Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[sfrench/cifs-2.6.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88
89 /*
90  * Ordering of locks:
91  *
92  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93  */
94
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115                            unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118                                   unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
122
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
124
125 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
126 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
127
128 __visible bool kvm_rebooting;
129 EXPORT_SYMBOL_GPL(kvm_rebooting);
130
131 static bool largepages_enabled = true;
132
133 #define KVM_EVENT_CREATE_VM 0
134 #define KVM_EVENT_DESTROY_VM 1
135 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
136 static unsigned long long kvm_createvm_count;
137 static unsigned long long kvm_active_vms;
138
139 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
140 {
141         if (pfn_valid(pfn))
142                 return PageReserved(pfn_to_page(pfn));
143
144         return true;
145 }
146
147 /*
148  * Switches to specified vcpu, until a matching vcpu_put()
149  */
150 int vcpu_load(struct kvm_vcpu *vcpu)
151 {
152         int cpu;
153
154         if (mutex_lock_killable(&vcpu->mutex))
155                 return -EINTR;
156         cpu = get_cpu();
157         preempt_notifier_register(&vcpu->preempt_notifier);
158         kvm_arch_vcpu_load(vcpu, cpu);
159         put_cpu();
160         return 0;
161 }
162 EXPORT_SYMBOL_GPL(vcpu_load);
163
164 void vcpu_put(struct kvm_vcpu *vcpu)
165 {
166         preempt_disable();
167         kvm_arch_vcpu_put(vcpu);
168         preempt_notifier_unregister(&vcpu->preempt_notifier);
169         preempt_enable();
170         mutex_unlock(&vcpu->mutex);
171 }
172 EXPORT_SYMBOL_GPL(vcpu_put);
173
174 /* TODO: merge with kvm_arch_vcpu_should_kick */
175 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
176 {
177         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
178
179         /*
180          * We need to wait for the VCPU to reenable interrupts and get out of
181          * READING_SHADOW_PAGE_TABLES mode.
182          */
183         if (req & KVM_REQUEST_WAIT)
184                 return mode != OUTSIDE_GUEST_MODE;
185
186         /*
187          * Need to kick a running VCPU, but otherwise there is nothing to do.
188          */
189         return mode == IN_GUEST_MODE;
190 }
191
192 static void ack_flush(void *_completed)
193 {
194 }
195
196 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
197 {
198         if (unlikely(!cpus))
199                 cpus = cpu_online_mask;
200
201         if (cpumask_empty(cpus))
202                 return false;
203
204         smp_call_function_many(cpus, ack_flush, NULL, wait);
205         return true;
206 }
207
208 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
209 {
210         int i, cpu, me;
211         cpumask_var_t cpus;
212         bool called;
213         struct kvm_vcpu *vcpu;
214
215         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
216
217         me = get_cpu();
218         kvm_for_each_vcpu(i, vcpu, kvm) {
219                 kvm_make_request(req, vcpu);
220                 cpu = vcpu->cpu;
221
222                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
223                         continue;
224
225                 if (cpus != NULL && cpu != -1 && cpu != me &&
226                     kvm_request_needs_ipi(vcpu, req))
227                         __cpumask_set_cpu(cpu, cpus);
228         }
229         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
230         put_cpu();
231         free_cpumask_var(cpus);
232         return called;
233 }
234
235 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
236 void kvm_flush_remote_tlbs(struct kvm *kvm)
237 {
238         /*
239          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
240          * kvm_make_all_cpus_request.
241          */
242         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
243
244         /*
245          * We want to publish modifications to the page tables before reading
246          * mode. Pairs with a memory barrier in arch-specific code.
247          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
248          * and smp_mb in walk_shadow_page_lockless_begin/end.
249          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
250          *
251          * There is already an smp_mb__after_atomic() before
252          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
253          * barrier here.
254          */
255         if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
256                 ++kvm->stat.remote_tlb_flush;
257         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
258 }
259 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
260 #endif
261
262 void kvm_reload_remote_mmus(struct kvm *kvm)
263 {
264         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
265 }
266
267 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
268 {
269         struct page *page;
270         int r;
271
272         mutex_init(&vcpu->mutex);
273         vcpu->cpu = -1;
274         vcpu->kvm = kvm;
275         vcpu->vcpu_id = id;
276         vcpu->pid = NULL;
277         init_swait_queue_head(&vcpu->wq);
278         kvm_async_pf_vcpu_init(vcpu);
279
280         vcpu->pre_pcpu = -1;
281         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
282
283         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
284         if (!page) {
285                 r = -ENOMEM;
286                 goto fail;
287         }
288         vcpu->run = page_address(page);
289
290         kvm_vcpu_set_in_spin_loop(vcpu, false);
291         kvm_vcpu_set_dy_eligible(vcpu, false);
292         vcpu->preempted = false;
293
294         r = kvm_arch_vcpu_init(vcpu);
295         if (r < 0)
296                 goto fail_free_run;
297         return 0;
298
299 fail_free_run:
300         free_page((unsigned long)vcpu->run);
301 fail:
302         return r;
303 }
304 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
305
306 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
307 {
308         /*
309          * no need for rcu_read_lock as VCPU_RUN is the only place that
310          * will change the vcpu->pid pointer and on uninit all file
311          * descriptors are already gone.
312          */
313         put_pid(rcu_dereference_protected(vcpu->pid, 1));
314         kvm_arch_vcpu_uninit(vcpu);
315         free_page((unsigned long)vcpu->run);
316 }
317 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
318
319 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
320 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
321 {
322         return container_of(mn, struct kvm, mmu_notifier);
323 }
324
325 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
326                                         struct mm_struct *mm,
327                                         unsigned long address,
328                                         pte_t pte)
329 {
330         struct kvm *kvm = mmu_notifier_to_kvm(mn);
331         int idx;
332
333         idx = srcu_read_lock(&kvm->srcu);
334         spin_lock(&kvm->mmu_lock);
335         kvm->mmu_notifier_seq++;
336         kvm_set_spte_hva(kvm, address, pte);
337         spin_unlock(&kvm->mmu_lock);
338         srcu_read_unlock(&kvm->srcu, idx);
339 }
340
341 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
342                                                     struct mm_struct *mm,
343                                                     unsigned long start,
344                                                     unsigned long end)
345 {
346         struct kvm *kvm = mmu_notifier_to_kvm(mn);
347         int need_tlb_flush = 0, idx;
348
349         idx = srcu_read_lock(&kvm->srcu);
350         spin_lock(&kvm->mmu_lock);
351         /*
352          * The count increase must become visible at unlock time as no
353          * spte can be established without taking the mmu_lock and
354          * count is also read inside the mmu_lock critical section.
355          */
356         kvm->mmu_notifier_count++;
357         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
358         need_tlb_flush |= kvm->tlbs_dirty;
359         /* we've to flush the tlb before the pages can be freed */
360         if (need_tlb_flush)
361                 kvm_flush_remote_tlbs(kvm);
362
363         spin_unlock(&kvm->mmu_lock);
364         srcu_read_unlock(&kvm->srcu, idx);
365 }
366
367 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
368                                                   struct mm_struct *mm,
369                                                   unsigned long start,
370                                                   unsigned long end)
371 {
372         struct kvm *kvm = mmu_notifier_to_kvm(mn);
373
374         spin_lock(&kvm->mmu_lock);
375         /*
376          * This sequence increase will notify the kvm page fault that
377          * the page that is going to be mapped in the spte could have
378          * been freed.
379          */
380         kvm->mmu_notifier_seq++;
381         smp_wmb();
382         /*
383          * The above sequence increase must be visible before the
384          * below count decrease, which is ensured by the smp_wmb above
385          * in conjunction with the smp_rmb in mmu_notifier_retry().
386          */
387         kvm->mmu_notifier_count--;
388         spin_unlock(&kvm->mmu_lock);
389
390         BUG_ON(kvm->mmu_notifier_count < 0);
391 }
392
393 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
394                                               struct mm_struct *mm,
395                                               unsigned long start,
396                                               unsigned long end)
397 {
398         struct kvm *kvm = mmu_notifier_to_kvm(mn);
399         int young, idx;
400
401         idx = srcu_read_lock(&kvm->srcu);
402         spin_lock(&kvm->mmu_lock);
403
404         young = kvm_age_hva(kvm, start, end);
405         if (young)
406                 kvm_flush_remote_tlbs(kvm);
407
408         spin_unlock(&kvm->mmu_lock);
409         srcu_read_unlock(&kvm->srcu, idx);
410
411         return young;
412 }
413
414 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
415                                         struct mm_struct *mm,
416                                         unsigned long start,
417                                         unsigned long end)
418 {
419         struct kvm *kvm = mmu_notifier_to_kvm(mn);
420         int young, idx;
421
422         idx = srcu_read_lock(&kvm->srcu);
423         spin_lock(&kvm->mmu_lock);
424         /*
425          * Even though we do not flush TLB, this will still adversely
426          * affect performance on pre-Haswell Intel EPT, where there is
427          * no EPT Access Bit to clear so that we have to tear down EPT
428          * tables instead. If we find this unacceptable, we can always
429          * add a parameter to kvm_age_hva so that it effectively doesn't
430          * do anything on clear_young.
431          *
432          * Also note that currently we never issue secondary TLB flushes
433          * from clear_young, leaving this job up to the regular system
434          * cadence. If we find this inaccurate, we might come up with a
435          * more sophisticated heuristic later.
436          */
437         young = kvm_age_hva(kvm, start, end);
438         spin_unlock(&kvm->mmu_lock);
439         srcu_read_unlock(&kvm->srcu, idx);
440
441         return young;
442 }
443
444 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
445                                        struct mm_struct *mm,
446                                        unsigned long address)
447 {
448         struct kvm *kvm = mmu_notifier_to_kvm(mn);
449         int young, idx;
450
451         idx = srcu_read_lock(&kvm->srcu);
452         spin_lock(&kvm->mmu_lock);
453         young = kvm_test_age_hva(kvm, address);
454         spin_unlock(&kvm->mmu_lock);
455         srcu_read_unlock(&kvm->srcu, idx);
456
457         return young;
458 }
459
460 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
461                                      struct mm_struct *mm)
462 {
463         struct kvm *kvm = mmu_notifier_to_kvm(mn);
464         int idx;
465
466         idx = srcu_read_lock(&kvm->srcu);
467         kvm_arch_flush_shadow_all(kvm);
468         srcu_read_unlock(&kvm->srcu, idx);
469 }
470
471 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
472         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
473         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
474         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
475         .clear_young            = kvm_mmu_notifier_clear_young,
476         .test_young             = kvm_mmu_notifier_test_young,
477         .change_pte             = kvm_mmu_notifier_change_pte,
478         .release                = kvm_mmu_notifier_release,
479 };
480
481 static int kvm_init_mmu_notifier(struct kvm *kvm)
482 {
483         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
484         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
485 }
486
487 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
488
489 static int kvm_init_mmu_notifier(struct kvm *kvm)
490 {
491         return 0;
492 }
493
494 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
495
496 static struct kvm_memslots *kvm_alloc_memslots(void)
497 {
498         int i;
499         struct kvm_memslots *slots;
500
501         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
502         if (!slots)
503                 return NULL;
504
505         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
506                 slots->id_to_index[i] = slots->memslots[i].id = i;
507
508         return slots;
509 }
510
511 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
512 {
513         if (!memslot->dirty_bitmap)
514                 return;
515
516         kvfree(memslot->dirty_bitmap);
517         memslot->dirty_bitmap = NULL;
518 }
519
520 /*
521  * Free any memory in @free but not in @dont.
