Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/bp/bp
[sfrench/cifs-2.6.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affilates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50
51 #include <asm/processor.h>
52 #include <asm/io.h>
53 #include <asm/uaccess.h>
54 #include <asm/pgtable.h>
55 #include <asm-generic/bitops/le.h>
56
57 #include "coalesced_mmio.h"
58
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/kvm.h>
61
62 MODULE_AUTHOR("Qumranet");
63 MODULE_LICENSE("GPL");
64
65 /*
66  * Ordering of locks:
67  *
68  *              kvm->lock --> kvm->slots_lock --> kvm->irq_lock
69  */
70
71 DEFINE_SPINLOCK(kvm_lock);
72 LIST_HEAD(vm_list);
73
74 static cpumask_var_t cpus_hardware_enabled;
75 static int kvm_usage_count = 0;
76 static atomic_t hardware_enable_failed;
77
78 struct kmem_cache *kvm_vcpu_cache;
79 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
80
81 static __read_mostly struct preempt_ops kvm_preempt_ops;
82
83 struct dentry *kvm_debugfs_dir;
84
85 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
86                            unsigned long arg);
87 static int hardware_enable_all(void);
88 static void hardware_disable_all(void);
89
90 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
91
92 static bool kvm_rebooting;
93
94 static bool largepages_enabled = true;
95
96 static struct page *hwpoison_page;
97 static pfn_t hwpoison_pfn;
98
99 static struct page *fault_page;
100 static pfn_t fault_pfn;
101
102 inline int kvm_is_mmio_pfn(pfn_t pfn)
103 {
104         if (pfn_valid(pfn)) {
105                 struct page *page = compound_head(pfn_to_page(pfn));
106                 return PageReserved(page);
107         }
108
109         return true;
110 }
111
112 /*
113  * Switches to specified vcpu, until a matching vcpu_put()
114  */
115 void vcpu_load(struct kvm_vcpu *vcpu)
116 {
117         int cpu;
118
119         mutex_lock(&vcpu->mutex);
120         cpu = get_cpu();
121         preempt_notifier_register(&vcpu->preempt_notifier);
122         kvm_arch_vcpu_load(vcpu, cpu);
123         put_cpu();
124 }
125
126 void vcpu_put(struct kvm_vcpu *vcpu)
127 {
128         preempt_disable();
129         kvm_arch_vcpu_put(vcpu);
130         preempt_notifier_unregister(&vcpu->preempt_notifier);
131         preempt_enable();
132         mutex_unlock(&vcpu->mutex);
133 }
134
135 static void ack_flush(void *_completed)
136 {
137 }
138
139 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
140 {
141         int i, cpu, me;
142         cpumask_var_t cpus;
143         bool called = true;
144         struct kvm_vcpu *vcpu;
145
146         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
147
148         raw_spin_lock(&kvm->requests_lock);
149         me = smp_processor_id();
150         kvm_for_each_vcpu(i, vcpu, kvm) {
151                 if (kvm_make_check_request(req, vcpu))
152                         continue;
153                 cpu = vcpu->cpu;
154                 if (cpus != NULL && cpu != -1 && cpu != me)
155                         cpumask_set_cpu(cpu, cpus);
156         }
157         if (unlikely(cpus == NULL))
158                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
159         else if (!cpumask_empty(cpus))
160                 smp_call_function_many(cpus, ack_flush, NULL, 1);
161         else
162                 called = false;
163         raw_spin_unlock(&kvm->requests_lock);
164         free_cpumask_var(cpus);
165         return called;
166 }
167
168 void kvm_flush_remote_tlbs(struct kvm *kvm)
169 {
170         if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
171                 ++kvm->stat.remote_tlb_flush;
172 }
173
174 void kvm_reload_remote_mmus(struct kvm *kvm)
175 {
176         make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
177 }
178
179 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
180 {
181         struct page *page;
182         int r;
183
184         mutex_init(&vcpu->mutex);
185         vcpu->cpu = -1;
186         vcpu->kvm = kvm;
187         vcpu->vcpu_id = id;
188         init_waitqueue_head(&vcpu->wq);
189
190         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
191         if (!page) {
192                 r = -ENOMEM;
193                 goto fail;
194         }
195         vcpu->run = page_address(page);
196
197         r = kvm_arch_vcpu_init(vcpu);
198         if (r < 0)
199                 goto fail_free_run;
200         return 0;
201
202 fail_free_run:
203         free_page((unsigned long)vcpu->run);
204 fail:
205         return r;
206 }
207 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
208
209 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
210 {
211         kvm_arch_vcpu_uninit(vcpu);
212         free_page((unsigned long)vcpu->run);
213 }
214 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
215
216 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
217 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
218 {
219         return container_of(mn, struct kvm, mmu_notifier);
220 }
221
222 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
223                                              struct mm_struct *mm,
224                                              unsigned long address)
225 {
226         struct kvm *kvm = mmu_notifier_to_kvm(mn);
227         int need_tlb_flush, idx;
228
229         /*
230          * When ->invalidate_page runs, the linux pte has been zapped
231          * already but the page is still allocated until
232          * ->invalidate_page returns. So if we increase the sequence
233          * here the kvm page fault will notice if the spte can't be
234          * established because the page is going to be freed. If
235          * instead the kvm page fault establishes the spte before
236          * ->invalidate_page runs, kvm_unmap_hva will release it
237          * before returning.
238          *
239          * The sequence increase only need to be seen at spin_unlock
240          * time, and not at spin_lock time.
241          *
242          * Increasing the sequence after the spin_unlock would be
243          * unsafe because the kvm page fault could then establish the
244          * pte after kvm_unmap_hva returned, without noticing the page
245          * is going to be freed.
246          */
247         idx = srcu_read_lock(&kvm->srcu);
248         spin_lock(&kvm->mmu_lock);
249         kvm->mmu_notifier_seq++;
250         need_tlb_flush = kvm_unmap_hva(kvm, address);
251         spin_unlock(&kvm->mmu_lock);
252         srcu_read_unlock(&kvm->srcu, idx);
253
254         /* we've to flush the tlb before the pages can be freed */
255         if (need_tlb_flush)
256                 kvm_flush_remote_tlbs(kvm);
257
258 }
259
260 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
261                                         struct mm_struct *mm,
262                                         unsigned long address,
263                                         pte_t pte)
264 {
265         struct kvm *kvm = mmu_notifier_to_kvm(mn);
266         int idx;
267
268         idx = srcu_read_lock(&kvm->srcu);
269         spin_lock(&kvm->mmu_lock);
270         kvm->mmu_notifier_seq++;
271         kvm_set_spte_hva(kvm, address, pte);
272         spin_unlock(&kvm->mmu_lock);
273         srcu_read_unlock(&kvm->srcu, idx);
274 }
275
276 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
277                                                     struct mm_struct *mm,
278                                                     unsigned long start,
279                                                     unsigned long end)
280 {
281         struct kvm *kvm = mmu_notifier_to_kvm(mn);
282         int need_tlb_flush = 0, idx;
283
284         idx = srcu_read_lock(&kvm->srcu);
285         spin_lock(&kvm->mmu_lock);
286         /*
287          * The count increase must become visible at unlock time as no
288          * spte can be established without taking the mmu_lock and
289          * count is also read inside the mmu_lock critical section.
290          */
291         kvm->mmu_notifier_count++;
292         for (; start < end; start += PAGE_SIZE)
293                 need_tlb_flush |= kvm_unmap_hva(kvm, start);
294         spin_unlock(&kvm->mmu_lock);
295         srcu_read_unlock(&kvm->srcu, idx);
296
297         /* we've to flush the tlb before the pages can be freed */
298         if (need_tlb_flush)
299                 kvm_flush_remote_tlbs(kvm);
300 }
301
302 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
303                                                   struct mm_struct *mm,
304                                                   unsigned long start,
305                                                   unsigned long end)
306 {
307         struct kvm *kvm = mmu_notifier_to_kvm(mn);
308
309         spin_lock(&kvm->mmu_lock);
310         /*
311          * This sequence increase will notify the kvm page fault that
312          * the page that is going to be mapped in the spte could have
313          * been freed.
314          */
315         kvm->mmu_notifier_seq++;
316         /*
317          * The above sequence increase must be visible before the
318          * below count decrease but both values are read by the kvm
319          * page fault under mmu_lock spinlock so we don't need to add
320          * a smb_wmb() here in between the two.
