
1201                         mask = xchg(&dirty_bitmap[i], 0);
1202                         dirty_bitmap_buffer[i] = mask;
1203
1204                         if (mask) {
1205                                 offset = i * BITS_PER_LONG;
1206                                 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1207                                                                         offset, mask);
1208                         }
1209                 }
1210                 spin_unlock(&kvm->mmu_lock);
1211         }
1212
1213         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1214                 return -EFAULT;
1215         return 0;
1216 }
1217 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1218
1219 /**
1220  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1221  *      and reenable dirty page tracking for the corresponding pages.
1222  * @kvm:        pointer to kvm instance
1223  * @log:        slot id and address from which to fetch the bitmap of dirty pages
1224  */
1225 int kvm_clear_dirty_log_protect(struct kvm *kvm,
1226                                 struct kvm_clear_dirty_log *log, bool *flush)
1227 {
1228         struct kvm_memslots *slots;
1229         struct kvm_memory_slot *memslot;
1230         int as_id, id;
1231         gfn_t offset;
1232         unsigned long i, n;
1233         unsigned long *dirty_bitmap;
1234         unsigned long *dirty_bitmap_buffer;
1235
1236         as_id = log->slot >> 16;
1237         id = (u16)log->slot;
1238         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1239                 return -EINVAL;
1240
1241         if ((log->first_page & 63) || (log->num_pages & 63))
1242                 return -EINVAL;
1243
1244         slots = __kvm_memslots(kvm, as_id);
1245         memslot = id_to_memslot(slots, id);
1246
1247         dirty_bitmap = memslot->dirty_bitmap;
1248         if (!dirty_bitmap)
1249                 return -ENOENT;
1250
1251         n = kvm_dirty_bitmap_bytes(memslot);
1252
1253         if (log->first_page > memslot->npages ||
1254             log->num_pages > memslot->npages - log->first_page)
1255                         return -EINVAL;
1256
1257         *flush = false;
1258         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1259         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1260                 return -EFAULT;
1261
1262         spin_lock(&kvm->mmu_lock);
1263         for (offset = log->first_page,
1264              i = offset / BITS_PER_LONG, n = log->num_pages / BITS_PER_LONG; n--;
1265              i++, offset += BITS_PER_LONG) {
1266                 unsigned long mask = *dirty_bitmap_buffer++;
1267                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1268                 if (!mask)
1269                         continue;
1270
1271                 mask &= atomic_long_fetch_andnot(mask, p);
1272
1273                 /*
1274                  * mask contains the bits that really have been cleared.  This
1275                  * never includes any bits beyond the length of the memslot (if
1276                  * the length is not aligned to 64 pages), therefore it is not
1277                  * a problem if userspace sets them in log->dirty_bitmap.
1278                 */
1279                 if (mask) {
1280                         *flush = true;
1281                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1282                                                                 offset, mask);
1283                 }
1284         }
1285         spin_unlock(&kvm->mmu_lock);
1286
1287         return 0;
1288 }
1289 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1290 #endif
1291
1292 bool kvm_largepages_enabled(void)
1293 {
1294         return largepages_enabled;
1295 }
1296
1297 void kvm_disable_largepages(void)
1298 {
1299         largepages_enabled = false;
1300 }
1301 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1302
1303 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1304 {
1305         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1306 }
1307 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1308
1309 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1310 {
1311         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1312 }
1313
1314 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1315 {
1316         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1317
1318         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1319               memslot->flags & KVM_MEMSLOT_INVALID)
1320                 return false;
1321
1322         return true;
1323 }
1324 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1325
1326 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1327 {
1328         struct vm_area_struct *vma;
1329         unsigned long addr, size;
1330
1331         size = PAGE_SIZE;
1332
1333         addr = gfn_to_hva(kvm, gfn);
1334         if (kvm_is_error_hva(addr))
1335                 return PAGE_SIZE;
1336
1337         down_read(&current->mm->mmap_sem);
1338         vma = find_vma(current->mm, addr);
1339         if (!vma)
1340                 goto out;
1341
1342         size = vma_kernel_pagesize(vma);
1343
1344 out:
1345         up_read(&current->mm->mmap_sem);
1346
1347         return size;
1348 }
1349
1350 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1351 {
1352         return slot->flags & KVM_MEM_READONLY;
1353 }
1354
1355 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1356                                        gfn_t *nr_pages, bool write)
1357 {
1358         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1359                 return KVM_HVA_ERR_BAD;
1360
1361         if (memslot_is_readonly(slot) && write)
1362                 return KVM_HVA_ERR_RO_BAD;
1363
1364         if (nr_pages)
1365                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1366
1367         return __gfn_to_hva_memslot(slot, gfn);
1368 }
1369
1370 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1371                                      gfn_t *nr_pages)
1372 {
1373         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1374 }
1375
1376 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1377                                         gfn_t gfn)
1378 {
1379         return gfn_to_hva_many(slot, gfn, NULL);
1380 }
1381 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1382
1383 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1384 {
1385         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1386 }
1387 EXPORT_SYMBOL_GPL(gfn_to_hva);
1388
1389 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1390 {
1391         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1392 }
1393 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1394
1395 /*
1396  * Return the hva of a @gfn and the R/W attribute if possible.
1397  *
1398  * @slot: the kvm_memory_slot which contains @gfn
1399  * @gfn: the gfn to be translated
1400  * @writable: used to return the read/write attribute of the @slot if the hva
1401  * is valid and @writable is not NULL
1402  */
1403 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1404                                       gfn_t gfn, bool *writable)
1405 {
1406         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1407
1408         if (!kvm_is_error_hva(hva) && writable)
1409                 *writable = !memslot_is_readonly(slot);
1410
1411         return hva;
1412 }
1413
1414 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1415 {
1416         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1417
1418         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1419 }
1420
1421 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1422 {
1423         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1424
1425         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1426 }
1427
1428 static inline int check_user_page_hwpoison(unsigned long addr)
1429 {
1430         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1431
1432         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1433         return rc == -EHWPOISON;
1434 }
1435
1436 /*
1437  * The fast path to get the writable pfn which will be stored in @pfn,
1438  * true indicates success, otherwise false is returned.  It's also the
1439  * only part that runs if we can are in atomic context.
1440  */
1441 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1442                             bool *writable, kvm_pfn_t *pfn)
1443 {
1444         struct page *page[1];
1445         int npages;
1446
1447         /*
1448          * Fast pin a writable pfn only if it is a write fault request
1449          * or the caller allows to map a writable pfn for a read fault
1450          * request.
1451          */
1452         if (!(write_fault || writable))
1453                 return false;
1454
1455         npages = __get_user_pages_fast(addr, 1, 1, page);
1456         if (npages == 1) {
1457                 *pfn = page_to_pfn(page[0]);
1458
1459                 if (writable)
1460                         *writable = true;
1461                 return true;
1462         }
1463
1464         return false;
1465 }
1466
1467 /*
1468  * The slow path to get the pfn of the specified host virtual address,
1469  * 1 indicates success, -errno is returned if error is detected.
1470  */
1471 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1472                            bool *writable, kvm_pfn_t *pfn)
1473 {
1474         unsigned int flags = FOLL_HWPOISON;
1475         struct page *page;
1476         int npages = 0;
1477
1478         might_sleep();
1479
1480         if (writable)
1481                 *writable = write_fault;
1482
1483         if (write_fault)
1484                 flags |= FOLL_WRITE;
1485         if (async)
1486                 flags |= FOLL_NOWAIT;
1487
1488         npages = get_user_pages_unlocked(addr, 1, &page, flags);
1489         if (npages != 1)
1490                 return npages;
1491
1492         /* map read fault as writable if possible */
1493         if (unlikely(!write_fault) && writable) {
1494                 struct page *wpage;
1495
1496                 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1497                         *writable = true;
1498                         put_page(page);
1499                         page = wpage;
1500                 }
1501         }
1502         *pfn = page_to_pfn(page);
1503         return npages;
1504 }
1505
1506 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1507 {
1508         if (unlikely(!(vma->vm_flags & VM_READ)))
1509                 return false;
1510
1511         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1512                 return false;
1513
1514         return true;
1515 }
1516
1517 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1518                                unsigned long addr, bool *async,
1519                                bool write_fault, bool *writable,
1520                                kvm_pfn_t *p_pfn)
1521 {
1522         unsigned long pfn;
1523         int r;
1524
1525         r = follow_pfn(vma, addr, &pfn);
1526         if (r) {
1527                 /*
1528                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1529                  * not call the fault handler, so do it here.
1530                  */
1531                 bool unlocked = false;
1532                 r = fixup_user_fault(current, current->mm, addr,
1533                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1534                                      &unlocked);
1535                 if (unlocked)
1536                         return -EAGAIN;
1537                 if (r)
1538                         return r;
1539
1540                 r = follow_pfn(vma, addr, &pfn);
1541                 if (r)
1542                         return r;
1543
1544         }
1545
1546         if (writable)
1547                 *writable = true;
1548
1549         /*
1550          * Get a reference here because callers of *hva_to_pfn* and
1551          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1552          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1553          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1554          * simply do nothing for reserved pfns.
1555          *
1556          * Whoever called remap_pfn_range is also going to call e.g.
1557          * unmap_mapping_range before the underlying pages are freed,
1558          * causing a call to our MMU notifier.
1559          */ 
1560         kvm_get_pfn(pfn);
1561
1562         *p_pfn = pfn;
1563         return 0;
1564 }
1565
1566 /*
1567  * Pin guest page in memory and return its pfn.
1568  * @addr: host virtual address which maps memory to the guest
1569  * @atomic: whether this function can sleep
1570  * @async: whether this function need to wait IO complete if the
1571  *         host page is not in the memory
1572  * @write_fault: whether we should get a writable host page
1573  * @writable: whether it allows to map a writable host page for !@write_fault
1574  *
1575  * The function will map a writable host page for these two cases:
1576  * 1): @write_fault = true
1577  * 2): @write_fault = false && @writable, @writable will tell the caller
1578  *     whether the mapping is writable.