522  */
523 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
524                               struct kvm_memory_slot *dont)
525 {
526         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
527                 kvm_destroy_dirty_bitmap(free);
528
529         kvm_arch_free_memslot(kvm, free, dont);
530
531         free->npages = 0;
532 }
533
534 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
535 {
536         struct kvm_memory_slot *memslot;
537
538         if (!slots)
539                 return;
540
541         kvm_for_each_memslot(memslot, slots)
542                 kvm_free_memslot(kvm, memslot, NULL);
543
544         kvfree(slots);
545 }
546
547 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
548 {
549         int i;
550
551         if (!kvm->debugfs_dentry)
552                 return;
553
554         debugfs_remove_recursive(kvm->debugfs_dentry);
555
556         if (kvm->debugfs_stat_data) {
557                 for (i = 0; i < kvm_debugfs_num_entries; i++)
558                         kfree(kvm->debugfs_stat_data[i]);
559                 kfree(kvm->debugfs_stat_data);
560         }
561 }
562
563 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
564 {
565         char dir_name[ITOA_MAX_LEN * 2];
566         struct kvm_stat_data *stat_data;
567         struct kvm_stats_debugfs_item *p;
568
569         if (!debugfs_initialized())
570                 return 0;
571
572         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
573         kvm->debugfs_dentry = debugfs_create_dir(dir_name,
574                                                  kvm_debugfs_dir);
575         if (!kvm->debugfs_dentry)
576                 return -ENOMEM;
577
578         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
579                                          sizeof(*kvm->debugfs_stat_data),
580                                          GFP_KERNEL);
581         if (!kvm->debugfs_stat_data)
582                 return -ENOMEM;
583
584         for (p = debugfs_entries; p->name; p++) {
585                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
586                 if (!stat_data)
587                         return -ENOMEM;
588
589                 stat_data->kvm = kvm;
590                 stat_data->offset = p->offset;
591                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
592                 if (!debugfs_create_file(p->name, 0644,
593                                          kvm->debugfs_dentry,
594                                          stat_data,
595                                          stat_fops_per_vm[p->kind]))
596                         return -ENOMEM;
597         }
598         return 0;
599 }
600
601 static struct kvm *kvm_create_vm(unsigned long type)
602 {
603         int r, i;
604         struct kvm *kvm = kvm_arch_alloc_vm();
605
606         if (!kvm)
607                 return ERR_PTR(-ENOMEM);
608
609         spin_lock_init(&kvm->mmu_lock);
610         mmgrab(current->mm);
611         kvm->mm = current->mm;
612         kvm_eventfd_init(kvm);
613         mutex_init(&kvm->lock);
614         mutex_init(&kvm->irq_lock);
615         mutex_init(&kvm->slots_lock);
616         refcount_set(&kvm->users_count, 1);
617         INIT_LIST_HEAD(&kvm->devices);
618
619         r = kvm_arch_init_vm(kvm, type);
620         if (r)
621                 goto out_err_no_disable;
622
623         r = hardware_enable_all();
624         if (r)
625                 goto out_err_no_disable;
626
627 #ifdef CONFIG_HAVE_KVM_IRQFD
628         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
629 #endif
630
631         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
632
633         r = -ENOMEM;
634         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
635                 struct kvm_memslots *slots = kvm_alloc_memslots();
636                 if (!slots)
637                         goto out_err_no_srcu;
638                 /*
639                  * Generations must be different for each address space.
640                  * Init kvm generation close to the maximum to easily test the
641                  * code of handling generation number wrap-around.
642                  */
643                 slots->generation = i * 2 - 150;
644                 rcu_assign_pointer(kvm->memslots[i], slots);
645         }
646
647         if (init_srcu_struct(&kvm->srcu))
648                 goto out_err_no_srcu;
649         if (init_srcu_struct(&kvm->irq_srcu))
650                 goto out_err_no_irq_srcu;
651         for (i = 0; i < KVM_NR_BUSES; i++) {
652                 rcu_assign_pointer(kvm->buses[i],
653                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
654                 if (!kvm->buses[i])
655                         goto out_err;
656         }
657
658         r = kvm_init_mmu_notifier(kvm);
659         if (r)
660                 goto out_err;
661
662         spin_lock(&kvm_lock);
663         list_add(&kvm->vm_list, &vm_list);
664         spin_unlock(&kvm_lock);
665
666         preempt_notifier_inc();
667
668         return kvm;
669
670 out_err:
671         cleanup_srcu_struct(&kvm->irq_srcu);
672 out_err_no_irq_srcu:
673         cleanup_srcu_struct(&kvm->srcu);
674 out_err_no_srcu:
675         hardware_disable_all();
676 out_err_no_disable:
677         refcount_set(&kvm->users_count, 0);
678         for (i = 0; i < KVM_NR_BUSES; i++)
679                 kfree(kvm_get_bus(kvm, i));
680         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
681                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
682         kvm_arch_free_vm(kvm);
683         mmdrop(current->mm);
684         return ERR_PTR(r);
685 }
686
687 static void kvm_destroy_devices(struct kvm *kvm)
688 {
689         struct kvm_device *dev, *tmp;
690
691         /*
692          * We do not need to take the kvm->lock here, because nobody else
693          * has a reference to the struct kvm at this point and therefore
694          * cannot access the devices list anyhow.
695          */
696         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
697                 list_del(&dev->vm_node);
698                 dev->ops->destroy(dev);
699         }
700 }
701
702 static void kvm_destroy_vm(struct kvm *kvm)
703 {
704         int i;
705         struct mm_struct *mm = kvm->mm;
706
707         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
708         kvm_destroy_vm_debugfs(kvm);
709         kvm_arch_sync_events(kvm);
710         spin_lock(&kvm_lock);
711         list_del(&kvm->vm_list);
712         spin_unlock(&kvm_lock);
713         kvm_free_irq_routing(kvm);
714         for (i = 0; i < KVM_NR_BUSES; i++) {
715                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
716
717                 if (bus)
718                         kvm_io_bus_destroy(bus);
719                 kvm->buses[i] = NULL;
720         }
721         kvm_coalesced_mmio_free(kvm);
722 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
723         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
724 #else
725         kvm_arch_flush_shadow_all(kvm);
726 #endif
727         kvm_arch_destroy_vm(kvm);
728         kvm_destroy_devices(kvm);
729         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
730                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
731         cleanup_srcu_struct(&kvm->irq_srcu);
732         cleanup_srcu_struct(&kvm->srcu);
733         kvm_arch_free_vm(kvm);
734         preempt_notifier_dec();
735         hardware_disable_all();
736         mmdrop(mm);
737 }
738
739 void kvm_get_kvm(struct kvm *kvm)
740 {
741         refcount_inc(&kvm->users_count);
742 }
743 EXPORT_SYMBOL_GPL(kvm_get_kvm);
744
745 void kvm_put_kvm(struct kvm *kvm)
746 {
747         if (refcount_dec_and_test(&kvm->users_count))
748                 kvm_destroy_vm(kvm);
749 }
750 EXPORT_SYMBOL_GPL(kvm_put_kvm);
751
752
753 static int kvm_vm_release(struct inode *inode, struct file *filp)
754 {
755         struct kvm *kvm = filp->private_data;
756
757         kvm_irqfd_release(kvm);
758
759         kvm_put_kvm(kvm);
760         return 0;
761 }
762
763 /*
764  * Allocation size is twice as large as the actual dirty bitmap size.
765  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
766  */
767 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
768 {
769         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
770
771         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
772         if (!memslot->dirty_bitmap)
773                 return -ENOMEM;
774
775         return 0;
776 }
777
778 /*
779  * Insert memslot and re-sort memslots based on their GFN,
780  * so binary search could be used to lookup GFN.
781  * Sorting algorithm takes advantage of having initially
782  * sorted array and known changed memslot position.
783  */
784 static void update_memslots(struct kvm_memslots *slots,
785                             struct kvm_memory_slot *new)
786 {
787         int id = new->id;
788         int i = slots->id_to_index[id];
789         struct kvm_memory_slot *mslots = slots->memslots;
790
791         WARN_ON(mslots[i].id != id);
792         if (!new->npages) {
793                 WARN_ON(!mslots[i].npages);
794                 if (mslots[i].npages)
795                         slots->used_slots--;
796         } else {
797                 if (!mslots[i].npages)
798                         slots->used_slots++;
799         }
800
801         while (i < KVM_MEM_SLOTS_NUM - 1 &&
802                new->base_gfn <= mslots[i + 1].base_gfn) {
803                 if (!mslots[i + 1].npages)
804                         break;
805                 mslots[i] = mslots[i + 1];
806                 slots->id_to_index[mslots[i].id] = i;
807                 i++;
808         }
809
810         /*
811          * The ">=" is needed when creating a slot with base_gfn == 0,
812          * so that it moves before all those with base_gfn == npages == 0.
813          *
814          * On the other hand, if new->npages is zero, the above loop has
815          * already left i pointing to the beginning of the empty part of
816          * mslots, and the ">=" would move the hole backwards in this
817          * case---which is wrong.  So skip the loop when deleting a slot.
818          */
819         if (new->npages) {
820                 while (i > 0 &&
821                        new->base_gfn >= mslots[i - 1].base_gfn) {
822                         mslots[i] = mslots[i - 1];
823                         slots->id_to_index[mslots[i].id] = i;
824                         i--;
825                 }
826         } else
827                 WARN_ON_ONCE(i != slots->used_slots);
828
829         mslots[i] = *new;
830         slots->id_to_index[mslots[i].id] = i;
831 }
832
833 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
834 {
835         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
836
837 #ifdef __KVM_HAVE_READONLY_MEM
838         valid_flags |= KVM_MEM_READONLY;
839 #endif
840
841         if (mem->flags & ~valid_flags)
842                 return -EINVAL;
843
844         return 0;
845 }
846
847 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
848                 int as_id, struct kvm_memslots *slots)
849 {
850         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
851
852         /*
853          * Set the low bit in the generation, which disables SPTE caching
854          * until the end of synchronize_srcu_expedited.
855          */
856         WARN_ON(old_memslots->generation & 1);
857         slots->generation = old_memslots->generation + 1;
858
859         rcu_assign_pointer(kvm->memslots[as_id], slots);
860         synchronize_srcu_expedited(&kvm->srcu);
861
862         /*
863          * Increment the new memslot generation a second time. This prevents
864          * vm exits that race with memslot updates from caching a memslot
865          * generation that will (potentially) be valid forever.
866          *
867          * Generations must be unique even across address spaces.  We do not need
868          * a global counter for that, instead the generation space is evenly split
869          * across address spaces.  For example, with two address spaces, address
870          * space 0 will use generations 0, 4, 8, ... while * address space 1 will
871          * use generations 2, 6, 10, 14, ...
872          */
873         slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
874
875         kvm_arch_memslots_updated(kvm, slots);
876
877         return old_memslots;
878 }
879
880 /*
881  * Allocate some memory and give it an address in the guest physical address
882  * space.
883  *
884  * Discontiguous memory is allowed, mostly for framebuffers.
885  *
886  * Must be called holding kvm->slots_lock for write.
887  */
888 int __kvm_set_memory_region(struct kvm *kvm,
889                             const struct kvm_userspace_memory_region *mem)
890 {
891         int r;
892         gfn_t base_gfn;
893         unsigned long npages;
894         struct kvm_memory_slot *slot;
895         struct kvm_memory_slot old, new;
896         struct kvm_memslots *slots = NULL, *old_memslots;
897         int as_id, id;
898         enum kvm_mr_change change;
899
900         r = check_memory_region_flags(mem);
901         if (r)
902                 goto out;
903
904         r = -EINVAL;
905         as_id = mem->slot >> 16;
906         id = (u16)mem->slot;
907
908         /* General sanity checks */
909         if (mem->memory_size & (PAGE_SIZE - 1))
910                 goto out;
911         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
912                 goto out;
913         /* We can read the guest memory with __xxx_user() later on. */
914         if ((id < KVM_USER_MEM_SLOTS) &&
915             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
916              !access_ok(VERIFY_WRITE,
917                         (void __user *)(unsigned long)mem->userspace_addr,
918                         mem->memory_size)))
919                 goto out;
920         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
921                 goto out;
922         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
923                 goto out;
924
925         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
926         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
927         npages = mem->memory_size >> PAGE_SHIFT;
928
929         if (npages > KVM_MEM_MAX_NR_PAGES)
930                 goto out;
931
932         new = old = *slot;
933
934         new.id = id;
935         new.base_gfn = base_gfn;
936         new.npages = npages;
937         new.flags = mem->flags;
938
939         if (npages) {
940                 if (!old.npages)
941                         change = KVM_MR_CREATE;
942                 else { /* Modify an existing slot. */
943                         if ((mem->userspace_addr != old.userspace_addr) ||
944                             (npages != old.npages) ||
945                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
946                                 goto out;
947
948                         if (base_gfn != old.base_gfn)
949                                 change = KVM_MR_MOVE;
950                         else if (new.flags != old.flags)
951                                 change = KVM_MR_FLAGS_ONLY;
952                         else { /* Nothing to change. */
953                                 r = 0;
954                                 goto out;
955                         }
956                 }
957         } else {
958                 if (!old.npages)
959                         goto out;
960
961                 change = KVM_MR_DELETE;
962                 new.base_gfn = 0;
963                 new.flags = 0;
964         }
965
966         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
967                 /* Check for overlaps */
968                 r = -EEXIST;
969                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
970                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
971                             (slot->id == id))
972                                 continue;
973                         if (!((base_gfn + npages <= slot->base_gfn) ||
974                               (base_gfn >= slot->base_gfn + slot->npages)))
975                                 goto out;
976                 }
977         }
978
979         /* Free page dirty bitmap if unneeded */
980         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
981                 new.dirty_bitmap = NULL;
982
983         r = -ENOMEM;
984         if (change == KVM_MR_CREATE) {
985                 new.userspace_addr = mem->userspace_addr;
986
987                 if (kvm_arch_create_memslot(kvm, &new, npages))
988                         goto out_free;
989         }
990
991         /* Allocate page dirty bitmap if needed */
992         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
993                 if (kvm_create_dirty_bitmap(&new) < 0)
994                         goto out_free;
995         }
996
997         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
998         if (!slots)
999                 goto out_free;
1000         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1001
1002         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1003                 slot = id_to_memslot(slots, id);
1004                 slot->flags |= KVM_MEMSLOT_INVALID;
1005
1006                 old_memslots = install_new_memslots(kvm, as_id, slots);
1007
1008                 /* From this point no new shadow pages pointing to a deleted,
1009                  * or moved, memslot will be created.