321          */
322         kvm->mmu_notifier_count--;
323         spin_unlock(&kvm->mmu_lock);
324
325         BUG_ON(kvm->mmu_notifier_count < 0);
326 }
327
328 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
329                                               struct mm_struct *mm,
330                                               unsigned long address)
331 {
332         struct kvm *kvm = mmu_notifier_to_kvm(mn);
333         int young, idx;
334
335         idx = srcu_read_lock(&kvm->srcu);
336         spin_lock(&kvm->mmu_lock);
337         young = kvm_age_hva(kvm, address);
338         spin_unlock(&kvm->mmu_lock);
339         srcu_read_unlock(&kvm->srcu, idx);
340
341         if (young)
342                 kvm_flush_remote_tlbs(kvm);
343
344         return young;
345 }
346
347 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
348                                      struct mm_struct *mm)
349 {
350         struct kvm *kvm = mmu_notifier_to_kvm(mn);
351         int idx;
352
353         idx = srcu_read_lock(&kvm->srcu);
354         kvm_arch_flush_shadow(kvm);
355         srcu_read_unlock(&kvm->srcu, idx);
356 }
357
358 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
359         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
360         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
361         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
362         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
363         .change_pte             = kvm_mmu_notifier_change_pte,
364         .release                = kvm_mmu_notifier_release,
365 };
366
367 static int kvm_init_mmu_notifier(struct kvm *kvm)
368 {
369         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
370         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
371 }
372
373 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
374
375 static int kvm_init_mmu_notifier(struct kvm *kvm)
376 {
377         return 0;
378 }
379
380 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
381
382 static struct kvm *kvm_create_vm(void)
383 {
384         int r = 0, i;
385         struct kvm *kvm = kvm_arch_create_vm();
386
387         if (IS_ERR(kvm))
388                 goto out;
389
390         r = hardware_enable_all();
391         if (r)
392                 goto out_err_nodisable;
393
394 #ifdef CONFIG_HAVE_KVM_IRQCHIP
395         INIT_HLIST_HEAD(&kvm->mask_notifier_list);
396         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
397 #endif
398
399         r = -ENOMEM;
400         kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
401         if (!kvm->memslots)
402                 goto out_err;
403         if (init_srcu_struct(&kvm->srcu))
404                 goto out_err;
405         for (i = 0; i < KVM_NR_BUSES; i++) {
406                 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
407                                         GFP_KERNEL);
408                 if (!kvm->buses[i]) {
409                         cleanup_srcu_struct(&kvm->srcu);
410                         goto out_err;
411                 }
412         }
413
414         r = kvm_init_mmu_notifier(kvm);
415         if (r) {
416                 cleanup_srcu_struct(&kvm->srcu);
417                 goto out_err;
418         }
419
420         kvm->mm = current->mm;
421         atomic_inc(&kvm->mm->mm_count);
422         spin_lock_init(&kvm->mmu_lock);
423         raw_spin_lock_init(&kvm->requests_lock);
424         kvm_eventfd_init(kvm);
425         mutex_init(&kvm->lock);
426         mutex_init(&kvm->irq_lock);
427         mutex_init(&kvm->slots_lock);
428         atomic_set(&kvm->users_count, 1);
429         spin_lock(&kvm_lock);
430         list_add(&kvm->vm_list, &vm_list);
431         spin_unlock(&kvm_lock);
432 out:
433         return kvm;
434
435 out_err:
436         hardware_disable_all();
437 out_err_nodisable:
438         for (i = 0; i < KVM_NR_BUSES; i++)
439                 kfree(kvm->buses[i]);
440         kfree(kvm->memslots);
441         kfree(kvm);
442         return ERR_PTR(r);
443 }
444
445 /*
446  * Free any memory in @free but not in @dont.
447  */
448 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
449                                   struct kvm_memory_slot *dont)
450 {
451         int i;
452
453         if (!dont || free->rmap != dont->rmap)
454                 vfree(free->rmap);
455
456         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
457                 vfree(free->dirty_bitmap);
458
459
460         for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
461                 if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
462                         vfree(free->lpage_info[i]);
463                         free->lpage_info[i] = NULL;
464                 }
465         }
466
467         free->npages = 0;
468         free->dirty_bitmap = NULL;
469         free->rmap = NULL;
470 }
471
472 void kvm_free_physmem(struct kvm *kvm)
473 {
474         int i;
475         struct kvm_memslots *slots = kvm->memslots;
476
477         for (i = 0; i < slots->nmemslots; ++i)
478                 kvm_free_physmem_slot(&slots->memslots[i], NULL);
479
480         kfree(kvm->memslots);
481 }
482
483 static void kvm_destroy_vm(struct kvm *kvm)
484 {
485         int i;
486         struct mm_struct *mm = kvm->mm;
487
488         kvm_arch_sync_events(kvm);
489         spin_lock(&kvm_lock);
490         list_del(&kvm->vm_list);
491         spin_unlock(&kvm_lock);
492         kvm_free_irq_routing(kvm);
493         for (i = 0; i < KVM_NR_BUSES; i++)
494                 kvm_io_bus_destroy(kvm->buses[i]);
495         kvm_coalesced_mmio_free(kvm);
496 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
497         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
498 #else
499         kvm_arch_flush_shadow(kvm);
500 #endif
501         kvm_arch_destroy_vm(kvm);
502         hardware_disable_all();
503         mmdrop(mm);
504 }
505
506 void kvm_get_kvm(struct kvm *kvm)
507 {
508         atomic_inc(&kvm->users_count);
509 }
510 EXPORT_SYMBOL_GPL(kvm_get_kvm);
511
512 void kvm_put_kvm(struct kvm *kvm)
513 {
514         if (atomic_dec_and_test(&kvm->users_count))
515                 kvm_destroy_vm(kvm);
516 }
517 EXPORT_SYMBOL_GPL(kvm_put_kvm);
518
519
520 static int kvm_vm_release(struct inode *inode, struct file *filp)
521 {
522         struct kvm *kvm = filp->private_data;
523
524         kvm_irqfd_release(kvm);
525
526         kvm_put_kvm(kvm);
527         return 0;
528 }
529
530 /*
531  * Allocate some memory and give it an address in the guest physical address
532  * space.
533  *
534  * Discontiguous memory is allowed, mostly for framebuffers.
535  *
536  * Must be called holding mmap_sem for write.