1579  */
1580 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1581                         bool write_fault, bool *writable)
1582 {
1583         struct vm_area_struct *vma;
1584         kvm_pfn_t pfn = 0;
1585         int npages, r;
1586
1587         /* we can do it either atomically or asynchronously, not both */
1588         BUG_ON(atomic && async);
1589
1590         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1591                 return pfn;
1592
1593         if (atomic)
1594                 return KVM_PFN_ERR_FAULT;
1595
1596         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1597         if (npages == 1)
1598                 return pfn;
1599
1600         down_read(&current->mm->mmap_sem);
1601         if (npages == -EHWPOISON ||
1602               (!async && check_user_page_hwpoison(addr))) {
1603                 pfn = KVM_PFN_ERR_HWPOISON;
1604                 goto exit;
1605         }
1606
1607 retry:
1608         vma = find_vma_intersection(current->mm, addr, addr + 1);
1609
1610         if (vma == NULL)
1611                 pfn = KVM_PFN_ERR_FAULT;
1612         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1613                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1614                 if (r == -EAGAIN)
1615                         goto retry;
1616                 if (r < 0)
1617                         pfn = KVM_PFN_ERR_FAULT;
1618         } else {
1619                 if (async && vma_is_valid(vma, write_fault))
1620                         *async = true;
1621                 pfn = KVM_PFN_ERR_FAULT;
1622         }
1623 exit:
1624         up_read(&current->mm->mmap_sem);
1625         return pfn;
1626 }
1627
1628 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1629                                bool atomic, bool *async, bool write_fault,
1630                                bool *writable)
1631 {
1632         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1633
1634         if (addr == KVM_HVA_ERR_RO_BAD) {
1635                 if (writable)
1636                         *writable = false;
1637                 return KVM_PFN_ERR_RO_FAULT;
1638         }
1639
1640         if (kvm_is_error_hva(addr)) {
1641                 if (writable)
1642                         *writable = false;
1643                 return KVM_PFN_NOSLOT;
1644         }
1645
1646         /* Do not map writable pfn in the readonly memslot. */
1647         if (writable && memslot_is_readonly(slot)) {
1648                 *writable = false;
1649                 writable = NULL;
1650         }
1651
1652         return hva_to_pfn(addr, atomic, async, write_fault,
1653                           writable);
1654 }
1655 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1656
1657 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1658                       bool *writable)
1659 {
1660         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1661                                     write_fault, writable);
1662 }
1663 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1664
1665 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1666 {
1667         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1668 }
1669 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1670
1671 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1672 {
1673         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1674 }
1675 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1676
1677 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1678 {
1679         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1680 }
1681 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1682
1683 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1684 {
1685         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1686 }
1687 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1688
1689 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1690 {
1691         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1692 }
1693 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1694
1695 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1696 {
1697         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1698 }
1699 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1700
1701 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1702                             struct page **pages, int nr_pages)
1703 {
1704         unsigned long addr;
1705         gfn_t entry = 0;
1706
1707         addr = gfn_to_hva_many(slot, gfn, &entry);
1708         if (kvm_is_error_hva(addr))
1709                 return -1;
1710
1711         if (entry < nr_pages)
1712                 return 0;
1713
1714         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1715 }
1716 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1717
1718 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1719 {
1720         if (is_error_noslot_pfn(pfn))
1721                 return KVM_ERR_PTR_BAD_PAGE;
1722
1723         if (kvm_is_reserved_pfn(pfn)) {
1724                 WARN_ON(1);
1725                 return KVM_ERR_PTR_BAD_PAGE;
1726         }
1727
1728         return pfn_to_page(pfn);
1729 }
1730
1731 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1732 {
1733         kvm_pfn_t pfn;
1734
1735         pfn = gfn_to_pfn(kvm, gfn);
1736
1737         return kvm_pfn_to_page(pfn);
1738 }
1739 EXPORT_SYMBOL_GPL(gfn_to_page);
1740
1741 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1742 {
1743         kvm_pfn_t pfn;
1744
1745         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1746
1747         return kvm_pfn_to_page(pfn);
1748 }
1749 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1750
1751 void kvm_release_page_clean(struct page *page)
1752 {
1753         WARN_ON(is_error_page(page));
1754
1755         kvm_release_pfn_clean(page_to_pfn(page));
1756 }
1757 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1758
1759 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1760 {
1761         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1762                 put_page(pfn_to_page(pfn));
1763 }
1764 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1765
1766 void kvm_release_page_dirty(struct page *page)
1767 {
1768         WARN_ON(is_error_page(page));
1769
1770         kvm_release_pfn_dirty(page_to_pfn(page));
1771 }
1772 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1773
1774 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1775 {
1776         kvm_set_pfn_dirty(pfn);
1777         kvm_release_pfn_clean(pfn);
1778 }
1779 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1780
1781 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1782 {
1783         if (!kvm_is_reserved_pfn(pfn)) {
1784                 struct page *page = pfn_to_page(pfn);
1785
1786                 if (!PageReserved(page))
1787                         SetPageDirty(page);
1788         }
1789 }
1790 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1791
1792 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1793 {
1794         if (!kvm_is_reserved_pfn(pfn))
1795                 mark_page_accessed(pfn_to_page(pfn));
1796 }
1797 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1798
1799 void kvm_get_pfn(kvm_pfn_t pfn)
1800 {
1801         if (!kvm_is_reserved_pfn(pfn))
1802                 get_page(pfn_to_page(pfn));
1803 }
1804 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1805
1806 static int next_segment(unsigned long len, int offset)
1807 {
1808         if (len > PAGE_SIZE - offset)
1809                 return PAGE_SIZE - offset;
1810         else
1811                 return len;
1812 }
1813
1814 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1815                                  void *data, int offset, int len)
1816 {
1817         int r;
1818         unsigned long addr;
1819
1820         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1821         if (kvm_is_error_hva(addr))
1822                 return -EFAULT;
1823         r = __copy_from_user(data, (void __user *)addr + offset, len);
1824         if (r)
1825                 return -EFAULT;
1826         return 0;
1827 }
1828
1829 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1830                         int len)
1831 {
1832         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1833
1834         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1835 }
1836 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1837
1838 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1839                              int offset, int len)
1840 {
1841         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1842
1843         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1844 }
1845 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1846
1847 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1848 {
1849         gfn_t gfn = gpa >> PAGE_SHIFT;
1850         int seg;
1851         int offset = offset_in_page(gpa);
1852         int ret;
1853
1854         while ((seg = next_segment(len, offset)) != 0) {
1855                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1856                 if (ret < 0)
1857                         return ret;
1858                 offset = 0;
1859                 len -= seg;
1860                 data += seg;
1861                 ++gfn;
1862         }
1863         return 0;
1864 }
1865 EXPORT_SYMBOL_GPL(kvm_read_guest);
1866
1867 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1868 {
1869         gfn_t gfn = gpa >> PAGE_SHIFT;
1870         int seg;
1871         int offset = offset_in_page(gpa);
1872         int ret;
1873
1874         while ((seg = next_segment(len, offset)) != 0) {
1875                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1876                 if (ret < 0)
1877                         return ret;
1878                 offset = 0;
1879                 len -= seg;
1880                 data += seg;
1881                 ++gfn;
1882         }
1883         return 0;
1884 }
1885 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1886
1887 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1888                                    void *data, int offset, unsigned long len)
1889 {
1890         int r;
1891         unsigned long addr;
1892
1893         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1894         if (kvm_is_error_hva(addr))
1895                 return -EFAULT;
1896         pagefault_disable();
1897         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1898         pagefault_enable();
1899         if (r)
1900                 return -EFAULT;
1901         return 0;
1902 }
1903
1904 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1905                           unsigned long len)
1906 {
1907         gfn_t gfn = gpa >> PAGE_SHIFT;
1908         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1909         int offset = offset_in_page(gpa);
1910
1911         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1912 }
1913 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1914
1915 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1916                                void *data, unsigned long len)
1917 {
1918         gfn_t gfn = gpa >> PAGE_SHIFT;
1919         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1920         int offset = offset_in_page(gpa);
1921
1922         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1923 }
1924 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1925
1926 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1927                                   const void *data, int offset, int len)
1928 {
1929         int r;
1930         unsigned long addr;
1931
1932         addr = gfn_to_hva_memslot(memslot, gfn);
1933         if (kvm_is_error_hva(addr))
1934                 return -EFAULT;
1935         r = __copy_to_user((void __user *)addr + offset, data, len);
1936         if (r)
1937                 return -EFAULT;
1938         mark_page_dirty_in_slot(memslot, gfn);
1939         return 0;
1940 }
1941
1942 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1943                          const void *data, int offset, int len)
1944 {
1945         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1946
1947         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1948 }
1949 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1950
1951 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1952                               const void *data, int offset, int len)
1953 {
1954         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1955
1956         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1957 }
1958 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1959
1960 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1961                     unsigned long len)
1962 {
1963         gfn_t gfn = gpa >> PAGE_SHIFT;
1964         int seg;
1965         int offset = offset_in_page(gpa);
1966         int ret;
1967
1968         while ((seg = next_segment(len, offset)) != 0) {
1969                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1970                 if (ret < 0)
1971                         return ret;
1972                 offset = 0;
1973                 len -= seg;
1974                 data += seg;
1975                 ++gfn;
1976         }
1977         return 0;
1978 }
1979 EXPORT_SYMBOL_GPL(kvm_write_guest);
1980
1981 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1982                          unsigned long len)
1983 {
1984         gfn_t gfn = gpa >> PAGE_SHIFT;
1985         int seg;
1986         int offset = offset_in_page(gpa);
1987         int ret;
1988
1989         while ((seg = next_segment(len, offset)) != 0) {
1990                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1991                 if (ret < 0)
1992                         return ret;
1993                 offset = 0;
1994                 len -= seg;
1995                 data += seg;
1996                 ++gfn;
1997         }
1998         return 0;
1999 }
2000 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2001
2002 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2003                                        struct gfn_to_hva_cache *ghc,
2004                                        gpa_t gpa, unsigned long len)
2005 {
2006         int offset = offset_in_page(gpa);
2007         gfn_t start_gfn = gpa >> PAGE_SHIFT;
2008         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2009         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2010         gfn_t nr_pages_avail;
2011         int r = start_gfn <= end_gfn ? 0 : -EINVAL;
2012
2013         ghc->gpa = gpa;
2014         ghc->generation = slots->generation;
2015         ghc->len = len;
2016         ghc->hva = KVM_HVA_ERR_BAD;
2017
2018         /*
2019          * If the requested region crosses two memslots, we still
2020          * verify that the entire region is valid here.