1010                  *
1011                  * validation of sp->gfn happens in:
1012                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1013                  *      - kvm_is_visible_gfn (mmu_check_roots)
1014                  */
1015                 kvm_arch_flush_shadow_memslot(kvm, slot);
1016
1017                 /*
1018                  * We can re-use the old_memslots from above, the only difference
1019                  * from the currently installed memslots is the invalid flag.  This
1020                  * will get overwritten by update_memslots anyway.
1021                  */
1022                 slots = old_memslots;
1023         }
1024
1025         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1026         if (r)
1027                 goto out_slots;
1028
1029         /* actual memory is freed via old in kvm_free_memslot below */
1030         if (change == KVM_MR_DELETE) {
1031                 new.dirty_bitmap = NULL;
1032                 memset(&new.arch, 0, sizeof(new.arch));
1033         }
1034
1035         update_memslots(slots, &new);
1036         old_memslots = install_new_memslots(kvm, as_id, slots);
1037
1038         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1039
1040         kvm_free_memslot(kvm, &old, &new);
1041         kvfree(old_memslots);
1042         return 0;
1043
1044 out_slots:
1045         kvfree(slots);
1046 out_free:
1047         kvm_free_memslot(kvm, &new, &old);
1048 out:
1049         return r;
1050 }
1051 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1052
1053 int kvm_set_memory_region(struct kvm *kvm,
1054                           const struct kvm_userspace_memory_region *mem)
1055 {
1056         int r;
1057
1058         mutex_lock(&kvm->slots_lock);
1059         r = __kvm_set_memory_region(kvm, mem);
1060         mutex_unlock(&kvm->slots_lock);
1061         return r;
1062 }
1063 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1064
1065 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1066                                           struct kvm_userspace_memory_region *mem)
1067 {
1068         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1069                 return -EINVAL;
1070
1071         return kvm_set_memory_region(kvm, mem);
1072 }
1073
1074 int kvm_get_dirty_log(struct kvm *kvm,
1075                         struct kvm_dirty_log *log, int *is_dirty)
1076 {
1077         struct kvm_memslots *slots;
1078         struct kvm_memory_slot *memslot;
1079         int i, as_id, id;
1080         unsigned long n;
1081         unsigned long any = 0;
1082
1083         as_id = log->slot >> 16;
1084         id = (u16)log->slot;
1085         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1086                 return -EINVAL;
1087
1088         slots = __kvm_memslots(kvm, as_id);
1089         memslot = id_to_memslot(slots, id);
1090         if (!memslot->dirty_bitmap)
1091                 return -ENOENT;
1092
1093         n = kvm_dirty_bitmap_bytes(memslot);
1094
1095         for (i = 0; !any && i < n/sizeof(long); ++i)
1096                 any = memslot->dirty_bitmap[i];
1097
1098         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1099                 return -EFAULT;
1100
1101         if (any)
1102                 *is_dirty = 1;
1103         return 0;
1104 }
1105 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1106
1107 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1108 /**
1109  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1110  *      are dirty write protect them for next write.
1111  * @kvm:        pointer to kvm instance
1112  * @log:        slot id and address to which we copy the log
1113  * @is_dirty:   flag set if any page is dirty
1114  *
1115  * We need to keep it in mind that VCPU threads can write to the bitmap
1116  * concurrently. So, to avoid losing track of dirty pages we keep the
1117  * following order:
1118  *
1119  *    1. Take a snapshot of the bit and clear it if needed.
1120  *    2. Write protect the corresponding page.
1121  *    3. Copy the snapshot to the userspace.
1122  *    4. Upon return caller flushes TLB's if needed.
1123  *
1124  * Between 2 and 4, the guest may write to the page using the remaining TLB
1125  * entry.  This is not a problem because the page is reported dirty using
1126  * the snapshot taken before and step 4 ensures that writes done after
1127  * exiting to userspace will be logged for the next call.
1128  *
1129  */
1130 int kvm_get_dirty_log_protect(struct kvm *kvm,
1131                         struct kvm_dirty_log *log, bool *is_dirty)
1132 {
1133         struct kvm_memslots *slots;
1134         struct kvm_memory_slot *memslot;
1135         int i, as_id, id;
1136         unsigned long n;
1137         unsigned long *dirty_bitmap;
1138         unsigned long *dirty_bitmap_buffer;
1139
1140         as_id = log->slot >> 16;
1141         id = (u16)log->slot;
1142         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1143                 return -EINVAL;
1144
1145         slots = __kvm_memslots(kvm, as_id);
1146         memslot = id_to_memslot(slots, id);
1147
1148         dirty_bitmap = memslot->dirty_bitmap;
1149         if (!dirty_bitmap)
1150                 return -ENOENT;
1151
1152         n = kvm_dirty_bitmap_bytes(memslot);
1153
1154         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1155         memset(dirty_bitmap_buffer, 0, n);
1156
1157         spin_lock(&kvm->mmu_lock);
1158         *is_dirty = false;
1159         for (i = 0; i < n / sizeof(long); i++) {
1160                 unsigned long mask;
1161                 gfn_t offset;
1162
1163                 if (!dirty_bitmap[i])
1164                         continue;
1165
1166                 *is_dirty = true;
1167
1168                 mask = xchg(&dirty_bitmap[i], 0);
1169                 dirty_bitmap_buffer[i] = mask;
1170
1171                 if (mask) {
1172                         offset = i * BITS_PER_LONG;
1173                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1174                                                                 offset, mask);
1175                 }
1176         }
1177
1178         spin_unlock(&kvm->mmu_lock);
1179         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1180                 return -EFAULT;
1181         return 0;
1182 }
1183 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1184 #endif
1185
1186 bool kvm_largepages_enabled(void)
1187 {
1188         return largepages_enabled;
1189 }
1190
1191 void kvm_disable_largepages(void)
1192 {
1193         largepages_enabled = false;
1194 }
1195 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1196
1197 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1198 {
1199         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1200 }
1201 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1202
1203 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1204 {
1205         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1206 }
1207
1208 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1209 {
1210         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1211
1212         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1213               memslot->flags & KVM_MEMSLOT_INVALID)
1214                 return false;
1215
1216         return true;
1217 }
1218 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1219
1220 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1221 {
1222         struct vm_area_struct *vma;
1223         unsigned long addr, size;
1224
1225         size = PAGE_SIZE;
1226
1227         addr = gfn_to_hva(kvm, gfn);
1228         if (kvm_is_error_hva(addr))
1229                 return PAGE_SIZE;
1230
1231         down_read(&current->mm->mmap_sem);
1232         vma = find_vma(current->mm, addr);
1233         if (!vma)
1234                 goto out;
1235
1236         size = vma_kernel_pagesize(vma);
1237
1238 out:
1239         up_read(&current->mm->mmap_sem);
1240
1241         return size;
1242 }
1243
1244 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1245 {
1246         return slot->flags & KVM_MEM_READONLY;
1247 }
1248
1249 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1250                                        gfn_t *nr_pages, bool write)
1251 {
1252         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1253                 return KVM_HVA_ERR_BAD;
1254
1255         if (memslot_is_readonly(slot) && write)
1256                 return KVM_HVA_ERR_RO_BAD;
1257
1258         if (nr_pages)
1259                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1260
1261         return __gfn_to_hva_memslot(slot, gfn);
1262 }
1263
1264 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1265                                      gfn_t *nr_pages)
1266 {
1267         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1268 }
1269
1270 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1271                                         gfn_t gfn)
1272 {
1273         return gfn_to_hva_many(slot, gfn, NULL);
1274 }
1275 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1276
1277 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1278 {
1279         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1280 }
1281 EXPORT_SYMBOL_GPL(gfn_to_hva);
1282
1283 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1284 {
1285         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1286 }
1287 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1288
1289 /*
1290  * If writable is set to false, the hva returned by this function is only
1291  * allowed to be read.
1292  */
1293 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1294                                       gfn_t gfn, bool *writable)
1295 {
1296         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1297
1298         if (!kvm_is_error_hva(hva) && writable)
1299                 *writable = !memslot_is_readonly(slot);
1300
1301         return hva;
1302 }
1303
1304 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1305 {
1306         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1307
1308         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1309 }
1310
1311 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1312 {
1313         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1314
1315         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1316 }
1317
1318 static int get_user_page_nowait(unsigned long start, int write,
1319                 struct page **page)
1320 {
1321         int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1322
1323         if (write)
1324                 flags |= FOLL_WRITE;
1325
1326         return get_user_pages(start, 1, flags, page, NULL);
1327 }
1328
1329 static inline int check_user_page_hwpoison(unsigned long addr)
1330 {
1331         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1332
1333         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1334         return rc == -EHWPOISON;
1335 }
1336
1337 /*
1338  * The atomic path to get the writable pfn which will be stored in @pfn,
1339  * true indicates success, otherwise false is returned.
1340  */
1341 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1342                             bool write_fault, bool *writable, kvm_pfn_t *pfn)
1343 {
1344         struct page *page[1];
1345         int npages;
1346
1347         if (!(async || atomic))
1348                 return false;
1349
1350         /*
1351          * Fast pin a writable pfn only if it is a write fault request
1352          * or the caller allows to map a writable pfn for a read fault
1353          * request.
1354          */
1355         if (!(write_fault || writable))
1356                 return false;
1357
1358         npages = __get_user_pages_fast(addr, 1, 1, page);
1359         if (npages == 1) {
1360                 *pfn = page_to_pfn(page[0]);
1361
1362                 if (writable)
1363                         *writable = true;
1364                 return true;
1365         }
1366
1367         return false;
1368 }
1369
1370 /*
1371  * The slow path to get the pfn of the specified host virtual address,
1372  * 1 indicates success, -errno is returned if error is detected.
1373  */
1374 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1375                            bool *writable, kvm_pfn_t *pfn)
1376 {
1377         struct page *page[1];
1378         int npages = 0;
1379
1380         might_sleep();
1381
1382         if (writable)
1383                 *writable = write_fault;
1384
1385         if (async) {
1386                 down_read(&current->mm->mmap_sem);
1387                 npages = get_user_page_nowait(addr, write_fault, page);
1388                 up_read(&current->mm->mmap_sem);
1389         } else {
1390                 unsigned int flags = FOLL_HWPOISON;
1391
1392                 if (write_fault)
1393                         flags |= FOLL_WRITE;
1394
1395                 npages = get_user_pages_unlocked(addr, 1, page, flags);
1396         }
1397         if (npages != 1)
1398                 return npages;
1399
1400         /* map read fault as writable if possible */
1401         if (unlikely(!write_fault) && writable) {
1402                 struct page *wpage[1];
1403
1404                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1405                 if (npages == 1) {
1406                         *writable = true;
1407                         put_page(page[0]);
1408                         page[0] = wpage[0];
1409                 }
1410
1411                 npages = 1;
1412         }
1413         *pfn = page_to_pfn(page[0]);
1414         return npages;
1415 }
1416
1417 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1418 {
1419         if (unlikely(!(vma->vm_flags & VM_READ)))
1420                 return false;
1421
1422         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1423                 return false;
1424
1425         return true;
1426 }
1427
1428 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1429                                unsigned long addr, bool *async,
1430                                bool write_fault, kvm_pfn_t *p_pfn)
1431 {
1432         unsigned long pfn;
1433         int r;
1434
1435         r = follow_pfn(vma, addr, &pfn);
1436         if (r) {
1437                 /*
1438                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1439                  * not call the fault handler, so do it here.
1440                  */
1441                 bool unlocked = false;
1442                 r = fixup_user_fault(current, current->mm, addr,
1443                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1444                                      &unlocked);
1445                 if (unlocked)
1446                         return -EAGAIN;
1447                 if (r)
1448                         return r;
1449
1450                 r = follow_pfn(vma, addr, &pfn);
1451                 if (r)
1452                         return r;
1453
1454         }
1455
1456
1457         /*
1458          * Get a reference here because callers of *hva_to_pfn* and
1459          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1460          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1461          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1462          * simply do nothing for reserved pfns.
1463          *
1464          * Whoever called remap_pfn_range is also going to call e.g.
1465          * unmap_mapping_range before the underlying pages are freed,
1466          * causing a call to our MMU notifier.
1467          */ 
1468         kvm_get_pfn(pfn);
1469
1470         *p_pfn = pfn;
1471         return 0;
1472 }
1473
1474 /*
1475  * Pin guest page in memory and return its pfn.
1476  * @addr: host virtual address which maps memory to the guest
1477  * @atomic: whether this function can sleep
1478  * @async: whether this function need to wait IO complete if the
1479  *         host page is not in the memory
1480  * @write_fault: whether we should get a writable host page
1481  * @writable: whether it allows to map a writable host page for !@write_fault
1482  *
1483  * The function will map a writable host page for these two cases:
1484  * 1): @write_fault = true
1485  * 2): @write_fault = false && @writable, @writable will tell the caller
1486  *     whether the mapping is writable.