537  */
538 int __kvm_set_memory_region(struct kvm *kvm,
539                             struct kvm_userspace_memory_region *mem,
540                             int user_alloc)
541 {
542         int r, flush_shadow = 0;
543         gfn_t base_gfn;
544         unsigned long npages;
545         unsigned long i;
546         struct kvm_memory_slot *memslot;
547         struct kvm_memory_slot old, new;
548         struct kvm_memslots *slots, *old_memslots;
549
550         r = -EINVAL;
551         /* General sanity checks */
552         if (mem->memory_size & (PAGE_SIZE - 1))
553                 goto out;
554         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
555                 goto out;
556         if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
557                 goto out;
558         if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
559                 goto out;
560         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
561                 goto out;
562
563         memslot = &kvm->memslots->memslots[mem->slot];
564         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
565         npages = mem->memory_size >> PAGE_SHIFT;
566
567         r = -EINVAL;
568         if (npages > KVM_MEM_MAX_NR_PAGES)
569                 goto out;
570
571         if (!npages)
572                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
573
574         new = old = *memslot;
575
576         new.id = mem->slot;
577         new.base_gfn = base_gfn;
578         new.npages = npages;
579         new.flags = mem->flags;
580
581         /* Disallow changing a memory slot's size. */
582         r = -EINVAL;
583         if (npages && old.npages && npages != old.npages)
584                 goto out_free;
585
586         /* Check for overlaps */
587         r = -EEXIST;
588         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
589                 struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
590
591                 if (s == memslot || !s->npages)
592                         continue;
593                 if (!((base_gfn + npages <= s->base_gfn) ||
594                       (base_gfn >= s->base_gfn + s->npages)))
595                         goto out_free;
596         }
597
598         /* Free page dirty bitmap if unneeded */
599         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
600                 new.dirty_bitmap = NULL;
601
602         r = -ENOMEM;
603
604         /* Allocate if a slot is being created */
605 #ifndef CONFIG_S390
606         if (npages && !new.rmap) {
607                 new.rmap = vmalloc(npages * sizeof(*new.rmap));
608
609                 if (!new.rmap)
610                         goto out_free;
611
612                 memset(new.rmap, 0, npages * sizeof(*new.rmap));
613
614                 new.user_alloc = user_alloc;
615                 new.userspace_addr = mem->userspace_addr;
616         }
617         if (!npages)
618                 goto skip_lpage;
619
620         for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
621                 unsigned long ugfn;
622                 unsigned long j;
623                 int lpages;
624                 int level = i + 2;
625
626                 /* Avoid unused variable warning if no large pages */
627                 (void)level;
628
629                 if (new.lpage_info[i])
630                         continue;
631
632                 lpages = 1 + ((base_gfn + npages - 1)
633                              >> KVM_HPAGE_GFN_SHIFT(level));
634                 lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
635
636                 new.lpage_info[i] = vmalloc(lpages * sizeof(*new.lpage_info[i]));
637
638                 if (!new.lpage_info[i])
639                         goto out_free;
640
641                 memset(new.lpage_info[i], 0,
642                        lpages * sizeof(*new.lpage_info[i]));
643
644                 if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
645                         new.lpage_info[i][0].write_count = 1;
646                 if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
647                         new.lpage_info[i][lpages - 1].write_count = 1;
648                 ugfn = new.userspace_addr >> PAGE_SHIFT;
649                 /*
650                  * If the gfn and userspace address are not aligned wrt each
651                  * other, or if explicitly asked to, disable large page
652                  * support for this slot
653                  */
654                 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
655                     !largepages_enabled)
656                         for (j = 0; j < lpages; ++j)
657                                 new.lpage_info[i][j].write_count = 1;
658         }
659
660 skip_lpage:
661
662         /* Allocate page dirty bitmap if needed */
663         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
664                 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(&new);
665
666                 new.dirty_bitmap = vmalloc(dirty_bytes);
667                 if (!new.dirty_bitmap)
668                         goto out_free;
669                 memset(new.dirty_bitmap, 0, dirty_bytes);
670                 /* destroy any largepage mappings for dirty tracking */
671                 if (old.npages)
672                         flush_shadow = 1;
673         }
674 #else  /* not defined CONFIG_S390 */
675         new.user_alloc = user_alloc;
676         if (user_alloc)
677                 new.userspace_addr = mem->userspace_addr;
678 #endif /* not defined CONFIG_S390 */
679
680         if (!npages) {
681                 r = -ENOMEM;
682                 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
683                 if (!slots)
684                         goto out_free;
685                 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
686                 if (mem->slot >= slots->nmemslots)
687                         slots->nmemslots = mem->slot + 1;
688                 slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
689
690                 old_memslots = kvm->memslots;
691                 rcu_assign_pointer(kvm->memslots, slots);
692                 synchronize_srcu_expedited(&kvm->srcu);
693                 /* From this point no new shadow pages pointing to a deleted
694                  * memslot will be created.
695                  *
696                  * validation of sp->gfn happens in:
697                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
698                  *      - kvm_is_visible_gfn (mmu_check_roots)
699                  */
700                 kvm_arch_flush_shadow(kvm);
701                 kfree(old_memslots);
702         }
703
704         r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
705         if (r)
706                 goto out_free;
707
708 #ifdef CONFIG_DMAR
709         /* map the pages in iommu page table */
710         if (npages) {
711                 r = kvm_iommu_map_pages(kvm, &new);
712                 if (r)
713                         goto out_free;
714         }
715 #endif
716
717         r = -ENOMEM;
718         slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
719         if (!slots)
720                 goto out_free;
721         memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
722         if (mem->slot >= slots->nmemslots)
723                 slots->nmemslots = mem->slot + 1;
724
725         /* actual memory is freed via old in kvm_free_physmem_slot below */
726         if (!npages) {
727                 new.rmap = NULL;
728                 new.dirty_bitmap = NULL;
729                 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
730                         new.lpage_info[i] = NULL;
731         }
732
733         slots->memslots[mem->slot] = new;
734         old_memslots = kvm->memslots;
735         rcu_assign_pointer(kvm->memslots, slots);
736         synchronize_srcu_expedited(&kvm->srcu);
737
738         kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
739
740         kvm_free_physmem_slot(&old, &new);
741         kfree(old_memslots);
742
743         if (flush_shadow)
744                 kvm_arch_flush_shadow(kvm);
745
746         return 0;
747
748 out_free:
749         kvm_free_physmem_slot(&new, &old);
750 out:
751         return r;
752
753 }
754 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
755
756 int kvm_set_memory_region(struct kvm *kvm,
757                           struct kvm_userspace_memory_region *mem,
758                           int user_alloc)
759 {
760         int r;
761
762         mutex_lock(&kvm->slots_lock);
763         r = __kvm_set_memory_region(kvm, mem, user_alloc);
764         mutex_unlock(&kvm->slots_lock);
765         return r;
766 }
767 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
768
769 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
770                                    struct
771                                    kvm_userspace_memory_region *mem,
772                                    int user_alloc)
773 {
774         if (mem->slot >= KVM_MEMORY_SLOTS)
775                 return -EINVAL;
776         return kvm_set_memory_region(kvm, mem, user_alloc);
777 }
778
779 int kvm_get_dirty_log(struct kvm *kvm,
780                         struct kvm_dirty_log *log, int *is_dirty)
781 {
782         struct kvm_memory_slot *memslot;
783         int r, i;
784         unsigned long n;
785         unsigned long any = 0;
786
787         r = -EINVAL;
788         if (log->slot >= KVM_MEMORY_SLOTS)
789                 goto out;
790
791         memslot = &kvm->memslots->memslots[log->slot];
792         r = -ENOENT;
793         if (!memslot->dirty_bitmap)
794                 goto out;
795
796         n = kvm_dirty_bitmap_bytes(memslot);
797