2021          */
2022         while (!r && start_gfn <= end_gfn) {
2023                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2024                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2025                                            &nr_pages_avail);
2026                 if (kvm_is_error_hva(ghc->hva))
2027                         r = -EFAULT;
2028                 start_gfn += nr_pages_avail;
2029         }
2030
2031         /* Use the slow path for cross page reads and writes. */
2032         if (!r && nr_pages_needed == 1)
2033                 ghc->hva += offset;
2034         else
2035                 ghc->memslot = NULL;
2036
2037         return r;
2038 }
2039
2040 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2041                               gpa_t gpa, unsigned long len)
2042 {
2043         struct kvm_memslots *slots = kvm_memslots(kvm);
2044         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2045 }
2046 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2047
2048 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2049                                   void *data, unsigned int offset,
2050                                   unsigned long len)
2051 {
2052         struct kvm_memslots *slots = kvm_memslots(kvm);
2053         int r;
2054         gpa_t gpa = ghc->gpa + offset;
2055
2056         BUG_ON(len + offset > ghc->len);
2057
2058         if (slots->generation != ghc->generation)
2059                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2060
2061         if (unlikely(!ghc->memslot))
2062                 return kvm_write_guest(kvm, gpa, data, len);
2063
2064         if (kvm_is_error_hva(ghc->hva))
2065                 return -EFAULT;
2066
2067         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2068         if (r)
2069                 return -EFAULT;
2070         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2071
2072         return 0;
2073 }
2074 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2075
2076 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2077                            void *data, unsigned long len)
2078 {
2079         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2080 }
2081 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2082
2083 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2084                            void *data, unsigned long len)
2085 {
2086         struct kvm_memslots *slots = kvm_memslots(kvm);
2087         int r;
2088
2089         BUG_ON(len > ghc->len);
2090
2091         if (slots->generation != ghc->generation)
2092                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2093
2094         if (unlikely(!ghc->memslot))
2095                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2096
2097         if (kvm_is_error_hva(ghc->hva))
2098                 return -EFAULT;
2099
2100         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2101         if (r)
2102                 return -EFAULT;
2103
2104         return 0;
2105 }
2106 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2107
2108 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2109 {
2110         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2111
2112         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2113 }
2114 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2115
2116 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2117 {
2118         gfn_t gfn = gpa >> PAGE_SHIFT;
2119         int seg;
2120         int offset = offset_in_page(gpa);
2121         int ret;
2122
2123         while ((seg = next_segment(len, offset)) != 0) {
2124                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2125                 if (ret < 0)
2126                         return ret;
2127                 offset = 0;
2128                 len -= seg;
2129                 ++gfn;
2130         }
2131         return 0;
2132 }
2133 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2134
2135 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2136                                     gfn_t gfn)
2137 {
2138         if (memslot && memslot->dirty_bitmap) {
2139                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2140
2141                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2142         }
2143 }
2144
2145 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2146 {
2147         struct kvm_memory_slot *memslot;
2148
2149         memslot = gfn_to_memslot(kvm, gfn);
2150         mark_page_dirty_in_slot(memslot, gfn);
2151 }
2152 EXPORT_SYMBOL_GPL(mark_page_dirty);
2153
2154 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2155 {
2156         struct kvm_memory_slot *memslot;
2157
2158         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2159         mark_page_dirty_in_slot(memslot, gfn);
2160 }
2161 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2162
2163 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2164 {
2165         if (!vcpu->sigset_active)
2166                 return;
2167
2168         /*
2169          * This does a lockless modification of ->real_blocked, which is fine
2170          * because, only current can change ->real_blocked and all readers of
2171          * ->real_blocked don't care as long ->real_blocked is always a subset
2172          * of ->blocked.
2173          */
2174         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2175 }
2176
2177 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2178 {
2179         if (!vcpu->sigset_active)
2180                 return;
2181
2182         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2183         sigemptyset(&current->real_blocked);
2184 }
2185
2186 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2187 {
2188         unsigned int old, val, grow;
2189
2190         old = val = vcpu->halt_poll_ns;
2191         grow = READ_ONCE(halt_poll_ns_grow);
2192         /* 10us base */
2193         if (val == 0 && grow)
2194                 val = 10000;
2195         else
2196                 val *= grow;
2197
2198         if (val > halt_poll_ns)
2199                 val = halt_poll_ns;
2200
2201         vcpu->halt_poll_ns = val;
2202         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2203 }
2204
2205 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2206 {
2207         unsigned int old, val, shrink;
2208
2209         old = val = vcpu->halt_poll_ns;
2210         shrink = READ_ONCE(halt_poll_ns_shrink);
2211         if (shrink == 0)
2212                 val = 0;
2213         else
2214                 val /= shrink;
2215
2216         vcpu->halt_poll_ns = val;
2217         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2218 }
2219
2220 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2221 {
2222         int ret = -EINTR;
2223         int idx = srcu_read_lock(&vcpu->kvm->srcu);
2224
2225         if (kvm_arch_vcpu_runnable(vcpu)) {
2226                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2227                 goto out;
2228         }
2229         if (kvm_cpu_has_pending_timer(vcpu))
2230                 goto out;
2231         if (signal_pending(current))
2232                 goto out;
2233
2234         ret = 0;
2235 out:
2236         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2237         return ret;
2238 }
2239
2240 /*
2241  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2242  */
2243 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2244 {
2245         ktime_t start, cur;
2246         DECLARE_SWAITQUEUE(wait);
2247         bool waited = false;
2248         u64 block_ns;
2249
2250         start = cur = ktime_get();
2251         if (vcpu->halt_poll_ns) {
2252                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2253
2254                 ++vcpu->stat.halt_attempted_poll;
2255                 do {
2256                         /*
2257                          * This sets KVM_REQ_UNHALT if an interrupt
2258                          * arrives.
2259                          */
2260                         if (kvm_vcpu_check_block(vcpu) < 0) {
2261                                 ++vcpu->stat.halt_successful_poll;
2262                                 if (!vcpu_valid_wakeup(vcpu))
2263                                         ++vcpu->stat.halt_poll_invalid;
2264                                 goto out;
2265                         }
2266                         cur = ktime_get();
2267                 } while (single_task_running() && ktime_before(cur, stop));
2268         }
2269
2270         kvm_arch_vcpu_blocking(vcpu);
2271
2272         for (;;) {
2273                 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2274
2275                 if (kvm_vcpu_check_block(vcpu) < 0)
2276                         break;
2277
2278                 waited = true;
2279                 schedule();
2280         }
2281
2282         finish_swait(&vcpu->wq, &wait);
2283         cur = ktime_get();
2284
2285         kvm_arch_vcpu_unblocking(vcpu);
2286 out:
2287         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2288
2289         if (!vcpu_valid_wakeup(vcpu))
2290                 shrink_halt_poll_ns(vcpu);
2291         else if (halt_poll_ns) {
2292                 if (block_ns <= vcpu->halt_poll_ns)
2293                         ;
2294                 /* we had a long block, shrink polling */
2295                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2296                         shrink_halt_poll_ns(vcpu);
2297                 /* we had a short halt and our poll time is too small */
2298                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2299                         block_ns < halt_poll_ns)
2300                         grow_halt_poll_ns(vcpu);
2301         } else
2302                 vcpu->halt_poll_ns = 0;
2303
2304         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2305         kvm_arch_vcpu_block_finish(vcpu);
2306 }
2307 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2308
2309 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2310 {
2311         struct swait_queue_head *wqp;
2312
2313         wqp = kvm_arch_vcpu_wq(vcpu);
2314         if (swq_has_sleeper(wqp)) {
2315                 swake_up_one(wqp);
2316                 ++vcpu->stat.halt_wakeup;
2317                 return true;
2318         }
2319
2320         return false;
2321 }
2322 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2323
2324 #ifndef CONFIG_S390
2325 /*
2326  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2327  */
2328 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2329 {
2330         int me;
2331         int cpu = vcpu->cpu;
2332
2333         if (kvm_vcpu_wake_up(vcpu))
2334                 return;
2335
2336         me = get_cpu();
2337         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2338                 if (kvm_arch_vcpu_should_kick(vcpu))
2339                         smp_send_reschedule(cpu);
2340         put_cpu();
2341 }
2342 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2343 #endif /* !CONFIG_S390 */
2344
2345 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2346 {
2347         struct pid *pid;
2348         struct task_struct *task = NULL;
2349         int ret = 0;
2350
2351         rcu_read_lock();
2352         pid = rcu_dereference(target->pid);
2353         if (pid)
2354                 task = get_pid_task(pid, PIDTYPE_PID);
2355         rcu_read_unlock();
2356         if (!task)
2357                 return ret;
2358         ret = yield_to(task, 1);
2359         put_task_struct(task);
2360
2361         return ret;
2362 }
2363 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2364
2365 /*
2366  * Helper that checks whether a VCPU is eligible for directed yield.
2367  * Most eligible candidate to yield is decided by following heuristics:
2368  *
2369  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2370  *  (preempted lock holder), indicated by @in_spin_loop.
2371  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2372  *
2373  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2374  *  chance last time (mostly it has become eligible now since we have probably
2375  *  yielded to lockholder in last iteration. This is done by toggling
2376  *  @dy_eligible each time a VCPU checked for eligibility.)
2377  *
2378  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2379  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2380  *  burning. Giving priority for a potential lock-holder increases lock
2381  *  progress.
2382  *
2383  *  Since algorithm is based on heuristics, accessing another VCPU data without
2384  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2385  *  and continue with next VCPU and so on.
2386  */
2387 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2388 {
2389 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2390         bool eligible;
2391
2392         eligible = !vcpu->spin_loop.in_spin_loop ||
2393                     vcpu->spin_loop.dy_eligible;
2394
2395         if (vcpu->spin_loop.in_spin_loop)
2396                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2397
2398         return eligible;
2399 #else
2400         return true;
2401 #endif
2402 }
2403
2404 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2405 {
2406         struct kvm *kvm = me->kvm;
2407         struct kvm_vcpu *vcpu;
2408         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2409         int yielded = 0;
2410         int try = 3;
2411         int pass;
2412         int i;
2413
2414         kvm_vcpu_set_in_spin_loop(me, true);
2415         /*
2416          * We boost the priority of a VCPU that is runnable but not
2417          * currently running, because it got preempted by something
2418          * else and called schedule in __vcpu_run.  Hopefully that
2419          * VCPU is holding the lock that we need and will release it.
2420          * We approximate round-robin by starting at the last boosted VCPU.