1487  */
1488 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1489                         bool write_fault, bool *writable)
1490 {
1491         struct vm_area_struct *vma;
1492         kvm_pfn_t pfn = 0;
1493         int npages, r;
1494
1495         /* we can do it either atomically or asynchronously, not both */
1496         BUG_ON(atomic && async);
1497
1498         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1499                 return pfn;
1500
1501         if (atomic)
1502                 return KVM_PFN_ERR_FAULT;
1503
1504         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1505         if (npages == 1)
1506                 return pfn;
1507
1508         down_read(&current->mm->mmap_sem);
1509         if (npages == -EHWPOISON ||
1510               (!async && check_user_page_hwpoison(addr))) {
1511                 pfn = KVM_PFN_ERR_HWPOISON;
1512                 goto exit;
1513         }
1514
1515 retry:
1516         vma = find_vma_intersection(current->mm, addr, addr + 1);
1517
1518         if (vma == NULL)
1519                 pfn = KVM_PFN_ERR_FAULT;
1520         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1521                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1522                 if (r == -EAGAIN)
1523                         goto retry;
1524                 if (r < 0)
1525                         pfn = KVM_PFN_ERR_FAULT;
1526         } else {
1527                 if (async && vma_is_valid(vma, write_fault))
1528                         *async = true;
1529                 pfn = KVM_PFN_ERR_FAULT;
1530         }
1531 exit:
1532         up_read(&current->mm->mmap_sem);
1533         return pfn;
1534 }
1535
1536 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1537                                bool atomic, bool *async, bool write_fault,
1538                                bool *writable)
1539 {
1540         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1541
1542         if (addr == KVM_HVA_ERR_RO_BAD) {
1543                 if (writable)
1544                         *writable = false;
1545                 return KVM_PFN_ERR_RO_FAULT;
1546         }
1547
1548         if (kvm_is_error_hva(addr)) {
1549                 if (writable)
1550                         *writable = false;
1551                 return KVM_PFN_NOSLOT;
1552         }
1553
1554         /* Do not map writable pfn in the readonly memslot. */
1555         if (writable && memslot_is_readonly(slot)) {
1556                 *writable = false;
1557                 writable = NULL;
1558         }
1559
1560         return hva_to_pfn(addr, atomic, async, write_fault,
1561                           writable);
1562 }
1563 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1564
1565 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1566                       bool *writable)
1567 {
1568         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1569                                     write_fault, writable);
1570 }
1571 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1572
1573 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1574 {
1575         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1576 }
1577 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1578
1579 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1580 {
1581         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1582 }
1583 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1584
1585 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1586 {
1587         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1588 }
1589 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1590
1591 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1592 {
1593         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1594 }
1595 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1596
1597 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1598 {
1599         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1600 }
1601 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1602
1603 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1604 {
1605         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1606 }
1607 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1608
1609 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1610                             struct page **pages, int nr_pages)
1611 {
1612         unsigned long addr;
1613         gfn_t entry = 0;
1614
1615         addr = gfn_to_hva_many(slot, gfn, &entry);
1616         if (kvm_is_error_hva(addr))
1617                 return -1;
1618
1619         if (entry < nr_pages)
1620                 return 0;
1621
1622         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1623 }
1624 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1625
1626 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1627 {
1628         if (is_error_noslot_pfn(pfn))
1629                 return KVM_ERR_PTR_BAD_PAGE;
1630
1631         if (kvm_is_reserved_pfn(pfn)) {
1632                 WARN_ON(1);
1633                 return KVM_ERR_PTR_BAD_PAGE;
1634         }
1635
1636         return pfn_to_page(pfn);
1637 }
1638
1639 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1640 {
1641         kvm_pfn_t pfn;
1642
1643         pfn = gfn_to_pfn(kvm, gfn);
1644
1645         return kvm_pfn_to_page(pfn);
1646 }
1647 EXPORT_SYMBOL_GPL(gfn_to_page);
1648
1649 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1650 {
1651         kvm_pfn_t pfn;
1652
1653         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1654
1655         return kvm_pfn_to_page(pfn);
1656 }
1657 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1658
1659 void kvm_release_page_clean(struct page *page)
1660 {
1661         WARN_ON(is_error_page(page));
1662
1663         kvm_release_pfn_clean(page_to_pfn(page));
1664 }
1665 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1666
1667 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1668 {
1669         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1670                 put_page(pfn_to_page(pfn));
1671 }
1672 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1673
1674 void kvm_release_page_dirty(struct page *page)
1675 {
1676         WARN_ON(is_error_page(page));
1677
1678         kvm_release_pfn_dirty(page_to_pfn(page));
1679 }
1680 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1681
1682 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1683 {
1684         kvm_set_pfn_dirty(pfn);
1685         kvm_release_pfn_clean(pfn);
1686 }
1687
1688 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1689 {
1690         if (!kvm_is_reserved_pfn(pfn)) {
1691                 struct page *page = pfn_to_page(pfn);
1692
1693                 if (!PageReserved(page))
1694                         SetPageDirty(page);
1695         }
1696 }
1697 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1698
1699 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1700 {
1701         if (!kvm_is_reserved_pfn(pfn))
1702                 mark_page_accessed(pfn_to_page(pfn));
1703 }
1704 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1705
1706 void kvm_get_pfn(kvm_pfn_t pfn)
1707 {
1708         if (!kvm_is_reserved_pfn(pfn))
1709                 get_page(pfn_to_page(pfn));
1710 }
1711 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1712
1713 static int next_segment(unsigned long len, int offset)
1714 {
1715         if (len > PAGE_SIZE - offset)
1716                 return PAGE_SIZE - offset;
1717         else
1718                 return len;
1719 }
1720
1721 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1722                                  void *data, int offset, int len)
1723 {
1724         int r;
1725         unsigned long addr;
1726
1727         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1728         if (kvm_is_error_hva(addr))
1729                 return -EFAULT;
1730         r = __copy_from_user(data, (void __user *)addr + offset, len);
1731         if (r)
1732                 return -EFAULT;
1733         return 0;
1734 }
1735
1736 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1737                         int len)
1738 {
1739         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1740
1741         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1742 }
1743 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1744
1745 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1746                              int offset, int len)
1747 {
1748         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1749
1750         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1751 }
1752 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1753
1754 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1755 {
1756         gfn_t gfn = gpa >> PAGE_SHIFT;
1757         int seg;
1758         int offset = offset_in_page(gpa);
1759         int ret;
1760
1761         while ((seg = next_segment(len, offset)) != 0) {
1762                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1763                 if (ret < 0)
1764                         return ret;
1765                 offset = 0;
1766                 len -= seg;
1767                 data += seg;
1768                 ++gfn;
1769         }
1770         return 0;
1771 }
1772 EXPORT_SYMBOL_GPL(kvm_read_guest);
1773
1774 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1775 {
1776         gfn_t gfn = gpa >> PAGE_SHIFT;
1777         int seg;
1778         int offset = offset_in_page(gpa);
1779         int ret;
1780
1781         while ((seg = next_segment(len, offset)) != 0) {
1782                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1783                 if (ret < 0)
1784                         return ret;
1785                 offset = 0;
1786                 len -= seg;
1787                 data += seg;
1788                 ++gfn;
1789         }
1790         return 0;
1791 }
1792 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1793
1794 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1795                                    void *data, int offset, unsigned long len)
1796 {
1797         int r;
1798         unsigned long addr;
1799
1800         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1801         if (kvm_is_error_hva(addr))
1802                 return -EFAULT;
1803         pagefault_disable();
1804         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1805         pagefault_enable();
1806         if (r)
1807                 return -EFAULT;
1808         return 0;
1809 }
1810
1811 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1812                           unsigned long len)
1813 {
1814         gfn_t gfn = gpa >> PAGE_SHIFT;
1815         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1816         int offset = offset_in_page(gpa);
1817
1818         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1819 }
1820 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1821
1822 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1823                                void *data, unsigned long len)
1824 {
1825         gfn_t gfn = gpa >> PAGE_SHIFT;
1826         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1827         int offset = offset_in_page(gpa);
1828
1829         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1830 }
1831 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1832
1833 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1834                                   const void *data, int offset, int len)
1835 {
1836         int r;
1837         unsigned long addr;
1838
1839         addr = gfn_to_hva_memslot(memslot, gfn);
1840         if (kvm_is_error_hva(addr))
1841                 return -EFAULT;
1842         r = __copy_to_user((void __user *)addr + offset, data, len);
1843         if (r)
1844                 return -EFAULT;
1845         mark_page_dirty_in_slot(memslot, gfn);
1846         return 0;
1847 }
1848
1849 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1850                          const void *data, int offset, int len)
1851 {
1852         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1853
1854         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1855 }
1856 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1857
1858 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1859                               const void *data, int offset, int len)
1860 {
1861         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1862
1863         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1864 }
1865 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1866
1867 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1868                     unsigned long len)
1869 {
1870         gfn_t gfn = gpa >> PAGE_SHIFT;
1871         int seg;
1872         int offset = offset_in_page(gpa);
1873         int ret;
1874
1875         while ((seg = next_segment(len, offset)) != 0) {
1876                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1877                 if (ret < 0)
1878                         return ret;
1879                 offset = 0;
1880                 len -= seg;
1881                 data += seg;
1882                 ++gfn;
1883         }
1884         return 0;
1885 }
1886 EXPORT_SYMBOL_GPL(kvm_write_guest);
1887
1888 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1889                          unsigned long len)
1890 {
1891         gfn_t gfn = gpa >> PAGE_SHIFT;
1892         int seg;
1893         int offset = offset_in_page(gpa);
1894         int ret;
1895
1896         while ((seg = next_segment(len, offset)) != 0) {
1897                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1898                 if (ret < 0)
1899                         return ret;
1900                 offset = 0;
1901                 len -= seg;
1902                 data += seg;
1903                 ++gfn;
1904         }
1905         return 0;
1906 }
1907 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1908
1909 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1910                                        struct gfn_to_hva_cache *ghc,
1911                                        gpa_t gpa, unsigned long len)
1912 {
1913         int offset = offset_in_page(gpa);
1914         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1915         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1916         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1917         gfn_t nr_pages_avail;
1918
1919         ghc->gpa = gpa;
1920         ghc->generation = slots->generation;
1921         ghc->len = len;
1922         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1923         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1924         if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1925                 ghc->hva += offset;
1926         } else {
1927                 /*
1928                  * If the requested region crosses two memslots, we still
1929                  * verify that the entire region is valid here.
1930                  */
1931                 while (start_gfn <= end_gfn) {
1932                         nr_pages_avail = 0;
1933                         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1934                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1935                                                    &nr_pages_avail);
1936                         if (kvm_is_error_hva(ghc->hva))
1937                                 return -EFAULT;
1938                         start_gfn += nr_pages_avail;
1939                 }
1940                 /* Use the slow path for cross page reads and writes. */
1941                 ghc->memslot = NULL;
1942         }
1943         return 0;
1944 }
1945
1946 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1947                               gpa_t gpa, unsigned long len)
1948 {
1949         struct kvm_memslots *slots = kvm_memslots(kvm);
1950         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1951 }
1952 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1953
1954 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1955                            void *data, int offset, unsigned long len)
1956 {
1957         struct kvm_memslots *slots = kvm_memslots(kvm);
1958         int r;
1959         gpa_t gpa = ghc->gpa + offset;
1960
1961         BUG_ON(len + offset > ghc->len);
1962
1963         if (slots->generation != ghc->generation)
1964                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1965
1966         if (unlikely(!ghc->memslot))
1967                 return kvm_write_guest(kvm, gpa, data, len);
1968
1969         if (kvm_is_error_hva(ghc->hva))
1970                 return -EFAULT;
1971
1972         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1973         if (r)
1974                 return -EFAULT;
1975         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1976
1977         return 0;
1978 }
1979 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1980
1981 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1982                            void *data, unsigned long len)
1983 {
1984         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
1985 }
1986 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1987
1988 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1989                            void *data, unsigned long len)
1990 {
1991         struct kvm_memslots *slots = kvm_memslots(kvm);
1992         int r;
1993
1994         BUG_ON(len > ghc->len);
1995
1996         if (slots->generation != ghc->generation)
1997                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1998
1999         if (unlikely(!ghc->memslot))
2000                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2001
2002         if (kvm_is_error_hva(ghc->hva))
2003                 return -EFAULT;
2004
2005         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2006         if (r)
2007                 return -EFAULT;
2008
2009         return 0;
2010 }
2011 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2012
2013 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2014 {
2015         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2016
2017         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2018 }
2019 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2020
2021 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2022 {
2023         gfn_t gfn = gpa >> PAGE_SHIFT;
2024         int seg;
2025         int offset = offset_in_page(gpa);
2026         int ret;
2027
2028         while ((seg = next_segment(len, offset)) != 0) {
2029                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2030                 if (ret < 0)
2031                         return ret;
2032                 offset = 0;
2033                 len -= seg;
2034                 ++gfn;
2035         }
2036         return 0;
2037 }
2038 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2039
2040 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2041                                     gfn_t gfn)
2042 {
2043         if (memslot && memslot->dirty_bitmap) {
2044                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2045
2046                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2047         }
2048 }
2049
2050 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2051 {
2052         struct kvm_memory_slot *memslot;
2053
2054         memslot = gfn_to_memslot(kvm, gfn);
2055         mark_page_dirty_in_slot(memslot, gfn);
2056 }
2057 EXPORT_SYMBOL_GPL(mark_page_dirty);
2058
2059 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2060 {
2061         struct kvm_memory_slot *memslot;
2062
2063         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2064         mark_page_dirty_in_slot(memslot, gfn);
2065 }
2066 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2067
2068 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2069 {
2070         unsigned int old, val, grow;
2071
2072         old = val = vcpu->halt_poll_ns;
2073         grow = READ_ONCE(halt_poll_ns_grow);
2074         /* 10us base */
2075         if (val == 0 && grow)
2076                 val = 10000;
2077         else
2078                 val *= grow;
2079
2080         if (val > halt_poll_ns)
2081                 val = halt_poll_ns;
2082
2083         vcpu->halt_poll_ns = val;
2084         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2085 }
2086
2087 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2088 {
2089         unsigned int old, val, shrink;
2090
2091         old = val = vcpu->halt_poll_ns;
2092         shrink = READ_ONCE(halt_poll_ns_shrink);
2093         if (shrink == 0)
2094                 val = 0;
2095         else
2096                 val /= shrink;
2097
2098         vcpu->halt_poll_ns = val;
2099         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2100 }
2101
2102 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2103 {
2104         if (kvm_arch_vcpu_runnable(vcpu)) {
2105                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2106                 return -EINTR;
2107         }
2108         if (kvm_cpu_has_pending_timer(vcpu))
2109                 return -EINTR;
2110         if (signal_pending(current))
2111                 return -EINTR;
2112
2113         return 0;
2114 }
2115
2116 /*
2117  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2118  */
2119 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2120 {
2121         ktime_t start, cur;
2122         DECLARE_SWAITQUEUE(wait);
2123         bool waited = false;
2124         u64 block_ns;
2125
2126         start = cur = ktime_get();
2127         if (vcpu->halt_poll_ns) {
2128                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2129
2130                 ++vcpu->stat.halt_attempted_poll;
2131                 do {
2132                         /*
2133                          * This sets KVM_REQ_UNHALT if an interrupt
2134                          * arrives.