798         for (i = 0; !any && i < n/sizeof(long); ++i)
799                 any = memslot->dirty_bitmap[i];
800
801         r = -EFAULT;
802         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
803                 goto out;
804
805         if (any)
806                 *is_dirty = 1;
807
808         r = 0;
809 out:
810         return r;
811 }
812
813 void kvm_disable_largepages(void)
814 {
815         largepages_enabled = false;
816 }
817 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
818
819 int is_error_page(struct page *page)
820 {
821         return page == bad_page || page == hwpoison_page || page == fault_page;
822 }
823 EXPORT_SYMBOL_GPL(is_error_page);
824
825 int is_error_pfn(pfn_t pfn)
826 {
827         return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
828 }
829 EXPORT_SYMBOL_GPL(is_error_pfn);
830
831 int is_hwpoison_pfn(pfn_t pfn)
832 {
833         return pfn == hwpoison_pfn;
834 }
835 EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
836
837 int is_fault_pfn(pfn_t pfn)
838 {
839         return pfn == fault_pfn;
840 }
841 EXPORT_SYMBOL_GPL(is_fault_pfn);
842
843 static inline unsigned long bad_hva(void)
844 {
845         return PAGE_OFFSET;
846 }
847
848 int kvm_is_error_hva(unsigned long addr)
849 {
850         return addr == bad_hva();
851 }
852 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
853
854 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
855 {
856         int i;
857         struct kvm_memslots *slots = kvm_memslots(kvm);
858
859         for (i = 0; i < slots->nmemslots; ++i) {
860                 struct kvm_memory_slot *memslot = &slots->memslots[i];
861
862                 if (gfn >= memslot->base_gfn
863                     && gfn < memslot->base_gfn + memslot->npages)
864                         return memslot;
865         }
866         return NULL;
867 }
868 EXPORT_SYMBOL_GPL(gfn_to_memslot);
869
870 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
871 {
872         int i;
873         struct kvm_memslots *slots = kvm_memslots(kvm);
874
875         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
876                 struct kvm_memory_slot *memslot = &slots->memslots[i];
877
878                 if (memslot->flags & KVM_MEMSLOT_INVALID)
879                         continue;
880
881                 if (gfn >= memslot->base_gfn
882                     && gfn < memslot->base_gfn + memslot->npages)
883                         return 1;
884         }
885         return 0;
886 }
887 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
888
889 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
890 {
891         struct vm_area_struct *vma;
892         unsigned long addr, size;
893
894         size = PAGE_SIZE;
895
896         addr = gfn_to_hva(kvm, gfn);
897         if (kvm_is_error_hva(addr))
898                 return PAGE_SIZE;
899
900         down_read(&current->mm->mmap_sem);
901         vma = find_vma(current->mm, addr);
902         if (!vma)
903                 goto out;
904
905         size = vma_kernel_pagesize(vma);
906
907 out:
908         up_read(&current->mm->mmap_sem);
909
910         return size;
911 }
912
913 int memslot_id(struct kvm *kvm, gfn_t gfn)
914 {
915         int i;
916         struct kvm_memslots *slots = kvm_memslots(kvm);
917         struct kvm_memory_slot *memslot = NULL;
918
919         for (i = 0; i < slots->nmemslots; ++i) {
920                 memslot = &slots->memslots[i];
921
922                 if (gfn >= memslot->base_gfn
923                     && gfn < memslot->base_gfn + memslot->npages)
924                         break;
925         }
926
927         return memslot - slots->memslots;
928 }
929
930 static unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
931 {
932         return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE;
933 }
934
935 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
936 {
937         struct kvm_memory_slot *slot;
938
939         slot = gfn_to_memslot(kvm, gfn);
940         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
941                 return bad_hva();
942         return gfn_to_hva_memslot(slot, gfn);
943 }
944 EXPORT_SYMBOL_GPL(gfn_to_hva);
945
946 static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr)
947 {
948         struct page *page[1];
949         int npages;
950         pfn_t pfn;
951
952         might_sleep();
953
954         npages = get_user_pages_fast(addr, 1, 1, page);
955
956         if (unlikely(npages != 1)) {
957                 struct vm_area_struct *vma;
958
959                 down_read(&current->mm->mmap_sem);
960                 if (is_hwpoison_address(addr)) {
961                         up_read(&current->mm->mmap_sem);
962                         get_page(hwpoison_page);
963                         return page_to_pfn(hwpoison_page);
964                 }
965
966                 vma = find_vma(current->mm, addr);
967
968                 if (vma == NULL || addr < vma->vm_start ||
969                     !(vma->vm_flags & VM_PFNMAP)) {
970                         up_read(&current->mm->mmap_sem);
971                         get_page(fault_page);
972                         return page_to_pfn(fault_page);
973                 }
974
975                 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
976                 up_read(&current->mm->mmap_sem);
977                 BUG_ON(!kvm_is_mmio_pfn(pfn));
978         } else
979                 pfn = page_to_pfn(page[0]);
980
981         return pfn;
982 }
983
984 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
985 {
986         unsigned long addr;
987
988         addr = gfn_to_hva(kvm, gfn);
989         if (kvm_is_error_hva(addr)) {
990                 get_page(bad_page);
991                 return page_to_pfn(bad_page);
992         }
993
994         return hva_to_pfn(kvm, addr);
995 }
996 EXPORT_SYMBOL_GPL(gfn_to_pfn);
997
998 pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
999                          struct kvm_memory_slot *slot, gfn_t gfn)
1000 {
1001         unsigned long addr = gfn_to_hva_memslot(slot, gfn);
1002         return hva_to_pfn(kvm, addr);
1003 }
1004
1005 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1006 {
1007         pfn_t pfn;
1008
1009         pfn = gfn_to_pfn(kvm, gfn);
1010         if (!kvm_is_mmio_pfn(pfn))
1011                 return pfn_to_page(pfn);
1012
1013         WARN_ON(kvm_is_mmio_pfn(pfn));
1014
1015         get_page(bad_page);
1016         return bad_page;
1017 }
1018
1019 EXPORT_SYMBOL_GPL(gfn_to_page);
1020
1021 void kvm_release_page_clean(struct page *page)
1022 {
1023         kvm_release_pfn_clean(page_to_pfn(page));
1024 }
1025 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1026
1027 void kvm_release_pfn_clean(pfn_t pfn)
1028 {
1029         if (!kvm_is_mmio_pfn(pfn))
1030                 put_page(pfn_to_page(pfn));
1031 }
1032 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1033
1034 void kvm_release_page_dirty(struct page *page)
1035 {
1036         kvm_release_pfn_dirty(page_to_pfn(page));
1037 }
1038 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1039
1040 void kvm_release_pfn_dirty(pfn_t pfn)
1041 {
1042         kvm_set_pfn_dirty(pfn);
1043         kvm_release_pfn_clean(pfn);
1044 }
1045 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1046
1047 void kvm_set_page_dirty(struct page *page)
1048 {
1049         kvm_set_pfn_dirty(page_to_pfn(page));
1050 }
1051 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1052
1053 void kvm_set_pfn_dirty(pfn_t pfn)
1054 {
1055         if (!kvm_is_mmio_pfn(pfn)) {
1056                 struct page *page = pfn_to_page(pfn);
1057                 if (!PageReserved(page))
1058                         SetPageDirty(page);
1059         }
1060 }
1061 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1062
1063 void kvm_set_pfn_accessed(pfn_t pfn)
1064 {
1065         if (!kvm_is_mmio_pfn(pfn))
1066                 mark_page_accessed(pfn_to_page(pfn));
1067 }
1068 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1069
1070 void kvm_get_pfn(pfn_t pfn)
1071 {
1072         if (!kvm_is_mmio_pfn(pfn))
1073                 get_page(pfn_to_page(pfn));
1074 }
1075 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1076
1077 static int next_segment(unsigned long len, int offset)
1078 {
1079         if (len > PAGE_SIZE - offset)
1080                 return PAGE_SIZE - offset;
1081         else
1082                 return len;
1083 }
1084
1085 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1086                         int len)
1087 {
1088         int r;
1089         unsigned long addr;
1090
1091         addr = gfn_to_hva(kvm, gfn);
1092         if (kvm_is_error_hva(addr))
1093                 return -EFAULT;
1094         r = copy_from_user(data, (void __user *)addr + offset, len);
1095         if (r)
1096                 return -EFAULT;
1097         return 0;
1098 }
1099 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1100
1101 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1102 {
1103         gfn_t gfn = gpa >> PAGE_SHIFT;
1104         int seg;
1105         int offset = offset_in_page(gpa);
1106         int ret;
1107
1108         while ((seg = next_segment(len, offset)) != 0) {
1109                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1110                 if (ret < 0)
1111                         return ret;
1112                 offset = 0;
1113                 len -= seg;
1114                 data += seg;
1115                 ++gfn;
1116         }
1117         return 0;
1118 }
1119 EXPORT_SYMBOL_GPL(kvm_read_guest);
1120
1121 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1122                           unsigned long len)
1123 {
1124         int r;
1125         unsigned long addr;
1126         gfn_t gfn = gpa >> PAGE_SHIFT;
1127         int offset = offset_in_page(gpa);