2421          */
2422         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2423                 kvm_for_each_vcpu(i, vcpu, kvm) {
2424                         if (!pass && i <= last_boosted_vcpu) {
2425                                 i = last_boosted_vcpu;
2426                                 continue;
2427                         } else if (pass && i > last_boosted_vcpu)
2428                                 break;
2429                         if (!READ_ONCE(vcpu->preempted))
2430                                 continue;
2431                         if (vcpu == me)
2432                                 continue;
2433                         if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2434                                 continue;
2435                         if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2436                                 continue;
2437                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2438                                 continue;
2439
2440                         yielded = kvm_vcpu_yield_to(vcpu);
2441                         if (yielded > 0) {
2442                                 kvm->last_boosted_vcpu = i;
2443                                 break;
2444                         } else if (yielded < 0) {
2445                                 try--;
2446                                 if (!try)
2447                                         break;
2448                         }
2449                 }
2450         }
2451         kvm_vcpu_set_in_spin_loop(me, false);
2452
2453         /* Ensure vcpu is not eligible during next spinloop */
2454         kvm_vcpu_set_dy_eligible(me, false);
2455 }
2456 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2457
2458 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2459 {
2460         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2461         struct page *page;
2462
2463         if (vmf->pgoff == 0)
2464                 page = virt_to_page(vcpu->run);
2465 #ifdef CONFIG_X86
2466         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2467                 page = virt_to_page(vcpu->arch.pio_data);
2468 #endif
2469 #ifdef CONFIG_KVM_MMIO
2470         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2471                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2472 #endif
2473         else
2474                 return kvm_arch_vcpu_fault(vcpu, vmf);
2475         get_page(page);
2476         vmf->page = page;
2477         return 0;
2478 }
2479
2480 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2481         .fault = kvm_vcpu_fault,
2482 };
2483
2484 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2485 {
2486         vma->vm_ops = &kvm_vcpu_vm_ops;
2487         return 0;
2488 }
2489
2490 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2491 {
2492         struct kvm_vcpu *vcpu = filp->private_data;
2493
2494         debugfs_remove_recursive(vcpu->debugfs_dentry);
2495         kvm_put_kvm(vcpu->kvm);
2496         return 0;
2497 }
2498
2499 static struct file_operations kvm_vcpu_fops = {
2500         .release        = kvm_vcpu_release,
2501         .unlocked_ioctl = kvm_vcpu_ioctl,
2502         .mmap           = kvm_vcpu_mmap,
2503         .llseek         = noop_llseek,
2504         KVM_COMPAT(kvm_vcpu_compat_ioctl),
2505 };
2506
2507 /*
2508  * Allocates an inode for the vcpu.
2509  */
2510 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2511 {
2512         char name[8 + 1 + ITOA_MAX_LEN + 1];
2513
2514         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2515         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2516 }
2517
2518 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2519 {
2520         char dir_name[ITOA_MAX_LEN * 2];
2521         int ret;
2522
2523         if (!kvm_arch_has_vcpu_debugfs())
2524                 return 0;
2525
2526         if (!debugfs_initialized())
2527                 return 0;
2528
2529         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2530         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2531                                                                 vcpu->kvm->debugfs_dentry);
2532         if (!vcpu->debugfs_dentry)
2533                 return -ENOMEM;
2534
2535         ret = kvm_arch_create_vcpu_debugfs(vcpu);
2536         if (ret < 0) {
2537                 debugfs_remove_recursive(vcpu->debugfs_dentry);
2538                 return ret;
2539         }
2540
2541         return 0;
2542 }
2543
2544 /*
2545  * Creates some virtual cpus.  Good luck creating more than one.
2546  */
2547 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2548 {
2549         int r;
2550         struct kvm_vcpu *vcpu;
2551
2552         if (id >= KVM_MAX_VCPU_ID)
2553                 return -EINVAL;
2554
2555         mutex_lock(&kvm->lock);
2556         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2557                 mutex_unlock(&kvm->lock);
2558                 return -EINVAL;
2559         }
2560
2561         kvm->created_vcpus++;
2562         mutex_unlock(&kvm->lock);
2563
2564         vcpu = kvm_arch_vcpu_create(kvm, id);
2565         if (IS_ERR(vcpu)) {
2566                 r = PTR_ERR(vcpu);
2567                 goto vcpu_decrement;
2568         }
2569
2570         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2571
2572         r = kvm_arch_vcpu_setup(vcpu);
2573         if (r)
2574                 goto vcpu_destroy;
2575
2576         r = kvm_create_vcpu_debugfs(vcpu);
2577         if (r)
2578                 goto vcpu_destroy;
2579
2580         mutex_lock(&kvm->lock);
2581         if (kvm_get_vcpu_by_id(kvm, id)) {
2582                 r = -EEXIST;
2583                 goto unlock_vcpu_destroy;
2584         }
2585
2586         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2587
2588         /* Now it's all set up, let userspace reach it */
2589         kvm_get_kvm(kvm);
2590         r = create_vcpu_fd(vcpu);
2591         if (r < 0) {
2592                 kvm_put_kvm(kvm);
2593                 goto unlock_vcpu_destroy;
2594         }
2595
2596         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2597
2598         /*
2599          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2600          * before kvm->online_vcpu's incremented value.
2601          */
2602         smp_wmb();
2603         atomic_inc(&kvm->online_vcpus);
2604
2605         mutex_unlock(&kvm->lock);
2606         kvm_arch_vcpu_postcreate(vcpu);
2607         return r;
2608
2609 unlock_vcpu_destroy:
2610         mutex_unlock(&kvm->lock);
2611         debugfs_remove_recursive(vcpu->debugfs_dentry);
2612 vcpu_destroy:
2613         kvm_arch_vcpu_destroy(vcpu);
2614 vcpu_decrement:
2615         mutex_lock(&kvm->lock);
2616         kvm->created_vcpus--;
2617         mutex_unlock(&kvm->lock);
2618         return r;
2619 }
2620
2621 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2622 {
2623         if (sigset) {
2624                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2625                 vcpu->sigset_active = 1;
2626                 vcpu->sigset = *sigset;
2627         } else
2628                 vcpu->sigset_active = 0;
2629         return 0;
2630 }
2631
2632 static long kvm_vcpu_ioctl(struct file *filp,
2633                            unsigned int ioctl, unsigned long arg)
2634 {
2635         struct kvm_vcpu *vcpu = filp->private_data;
2636         void __user *argp = (void __user *)arg;
2637         int r;
2638         struct kvm_fpu *fpu = NULL;
2639         struct kvm_sregs *kvm_sregs = NULL;
2640
2641         if (vcpu->kvm->mm != current->mm)
2642                 return -EIO;
2643
2644         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2645                 return -EINVAL;
2646
2647         /*
2648          * Some architectures have vcpu ioctls that are asynchronous to vcpu
2649          * execution; mutex_lock() would break them.
2650          */
2651         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2652         if (r != -ENOIOCTLCMD)
2653                 return r;
2654
2655         if (mutex_lock_killable(&vcpu->mutex))
2656                 return -EINTR;
2657         switch (ioctl) {
2658         case KVM_RUN: {
2659                 struct pid *oldpid;
2660                 r = -EINVAL;
2661                 if (arg)
2662                         goto out;
2663                 oldpid = rcu_access_pointer(vcpu->pid);
2664                 if (unlikely(oldpid != task_pid(current))) {
2665                         /* The thread running this VCPU changed. */
2666                         struct pid *newpid;
2667
2668                         r = kvm_arch_vcpu_run_pid_change(vcpu);
2669                         if (r)
2670                                 break;
2671
2672                         newpid = get_task_pid(current, PIDTYPE_PID);
2673                         rcu_assign_pointer(vcpu->pid, newpid);
2674                         if (oldpid)
2675                                 synchronize_rcu();
2676                         put_pid(oldpid);
2677                 }
2678                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2679                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2680                 break;
2681         }
2682         case KVM_GET_REGS: {
2683                 struct kvm_regs *kvm_regs;
2684
2685                 r = -ENOMEM;
2686                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2687                 if (!kvm_regs)
2688                         goto out;
2689                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2690                 if (r)
2691                         goto out_free1;
2692                 r = -EFAULT;
2693                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2694                         goto out_free1;
2695                 r = 0;
2696 out_free1:
2697                 kfree(kvm_regs);
2698                 break;
2699         }
2700         case KVM_SET_REGS: {
2701                 struct kvm_regs *kvm_regs;
2702
2703                 r = -ENOMEM;
2704                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2705                 if (IS_ERR(kvm_regs)) {
2706                         r = PTR_ERR(kvm_regs);
2707                         goto out;
2708                 }
2709                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2710                 kfree(kvm_regs);
2711                 break;
2712         }
2713         case KVM_GET_SREGS: {
2714                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2715                 r = -ENOMEM;
2716                 if (!kvm_sregs)
2717                         goto out;
2718                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2719                 if (r)
2720                         goto out;
2721                 r = -EFAULT;
2722                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2723                         goto out;
2724                 r = 0;
2725                 break;
2726         }
2727         case KVM_SET_SREGS: {
2728                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2729                 if (IS_ERR(kvm_sregs)) {
2730                         r = PTR_ERR(kvm_sregs);
2731                         kvm_sregs = NULL;
2732                         goto out;
2733                 }
2734                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2735                 break;
2736         }
2737         case KVM_GET_MP_STATE: {
2738                 struct kvm_mp_state mp_state;
2739
2740                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2741                 if (r)
2742                         goto out;
2743                 r = -EFAULT;
2744                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2745                         goto out;
2746                 r = 0;
2747                 break;
2748         }
2749         case KVM_SET_MP_STATE: {
2750                 struct kvm_mp_state mp_state;
2751
2752                 r = -EFAULT;
2753                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2754                         goto out;
2755                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2756                 break;
2757         }
2758         case KVM_TRANSLATE: {
2759                 struct kvm_translation tr;
2760
2761                 r = -EFAULT;
2762                 if (copy_from_user(&tr, argp, sizeof(tr)))
2763                         goto out;
2764                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2765                 if (r)
2766                         goto out;
2767                 r = -EFAULT;
2768                 if (copy_to_user(argp, &tr, sizeof(tr)))
2769                         goto out;
2770                 r = 0;
2771                 break;
2772         }
2773         case KVM_SET_GUEST_DEBUG: {
2774                 struct kvm_guest_debug dbg;
2775