2135                          */
2136                         if (kvm_vcpu_check_block(vcpu) < 0) {
2137                                 ++vcpu->stat.halt_successful_poll;
2138                                 if (!vcpu_valid_wakeup(vcpu))
2139                                         ++vcpu->stat.halt_poll_invalid;
2140                                 goto out;
2141                         }
2142                         cur = ktime_get();
2143                 } while (single_task_running() && ktime_before(cur, stop));
2144         }
2145
2146         kvm_arch_vcpu_blocking(vcpu);
2147
2148         for (;;) {
2149                 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2150
2151                 if (kvm_vcpu_check_block(vcpu) < 0)
2152                         break;
2153
2154                 waited = true;
2155                 schedule();
2156         }
2157
2158         finish_swait(&vcpu->wq, &wait);
2159         cur = ktime_get();
2160
2161         kvm_arch_vcpu_unblocking(vcpu);
2162 out:
2163         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2164
2165         if (!vcpu_valid_wakeup(vcpu))
2166                 shrink_halt_poll_ns(vcpu);
2167         else if (halt_poll_ns) {
2168                 if (block_ns <= vcpu->halt_poll_ns)
2169                         ;
2170                 /* we had a long block, shrink polling */
2171                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2172                         shrink_halt_poll_ns(vcpu);
2173                 /* we had a short halt and our poll time is too small */
2174                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2175                         block_ns < halt_poll_ns)
2176                         grow_halt_poll_ns(vcpu);
2177         } else
2178                 vcpu->halt_poll_ns = 0;
2179
2180         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2181         kvm_arch_vcpu_block_finish(vcpu);
2182 }
2183 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2184
2185 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2186 {
2187         struct swait_queue_head *wqp;
2188
2189         wqp = kvm_arch_vcpu_wq(vcpu);
2190         if (swq_has_sleeper(wqp)) {
2191                 swake_up(wqp);
2192                 ++vcpu->stat.halt_wakeup;
2193                 return true;
2194         }
2195
2196         return false;
2197 }
2198 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2199
2200 #ifndef CONFIG_S390
2201 /*
2202  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2203  */
2204 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2205 {
2206         int me;
2207         int cpu = vcpu->cpu;
2208
2209         if (kvm_vcpu_wake_up(vcpu))
2210                 return;
2211
2212         me = get_cpu();
2213         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2214                 if (kvm_arch_vcpu_should_kick(vcpu))
2215                         smp_send_reschedule(cpu);
2216         put_cpu();
2217 }
2218 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2219 #endif /* !CONFIG_S390 */
2220
2221 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2222 {
2223         struct pid *pid;
2224         struct task_struct *task = NULL;
2225         int ret = 0;
2226
2227         rcu_read_lock();
2228         pid = rcu_dereference(target->pid);
2229         if (pid)
2230                 task = get_pid_task(pid, PIDTYPE_PID);
2231         rcu_read_unlock();
2232         if (!task)
2233                 return ret;
2234         ret = yield_to(task, 1);
2235         put_task_struct(task);
2236
2237         return ret;
2238 }
2239 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2240
2241 /*
2242  * Helper that checks whether a VCPU is eligible for directed yield.
2243  * Most eligible candidate to yield is decided by following heuristics:
2244  *
2245  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2246  *  (preempted lock holder), indicated by @in_spin_loop.
2247  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2248  *
2249  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2250  *  chance last time (mostly it has become eligible now since we have probably
2251  *  yielded to lockholder in last iteration. This is done by toggling
2252  *  @dy_eligible each time a VCPU checked for eligibility.)
2253  *
2254  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2255  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2256  *  burning. Giving priority for a potential lock-holder increases lock
2257  *  progress.
2258  *
2259  *  Since algorithm is based on heuristics, accessing another VCPU data without
2260  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2261  *  and continue with next VCPU and so on.
2262  */
2263 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2264 {
2265 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2266         bool eligible;
2267
2268         eligible = !vcpu->spin_loop.in_spin_loop ||
2269                     vcpu->spin_loop.dy_eligible;
2270
2271         if (vcpu->spin_loop.in_spin_loop)
2272                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2273
2274         return eligible;
2275 #else
2276         return true;
2277 #endif
2278 }
2279
2280 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2281 {
2282         struct kvm *kvm = me->kvm;
2283         struct kvm_vcpu *vcpu;
2284         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2285         int yielded = 0;
2286         int try = 3;
2287         int pass;
2288         int i;
2289
2290         kvm_vcpu_set_in_spin_loop(me, true);
2291         /*
2292          * We boost the priority of a VCPU that is runnable but not
2293          * currently running, because it got preempted by something
2294          * else and called schedule in __vcpu_run.  Hopefully that
2295          * VCPU is holding the lock that we need and will release it.
2296          * We approximate round-robin by starting at the last boosted VCPU.
2297          */
2298         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2299                 kvm_for_each_vcpu(i, vcpu, kvm) {
2300                         if (!pass && i <= last_boosted_vcpu) {
2301                                 i = last_boosted_vcpu;
2302                                 continue;
2303                         } else if (pass && i > last_boosted_vcpu)
2304                                 break;
2305                         if (!ACCESS_ONCE(vcpu->preempted))
2306                                 continue;
2307                         if (vcpu == me)
2308                                 continue;
2309                         if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2310                                 continue;
2311                         if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2312                                 continue;
2313                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2314                                 continue;
2315
2316                         yielded = kvm_vcpu_yield_to(vcpu);
2317                         if (yielded > 0) {
2318                                 kvm->last_boosted_vcpu = i;
2319                                 break;
2320                         } else if (yielded < 0) {
2321                                 try--;
2322                                 if (!try)
2323                                         break;
2324                         }
2325                 }
2326         }
2327         kvm_vcpu_set_in_spin_loop(me, false);
2328
2329         /* Ensure vcpu is not eligible during next spinloop */
2330         kvm_vcpu_set_dy_eligible(me, false);
2331 }
2332 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2333
2334 static int kvm_vcpu_fault(struct vm_fault *vmf)
2335 {
2336         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2337         struct page *page;
2338
2339         if (vmf->pgoff == 0)
2340                 page = virt_to_page(vcpu->run);
2341 #ifdef CONFIG_X86
2342         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2343                 page = virt_to_page(vcpu->arch.pio_data);
2344 #endif
2345 #ifdef CONFIG_KVM_MMIO
2346         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2347                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2348 #endif
2349         else
2350                 return kvm_arch_vcpu_fault(vcpu, vmf);
2351         get_page(page);
2352         vmf->page = page;
2353         return 0;
2354 }
2355
2356 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2357         .fault = kvm_vcpu_fault,
2358 };
2359
2360 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2361 {
2362         vma->vm_ops = &kvm_vcpu_vm_ops;
2363         return 0;
2364 }
2365
2366 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2367 {
2368         struct kvm_vcpu *vcpu = filp->private_data;
2369
2370         debugfs_remove_recursive(vcpu->debugfs_dentry);
2371         kvm_put_kvm(vcpu->kvm);
2372         return 0;
2373 }
2374
2375 static struct file_operations kvm_vcpu_fops = {
2376         .release        = kvm_vcpu_release,
2377         .unlocked_ioctl = kvm_vcpu_ioctl,
2378 #ifdef CONFIG_KVM_COMPAT
2379         .compat_ioctl   = kvm_vcpu_compat_ioctl,
2380 #endif
2381         .mmap           = kvm_vcpu_mmap,
2382         .llseek         = noop_llseek,
2383 };
2384
2385 /*
2386  * Allocates an inode for the vcpu.
2387  */
2388 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2389 {
2390         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2391 }
2392
2393 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2394 {
2395         char dir_name[ITOA_MAX_LEN * 2];
2396         int ret;
2397
2398         if (!kvm_arch_has_vcpu_debugfs())
2399                 return 0;
2400
2401         if (!debugfs_initialized())
2402                 return 0;
2403
2404         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2405         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2406                                                                 vcpu->kvm->debugfs_dentry);
2407         if (!vcpu->debugfs_dentry)
2408                 return -ENOMEM;
2409
2410         ret = kvm_arch_create_vcpu_debugfs(vcpu);
2411         if (ret < 0) {
2412                 debugfs_remove_recursive(vcpu->debugfs_dentry);
2413                 return ret;
2414         }
2415
2416         return 0;
2417 }
2418
2419 /*
2420  * Creates some virtual cpus.  Good luck creating more than one.
2421  */
2422 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2423 {
2424         int r;
2425         struct kvm_vcpu *vcpu;
2426
2427         if (id >= KVM_MAX_VCPU_ID)
2428                 return -EINVAL;
2429
2430         mutex_lock(&kvm->lock);
2431         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2432                 mutex_unlock(&kvm->lock);
2433                 return -EINVAL;
2434         }
2435
2436         kvm->created_vcpus++;
2437         mutex_unlock(&kvm->lock);
2438
2439         vcpu = kvm_arch_vcpu_create(kvm, id);
2440         if (IS_ERR(vcpu)) {
2441                 r = PTR_ERR(vcpu);
2442                 goto vcpu_decrement;
2443         }
2444
2445         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2446
2447         r = kvm_arch_vcpu_setup(vcpu);
2448         if (r)
2449                 goto vcpu_destroy;
2450
2451         r = kvm_create_vcpu_debugfs(vcpu);
2452         if (r)
2453                 goto vcpu_destroy;
2454
2455         mutex_lock(&kvm->lock);
2456         if (kvm_get_vcpu_by_id(kvm, id)) {
2457                 r = -EEXIST;
2458                 goto unlock_vcpu_destroy;
2459         }
2460
2461         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2462
2463         /* Now it's all set up, let userspace reach it */
2464         kvm_get_kvm(kvm);
2465         r = create_vcpu_fd(vcpu);
2466         if (r < 0) {
2467                 kvm_put_kvm(kvm);
2468                 goto unlock_vcpu_destroy;
2469         }
2470
2471         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2472
2473         /*
2474          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2475          * before kvm->online_vcpu's incremented value.