1128
1129         addr = gfn_to_hva(kvm, gfn);
1130         if (kvm_is_error_hva(addr))
1131                 return -EFAULT;
1132         pagefault_disable();
1133         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1134         pagefault_enable();
1135         if (r)
1136                 return -EFAULT;
1137         return 0;
1138 }
1139 EXPORT_SYMBOL(kvm_read_guest_atomic);
1140
1141 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1142                          int offset, int len)
1143 {
1144         int r;
1145         unsigned long addr;
1146
1147         addr = gfn_to_hva(kvm, gfn);
1148         if (kvm_is_error_hva(addr))
1149                 return -EFAULT;
1150         r = copy_to_user((void __user *)addr + offset, data, len);
1151         if (r)
1152                 return -EFAULT;
1153         mark_page_dirty(kvm, gfn);
1154         return 0;
1155 }
1156 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1157
1158 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1159                     unsigned long len)
1160 {
1161         gfn_t gfn = gpa >> PAGE_SHIFT;
1162         int seg;
1163         int offset = offset_in_page(gpa);
1164         int ret;
1165
1166         while ((seg = next_segment(len, offset)) != 0) {
1167                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1168                 if (ret < 0)
1169                         return ret;
1170                 offset = 0;
1171                 len -= seg;
1172                 data += seg;
1173                 ++gfn;
1174         }
1175         return 0;
1176 }
1177
1178 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1179 {
1180         return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1181 }
1182 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1183
1184 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1185 {
1186         gfn_t gfn = gpa >> PAGE_SHIFT;
1187         int seg;
1188         int offset = offset_in_page(gpa);
1189         int ret;
1190
1191         while ((seg = next_segment(len, offset)) != 0) {
1192                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1193                 if (ret < 0)
1194                         return ret;
1195                 offset = 0;
1196                 len -= seg;
1197                 ++gfn;
1198         }
1199         return 0;
1200 }
1201 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1202
1203 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1204 {
1205         struct kvm_memory_slot *memslot;
1206
1207         memslot = gfn_to_memslot(kvm, gfn);
1208         if (memslot && memslot->dirty_bitmap) {
1209                 unsigned long rel_gfn = gfn - memslot->base_gfn;
1210
1211                 generic___set_le_bit(rel_gfn, memslot->dirty_bitmap);
1212         }
1213 }
1214
1215 /*
1216  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1217  */
1218 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1219 {
1220         DEFINE_WAIT(wait);
1221
1222         for (;;) {
1223                 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1224
1225                 if (kvm_arch_vcpu_runnable(vcpu)) {
1226                         kvm_make_request(KVM_REQ_UNHALT, vcpu);
1227                         break;
1228                 }
1229                 if (kvm_cpu_has_pending_timer(vcpu))
1230                         break;
1231                 if (signal_pending(current))
1232                         break;
1233
1234                 schedule();
1235         }
1236
1237         finish_wait(&vcpu->wq, &wait);
1238 }
1239
1240 void kvm_resched(struct kvm_vcpu *vcpu)
1241 {
1242         if (!need_resched())
1243                 return;
1244         cond_resched();
1245 }
1246 EXPORT_SYMBOL_GPL(kvm_resched);
1247
1248 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu)
1249 {
1250         ktime_t expires;
1251         DEFINE_WAIT(wait);
1252
1253         prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1254
1255         /* Sleep for 100 us, and hope lock-holder got scheduled */
1256         expires = ktime_add_ns(ktime_get(), 100000UL);
1257         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1258
1259         finish_wait(&vcpu->wq, &wait);
1260 }
1261 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1262
1263 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1264 {
1265         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1266         struct page *page;
1267
1268         if (vmf->pgoff == 0)
1269                 page = virt_to_page(vcpu->run);
1270 #ifdef CONFIG_X86
1271         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1272                 page = virt_to_page(vcpu->arch.pio_data);
1273 #endif
1274 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1275         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1276                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1277 #endif
1278         else
1279                 return VM_FAULT_SIGBUS;
1280         get_page(page);
1281         vmf->page = page;
1282         return 0;
1283 }
1284
1285 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1286         .fault = kvm_vcpu_fault,
1287 };
1288
1289 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1290 {
1291         vma->vm_ops = &kvm_vcpu_vm_ops;
1292         return 0;
1293 }
1294
1295 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1296 {
1297         struct kvm_vcpu *vcpu = filp->private_data;
1298
1299         kvm_put_kvm(vcpu->kvm);
1300         return 0;
1301 }
1302
1303 static struct file_operations kvm_vcpu_fops = {
1304         .release        = kvm_vcpu_release,
1305         .unlocked_ioctl = kvm_vcpu_ioctl,
1306         .compat_ioctl   = kvm_vcpu_ioctl,
1307         .mmap           = kvm_vcpu_mmap,
1308 };
1309
1310 /*
1311  * Allocates an inode for the vcpu.
1312  */
1313 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1314 {
1315         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1316 }
1317
1318 /*
1319  * Creates some virtual cpus.  Good luck creating more than one.
1320  */
1321 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1322 {
1323         int r;
1324         struct kvm_vcpu *vcpu, *v;
1325
1326         vcpu = kvm_arch_vcpu_create(kvm, id);
1327         if (IS_ERR(vcpu))
1328                 return PTR_ERR(vcpu);
1329
1330         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1331
1332         r = kvm_arch_vcpu_setup(vcpu);
1333         if (r)
1334                 return r;
1335
1336         mutex_lock(&kvm->lock);
1337         if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1338                 r = -EINVAL;
1339                 goto vcpu_destroy;
1340         }
1341
1342         kvm_for_each_vcpu(r, v, kvm)
1343                 if (v->vcpu_id == id) {
1344                         r = -EEXIST;
1345                         goto vcpu_destroy;
1346                 }
1347
1348         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1349
1350         /* Now it's all set up, let userspace reach it */
1351         kvm_get_kvm(kvm);
1352         r = create_vcpu_fd(vcpu);
1353         if (r < 0) {
1354                 kvm_put_kvm(kvm);
1355                 goto vcpu_destroy;
1356         }
1357
1358         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1359         smp_wmb();
1360         atomic_inc(&kvm->online_vcpus);
1361
1362 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1363         if (kvm->bsp_vcpu_id == id)
1364                 kvm->bsp_vcpu = vcpu;
1365 #endif
1366         mutex_unlock(&kvm->lock);
1367         return r;
1368
1369 vcpu_destroy:
1370         mutex_unlock(&kvm->lock);
1371         kvm_arch_vcpu_destroy(vcpu);
1372         return r;
1373 }
1374
1375 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1376 {
1377         if (sigset) {
1378                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1379                 vcpu->sigset_active = 1;
1380                 vcpu->sigset = *sigset;
1381         } else
1382                 vcpu->sigset_active = 0;
1383         return 0;
1384 }
1385
1386 static long kvm_vcpu_ioctl(struct file *filp,
1387                            unsigned int ioctl, unsigned long arg)
1388 {
1389         struct kvm_vcpu *vcpu = filp->private_data;
1390         void __user *argp = (void __user *)arg;
1391         int r;
1392         struct kvm_fpu *fpu = NULL;
1393         struct kvm_sregs *kvm_sregs = NULL;
1394
1395         if (vcpu->kvm->mm != current->mm)
1396                 return -EIO;
1397
1398 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1399         /*
1400          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1401          * so vcpu_load() would break it.
1402          */
1403         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1404                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1405 #endif
1406
1407
1408         vcpu_load(vcpu);
1409         switch (ioctl) {
1410         case KVM_RUN:
1411                 r = -EINVAL;
1412                 if (arg)
1413                         goto out;
1414                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1415                 break;
1416         case KVM_GET_REGS: {
1417                 struct kvm_regs *kvm_regs;
1418
1419                 r = -ENOMEM;
1420                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1421                 if (!kvm_regs)
1422                         goto out;
1423                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1424                 if (r)
1425                         goto out_free1;
1426                 r = -EFAULT;
1427                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1428                         goto out_free1;
1429                 r = 0;
1430 out_free1:
1431                 kfree(kvm_regs);