2776                 r = -EFAULT;
2777                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2778                         goto out;
2779                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2780                 break;
2781         }
2782         case KVM_SET_SIGNAL_MASK: {
2783                 struct kvm_signal_mask __user *sigmask_arg = argp;
2784                 struct kvm_signal_mask kvm_sigmask;
2785                 sigset_t sigset, *p;
2786
2787                 p = NULL;
2788                 if (argp) {
2789                         r = -EFAULT;
2790                         if (copy_from_user(&kvm_sigmask, argp,
2791                                            sizeof(kvm_sigmask)))
2792                                 goto out;
2793                         r = -EINVAL;
2794                         if (kvm_sigmask.len != sizeof(sigset))
2795                                 goto out;
2796                         r = -EFAULT;
2797                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2798                                            sizeof(sigset)))
2799                                 goto out;
2800                         p = &sigset;
2801                 }
2802                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2803                 break;
2804         }
2805         case KVM_GET_FPU: {
2806                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2807                 r = -ENOMEM;
2808                 if (!fpu)
2809                         goto out;
2810                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2811                 if (r)
2812                         goto out;
2813                 r = -EFAULT;
2814                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2815                         goto out;
2816                 r = 0;
2817                 break;
2818         }
2819         case KVM_SET_FPU: {
2820                 fpu = memdup_user(argp, sizeof(*fpu));
2821                 if (IS_ERR(fpu)) {
2822                         r = PTR_ERR(fpu);
2823                         fpu = NULL;
2824                         goto out;
2825                 }
2826                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2827                 break;
2828         }
2829         default:
2830                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2831         }
2832 out:
2833         mutex_unlock(&vcpu->mutex);
2834         kfree(fpu);
2835         kfree(kvm_sregs);
2836         return r;
2837 }
2838
2839 #ifdef CONFIG_KVM_COMPAT
2840 static long kvm_vcpu_compat_ioctl(struct file *filp,
2841                                   unsigned int ioctl, unsigned long arg)
2842 {
2843         struct kvm_vcpu *vcpu = filp->private_data;
2844         void __user *argp = compat_ptr(arg);
2845         int r;
2846
2847         if (vcpu->kvm->mm != current->mm)
2848                 return -EIO;
2849
2850         switch (ioctl) {
2851         case KVM_SET_SIGNAL_MASK: {
2852                 struct kvm_signal_mask __user *sigmask_arg = argp;
2853                 struct kvm_signal_mask kvm_sigmask;
2854                 sigset_t sigset;
2855
2856                 if (argp) {
2857                         r = -EFAULT;
2858                         if (copy_from_user(&kvm_sigmask, argp,
2859                                            sizeof(kvm_sigmask)))
2860                                 goto out;
2861                         r = -EINVAL;
2862                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
2863                                 goto out;
2864                         r = -EFAULT;
2865                         if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2866                                 goto out;
2867                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2868                 } else
2869                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2870                 break;
2871         }
2872         default:
2873                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2874         }
2875
2876 out:
2877         return r;
2878 }
2879 #endif
2880
2881 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2882                                  int (*accessor)(struct kvm_device *dev,
2883                                                  struct kvm_device_attr *attr),
2884                                  unsigned long arg)
2885 {
2886         struct kvm_device_attr attr;
2887
2888         if (!accessor)
2889                 return -EPERM;
2890
2891         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2892                 return -EFAULT;
2893
2894         return accessor(dev, &attr);
2895 }
2896
2897 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2898                              unsigned long arg)
2899 {
2900         struct kvm_device *dev = filp->private_data;
2901
2902         switch (ioctl) {
2903         case KVM_SET_DEVICE_ATTR:
2904                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2905         case KVM_GET_DEVICE_ATTR:
2906                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2907         case KVM_HAS_DEVICE_ATTR:
2908                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2909         default:
2910                 if (dev->ops->ioctl)
2911                         return dev->ops->ioctl(dev, ioctl, arg);
2912
2913                 return -ENOTTY;
2914         }
2915 }
2916
2917 static int kvm_device_release(struct inode *inode, struct file *filp)
2918 {
2919         struct kvm_device *dev = filp->private_data;
2920         struct kvm *kvm = dev->kvm;
2921
2922         kvm_put_kvm(kvm);
2923         return 0;
2924 }
2925
2926 static const struct file_operations kvm_device_fops = {
2927         .unlocked_ioctl = kvm_device_ioctl,
2928         .release = kvm_device_release,
2929         KVM_COMPAT(kvm_device_ioctl),
2930 };
2931
2932 struct kvm_device *kvm_device_from_filp(struct file *filp)
2933 {
2934         if (filp->f_op != &kvm_device_fops)
2935                 return NULL;
2936
2937         return filp->private_data;
2938 }
2939
2940 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2941 #ifdef CONFIG_KVM_MPIC
2942         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2943         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2944 #endif
2945 };
2946
2947 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2948 {
2949         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2950                 return -ENOSPC;
2951
2952         if (kvm_device_ops_table[type] != NULL)
2953                 return -EEXIST;
2954
2955         kvm_device_ops_table[type] = ops;
2956         return 0;
2957 }
2958
2959 void kvm_unregister_device_ops(u32 type)
2960 {
2961         if (kvm_device_ops_table[type] != NULL)
2962                 kvm_device_ops_table[type] = NULL;
2963 }
2964
2965 static int kvm_ioctl_create_device(struct kvm *kvm,
2966                                    struct kvm_create_device *cd)
2967 {
2968         struct kvm_device_ops *ops = NULL;
2969         struct kvm_device *dev;
2970         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2971         int ret;
2972
2973         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2974                 return -ENODEV;
2975
2976         ops = kvm_device_ops_table[cd->type];
2977         if (ops == NULL)
2978                 return -ENODEV;
2979
2980         if (test)
2981                 return 0;
2982
2983         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2984         if (!dev)
2985                 return -ENOMEM;
2986
2987         dev->ops = ops;
2988         dev->kvm = kvm;
2989
2990         mutex_lock(&kvm->lock);
2991         ret = ops->create(dev, cd->type);
2992         if (ret < 0) {
2993                 mutex_unlock(&kvm->lock);
2994                 kfree(dev);
2995                 return ret;
2996         }
2997         list_add(&dev->vm_node, &kvm->devices);
2998         mutex_unlock(&kvm->lock);
2999
3000         if (ops->init)
3001                 ops->init(dev);
3002
3003         kvm_get_kvm(kvm);
3004         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3005         if (ret < 0) {
3006                 kvm_put_kvm(kvm);
3007                 mutex_lock(&kvm->lock);
3008                 list_del(&dev->vm_node);
3009                 mutex_unlock(&kvm->lock);
3010                 ops->destroy(dev);
3011                 return ret;
3012         }
3013
3014         cd->fd = ret;
3015         return 0;
3016 }
3017
3018 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3019 {
3020         switch (arg) {
3021         case KVM_CAP_USER_MEMORY:
3022         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3023         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3024         case KVM_CAP_INTERNAL_ERROR_DATA:
3025 #ifdef CONFIG_HAVE_KVM_MSI
3026         case KVM_CAP_SIGNAL_MSI:
3027 #endif
3028 #ifdef CONFIG_HAVE_KVM_IRQFD
3029         case KVM_CAP_IRQFD:
3030         case KVM_CAP_IRQFD_RESAMPLE:
3031 #endif
3032         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3033         case KVM_CAP_CHECK_EXTENSION_VM:
3034         case KVM_CAP_ENABLE_CAP_VM:
3035 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3036         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT:
3037 #endif
3038                 return 1;
3039 #ifdef CONFIG_KVM_MMIO
3040         case KVM_CAP_COALESCED_MMIO:
3041                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3042         case KVM_CAP_COALESCED_PIO:
3043                 return 1;
3044 #endif
3045 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3046         case KVM_CAP_IRQ_ROUTING:
3047                 return KVM_MAX_IRQ_ROUTES;
3048 #endif
3049 #if KVM_ADDRESS_SPACE_NUM > 1
3050         case KVM_CAP_MULTI_ADDRESS_SPACE:
3051                 return KVM_ADDRESS_SPACE_NUM;
3052 #endif
3053         case KVM_CAP_MAX_VCPU_ID:
3054                 return KVM_MAX_VCPU_ID;
3055         default:
3056                 break;
3057         }
3058         return kvm_vm_ioctl_check_extension(kvm, arg);
3059 }
3060
3061 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3062                                                   struct kvm_enable_cap *cap)
3063 {
3064         return -EINVAL;
3065 }
3066
3067 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3068                                            struct kvm_enable_cap *cap)
3069 {
3070         switch (cap->cap) {
3071 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3072         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT:
3073                 if (cap->flags || (cap->args[0] & ~1))
3074                         return -EINVAL;
3075                 kvm->manual_dirty_log_protect = cap->args[0];
3076                 return 0;
3077 #endif
3078         default:
3079                 return kvm_vm_ioctl_enable_cap(kvm, cap);
3080         }
3081 }
3082
3083 static long kvm_vm_ioctl(struct file *filp,
3084                            unsigned int ioctl, unsigned long arg)
3085 {
3086         struct kvm *kvm = filp->private_data;
3087         void __user *argp = (void __user *)arg;
3088         int r;
3089
3090         if (kvm->mm != current->mm)
3091                 return -EIO;
3092         switch (ioctl) {
3093         case KVM_CREATE_VCPU:
3094                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3095                 break;
3096         case KVM_ENABLE_CAP: {
3097                 struct kvm_enable_cap cap;
3098
3099                 r = -EFAULT;
3100                 if (copy_from_user(&cap, argp, sizeof(cap)))
3101                         goto out;
3102                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3103                 break;
3104         }
3105         case KVM_SET_USER_MEMORY_REGION: {
3106                 struct kvm_userspace_memory_region kvm_userspace_mem;
3107
3108                 r = -EFAULT;
3109                 if (copy_from_user(&kvm_userspace_mem, argp,
3110                                                 sizeof(kvm_userspace_mem)))
3111                         goto out;
3112
3113                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3114                 break;
3115         }
3116         case KVM_GET_DIRTY_LOG: {
3117                 struct kvm_dirty_log log;
3118
3119                 r = -EFAULT;
3120                 if (copy_from_user(&log, argp, sizeof(log)))
3121                         goto out;
3122                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3123                 break;
3124         }
3125 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3126         case KVM_CLEAR_DIRTY_LOG: {
3127                 struct kvm_clear_dirty_log log;
3128
3129                 r = -EFAULT;
3130                 if (copy_from_user(&log, argp, sizeof(log)))
3131                         goto out;