2476          */
2477         smp_wmb();
2478         atomic_inc(&kvm->online_vcpus);
2479
2480         mutex_unlock(&kvm->lock);
2481         kvm_arch_vcpu_postcreate(vcpu);
2482         return r;
2483
2484 unlock_vcpu_destroy:
2485         mutex_unlock(&kvm->lock);
2486         debugfs_remove_recursive(vcpu->debugfs_dentry);
2487 vcpu_destroy:
2488         kvm_arch_vcpu_destroy(vcpu);
2489 vcpu_decrement:
2490         mutex_lock(&kvm->lock);
2491         kvm->created_vcpus--;
2492         mutex_unlock(&kvm->lock);
2493         return r;
2494 }
2495
2496 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2497 {
2498         if (sigset) {
2499                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2500                 vcpu->sigset_active = 1;
2501                 vcpu->sigset = *sigset;
2502         } else
2503                 vcpu->sigset_active = 0;
2504         return 0;
2505 }
2506
2507 static long kvm_vcpu_ioctl(struct file *filp,
2508                            unsigned int ioctl, unsigned long arg)
2509 {
2510         struct kvm_vcpu *vcpu = filp->private_data;
2511         void __user *argp = (void __user *)arg;
2512         int r;
2513         struct kvm_fpu *fpu = NULL;
2514         struct kvm_sregs *kvm_sregs = NULL;
2515
2516         if (vcpu->kvm->mm != current->mm)
2517                 return -EIO;
2518
2519         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2520                 return -EINVAL;
2521
2522 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2523         /*
2524          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2525          * so vcpu_load() would break it.
2526          */
2527         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2528                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2529 #endif
2530
2531
2532         r = vcpu_load(vcpu);
2533         if (r)
2534                 return r;
2535         switch (ioctl) {
2536         case KVM_RUN: {
2537                 struct pid *oldpid;
2538                 r = -EINVAL;
2539                 if (arg)
2540                         goto out;
2541                 oldpid = rcu_access_pointer(vcpu->pid);
2542                 if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
2543                         /* The thread running this VCPU changed. */
2544                         struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2545
2546                         rcu_assign_pointer(vcpu->pid, newpid);
2547                         if (oldpid)
2548                                 synchronize_rcu();
2549                         put_pid(oldpid);
2550                 }
2551                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2552                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2553                 break;
2554         }
2555         case KVM_GET_REGS: {
2556                 struct kvm_regs *kvm_regs;
2557
2558                 r = -ENOMEM;
2559                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2560                 if (!kvm_regs)
2561                         goto out;
2562                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2563                 if (r)
2564                         goto out_free1;
2565                 r = -EFAULT;
2566                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2567                         goto out_free1;
2568                 r = 0;
2569 out_free1:
2570                 kfree(kvm_regs);
2571                 break;
2572         }
2573         case KVM_SET_REGS: {
2574                 struct kvm_regs *kvm_regs;
2575
2576                 r = -ENOMEM;
2577                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2578                 if (IS_ERR(kvm_regs)) {
2579                         r = PTR_ERR(kvm_regs);
2580                         goto out;
2581                 }
2582                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2583                 kfree(kvm_regs);
2584                 break;
2585         }
2586         case KVM_GET_SREGS: {
2587                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2588                 r = -ENOMEM;
2589                 if (!kvm_sregs)
2590                         goto out;
2591                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2592                 if (r)
2593                         goto out;
2594                 r = -EFAULT;
2595                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2596                         goto out;
2597                 r = 0;
2598                 break;
2599         }
2600         case KVM_SET_SREGS: {
2601                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2602                 if (IS_ERR(kvm_sregs)) {
2603                         r = PTR_ERR(kvm_sregs);
2604                         kvm_sregs = NULL;
2605                         goto out;
2606                 }
2607                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2608                 break;
2609         }
2610         case KVM_GET_MP_STATE: {
2611                 struct kvm_mp_state mp_state;
2612
2613                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2614                 if (r)
2615                         goto out;
2616                 r = -EFAULT;
2617                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2618                         goto out;
2619                 r = 0;
2620                 break;
2621         }
2622         case KVM_SET_MP_STATE: {
2623                 struct kvm_mp_state mp_state;
2624
2625                 r = -EFAULT;
2626                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2627                         goto out;
2628                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2629                 break;
2630         }
2631         case KVM_TRANSLATE: {
2632                 struct kvm_translation tr;
2633
2634                 r = -EFAULT;
2635                 if (copy_from_user(&tr, argp, sizeof(tr)))
2636                         goto out;
2637                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2638                 if (r)
2639                         goto out;
2640                 r = -EFAULT;
2641                 if (copy_to_user(argp, &tr, sizeof(tr)))
2642                         goto out;
2643                 r = 0;
2644                 break;
2645         }
2646         case KVM_SET_GUEST_DEBUG: {
2647                 struct kvm_guest_debug dbg;
2648
2649                 r = -EFAULT;
2650                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2651                         goto out;
2652                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2653                 break;
2654         }
2655         case KVM_SET_SIGNAL_MASK: {
2656                 struct kvm_signal_mask __user *sigmask_arg = argp;
2657                 struct kvm_signal_mask kvm_sigmask;
2658                 sigset_t sigset, *p;
2659
2660                 p = NULL;
2661                 if (argp) {
2662                         r = -EFAULT;
2663                         if (copy_from_user(&kvm_sigmask, argp,
2664                                            sizeof(kvm_sigmask)))
2665                                 goto out;
2666                         r = -EINVAL;
2667                         if (kvm_sigmask.len != sizeof(sigset))
2668                                 goto out;
2669                         r = -EFAULT;
2670                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2671                                            sizeof(sigset)))
2672                                 goto out;
2673                         p = &sigset;
2674                 }
2675                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2676                 break;
2677         }
2678         case KVM_GET_FPU: {
2679                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2680                 r = -ENOMEM;
2681                 if (!fpu)
2682                         goto out;
2683                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2684                 if (r)
2685                         goto out;
2686                 r = -EFAULT;
2687                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2688                         goto out;
2689                 r = 0;
2690                 break;
2691         }
2692         case KVM_SET_FPU: {
2693                 fpu = memdup_user(argp, sizeof(*fpu));
2694                 if (IS_ERR(fpu)) {
2695                         r = PTR_ERR(fpu);
2696                         fpu = NULL;
2697                         goto out;
2698                 }
2699                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2700                 break;
2701         }
2702         default:
2703                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2704         }
2705 out:
2706         vcpu_put(vcpu);
2707         kfree(fpu);
2708         kfree(kvm_sregs);
2709         return r;
2710 }
2711
2712 #ifdef CONFIG_KVM_COMPAT
2713 static long kvm_vcpu_compat_ioctl(struct file *filp,
2714                                   unsigned int ioctl, unsigned long arg)
2715 {
2716         struct kvm_vcpu *vcpu = filp->private_data;
2717         void __user *argp = compat_ptr(arg);
2718         int r;
2719
2720         if (vcpu->kvm->mm != current->mm)
2721                 return -EIO;
2722
2723         switch (ioctl) {
2724         case KVM_SET_SIGNAL_MASK: {
2725                 struct kvm_signal_mask __user *sigmask_arg = argp;
2726                 struct kvm_signal_mask kvm_sigmask;
2727                 compat_sigset_t csigset;
2728                 sigset_t sigset;
2729
2730                 if (argp) {
2731                         r = -EFAULT;
2732                         if (copy_from_user(&kvm_sigmask, argp,
2733                                            sizeof(kvm_sigmask)))
2734                                 goto out;
2735                         r = -EINVAL;
2736                         if (kvm_sigmask.len != sizeof(csigset))
2737                                 goto out;
2738                         r = -EFAULT;
2739                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2740                                            sizeof(csigset)))
2741                                 goto out;
2742                         sigset_from_compat(&sigset, &csigset);
2743                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2744                 } else
2745                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2746                 break;
2747         }
2748         default:
2749                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2750         }
2751
2752 out:
2753         return r;
2754 }
2755 #endif
2756
2757 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2758                                  int (*accessor)(struct kvm_device *dev,
2759                                                  struct kvm_device_attr *attr),
2760                                  unsigned long arg)
2761 {
2762         struct kvm_device_attr attr;
2763
2764         if (!accessor)
2765                 return -EPERM;
2766
2767         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2768                 return -EFAULT;
2769
2770         return accessor(dev, &attr);
2771 }
2772
2773 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2774                              unsigned long arg)
2775 {
2776         struct kvm_device *dev = filp->private_data;
2777
2778         switch (ioctl) {
2779         case KVM_SET_DEVICE_ATTR:
2780                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2781         case KVM_GET_DEVICE_ATTR:
2782                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2783         case KVM_HAS_DEVICE_ATTR:
2784                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2785         default:
2786                 if (dev->ops->ioctl)
2787                         return dev->ops->ioctl(dev, ioctl, arg);
2788
2789                 return -ENOTTY;
2790         }
2791 }
2792
2793 static int kvm_device_release(struct inode *inode, struct file *filp)
2794 {
2795         struct kvm_device *dev = filp->private_data;
2796         struct kvm *kvm = dev->kvm;
2797
2798         kvm_put_kvm(kvm);
2799         return 0;
2800 }
2801
2802 static const struct file_operations kvm_device_fops = {
2803         .unlocked_ioctl = kvm_device_ioctl,
2804 #ifdef CONFIG_KVM_COMPAT
2805         .compat_ioctl = kvm_device_ioctl,
2806 #endif
2807         .release = kvm_device_release,
2808 };
2809
2810 struct kvm_device *kvm_device_from_filp(struct file *filp)
2811 {
2812         if (filp->f_op != &kvm_device_fops)
2813                 return NULL;
2814
2815         return filp->private_data;
2816 }
2817
2818 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2819 #ifdef CONFIG_KVM_MPIC
2820         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2821         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2822 #endif
2823 };
2824
2825 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2826 {
2827         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2828                 return -ENOSPC;
2829
2830         if (kvm_device_ops_table[type] != NULL)
2831                 return -EEXIST;
2832
2833         kvm_device_ops_table[type] = ops;
2834         return 0;
2835 }
2836
2837 void kvm_unregister_device_ops(u32 type)
2838 {
2839         if (kvm_device_ops_table[type] != NULL)
2840                 kvm_device_ops_table[type] = NULL;
2841 }
2842
2843 static int kvm_ioctl_create_device(struct kvm *kvm,
2844                                    struct kvm_create_device *cd)
2845 {
2846         struct kvm_device_ops *ops = NULL;
2847         struct kvm_device *dev;
2848         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2849         int ret;
2850
2851         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2852                 return -ENODEV;
2853
2854         ops = kvm_device_ops_table[cd->type];
2855         if (ops == NULL)
2856                 return -ENODEV;
2857
2858         if (test)
2859                 return 0;
2860
2861         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2862         if (!dev)
2863                 return -ENOMEM;
2864
2865         dev->ops = ops;
2866         dev->kvm = kvm;
2867
2868         mutex_lock(&kvm->lock);
2869         ret = ops->create(dev, cd->type);
2870         if (ret < 0) {
2871                 mutex_unlock(&kvm->lock);
2872                 kfree(dev);
2873                 return ret;
2874         }
2875         list_add(&dev->vm_node, &kvm->devices);
2876         mutex_unlock(&kvm->lock);
2877
2878         if (ops->init)
2879                 ops->init(dev);
2880
2881         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2882         if (ret < 0) {
2883                 mutex_lock(&kvm->lock);
2884                 list_del(&dev->vm_node);
2885                 mutex_unlock(&kvm->lock);
2886                 ops->destroy(dev);
2887                 return ret;
2888         }
2889
2890         kvm_get_kvm(kvm);
2891         cd->fd = ret;
2892         return 0;
2893 }
2894
2895 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2896 {
2897         switch (arg) {
2898         case KVM_CAP_USER_MEMORY:
2899         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2900         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2901         case KVM_CAP_INTERNAL_ERROR_DATA:
2902 #ifdef CONFIG_HAVE_KVM_MSI
2903         case KVM_CAP_SIGNAL_MSI:
2904 #endif
2905 #ifdef CONFIG_HAVE_KVM_IRQFD
2906         case KVM_CAP_IRQFD:
2907         case KVM_CAP_IRQFD_RESAMPLE:
2908 #endif
2909         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2910         case KVM_CAP_CHECK_EXTENSION_VM:
2911                 return 1;
2912 #ifdef CONFIG_KVM_MMIO
2913         case KVM_CAP_COALESCED_MMIO:
2914                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