1432                 break;
1433         }
1434         case KVM_SET_REGS: {
1435                 struct kvm_regs *kvm_regs;
1436
1437                 r = -ENOMEM;
1438                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1439                 if (!kvm_regs)
1440                         goto out;
1441                 r = -EFAULT;
1442                 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1443                         goto out_free2;
1444                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1445                 if (r)
1446                         goto out_free2;
1447                 r = 0;
1448 out_free2:
1449                 kfree(kvm_regs);
1450                 break;
1451         }
1452         case KVM_GET_SREGS: {
1453                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1454                 r = -ENOMEM;
1455                 if (!kvm_sregs)
1456                         goto out;
1457                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1458                 if (r)
1459                         goto out;
1460                 r = -EFAULT;
1461                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1462                         goto out;
1463                 r = 0;
1464                 break;
1465         }
1466         case KVM_SET_SREGS: {
1467                 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1468                 r = -ENOMEM;
1469                 if (!kvm_sregs)
1470                         goto out;
1471                 r = -EFAULT;
1472                 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1473                         goto out;
1474                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1475                 if (r)
1476                         goto out;
1477                 r = 0;
1478                 break;
1479         }
1480         case KVM_GET_MP_STATE: {
1481                 struct kvm_mp_state mp_state;
1482
1483                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1484                 if (r)
1485                         goto out;
1486                 r = -EFAULT;
1487                 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1488                         goto out;
1489                 r = 0;
1490                 break;
1491         }
1492         case KVM_SET_MP_STATE: {
1493                 struct kvm_mp_state mp_state;
1494
1495                 r = -EFAULT;
1496                 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1497                         goto out;
1498                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1499                 if (r)
1500                         goto out;
1501                 r = 0;
1502                 break;
1503         }
1504         case KVM_TRANSLATE: {
1505                 struct kvm_translation tr;
1506
1507                 r = -EFAULT;
1508                 if (copy_from_user(&tr, argp, sizeof tr))
1509                         goto out;
1510                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1511                 if (r)
1512                         goto out;
1513                 r = -EFAULT;
1514                 if (copy_to_user(argp, &tr, sizeof tr))
1515                         goto out;
1516                 r = 0;
1517                 break;
1518         }
1519         case KVM_SET_GUEST_DEBUG: {
1520                 struct kvm_guest_debug dbg;
1521
1522                 r = -EFAULT;
1523                 if (copy_from_user(&dbg, argp, sizeof dbg))
1524                         goto out;
1525                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1526                 if (r)
1527                         goto out;
1528                 r = 0;
1529                 break;
1530         }
1531         case KVM_SET_SIGNAL_MASK: {
1532                 struct kvm_signal_mask __user *sigmask_arg = argp;
1533                 struct kvm_signal_mask kvm_sigmask;
1534                 sigset_t sigset, *p;
1535
1536                 p = NULL;
1537                 if (argp) {
1538                         r = -EFAULT;
1539                         if (copy_from_user(&kvm_sigmask, argp,
1540                                            sizeof kvm_sigmask))
1541                                 goto out;
1542                         r = -EINVAL;
1543                         if (kvm_sigmask.len != sizeof sigset)
1544                                 goto out;
1545                         r = -EFAULT;
1546                         if (copy_from_user(&sigset, sigmask_arg->sigset,
1547                                            sizeof sigset))
1548                                 goto out;
1549                         p = &sigset;
1550                 }
1551                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1552                 break;
1553         }
1554         case KVM_GET_FPU: {
1555                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1556                 r = -ENOMEM;
1557                 if (!fpu)
1558                         goto out;
1559                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1560                 if (r)
1561                         goto out;
1562                 r = -EFAULT;
1563                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1564                         goto out;
1565                 r = 0;
1566                 break;
1567         }
1568         case KVM_SET_FPU: {
1569                 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1570                 r = -ENOMEM;
1571                 if (!fpu)
1572                         goto out;
1573                 r = -EFAULT;
1574                 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1575                         goto out;
1576                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1577                 if (r)
1578                         goto out;
1579                 r = 0;
1580                 break;
1581         }
1582         default:
1583                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1584         }
1585 out:
1586         vcpu_put(vcpu);
1587         kfree(fpu);
1588         kfree(kvm_sregs);
1589         return r;
1590 }
1591
1592 static long kvm_vm_ioctl(struct file *filp,
1593                            unsigned int ioctl, unsigned long arg)
1594 {
1595         struct kvm *kvm = filp->private_data;
1596         void __user *argp = (void __user *)arg;
1597         int r;
1598
1599         if (kvm->mm != current->mm)
1600                 return -EIO;
1601         switch (ioctl) {
1602         case KVM_CREATE_VCPU:
1603                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1604                 if (r < 0)
1605                         goto out;
1606                 break;
1607         case KVM_SET_USER_MEMORY_REGION: {
1608                 struct kvm_userspace_memory_region kvm_userspace_mem;
1609
1610                 r = -EFAULT;
1611                 if (copy_from_user(&kvm_userspace_mem, argp,
1612                                                 sizeof kvm_userspace_mem))
1613                         goto out;
1614
1615                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1616                 if (r)
1617                         goto out;
1618                 break;
1619         }
1620         case KVM_GET_DIRTY_LOG: {
1621                 struct kvm_dirty_log log;
1622
1623                 r = -EFAULT;
1624                 if (copy_from_user(&log, argp, sizeof log))
1625                         goto out;
1626                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1627                 if (r)
1628                         goto out;
1629                 break;
1630         }
1631 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1632         case KVM_REGISTER_COALESCED_MMIO: {
1633                 struct kvm_coalesced_mmio_zone zone;
1634                 r = -EFAULT;
1635                 if (copy_from_user(&zone, argp, sizeof zone))
1636                         goto out;
1637                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1638                 if (r)
1639                         goto out;
1640                 r = 0;
1641                 break;
1642         }
1643         case KVM_UNREGISTER_COALESCED_MMIO: {
1644                 struct kvm_coalesced_mmio_zone zone;
1645                 r = -EFAULT;
1646                 if (copy_from_user(&zone, argp, sizeof zone))
1647                         goto out;
1648                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1649                 if (r)
1650                         goto out;
1651                 r = 0;
1652                 break;
1653         }
1654 #endif
1655         case KVM_IRQFD: {
1656                 struct kvm_irqfd data;
1657
1658                 r = -EFAULT;
1659                 if (copy_from_user(&data, argp, sizeof data))
1660                         goto out;
1661                 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
1662                 break;
1663         }
1664         case KVM_IOEVENTFD: {
1665                 struct kvm_ioeventfd data;
1666
1667                 r = -EFAULT;
1668                 if (copy_from_user(&data, argp, sizeof data))
1669                         goto out;
1670                 r = kvm_ioeventfd(kvm, &data);
1671                 break;
1672         }
1673 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1674         case KVM_SET_BOOT_CPU_ID:
1675                 r = 0;
1676                 mutex_lock(&kvm->lock);
1677                 if (atomic_read(&kvm->online_vcpus) != 0)
1678                         r = -EBUSY;
1679                 else
1680                         kvm->bsp_vcpu_id = arg;
1681                 mutex_unlock(&kvm->lock);