3132                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3133                 break;
3134         }
3135 #endif
3136 #ifdef CONFIG_KVM_MMIO
3137         case KVM_REGISTER_COALESCED_MMIO: {
3138                 struct kvm_coalesced_mmio_zone zone;
3139
3140                 r = -EFAULT;
3141                 if (copy_from_user(&zone, argp, sizeof(zone)))
3142                         goto out;
3143                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3144                 break;
3145         }
3146         case KVM_UNREGISTER_COALESCED_MMIO: {
3147                 struct kvm_coalesced_mmio_zone zone;
3148
3149                 r = -EFAULT;
3150                 if (copy_from_user(&zone, argp, sizeof(zone)))
3151                         goto out;
3152                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3153                 break;
3154         }
3155 #endif
3156         case KVM_IRQFD: {
3157                 struct kvm_irqfd data;
3158
3159                 r = -EFAULT;
3160                 if (copy_from_user(&data, argp, sizeof(data)))
3161                         goto out;
3162                 r = kvm_irqfd(kvm, &data);
3163                 break;
3164         }
3165         case KVM_IOEVENTFD: {
3166                 struct kvm_ioeventfd data;
3167
3168                 r = -EFAULT;
3169                 if (copy_from_user(&data, argp, sizeof(data)))
3170                         goto out;
3171                 r = kvm_ioeventfd(kvm, &data);
3172                 break;
3173         }
3174 #ifdef CONFIG_HAVE_KVM_MSI
3175         case KVM_SIGNAL_MSI: {
3176                 struct kvm_msi msi;
3177
3178                 r = -EFAULT;
3179                 if (copy_from_user(&msi, argp, sizeof(msi)))
3180                         goto out;
3181                 r = kvm_send_userspace_msi(kvm, &msi);
3182                 break;
3183         }
3184 #endif
3185 #ifdef __KVM_HAVE_IRQ_LINE
3186         case KVM_IRQ_LINE_STATUS:
3187         case KVM_IRQ_LINE: {
3188                 struct kvm_irq_level irq_event;
3189
3190                 r = -EFAULT;
3191                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3192                         goto out;
3193
3194                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3195                                         ioctl == KVM_IRQ_LINE_STATUS);
3196                 if (r)
3197                         goto out;
3198
3199                 r = -EFAULT;
3200                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3201                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3202                                 goto out;
3203                 }
3204
3205                 r = 0;
3206                 break;
3207         }
3208 #endif
3209 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3210         case KVM_SET_GSI_ROUTING: {
3211                 struct kvm_irq_routing routing;
3212                 struct kvm_irq_routing __user *urouting;
3213                 struct kvm_irq_routing_entry *entries = NULL;
3214
3215                 r = -EFAULT;
3216                 if (copy_from_user(&routing, argp, sizeof(routing)))
3217                         goto out;
3218                 r = -EINVAL;
3219                 if (!kvm_arch_can_set_irq_routing(kvm))
3220                         goto out;
3221                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3222                         goto out;
3223                 if (routing.flags)
3224                         goto out;
3225                 if (routing.nr) {
3226                         r = -ENOMEM;
3227                         entries = vmalloc(array_size(sizeof(*entries),
3228                                                      routing.nr));
3229                         if (!entries)
3230                                 goto out;
3231                         r = -EFAULT;
3232                         urouting = argp;
3233                         if (copy_from_user(entries, urouting->entries,
3234                                            routing.nr * sizeof(*entries)))
3235                                 goto out_free_irq_routing;
3236                 }
3237                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3238                                         routing.flags);
3239 out_free_irq_routing:
3240                 vfree(entries);
3241                 break;
3242         }
3243 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3244         case KVM_CREATE_DEVICE: {
3245                 struct kvm_create_device cd;
3246
3247                 r = -EFAULT;
3248                 if (copy_from_user(&cd, argp, sizeof(cd)))
3249                         goto out;
3250
3251                 r = kvm_ioctl_create_device(kvm, &cd);
3252                 if (r)
3253                         goto out;
3254
3255                 r = -EFAULT;
3256                 if (copy_to_user(argp, &cd, sizeof(cd)))
3257                         goto out;
3258
3259                 r = 0;
3260                 break;
3261         }
3262         case KVM_CHECK_EXTENSION:
3263                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3264                 break;
3265         default:
3266                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3267         }
3268 out:
3269         return r;
3270 }
3271
3272 #ifdef CONFIG_KVM_COMPAT
3273 struct compat_kvm_dirty_log {
3274         __u32 slot;
3275         __u32 padding1;
3276         union {
3277                 compat_uptr_t dirty_bitmap; /* one bit per page */
3278                 __u64 padding2;
3279         };
3280 };
3281
3282 static long kvm_vm_compat_ioctl(struct file *filp,
3283                            unsigned int ioctl, unsigned long arg)
3284 {
3285         struct kvm *kvm = filp->private_data;
3286         int r;
3287
3288         if (kvm->mm != current->mm)
3289                 return -EIO;
3290         switch (ioctl) {
3291         case KVM_GET_DIRTY_LOG: {
3292                 struct compat_kvm_dirty_log compat_log;
3293                 struct kvm_dirty_log log;
3294
3295                 if (copy_from_user(&compat_log, (void __user *)arg,
3296                                    sizeof(compat_log)))
3297                         return -EFAULT;
3298                 log.slot         = compat_log.slot;
3299                 log.padding1     = compat_log.padding1;
3300                 log.padding2     = compat_log.padding2;
3301                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3302
3303                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3304                 break;
3305         }
3306         default:
3307                 r = kvm_vm_ioctl(filp, ioctl, arg);
3308         }
3309         return r;
3310 }
3311 #endif
3312
3313 static struct file_operations kvm_vm_fops = {
3314         .release        = kvm_vm_release,
3315         .unlocked_ioctl = kvm_vm_ioctl,
3316         .llseek         = noop_llseek,
3317         KVM_COMPAT(kvm_vm_compat_ioctl),
3318 };
3319
3320 static int kvm_dev_ioctl_create_vm(unsigned long type)
3321 {
3322         int r;
3323         struct kvm *kvm;
3324         struct file *file;
3325
3326         kvm = kvm_create_vm(type);
3327         if (IS_ERR(kvm))
3328                 return PTR_ERR(kvm);
3329 #ifdef CONFIG_KVM_MMIO
3330         r = kvm_coalesced_mmio_init(kvm);
3331         if (r < 0)
3332                 goto put_kvm;
3333 #endif
3334         r = get_unused_fd_flags(O_CLOEXEC);
3335         if (r < 0)
3336                 goto put_kvm;
3337
3338         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3339         if (IS_ERR(file)) {
3340                 put_unused_fd(r);
3341                 r = PTR_ERR(file);
3342                 goto put_kvm;
3343         }
3344
3345         /*
3346          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3347          * already set, with ->release() being kvm_vm_release().  In error
3348          * cases it will be called by the final fput(file) and will take
3349          * care of doing kvm_put_kvm(kvm).
3350          */
3351         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3352                 put_unused_fd(r);
3353                 fput(file);
3354                 return -ENOMEM;
3355         }
3356         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3357
3358         fd_install(r, file);
3359         return r;
3360
3361 put_kvm:
3362         kvm_put_kvm(kvm);
3363         return r;
3364 }
3365
3366 static long kvm_dev_ioctl(struct file *filp,
3367                           unsigned int ioctl, unsigned long arg)
3368 {
3369         long r = -EINVAL;
3370
3371         switch (ioctl) {
3372         case KVM_GET_API_VERSION:
3373                 if (arg)
3374                         goto out;
3375                 r = KVM_API_VERSION;
3376                 break;
3377         case KVM_CREATE_VM:
3378                 r = kvm_dev_ioctl_create_vm(arg);
3379                 break;
3380         case KVM_CHECK_EXTENSION:
3381                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3382                 break;
3383         case KVM_GET_VCPU_MMAP_SIZE:
3384                 if (arg)
3385                         goto out;
3386                 r = PAGE_SIZE;     /* struct kvm_run */
3387 #ifdef CONFIG_X86
3388                 r += PAGE_SIZE;    /* pio data page */
3389 #endif
3390 #ifdef CONFIG_KVM_MMIO
3391                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3392 #endif
3393                 break;
3394         case KVM_TRACE_ENABLE:
3395         case KVM_TRACE_PAUSE:
3396         case KVM_TRACE_DISABLE:
3397                 r = -EOPNOTSUPP;
3398                 break;
3399         default:
3400                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3401         }
3402 out:
3403         return r;
3404 }
3405
3406 static struct file_operations kvm_chardev_ops = {
3407         .unlocked_ioctl = kvm_dev_ioctl,
3408         .llseek         = noop_llseek,
3409         KVM_COMPAT(kvm_dev_ioctl),
3410 };
3411
3412 static struct miscdevice kvm_dev = {
3413         KVM_MINOR,
3414         "kvm",
3415         &kvm_chardev_ops,
3416 };
3417
3418 static void hardware_enable_nolock(void *junk)
3419 {
3420         int cpu = raw_smp_processor_id();
3421         int r;
3422
3423         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3424                 return;
3425
3426         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3427
3428         r = kvm_arch_hardware_enable();
3429
3430         if (r) {
3431                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3432                 atomic_inc(&hardware_enable_failed);
3433                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3434         }
3435 }
3436
3437 static int kvm_starting_cpu(unsigned int cpu)
3438 {
3439         raw_spin_lock(&kvm_count_lock);
3440         if (kvm_usage_count)
3441                 hardware_enable_nolock(NULL);
3442         raw_spin_unlock(&kvm_count_lock);
3443         return 0;
3444 }
3445
3446 static void hardware_disable_nolock(void *junk)
3447 {
3448         int cpu = raw_smp_processor_id();
3449
3450         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3451                 return;
3452         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3453         kvm_arch_hardware_disable();
3454 }
3455
3456 static int kvm_dying_cpu(unsigned int cpu)
3457 {
3458         raw_spin_lock(&kvm_count_lock);
3459         if (kvm_usage_count)
3460                 hardware_disable_nolock(NULL);
3461         raw_spin_unlock(&kvm_count_lock);
3462         return 0;
3463 }
3464
3465 static void hardware_disable_all_nolock(void)
3466 {
3467         BUG_ON(!kvm_usage_count);
3468
3469         kvm_usage_count--;
3470         if (!kvm_usage_count)
3471                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3472 }
3473
3474 static void hardware_disable_all(void)
3475 {
3476         raw_spin_lock(&kvm_count_lock);
3477         hardware_disable_all_nolock();
3478         raw_spin_unlock(&kvm_count_lock);
3479 }
3480
3481 static int hardware_enable_all(void)
3482 {
3483         int r = 0;
3484
3485         raw_spin_lock(&kvm_count_lock);
3486
3487         kvm_usage_count++;
3488         if (kvm_usage_count == 1) {
3489                 atomic_set(&hardware_enable_failed, 0);
3490                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3491
3492                 if (atomic_read(&hardware_enable_failed)) {
3493                         hardware_disable_all_nolock();
3494                         r = -EBUSY;
3495                 }
3496         }
3497
3498         raw_spin_unlock(&kvm_count_lock);
3499
3500         return r;
3501 }
3502
3503 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3504                       void *v)
3505 {
3506         /*
3507          * Some (well, at least mine) BIOSes hang on reboot if
3508          * in vmx root mode.