2915 #endif
2916 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2917         case KVM_CAP_IRQ_ROUTING:
2918                 return KVM_MAX_IRQ_ROUTES;
2919 #endif
2920 #if KVM_ADDRESS_SPACE_NUM > 1
2921         case KVM_CAP_MULTI_ADDRESS_SPACE:
2922                 return KVM_ADDRESS_SPACE_NUM;
2923 #endif
2924         case KVM_CAP_MAX_VCPU_ID:
2925                 return KVM_MAX_VCPU_ID;
2926         default:
2927                 break;
2928         }
2929         return kvm_vm_ioctl_check_extension(kvm, arg);
2930 }
2931
2932 static long kvm_vm_ioctl(struct file *filp,
2933                            unsigned int ioctl, unsigned long arg)
2934 {
2935         struct kvm *kvm = filp->private_data;
2936         void __user *argp = (void __user *)arg;
2937         int r;
2938
2939         if (kvm->mm != current->mm)
2940                 return -EIO;
2941         switch (ioctl) {
2942         case KVM_CREATE_VCPU:
2943                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2944                 break;
2945         case KVM_SET_USER_MEMORY_REGION: {
2946                 struct kvm_userspace_memory_region kvm_userspace_mem;
2947
2948                 r = -EFAULT;
2949                 if (copy_from_user(&kvm_userspace_mem, argp,
2950                                                 sizeof(kvm_userspace_mem)))
2951                         goto out;
2952
2953                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2954                 break;
2955         }
2956         case KVM_GET_DIRTY_LOG: {
2957                 struct kvm_dirty_log log;
2958
2959                 r = -EFAULT;
2960                 if (copy_from_user(&log, argp, sizeof(log)))
2961                         goto out;
2962                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2963                 break;
2964         }
2965 #ifdef CONFIG_KVM_MMIO
2966         case KVM_REGISTER_COALESCED_MMIO: {
2967                 struct kvm_coalesced_mmio_zone zone;
2968
2969                 r = -EFAULT;
2970                 if (copy_from_user(&zone, argp, sizeof(zone)))
2971                         goto out;
2972                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2973                 break;
2974         }
2975         case KVM_UNREGISTER_COALESCED_MMIO: {
2976                 struct kvm_coalesced_mmio_zone zone;
2977
2978                 r = -EFAULT;
2979                 if (copy_from_user(&zone, argp, sizeof(zone)))
2980                         goto out;
2981                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2982                 break;
2983         }
2984 #endif
2985         case KVM_IRQFD: {
2986                 struct kvm_irqfd data;
2987
2988                 r = -EFAULT;
2989                 if (copy_from_user(&data, argp, sizeof(data)))
2990                         goto out;
2991                 r = kvm_irqfd(kvm, &data);
2992                 break;
2993         }
2994         case KVM_IOEVENTFD: {
2995                 struct kvm_ioeventfd data;
2996
2997                 r = -EFAULT;
2998                 if (copy_from_user(&data, argp, sizeof(data)))
2999                         goto out;
3000                 r = kvm_ioeventfd(kvm, &data);
3001                 break;
3002         }
3003 #ifdef CONFIG_HAVE_KVM_MSI
3004         case KVM_SIGNAL_MSI: {
3005                 struct kvm_msi msi;
3006
3007                 r = -EFAULT;
3008                 if (copy_from_user(&msi, argp, sizeof(msi)))
3009                         goto out;
3010                 r = kvm_send_userspace_msi(kvm, &msi);
3011                 break;
3012         }
3013 #endif
3014 #ifdef __KVM_HAVE_IRQ_LINE
3015         case KVM_IRQ_LINE_STATUS:
3016         case KVM_IRQ_LINE: {
3017                 struct kvm_irq_level irq_event;
3018
3019                 r = -EFAULT;
3020                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3021                         goto out;
3022
3023                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3024                                         ioctl == KVM_IRQ_LINE_STATUS);
3025                 if (r)
3026                         goto out;
3027
3028                 r = -EFAULT;
3029                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3030                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3031                                 goto out;
3032                 }
3033
3034                 r = 0;
3035                 break;
3036         }
3037 #endif
3038 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3039         case KVM_SET_GSI_ROUTING: {
3040                 struct kvm_irq_routing routing;
3041                 struct kvm_irq_routing __user *urouting;
3042                 struct kvm_irq_routing_entry *entries = NULL;
3043
3044                 r = -EFAULT;
3045                 if (copy_from_user(&routing, argp, sizeof(routing)))
3046                         goto out;
3047                 r = -EINVAL;
3048                 if (!kvm_arch_can_set_irq_routing(kvm))
3049                         goto out;
3050                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3051                         goto out;
3052                 if (routing.flags)
3053                         goto out;
3054                 if (routing.nr) {
3055                         r = -ENOMEM;
3056                         entries = vmalloc(routing.nr * sizeof(*entries));
3057                         if (!entries)
3058                                 goto out;
3059                         r = -EFAULT;
3060                         urouting = argp;
3061                         if (copy_from_user(entries, urouting->entries,
3062                                            routing.nr * sizeof(*entries)))
3063                                 goto out_free_irq_routing;
3064                 }
3065                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3066                                         routing.flags);
3067 out_free_irq_routing:
3068                 vfree(entries);
3069                 break;
3070         }
3071 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3072         case KVM_CREATE_DEVICE: {
3073                 struct kvm_create_device cd;
3074
3075                 r = -EFAULT;
3076                 if (copy_from_user(&cd, argp, sizeof(cd)))
3077                         goto out;
3078
3079                 r = kvm_ioctl_create_device(kvm, &cd);
3080                 if (r)
3081                         goto out;
3082
3083                 r = -EFAULT;
3084                 if (copy_to_user(argp, &cd, sizeof(cd)))
3085                         goto out;
3086
3087                 r = 0;
3088                 break;
3089         }
3090         case KVM_CHECK_EXTENSION:
3091                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3092                 break;
3093         default:
3094                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3095         }
3096 out:
3097         return r;
3098 }
3099
3100 #ifdef CONFIG_KVM_COMPAT
3101 struct compat_kvm_dirty_log {
3102         __u32 slot;
3103         __u32 padding1;
3104         union {
3105                 compat_uptr_t dirty_bitmap; /* one bit per page */
3106                 __u64 padding2;
3107         };
3108 };
3109
3110 static long kvm_vm_compat_ioctl(struct file *filp,
3111                            unsigned int ioctl, unsigned long arg)
3112 {
3113         struct kvm *kvm = filp->private_data;
3114         int r;
3115
3116         if (kvm->mm != current->mm)
3117                 return -EIO;
3118         switch (ioctl) {
3119         case KVM_GET_DIRTY_LOG: {
3120                 struct compat_kvm_dirty_log compat_log;
3121                 struct kvm_dirty_log log;
3122
3123                 if (copy_from_user(&compat_log, (void __user *)arg,
3124                                    sizeof(compat_log)))
3125                         return -EFAULT;
3126                 log.slot         = compat_log.slot;
3127                 log.padding1     = compat_log.padding1;
3128                 log.padding2     = compat_log.padding2;
3129                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3130
3131                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3132                 break;
3133         }
3134         default:
3135                 r = kvm_vm_ioctl(filp, ioctl, arg);
3136         }
3137         return r;
3138 }
3139 #endif
3140
3141 static struct file_operations kvm_vm_fops = {
3142         .release        = kvm_vm_release,
3143         .unlocked_ioctl = kvm_vm_ioctl,
3144 #ifdef CONFIG_KVM_COMPAT
3145         .compat_ioctl   = kvm_vm_compat_ioctl,
3146 #endif
3147         .llseek         = noop_llseek,
3148 };
3149
3150 static int kvm_dev_ioctl_create_vm(unsigned long type)
3151 {
3152         int r;
3153         struct kvm *kvm;
3154         struct file *file;
3155
3156         kvm = kvm_create_vm(type);
3157         if (IS_ERR(kvm))
3158                 return PTR_ERR(kvm);
3159 #ifdef CONFIG_KVM_MMIO
3160         r = kvm_coalesced_mmio_init(kvm);
3161         if (r < 0) {
3162                 kvm_put_kvm(kvm);
3163                 return r;
3164         }
3165 #endif
3166         r = get_unused_fd_flags(O_CLOEXEC);
3167         if (r < 0) {
3168                 kvm_put_kvm(kvm);
3169                 return r;
3170         }
3171         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3172         if (IS_ERR(file)) {
3173                 put_unused_fd(r);
3174                 kvm_put_kvm(kvm);
3175                 return PTR_ERR(file);
3176         }
3177
3178         /*
3179          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3180          * already set, with ->release() being kvm_vm_release().  In error
3181          * cases it will be called by the final fput(file) and will take
3182          * care of doing kvm_put_kvm(kvm).
3183          */
3184         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3185                 put_unused_fd(r);
3186                 fput(file);
3187                 return -ENOMEM;
3188         }
3189         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3190
3191         fd_install(r, file);
3192         return r;
3193 }
3194
3195 static long kvm_dev_ioctl(struct file *filp,
3196                           unsigned int ioctl, unsigned long arg)
3197 {
3198         long r = -EINVAL;
3199
3200         switch (ioctl) {
3201         case KVM_GET_API_VERSION:
3202                 if (arg)
3203                         goto out;
3204                 r = KVM_API_VERSION;
3205                 break;
3206         case KVM_CREATE_VM:
3207                 r = kvm_dev_ioctl_create_vm(arg);
3208                 break;
3209         case KVM_CHECK_EXTENSION:
3210                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3211                 break;
3212         case KVM_GET_VCPU_MMAP_SIZE:
3213                 if (arg)
3214                         goto out;
3215                 r = PAGE_SIZE;     /* struct kvm_run */
3216 #ifdef CONFIG_X86
3217                 r += PAGE_SIZE;    /* pio data page */
3218 #endif
3219 #ifdef CONFIG_KVM_MMIO
3220                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3221 #endif
3222                 break;
3223         case KVM_TRACE_ENABLE:
3224         case KVM_TRACE_PAUSE:
3225         case KVM_TRACE_DISABLE:
3226                 r = -EOPNOTSUPP;
3227                 break;
3228         default:
3229                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3230         }
3231 out:
3232         return r;
3233 }
3234
3235 static struct file_operations kvm_chardev_ops = {
3236         .unlocked_ioctl = kvm_dev_ioctl,
3237         .compat_ioctl   = kvm_dev_ioctl,
3238         .llseek         = noop_llseek,
3239 };
3240
3241 static struct miscdevice kvm_dev = {
3242         KVM_MINOR,
3243         "kvm",
3244         &kvm_chardev_ops,
3245 };
3246
3247 static void hardware_enable_nolock(void *junk)
3248 {
3249         int cpu = raw_smp_processor_id();
3250         int r;
3251
3252         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3253                 return;
3254
3255         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3256
3257         r = kvm_arch_hardware_enable();
3258
3259         if (r) {
3260                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3261                 atomic_inc(&hardware_enable_failed);
3262                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3263         }
3264 }
3265
3266 static int kvm_starting_cpu(unsigned int cpu)
3267 {
3268         raw_spin_lock(&kvm_count_lock);
3269         if (kvm_usage_count)
3270                 hardware_enable_nolock(NULL);
3271         raw_spin_unlock(&kvm_count_lock);
3272         return 0;
3273 }
3274
3275 static void hardware_disable_nolock(void *junk)
3276 {
3277         int cpu = raw_smp_processor_id();
3278
3279         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3280                 return;
3281         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3282         kvm_arch_hardware_disable();
3283 }
3284
3285 static int kvm_dying_cpu(unsigned int cpu)
3286 {
3287         raw_spin_lock(&kvm_count_lock);
3288         if (kvm_usage_count)
3289                 hardware_disable_nolock(NULL);
3290         raw_spin_unlock(&kvm_count_lock);
3291         return 0;
3292 }
3293
3294 static void hardware_disable_all_nolock(void)
3295 {
3296         BUG_ON(!kvm_usage_count);
3297
3298         kvm_usage_count--;
3299         if (!kvm_usage_count)
3300                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3301 }
3302
3303 static void hardware_disable_all(void)
3304 {
3305         raw_spin_lock(&kvm_count_lock);
3306         hardware_disable_all_nolock();
3307         raw_spin_unlock(&kvm_count_lock);
3308 }
3309
3310 static int hardware_enable_all(void)
3311 {
3312         int r = 0;
3313
3314         raw_spin_lock(&kvm_count_lock);
3315
3316         kvm_usage_count++;
3317         if (kvm_usage_count == 1) {
3318                 atomic_set(&hardware_enable_failed, 0);
3319                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3320
3321                 if (atomic_read(&hardware_enable_failed)) {
3322                         hardware_disable_all_nolock();
3323                         r = -EBUSY;
3324                 }
3325         }
3326
3327         raw_spin_unlock(&kvm_count_lock);
3328
3329         return r;
3330 }
3331
3332 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3333                       void *v)
3334 {
3335         /*
3336          * Some (well, at least mine) BIOSes hang on reboot if
3337          * in vmx root mode.
3338          *
3339          * And Intel TXT required VMX off for all cpu when system shutdown.
3340          */
3341         pr_info("kvm: exiting hardware virtualization\n");
3342         kvm_rebooting = true;
3343         on_each_cpu(hardware_disable_nolock, NULL, 1);
3344         return NOTIFY_OK;
3345 }
3346
3347 static struct notifier_block kvm_reboot_notifier = {
3348         .notifier_call = kvm_reboot,
3349         .priority = 0,
3350 };
3351
3352 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3353 {
3354         int i;
3355
3356         for (i = 0; i < bus->dev_count; i++) {
3357                 struct kvm_io_device *pos = bus->range[i].dev;
3358
3359                 kvm_iodevice_destructor(pos);
3360         }
3361         kfree(bus);
3362 }
3363
3364 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3365                                  const struct kvm_io_range *r2)
3366 {
3367         gpa_t addr1 = r1->addr;
3368         gpa_t addr2 = r2->addr;
3369
3370         if (addr1 < addr2)
3371                 return -1;
3372
3373         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3374          * accept any overlapping write.  Any order is acceptable for
3375          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3376          * we process all of them.