1682                 break;
1683 #endif
1684         default:
1685                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1686                 if (r == -ENOTTY)
1687                         r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
1688         }
1689 out:
1690         return r;
1691 }
1692
1693 #ifdef CONFIG_COMPAT
1694 struct compat_kvm_dirty_log {
1695         __u32 slot;
1696         __u32 padding1;
1697         union {
1698                 compat_uptr_t dirty_bitmap; /* one bit per page */
1699                 __u64 padding2;
1700         };
1701 };
1702
1703 static long kvm_vm_compat_ioctl(struct file *filp,
1704                            unsigned int ioctl, unsigned long arg)
1705 {
1706         struct kvm *kvm = filp->private_data;
1707         int r;
1708
1709         if (kvm->mm != current->mm)
1710                 return -EIO;
1711         switch (ioctl) {
1712         case KVM_GET_DIRTY_LOG: {
1713                 struct compat_kvm_dirty_log compat_log;
1714                 struct kvm_dirty_log log;
1715
1716                 r = -EFAULT;
1717                 if (copy_from_user(&compat_log, (void __user *)arg,
1718                                    sizeof(compat_log)))
1719                         goto out;
1720                 log.slot         = compat_log.slot;
1721                 log.padding1     = compat_log.padding1;
1722                 log.padding2     = compat_log.padding2;
1723                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
1724
1725                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1726                 if (r)
1727                         goto out;
1728                 break;
1729         }
1730         default:
1731                 r = kvm_vm_ioctl(filp, ioctl, arg);
1732         }
1733
1734 out:
1735         return r;
1736 }
1737 #endif
1738
1739 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1740 {
1741         struct page *page[1];
1742         unsigned long addr;
1743         int npages;
1744         gfn_t gfn = vmf->pgoff;
1745         struct kvm *kvm = vma->vm_file->private_data;
1746
1747         addr = gfn_to_hva(kvm, gfn);
1748         if (kvm_is_error_hva(addr))
1749                 return VM_FAULT_SIGBUS;
1750
1751         npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
1752                                 NULL);
1753         if (unlikely(npages != 1))
1754                 return VM_FAULT_SIGBUS;
1755
1756         vmf->page = page[0];
1757         return 0;
1758 }
1759
1760 static const struct vm_operations_struct kvm_vm_vm_ops = {
1761         .fault = kvm_vm_fault,
1762 };
1763
1764 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1765 {
1766         vma->vm_ops = &kvm_vm_vm_ops;
1767         return 0;
1768 }
1769
1770 static struct file_operations kvm_vm_fops = {
1771         .release        = kvm_vm_release,
1772         .unlocked_ioctl = kvm_vm_ioctl,
1773 #ifdef CONFIG_COMPAT
1774         .compat_ioctl   = kvm_vm_compat_ioctl,
1775 #endif
1776         .mmap           = kvm_vm_mmap,
1777 };
1778
1779 static int kvm_dev_ioctl_create_vm(void)
1780 {
1781         int fd, r;
1782         struct kvm *kvm;
1783
1784         kvm = kvm_create_vm();
1785         if (IS_ERR(kvm))
1786                 return PTR_ERR(kvm);
1787 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1788         r = kvm_coalesced_mmio_init(kvm);
1789         if (r < 0) {
1790                 kvm_put_kvm(kvm);
1791                 return r;
1792         }
1793 #endif
1794         fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
1795         if (fd < 0)
1796                 kvm_put_kvm(kvm);
1797
1798         return fd;
1799 }
1800
1801 static long kvm_dev_ioctl_check_extension_generic(long arg)
1802 {
1803         switch (arg) {
1804         case KVM_CAP_USER_MEMORY:
1805         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
1806         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
1807 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1808         case KVM_CAP_SET_BOOT_CPU_ID:
1809 #endif
1810         case KVM_CAP_INTERNAL_ERROR_DATA:
1811                 return 1;
1812 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1813         case KVM_CAP_IRQ_ROUTING:
1814                 return KVM_MAX_IRQ_ROUTES;
1815 #endif
1816         default:
1817                 break;
1818         }
1819         return kvm_dev_ioctl_check_extension(arg);
1820 }
1821
1822 static long kvm_dev_ioctl(struct file *filp,
1823                           unsigned int ioctl, unsigned long arg)
1824 {
1825         long r = -EINVAL;
1826
1827         switch (ioctl) {
1828         case KVM_GET_API_VERSION:
1829                 r = -EINVAL;
1830                 if (arg)
1831                         goto out;
1832                 r = KVM_API_VERSION;
1833                 break;
1834         case KVM_CREATE_VM:
1835                 r = -EINVAL;
1836                 if (arg)
1837                         goto out;
1838                 r = kvm_dev_ioctl_create_vm();
1839                 break;
1840         case KVM_CHECK_EXTENSION:
1841                 r = kvm_dev_ioctl_check_extension_generic(arg);
1842                 break;
1843         case KVM_GET_VCPU_MMAP_SIZE:
1844                 r = -EINVAL;
1845                 if (arg)
1846                         goto out;
1847                 r = PAGE_SIZE;     /* struct kvm_run */
1848 #ifdef CONFIG_X86
1849                 r += PAGE_SIZE;    /* pio data page */
1850 #endif
1851 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1852                 r += PAGE_SIZE;    /* coalesced mmio ring page */
1853 #endif
1854                 break;
1855         case KVM_TRACE_ENABLE:
1856         case KVM_TRACE_PAUSE:
1857         case KVM_TRACE_DISABLE:
1858                 r = -EOPNOTSUPP;
1859                 break;
1860         default:
1861                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
1862         }
1863 out:
1864         return r;
1865 }
1866
1867 static struct file_operations kvm_chardev_ops = {
1868         .unlocked_ioctl = kvm_dev_ioctl,
1869         .compat_ioctl   = kvm_dev_ioctl,
1870 };
1871
1872 static struct miscdevice kvm_dev = {
1873         KVM_MINOR,
1874         "kvm",
1875         &kvm_chardev_ops,
1876 };
1877
1878 static void hardware_enable(void *junk)
1879 {
1880         int cpu = raw_smp_processor_id();
1881         int r;
1882
1883         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
1884                 return;
1885
1886         cpumask_set_cpu(cpu, cpus_hardware_enabled);
1887
1888         r = kvm_arch_hardware_enable(NULL);
1889
1890         if (r) {
1891                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
1892                 atomic_inc(&hardware_enable_failed);
1893                 printk(KERN_INFO "kvm: enabling virtualization on "
1894                                  "CPU%d failed\n", cpu);
1895         }
1896 }
1897
1898 static void hardware_disable(void *junk)
1899 {
1900         int cpu = raw_smp_processor_id();
1901
1902         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
1903                 return;
1904         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
1905         kvm_arch_hardware_disable(NULL);
1906 }
1907
1908 static void hardware_disable_all_nolock(void)
1909 {
1910         BUG_ON(!kvm_usage_count);
1911
1912         kvm_usage_count--;
1913         if (!kvm_usage_count)
1914                 on_each_cpu(hardware_disable, NULL, 1);
1915 }
1916
1917 static void hardware_disable_all(void)
1918 {
1919         spin_lock(&kvm_lock);
1920         hardware_disable_all_nolock();
1921         spin_unlock(&kvm_lock);
1922 }
1923
1924 static int hardware_enable_all(void)
1925 {
1926         int r = 0;
1927
1928         spin_lock(&kvm_lock);
1929
1930         kvm_usage_count++;
1931         if (kvm_usage_count == 1) {
1932                 atomic_set(&hardware_enable_failed, 0);
1933                 on_each_cpu(hardware_enable, NULL, 1);
1934
1935                 if (atomic_read(&hardware_enable_failed)) {
1936                         hardware_disable_all_nolock();
1937                         r = -EBUSY;
1938                 }
1939         }
1940
1941         spin_unlock(&kvm_lock);
1942
1943         return r;
1944 }
1945
1946 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
1947                            void *v)
1948 {
1949         int cpu = (long)v;
1950
1951         if (!kvm_usage_count)
1952                 return NOTIFY_OK;
1953
1954         val &= ~CPU_TASKS_FROZEN;
1955         switch (val) {
1956         case CPU_DYING:
1957                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1958                        cpu);
1959                 hardware_disable(NULL);
1960                 break;
1961         case CPU_ONLINE:
1962                 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
1963                        cpu);
1964                 smp_call_function_single(cpu, hardware_enable, NULL, 1);
1965                 break;
1966         }
1967         return NOTIFY_OK;
1968 }
1969
1970
1971 asmlinkage void kvm_handle_fault_on_reboot(void)
1972 {
1973         if (kvm_rebooting)
1974                 /* spin while reset goes on */
1975                 while (true)
1976                         ;
1977         /* Fault while not rebooting.  We want the trace. */
1978         BUG();
1979 }
1980 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
1981
1982 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1983                       void *v)
1984 {
1985         /*
1986          * Some (well, at least mine) BIOSes hang on reboot if
1987          * in vmx root mode.
1988          *
1989          * And Intel TXT required VMX off for all cpu when system shutdown.