3509          *
3510          * And Intel TXT required VMX off for all cpu when system shutdown.
3511          */
3512         pr_info("kvm: exiting hardware virtualization\n");
3513         kvm_rebooting = true;
3514         on_each_cpu(hardware_disable_nolock, NULL, 1);
3515         return NOTIFY_OK;
3516 }
3517
3518 static struct notifier_block kvm_reboot_notifier = {
3519         .notifier_call = kvm_reboot,
3520         .priority = 0,
3521 };
3522
3523 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3524 {
3525         int i;
3526
3527         for (i = 0; i < bus->dev_count; i++) {
3528                 struct kvm_io_device *pos = bus->range[i].dev;
3529
3530                 kvm_iodevice_destructor(pos);
3531         }
3532         kfree(bus);
3533 }
3534
3535 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3536                                  const struct kvm_io_range *r2)
3537 {
3538         gpa_t addr1 = r1->addr;
3539         gpa_t addr2 = r2->addr;
3540
3541         if (addr1 < addr2)
3542                 return -1;
3543
3544         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3545          * accept any overlapping write.  Any order is acceptable for
3546          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3547          * we process all of them.
3548          */
3549         if (r2->len) {
3550                 addr1 += r1->len;
3551                 addr2 += r2->len;
3552         }
3553
3554         if (addr1 > addr2)
3555                 return 1;
3556
3557         return 0;
3558 }
3559
3560 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3561 {
3562         return kvm_io_bus_cmp(p1, p2);
3563 }
3564
3565 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3566                              gpa_t addr, int len)
3567 {
3568         struct kvm_io_range *range, key;
3569         int off;
3570
3571         key = (struct kvm_io_range) {
3572                 .addr = addr,
3573                 .len = len,
3574         };
3575
3576         range = bsearch(&key, bus->range, bus->dev_count,
3577                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3578         if (range == NULL)
3579                 return -ENOENT;
3580
3581         off = range - bus->range;
3582
3583         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3584                 off--;
3585
3586         return off;
3587 }
3588
3589 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3590                               struct kvm_io_range *range, const void *val)
3591 {
3592         int idx;
3593
3594         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3595         if (idx < 0)
3596                 return -EOPNOTSUPP;
3597
3598         while (idx < bus->dev_count &&
3599                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3600                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3601                                         range->len, val))
3602                         return idx;
3603                 idx++;
3604         }
3605
3606         return -EOPNOTSUPP;
3607 }
3608
3609 /* kvm_io_bus_write - called under kvm->slots_lock */
3610 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3611                      int len, const void *val)
3612 {
3613         struct kvm_io_bus *bus;
3614         struct kvm_io_range range;
3615         int r;
3616
3617         range = (struct kvm_io_range) {
3618                 .addr = addr,
3619                 .len = len,
3620         };
3621
3622         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3623         if (!bus)
3624                 return -ENOMEM;
3625         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3626         return r < 0 ? r : 0;
3627 }
3628
3629 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3630 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3631                             gpa_t addr, int len, const void *val, long cookie)
3632 {
3633         struct kvm_io_bus *bus;
3634         struct kvm_io_range range;
3635
3636         range = (struct kvm_io_range) {
3637                 .addr = addr,
3638                 .len = len,
3639         };
3640
3641         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3642         if (!bus)
3643                 return -ENOMEM;
3644
3645         /* First try the device referenced by cookie. */
3646         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3647             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3648                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3649                                         val))
3650                         return cookie;
3651
3652         /*
3653          * cookie contained garbage; fall back to search and return the
3654          * correct cookie value.
3655          */
3656         return __kvm_io_bus_write(vcpu, bus, &range, val);
3657 }
3658
3659 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3660                              struct kvm_io_range *range, void *val)
3661 {
3662         int idx;
3663
3664         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3665         if (idx < 0)
3666                 return -EOPNOTSUPP;
3667
3668         while (idx < bus->dev_count &&
3669                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3670                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3671                                        range->len, val))
3672                         return idx;
3673                 idx++;
3674         }
3675
3676         return -EOPNOTSUPP;
3677 }
3678 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3679
3680 /* kvm_io_bus_read - called under kvm->slots_lock */
3681 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3682                     int len, void *val)
3683 {
3684         struct kvm_io_bus *bus;
3685         struct kvm_io_range range;
3686         int r;
3687
3688         range = (struct kvm_io_range) {
3689                 .addr = addr,
3690                 .len = len,
3691         };
3692
3693         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3694         if (!bus)
3695                 return -ENOMEM;
3696         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3697         return r < 0 ? r : 0;
3698 }
3699
3700
3701 /* Caller must hold slots_lock. */
3702 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3703                             int len, struct kvm_io_device *dev)
3704 {
3705         int i;
3706         struct kvm_io_bus *new_bus, *bus;
3707         struct kvm_io_range range;
3708
3709         bus = kvm_get_bus(kvm, bus_idx);
3710         if (!bus)
3711                 return -ENOMEM;
3712
3713         /* exclude ioeventfd which is limited by maximum fd */
3714         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3715                 return -ENOSPC;
3716
3717         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3718                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3719         if (!new_bus)
3720                 return -ENOMEM;
3721
3722         range = (struct kvm_io_range) {
3723                 .addr = addr,
3724                 .len = len,
3725                 .dev = dev,
3726         };
3727
3728         for (i = 0; i < bus->dev_count; i++)
3729                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3730                         break;
3731
3732         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3733         new_bus->dev_count++;
3734         new_bus->range[i] = range;
3735         memcpy(new_bus->range + i + 1, bus->range + i,
3736                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
3737         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3738         synchronize_srcu_expedited(&kvm->srcu);
3739         kfree(bus);
3740
3741         return 0;
3742 }
3743
3744 /* Caller must hold slots_lock. */
3745 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3746                                struct kvm_io_device *dev)
3747 {
3748         int i;
3749         struct kvm_io_bus *new_bus, *bus;
3750
3751         bus = kvm_get_bus(kvm, bus_idx);
3752         if (!bus)
3753                 return;
3754
3755         for (i = 0; i < bus->dev_count; i++)
3756                 if (bus->range[i].dev == dev) {
3757                         break;
3758                 }
3759
3760         if (i == bus->dev_count)
3761                 return;
3762
3763         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3764                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3765         if (!new_bus)  {
3766                 pr_err("kvm: failed to shrink bus, removing it completely\n");
3767                 goto broken;
3768         }
3769
3770         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3771         new_bus->dev_count--;
3772         memcpy(new_bus->range + i, bus->range + i + 1,
3773                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3774
3775 broken:
3776         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3777         synchronize_srcu_expedited(&kvm->srcu);
3778         kfree(bus);
3779         return;
3780 }
3781
3782 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3783                                          gpa_t addr)
3784 {
3785         struct kvm_io_bus *bus;
3786         int dev_idx, srcu_idx;
3787         struct kvm_io_device *iodev = NULL;
3788
3789         srcu_idx = srcu_read_lock(&kvm->srcu);
3790
3791         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3792         if (!bus)
3793                 goto out_unlock;
3794
3795         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3796         if (dev_idx < 0)
3797                 goto out_unlock;
3798
3799         iodev = bus->range[dev_idx].dev;
3800
3801 out_unlock:
3802         srcu_read_unlock(&kvm->srcu, srcu_idx);
3803
3804         return iodev;
3805 }
3806 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3807
3808 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3809                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3810                            const char *fmt)
3811 {
3812         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3813                                           inode->i_private;
3814
3815         /* The debugfs files are a reference to the kvm struct which
3816          * is still valid when kvm_destroy_vm is called.
3817          * To avoid the race between open and the removal of the debugfs
3818          * directory we test against the users count.
3819          */
3820         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3821                 return -ENOENT;
3822
3823         if (simple_attr_open(inode, file, get, set, fmt)) {
3824                 kvm_put_kvm(stat_data->kvm);
3825                 return -ENOMEM;
3826         }
3827
3828         return 0;
3829 }
3830
3831 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3832 {
3833         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3834                                           inode->i_private;
3835
3836         simple_attr_release(inode, file);
3837         kvm_put_kvm(stat_data->kvm);
3838
3839         return 0;
3840 }
3841
3842 static int vm_stat_get_per_vm(void *data, u64 *val)
3843 {
3844         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3845
3846         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3847
3848         return 0;
3849 }
3850
3851 static int vm_stat_clear_per_vm(void *data, u64 val)
3852 {
3853         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3854
3855         if (val)
3856                 return -EINVAL;
3857
3858         *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3859
3860         return 0;
3861 }
3862
3863 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3864 {
3865         __simple_attr_check_format("%llu\n", 0ull);
3866         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3867                                 vm_stat_clear_per_vm, "%llu\n");
3868 }
3869
3870 static const struct file_operations vm_stat_get_per_vm_fops = {
3871         .owner   = THIS_MODULE,
3872         .open    = vm_stat_get_per_vm_open,
3873         .release = kvm_debugfs_release,
3874         .read    = simple_attr_read,
3875         .write   = simple_attr_write,
3876         .llseek  = no_llseek,
3877 };
3878
3879 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3880 {
3881         int i;
3882         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3883         struct kvm_vcpu *vcpu;
3884
3885         *val = 0;
3886
3887         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3888                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3889
3890         return 0;
3891 }
3892
3893 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3894 {
3895         int i;
3896         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3897         struct kvm_vcpu *vcpu;
3898
3899         if (val)
3900                 return -EINVAL;
3901
3902         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3903                 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3904
3905         return 0;
3906 }
3907
3908 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3909 {
3910         __simple_attr_check_format("%llu\n", 0ull);
3911         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3912                                  vcpu_stat_clear_per_vm, "%llu\n");
3913 }
3914
3915 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3916         .owner   = THIS_MODULE,
3917         .open    = vcpu_stat_get_per_vm_open,
3918         .release = kvm_debugfs_release,
3919         .read    = simple_attr_read,
3920         .write   = simple_attr_write,
3921         .llseek  = no_llseek,
3922 };
3923
3924 static const struct file_operations *stat_fops_per_vm[] = {
3925         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3926         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3927 };
3928
3929 static int vm_stat_get(void *_offset, u64 *val)
3930 {
3931         unsigned offset = (long)_offset;
3932         struct kvm *kvm;
3933         struct kvm_stat_data stat_tmp = {.offset = offset};
3934         u64 tmp_val;
3935
3936         *val = 0;
3937         spin_lock(&kvm_lock);
3938         list_for_each_entry(kvm, &vm_list, vm_list) {
3939                 stat_tmp.kvm = kvm;
3940                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3941                 *val += tmp_val;
3942         }
3943         spin_unlock(&kvm_lock);
3944         return 0;
3945 }
3946
3947 static int vm_stat_clear(void *_offset, u64 val)
3948 {
3949         unsigned offset = (long)_offset;
3950         struct kvm *kvm;
3951         struct kvm_stat_data stat_tmp = {.offset = offset};
3952
3953         if (val)
3954                 return -EINVAL;
3955
3956         spin_lock(&kvm_lock);
3957         list_for_each_entry(kvm, &vm_list, vm_list) {
3958                 stat_tmp.kvm = kvm;
3959                 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3960         }
3961         spin_unlock(&kvm_lock);
3962
3963         return 0;
3964 }
3965
3966 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3967
3968 static int vcpu_stat_get(void *_offset, u64 *val)
3969 {
3970         unsigned offset = (long)_offset;
3971         struct kvm *kvm;
3972         struct kvm_stat_data stat_tmp = {.offset = offset};
3973         u64 tmp_val;
3974
3975         *val = 0;
3976         spin_lock(&kvm_lock);
3977         list_for_each_entry(kvm, &vm_list, vm_list) {
3978                 stat_tmp.kvm = kvm;
3979                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3980                 *val += tmp_val;
3981         }
3982         spin_unlock(&kvm_lock);
3983         return 0;
3984 }
3985
3986 static int vcpu_stat_clear(void *_offset, u64 val)
3987 {
3988         unsigned offset = (long)_offset;
3989         struct kvm *kvm;
3990         struct kvm_stat_data stat_tmp = {.offset = offset};
3991
3992         if (val)
3993                 return -EINVAL;
3994
3995         spin_lock(&kvm_lock);
3996         list_for_each_entry(kvm, &vm_list, vm_list) {
3997                 stat_tmp.kvm = kvm;
3998                 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3999         }
4000         spin_unlock(&kvm_lock);
4001
4002         return 0;
4003 }
4004
4005 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4006                         "%llu\n");
4007
4008 static const struct file_operations *stat_fops[] = {
4009         [KVM_STAT_VCPU] = &vcpu_stat_fops,
4010         [KVM_STAT_VM]   = &vm_stat_fops,
4011 };
4012
4013 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4014 {
4015         struct kobj_uevent_env *env;
4016         unsigned long long created, active;
4017
4018         if (!kvm_dev.this_device || !kvm)
4019                 return;
4020
4021         spin_lock(&kvm_lock);
4022         if (type == KVM_EVENT_CREATE_VM) {
4023                 kvm_createvm_count++;
4024                 kvm_active_vms++;
4025         } else if (type == KVM_EVENT_DESTROY_VM) {
4026                 kvm_active_vms--;
4027         }
4028         created = kvm_createvm_count;
4029         active = kvm_active_vms;
4030         spin_unlock(&kvm_lock);
4031
4032         env = kzalloc(sizeof(*env), GFP_KERNEL);
4033         if (!env)
4034                 return;
4035
4036         add_uevent_var(env, "CREATED=%llu", created);
4037         add_uevent_var(env, "COUNT=%llu", active);
4038
4039         if (type == KVM_EVENT_CREATE_VM) {
4040                 add_uevent_var(env, "EVENT=create");
4041                 kvm->userspace_pid = task_pid_nr(current);
4042         } else if (type == KVM_EVENT_DESTROY_VM) {
4043                 add_uevent_var(env, "EVENT=destroy");
4044         }
4045         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4046
4047         if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4048                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
4049
4050                 if (p) {
4051                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4052                         if (!IS_ERR(tmp))
4053                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
4054                         kfree(p);
4055                 }
4056         }
4057         /* no need for checks, since we are adding at most only 5 keys */
4058         env->envp[env->envp_idx++] = NULL;
4059         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4060         kfree(env);
4061 }
4062
4063 static void kvm_init_debug(void)
4064 {
4065         struct kvm_stats_debugfs_item *p;
4066
4067         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4068
4069         kvm_debugfs_num_entries = 0;
4070         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4071                 debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
4072                                     (void *)(long)p->offset,
4073                                     stat_fops[p->kind]);
4074         }
4075 }
4076
4077 static int kvm_suspend(void)
4078 {
4079         if (kvm_usage_count)
4080                 hardware_disable_nolock(NULL);
4081         return 0;
4082 }
4083
4084 static void kvm_resume(void)
4085 {
4086         if (kvm_usage_count) {
4087                 lockdep_assert_held(&kvm_count_lock);
4088                 hardware_enable_nolock(NULL);
4089         }
4090 }
4091
4092 static struct syscore_ops kvm_syscore_ops = {
4093         .suspend = kvm_suspend,
4094         .resume = kvm_resume,
4095 };
4096
4097 static inline
4098 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4099 {
4100         return container_of(pn, struct kvm_vcpu, preempt_notifier);
4101 }
4102
4103 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4104 {
4105         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4106
4107         if (vcpu->preempted)
4108                 vcpu->preempted = false;
4109
4110         kvm_arch_sched_in(vcpu, cpu);
4111
4112         kvm_arch_vcpu_load(vcpu, cpu);
4113 }
4114
4115 static void kvm_sched_out(struct preempt_notifier *pn,
4116                           struct task_struct *next)
4117 {
4118         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4119
4120         if (current->state == TASK_RUNNING)
4121                 vcpu->preempted = true;
4122         kvm_arch_vcpu_put(vcpu);
4123 }
4124
4125 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4126                   struct module *module)
4127 {
4128         int r;
4129         int cpu;
4130
4131         r = kvm_arch_init(opaque);
4132         if (r)
4133                 goto out_fail;
4134
4135         /*
4136          * kvm_arch_init makes sure there's at most one caller
4137          * for architectures that support multiple implementations,
4138          * like intel and amd on x86.
4139          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4140          * conflicts in case kvm is already setup for another implementation.
4141          */
4142         r = kvm_irqfd_init();
4143         if (r)
4144                 goto out_irqfd;
4145
4146         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4147                 r = -ENOMEM;
4148                 goto out_free_0;
4149         }
4150
4151         r = kvm_arch_hardware_setup();
4152         if (r < 0)
4153                 goto out_free_0a;
4154
4155         for_each_online_cpu(cpu) {
4156                 smp_call_function_single(cpu,
4157                                 kvm_arch_check_processor_compat,
4158                                 &r, 1);
4159                 if (r < 0)
4160                         goto out_free_1;
4161         }
4162
4163         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4164                                       kvm_starting_cpu, kvm_dying_cpu);
4165         if (r)
4166                 goto out_free_2;
4167         register_reboot_notifier(&kvm_reboot_notifier);
4168
4169         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4170         if (!vcpu_align)
4171                 vcpu_align = __alignof__(struct kvm_vcpu);
4172         kvm_vcpu_cache =
4173                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4174                                            SLAB_ACCOUNT,
4175                                            offsetof(struct kvm_vcpu, arch),
4176                                            sizeof_field(struct kvm_vcpu, arch),
4177                                            NULL);
4178         if (!kvm_vcpu_cache) {
4179                 r = -ENOMEM;
4180                 goto out_free_3;
4181         }
4182
4183         r = kvm_async_pf_init();
4184         if (r)
4185                 goto out_free;
4186
4187         kvm_chardev_ops.owner = module;
4188         kvm_vm_fops.owner = module;
4189         kvm_vcpu_fops.owner = module;
4190
4191         r = misc_register(&kvm_dev);
4192         if (r) {
4193                 pr_err("kvm: misc device register failed\n");
4194                 goto out_unreg;
4195         }
4196
4197         register_syscore_ops(&kvm_syscore_ops);
4198
4199         kvm_preempt_ops.sched_in = kvm_sched_in;
4200         kvm_preempt_ops.sched_out = kvm_sched_out;
4201
4202         kvm_init_debug();
4203
4204         r = kvm_vfio_ops_init();
4205         WARN_ON(r);
4206
4207         return 0;
4208
4209 out_unreg:
4210         kvm_async_pf_deinit();
4211 out_free:
4212         kmem_cache_destroy(kvm_vcpu_cache);
4213 out_free_3:
4214         unregister_reboot_notifier(&kvm_reboot_notifier);
4215         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4216 out_free_2:
4217 out_free_1:
4218         kvm_arch_hardware_unsetup();
4219 out_free_0a:
4220         free_cpumask_var(cpus_hardware_enabled);
4221 out_free_0:
4222         kvm_irqfd_exit();
4223 out_irqfd:
4224         kvm_arch_exit();
4225 out_fail:
4226         return r;
4227 }
4228 EXPORT_SYMBOL_GPL(kvm_init);
4229
4230 void kvm_exit(void)
4231 {
4232         debugfs_remove_recursive(kvm_debugfs_dir);
4233         misc_deregister(&kvm_dev);
4234         kmem_cache_destroy(kvm_vcpu_cache);
4235         kvm_async_pf_deinit();
4236         unregister_syscore_ops(&kvm_syscore_ops);
4237         unregister_reboot_notifier(&kvm_reboot_notifier);
4238         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4239         on_each_cpu(hardware_disable_nolock, NULL, 1);
4240         kvm_arch_hardware_unsetup();
4241         kvm_arch_exit();
4242         kvm_irqfd_exit();
4243         free_cpumask_var(cpus_hardware_enabled);
4244         kvm_vfio_ops_exit();
4245 }
4246 EXPORT_SYMBOL_GPL(kvm_exit);