1990          */
1991         printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1992         kvm_rebooting = true;
1993         on_each_cpu(hardware_disable, NULL, 1);
1994         return NOTIFY_OK;
1995 }
1996
1997 static struct notifier_block kvm_reboot_notifier = {
1998         .notifier_call = kvm_reboot,
1999         .priority = 0,
2000 };
2001
2002 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2003 {
2004         int i;
2005
2006         for (i = 0; i < bus->dev_count; i++) {
2007                 struct kvm_io_device *pos = bus->devs[i];
2008
2009                 kvm_iodevice_destructor(pos);
2010         }
2011         kfree(bus);
2012 }
2013
2014 /* kvm_io_bus_write - called under kvm->slots_lock */
2015 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2016                      int len, const void *val)
2017 {
2018         int i;
2019         struct kvm_io_bus *bus;
2020
2021         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2022         for (i = 0; i < bus->dev_count; i++)
2023                 if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
2024                         return 0;
2025         return -EOPNOTSUPP;
2026 }
2027
2028 /* kvm_io_bus_read - called under kvm->slots_lock */
2029 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2030                     int len, void *val)
2031 {
2032         int i;
2033         struct kvm_io_bus *bus;
2034
2035         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2036         for (i = 0; i < bus->dev_count; i++)
2037                 if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
2038                         return 0;
2039         return -EOPNOTSUPP;
2040 }
2041
2042 /* Caller must hold slots_lock. */
2043 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2044                             struct kvm_io_device *dev)
2045 {
2046         struct kvm_io_bus *new_bus, *bus;
2047
2048         bus = kvm->buses[bus_idx];
2049         if (bus->dev_count > NR_IOBUS_DEVS-1)
2050                 return -ENOSPC;
2051
2052         new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2053         if (!new_bus)
2054                 return -ENOMEM;
2055         memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2056         new_bus->devs[new_bus->dev_count++] = dev;
2057         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2058         synchronize_srcu_expedited(&kvm->srcu);
2059         kfree(bus);
2060
2061         return 0;
2062 }
2063
2064 /* Caller must hold slots_lock. */
2065 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2066                               struct kvm_io_device *dev)
2067 {
2068         int i, r;
2069         struct kvm_io_bus *new_bus, *bus;
2070
2071         new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2072         if (!new_bus)
2073                 return -ENOMEM;
2074
2075         bus = kvm->buses[bus_idx];
2076         memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2077
2078         r = -ENOENT;
2079         for (i = 0; i < new_bus->dev_count; i++)
2080                 if (new_bus->devs[i] == dev) {
2081                         r = 0;
2082                         new_bus->devs[i] = new_bus->devs[--new_bus->dev_count];
2083                         break;
2084                 }
2085
2086         if (r) {
2087                 kfree(new_bus);
2088                 return r;
2089         }
2090
2091         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2092         synchronize_srcu_expedited(&kvm->srcu);
2093         kfree(bus);
2094         return r;
2095 }
2096
2097 static struct notifier_block kvm_cpu_notifier = {
2098         .notifier_call = kvm_cpu_hotplug,
2099         .priority = 20, /* must be > scheduler priority */
2100 };
2101
2102 static int vm_stat_get(void *_offset, u64 *val)
2103 {
2104         unsigned offset = (long)_offset;
2105         struct kvm *kvm;
2106
2107         *val = 0;
2108         spin_lock(&kvm_lock);
2109         list_for_each_entry(kvm, &vm_list, vm_list)
2110                 *val += *(u32 *)((void *)kvm + offset);
2111         spin_unlock(&kvm_lock);
2112         return 0;
2113 }
2114
2115 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2116
2117 static int vcpu_stat_get(void *_offset, u64 *val)
2118 {
2119         unsigned offset = (long)_offset;
2120         struct kvm *kvm;
2121         struct kvm_vcpu *vcpu;
2122         int i;
2123
2124         *val = 0;
2125         spin_lock(&kvm_lock);
2126         list_for_each_entry(kvm, &vm_list, vm_list)
2127                 kvm_for_each_vcpu(i, vcpu, kvm)
2128                         *val += *(u32 *)((void *)vcpu + offset);
2129
2130         spin_unlock(&kvm_lock);
2131         return 0;
2132 }
2133
2134 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2135
2136 static const struct file_operations *stat_fops[] = {
2137         [KVM_STAT_VCPU] = &vcpu_stat_fops,
2138         [KVM_STAT_VM]   = &vm_stat_fops,
2139 };
2140
2141 static void kvm_init_debug(void)
2142 {
2143         struct kvm_stats_debugfs_item *p;
2144
2145         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2146         for (p = debugfs_entries; p->name; ++p)
2147                 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2148                                                 (void *)(long)p->offset,
2149                                                 stat_fops[p->kind]);
2150 }
2151
2152 static void kvm_exit_debug(void)
2153 {
2154         struct kvm_stats_debugfs_item *p;
2155
2156         for (p = debugfs_entries; p->name; ++p)
2157                 debugfs_remove(p->dentry);
2158         debugfs_remove(kvm_debugfs_dir);
2159 }
2160
2161 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2162 {
2163         if (kvm_usage_count)
2164                 hardware_disable(NULL);
2165         return 0;
2166 }
2167
2168 static int kvm_resume(struct sys_device *dev)
2169 {
2170         if (kvm_usage_count)
2171                 hardware_enable(NULL);
2172         return 0;
2173 }
2174
2175 static struct sysdev_class kvm_sysdev_class = {
2176         .name = "kvm",
2177         .suspend = kvm_suspend,
2178         .resume = kvm_resume,
2179 };
2180
2181 static struct sys_device kvm_sysdev = {
2182         .id = 0,
2183         .cls = &kvm_sysdev_class,
2184 };
2185
2186 struct page *bad_page;
2187 pfn_t bad_pfn;
2188
2189 static inline
2190 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2191 {
2192         return container_of(pn, struct kvm_vcpu, preempt_notifier);
2193 }
2194
2195 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2196 {
2197         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2198
2199         kvm_arch_vcpu_load(vcpu, cpu);
2200 }
2201
2202 static void kvm_sched_out(struct preempt_notifier *pn,
2203                           struct task_struct *next)
2204 {
2205         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2206
2207         kvm_arch_vcpu_put(vcpu);
2208 }
2209
2210 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2211                   struct module *module)
2212 {
2213         int r;
2214         int cpu;
2215
2216         r = kvm_arch_init(opaque);
2217         if (r)
2218                 goto out_fail;
2219
2220         bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2221
2222         if (bad_page == NULL) {
2223                 r = -ENOMEM;
2224                 goto out;
2225         }
2226
2227         bad_pfn = page_to_pfn(bad_page);
2228
2229         hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2230
2231         if (hwpoison_page == NULL) {
2232                 r = -ENOMEM;
2233                 goto out_free_0;
2234         }
2235
2236         hwpoison_pfn = page_to_pfn(hwpoison_page);
2237
2238         fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2239
2240         if (fault_page == NULL) {
2241                 r = -ENOMEM;
2242                 goto out_free_0;
2243         }
2244
2245         fault_pfn = page_to_pfn(fault_page);
2246
2247         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2248                 r = -ENOMEM;
2249                 goto out_free_0;
2250         }
2251
2252         r = kvm_arch_hardware_setup();
2253         if (r < 0)
2254                 goto out_free_0a;
2255
2256         for_each_online_cpu(cpu) {
2257                 smp_call_function_single(cpu,
2258                                 kvm_arch_check_processor_compat,
2259                                 &r, 1);
2260                 if (r < 0)
2261                         goto out_free_1;
2262         }
2263
2264         r = register_cpu_notifier(&kvm_cpu_notifier);
2265         if (r)
2266                 goto out_free_2;
2267         register_reboot_notifier(&kvm_reboot_notifier);
2268
2269         r = sysdev_class_register(&kvm_sysdev_class);
2270         if (r)
2271                 goto out_free_3;
2272
2273         r = sysdev_register(&kvm_sysdev);
2274         if (r)
2275                 goto out_free_4;
2276
2277         /* A kmem cache lets us meet the alignment requirements of fx_save. */
2278         if (!vcpu_align)
2279                 vcpu_align = __alignof__(struct kvm_vcpu);
2280         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2281                                            0, NULL);
2282         if (!kvm_vcpu_cache) {
2283                 r = -ENOMEM;
2284                 goto out_free_5;
2285         }
2286
2287         kvm_chardev_ops.owner = module;
2288         kvm_vm_fops.owner = module;
2289         kvm_vcpu_fops.owner = module;
2290
2291         r = misc_register(&kvm_dev);
2292         if (r) {
2293                 printk(KERN_ERR "kvm: misc device register failed\n");
2294                 goto out_free;
2295         }
2296
2297         kvm_preempt_ops.sched_in = kvm_sched_in;
2298         kvm_preempt_ops.sched_out = kvm_sched_out;
2299
2300         kvm_init_debug();
2301
2302         return 0;
2303
2304 out_free:
2305         kmem_cache_destroy(kvm_vcpu_cache);
2306 out_free_5:
2307         sysdev_unregister(&kvm_sysdev);
2308 out_free_4:
2309         sysdev_class_unregister(&kvm_sysdev_class);
2310 out_free_3:
2311         unregister_reboot_notifier(&kvm_reboot_notifier);
2312         unregister_cpu_notifier(&kvm_cpu_notifier);
2313 out_free_2:
2314 out_free_1:
2315         kvm_arch_hardware_unsetup();
2316 out_free_0a:
2317         free_cpumask_var(cpus_hardware_enabled);
2318 out_free_0:
2319         if (fault_page)
2320                 __free_page(fault_page);
2321         if (hwpoison_page)
2322                 __free_page(hwpoison_page);
2323         __free_page(bad_page);
2324 out:
2325         kvm_arch_exit();
2326 out_fail:
2327         return r;
2328 }
2329 EXPORT_SYMBOL_GPL(kvm_init);
2330
2331 void kvm_exit(void)
2332 {
2333         kvm_exit_debug();
2334         misc_deregister(&kvm_dev);
2335         kmem_cache_destroy(kvm_vcpu_cache);
2336         sysdev_unregister(&kvm_sysdev);
2337         sysdev_class_unregister(&kvm_sysdev_class);
2338         unregister_reboot_notifier(&kvm_reboot_notifier);
2339         unregister_cpu_notifier(&kvm_cpu_notifier);
2340         on_each_cpu(hardware_disable, NULL, 1);
2341         kvm_arch_hardware_unsetup();
2342         kvm_arch_exit();
2343         free_cpumask_var(cpus_hardware_enabled);
2344         __free_page(hwpoison_page);
2345         __free_page(bad_page);
2346 }
2347 EXPORT_SYMBOL_GPL(kvm_exit);