3377          */
3378         if (r2->len) {
3379                 addr1 += r1->len;
3380                 addr2 += r2->len;
3381         }
3382
3383         if (addr1 > addr2)
3384                 return 1;
3385
3386         return 0;
3387 }
3388
3389 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3390 {
3391         return kvm_io_bus_cmp(p1, p2);
3392 }
3393
3394 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3395                           gpa_t addr, int len)
3396 {
3397         bus->range[bus->dev_count++] = (struct kvm_io_range) {
3398                 .addr = addr,
3399                 .len = len,
3400                 .dev = dev,
3401         };
3402
3403         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3404                 kvm_io_bus_sort_cmp, NULL);
3405
3406         return 0;
3407 }
3408
3409 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3410                              gpa_t addr, int len)
3411 {
3412         struct kvm_io_range *range, key;
3413         int off;
3414
3415         key = (struct kvm_io_range) {
3416                 .addr = addr,
3417                 .len = len,
3418         };
3419
3420         range = bsearch(&key, bus->range, bus->dev_count,
3421                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3422         if (range == NULL)
3423                 return -ENOENT;
3424
3425         off = range - bus->range;
3426
3427         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3428                 off--;
3429
3430         return off;
3431 }
3432
3433 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3434                               struct kvm_io_range *range, const void *val)
3435 {
3436         int idx;
3437
3438         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3439         if (idx < 0)
3440                 return -EOPNOTSUPP;
3441
3442         while (idx < bus->dev_count &&
3443                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3444                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3445                                         range->len, val))
3446                         return idx;
3447                 idx++;
3448         }
3449
3450         return -EOPNOTSUPP;
3451 }
3452
3453 /* kvm_io_bus_write - called under kvm->slots_lock */
3454 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3455                      int len, const void *val)
3456 {
3457         struct kvm_io_bus *bus;
3458         struct kvm_io_range range;
3459         int r;
3460
3461         range = (struct kvm_io_range) {
3462                 .addr = addr,
3463                 .len = len,
3464         };
3465
3466         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3467         if (!bus)
3468                 return -ENOMEM;
3469         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3470         return r < 0 ? r : 0;
3471 }
3472
3473 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3474 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3475                             gpa_t addr, int len, const void *val, long cookie)
3476 {
3477         struct kvm_io_bus *bus;
3478         struct kvm_io_range range;
3479
3480         range = (struct kvm_io_range) {
3481                 .addr = addr,
3482                 .len = len,
3483         };
3484
3485         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3486         if (!bus)
3487                 return -ENOMEM;
3488
3489         /* First try the device referenced by cookie. */
3490         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3491             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3492                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3493                                         val))
3494                         return cookie;
3495
3496         /*
3497          * cookie contained garbage; fall back to search and return the
3498          * correct cookie value.
3499          */
3500         return __kvm_io_bus_write(vcpu, bus, &range, val);
3501 }
3502
3503 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3504                              struct kvm_io_range *range, void *val)
3505 {
3506         int idx;
3507
3508         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3509         if (idx < 0)
3510                 return -EOPNOTSUPP;
3511
3512         while (idx < bus->dev_count &&
3513                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3514                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3515                                        range->len, val))
3516                         return idx;
3517                 idx++;
3518         }
3519
3520         return -EOPNOTSUPP;
3521 }
3522 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3523
3524 /* kvm_io_bus_read - called under kvm->slots_lock */
3525 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3526                     int len, void *val)
3527 {
3528         struct kvm_io_bus *bus;
3529         struct kvm_io_range range;
3530         int r;
3531
3532         range = (struct kvm_io_range) {
3533                 .addr = addr,
3534                 .len = len,
3535         };
3536
3537         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3538         if (!bus)
3539                 return -ENOMEM;
3540         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3541         return r < 0 ? r : 0;
3542 }
3543
3544
3545 /* Caller must hold slots_lock. */
3546 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3547                             int len, struct kvm_io_device *dev)
3548 {
3549         struct kvm_io_bus *new_bus, *bus;
3550
3551         bus = kvm_get_bus(kvm, bus_idx);
3552         if (!bus)
3553                 return -ENOMEM;
3554
3555         /* exclude ioeventfd which is limited by maximum fd */
3556         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3557                 return -ENOSPC;
3558
3559         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3560                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3561         if (!new_bus)
3562                 return -ENOMEM;
3563         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3564                sizeof(struct kvm_io_range)));
3565         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3566         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3567         synchronize_srcu_expedited(&kvm->srcu);
3568         kfree(bus);
3569
3570         return 0;
3571 }
3572
3573 /* Caller must hold slots_lock. */
3574 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3575                                struct kvm_io_device *dev)
3576 {
3577         int i;
3578         struct kvm_io_bus *new_bus, *bus;
3579
3580         bus = kvm_get_bus(kvm, bus_idx);
3581         if (!bus)
3582                 return;
3583
3584         for (i = 0; i < bus->dev_count; i++)
3585                 if (bus->range[i].dev == dev) {
3586                         break;
3587                 }
3588
3589         if (i == bus->dev_count)
3590                 return;
3591
3592         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3593                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3594         if (!new_bus)  {
3595                 pr_err("kvm: failed to shrink bus, removing it completely\n");
3596                 goto broken;
3597         }
3598
3599         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3600         new_bus->dev_count--;
3601         memcpy(new_bus->range + i, bus->range + i + 1,
3602                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3603
3604 broken:
3605         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3606         synchronize_srcu_expedited(&kvm->srcu);
3607         kfree(bus);
3608         return;
3609 }
3610
3611 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3612                                          gpa_t addr)
3613 {
3614         struct kvm_io_bus *bus;
3615         int dev_idx, srcu_idx;
3616         struct kvm_io_device *iodev = NULL;
3617
3618         srcu_idx = srcu_read_lock(&kvm->srcu);
3619
3620         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3621         if (!bus)
3622                 goto out_unlock;
3623
3624         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3625         if (dev_idx < 0)
3626                 goto out_unlock;
3627
3628         iodev = bus->range[dev_idx].dev;
3629
3630 out_unlock:
3631         srcu_read_unlock(&kvm->srcu, srcu_idx);
3632
3633         return iodev;
3634 }
3635 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3636
3637 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3638                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3639                            const char *fmt)
3640 {
3641         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3642                                           inode->i_private;
3643
3644         /* The debugfs files are a reference to the kvm struct which
3645          * is still valid when kvm_destroy_vm is called.
3646          * To avoid the race between open and the removal of the debugfs
3647          * directory we test against the users count.
3648          */
3649         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3650                 return -ENOENT;
3651
3652         if (simple_attr_open(inode, file, get, set, fmt)) {
3653                 kvm_put_kvm(stat_data->kvm);
3654                 return -ENOMEM;
3655         }
3656
3657         return 0;
3658 }
3659
3660 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3661 {
3662         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3663                                           inode->i_private;
3664
3665         simple_attr_release(inode, file);
3666         kvm_put_kvm(stat_data->kvm);
3667
3668         return 0;
3669 }
3670
3671 static int vm_stat_get_per_vm(void *data, u64 *val)
3672 {
3673         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3674
3675         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3676
3677         return 0;
3678 }
3679
3680 static int vm_stat_clear_per_vm(void *data, u64 val)
3681 {
3682         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3683
3684         if (val)
3685                 return -EINVAL;
3686
3687         *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3688
3689         return 0;
3690 }
3691
3692 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3693 {
3694         __simple_attr_check_format("%llu\n", 0ull);
3695         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3696                                 vm_stat_clear_per_vm, "%llu\n");
3697 }
3698
3699 static const struct file_operations vm_stat_get_per_vm_fops = {
3700         .owner   = THIS_MODULE,
3701         .open    = vm_stat_get_per_vm_open,
3702         .release = kvm_debugfs_release,
3703         .read    = simple_attr_read,
3704         .write   = simple_attr_write,
3705         .llseek  = no_llseek,
3706 };
3707
3708 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3709 {
3710         int i;
3711         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3712         struct kvm_vcpu *vcpu;
3713
3714         *val = 0;
3715
3716         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3717                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3718
3719         return 0;
3720 }
3721
3722 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3723 {
3724         int i;
3725         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3726         struct kvm_vcpu *vcpu;
3727
3728         if (val)
3729                 return -EINVAL;
3730
3731         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3732                 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3733
3734         return 0;
3735 }
3736
3737 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3738 {
3739         __simple_attr_check_format("%llu\n", 0ull);
3740         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3741                                  vcpu_stat_clear_per_vm, "%llu\n");
3742 }
3743
3744 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3745         .owner   = THIS_MODULE,
3746         .open    = vcpu_stat_get_per_vm_open,
3747         .release = kvm_debugfs_release,
3748         .read    = simple_attr_read,
3749         .write   = simple_attr_write,
3750         .llseek  = no_llseek,
3751 };
3752
3753 static const struct file_operations *stat_fops_per_vm[] = {
3754         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3755         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3756 };
3757
3758 static int vm_stat_get(void *_offset, u64 *val)
3759 {
3760         unsigned offset = (long)_offset;
3761         struct kvm *kvm;
3762         struct kvm_stat_data stat_tmp = {.offset = offset};
3763         u64 tmp_val;
3764
3765         *val = 0;
3766         spin_lock(&kvm_lock);
3767         list_for_each_entry(kvm, &vm_list, vm_list) {
3768                 stat_tmp.kvm = kvm;
3769                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3770                 *val += tmp_val;
3771         }
3772         spin_unlock(&kvm_lock);
3773         return 0;
3774 }
3775
3776 static int vm_stat_clear(void *_offset, u64 val)
3777 {
3778         unsigned offset = (long)_offset;
3779         struct kvm *kvm;
3780         struct kvm_stat_data stat_tmp = {.offset = offset};
3781
3782         if (val)
3783                 return -EINVAL;
3784
3785         spin_lock(&kvm_lock);
3786         list_for_each_entry(kvm, &vm_list, vm_list) {
3787                 stat_tmp.kvm = kvm;
3788                 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3789         }
3790         spin_unlock(&kvm_lock);
3791
3792         return 0;
3793 }
3794
3795 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3796
3797 static int vcpu_stat_get(void *_offset, u64 *val)
3798 {
3799         unsigned offset = (long)_offset;
3800         struct kvm *kvm;
3801         struct kvm_stat_data stat_tmp = {.offset = offset};
3802         u64 tmp_val;
3803
3804         *val = 0;
3805         spin_lock(&kvm_lock);
3806         list_for_each_entry(kvm, &vm_list, vm_list) {
3807                 stat_tmp.kvm = kvm;
3808                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3809                 *val += tmp_val;
3810         }
3811         spin_unlock(&kvm_lock);
3812         return 0;
3813 }
3814
3815 static int vcpu_stat_clear(void *_offset, u64 val)
3816 {
3817         unsigned offset = (long)_offset;
3818         struct kvm *kvm;
3819         struct kvm_stat_data stat_tmp = {.offset = offset};
3820
3821         if (val)
3822                 return -EINVAL;
3823
3824         spin_lock(&kvm_lock);
3825         list_for_each_entry(kvm, &vm_list, vm_list) {
3826                 stat_tmp.kvm = kvm;
3827                 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3828         }
3829         spin_unlock(&kvm_lock);
3830
3831         return 0;
3832 }
3833
3834 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3835                         "%llu\n");
3836
3837 static const struct file_operations *stat_fops[] = {
3838         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3839         [KVM_STAT_VM]   = &vm_stat_fops,
3840 };
3841
3842 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3843 {
3844         struct kobj_uevent_env *env;
3845         unsigned long long created, active;
3846
3847         if (!kvm_dev.this_device || !kvm)
3848                 return;
3849
3850         spin_lock(&kvm_lock);
3851         if (type == KVM_EVENT_CREATE_VM) {
3852                 kvm_createvm_count++;
3853                 kvm_active_vms++;
3854         } else if (type == KVM_EVENT_DESTROY_VM) {
3855                 kvm_active_vms--;
3856         }
3857         created = kvm_createvm_count;
3858         active = kvm_active_vms;
3859         spin_unlock(&kvm_lock);
3860
3861         env = kzalloc(sizeof(*env), GFP_KERNEL);
3862         if (!env)
3863                 return;
3864
3865         add_uevent_var(env, "CREATED=%llu", created);
3866         add_uevent_var(env, "COUNT=%llu", active);
3867
3868         if (type == KVM_EVENT_CREATE_VM) {
3869                 add_uevent_var(env, "EVENT=create");
3870                 kvm->userspace_pid = task_pid_nr(current);
3871         } else if (type == KVM_EVENT_DESTROY_VM) {
3872                 add_uevent_var(env, "EVENT=destroy");
3873         }
3874         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3875
3876         if (kvm->debugfs_dentry) {
3877                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3878
3879                 if (p) {
3880                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3881                         if (!IS_ERR(tmp))
3882                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
3883                         kfree(p);
3884                 }
3885         }
3886         /* no need for checks, since we are adding at most only 5 keys */
3887         env->envp[env->envp_idx++] = NULL;
3888         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3889         kfree(env);
3890 }
3891
3892 static int kvm_init_debug(void)
3893 {
3894         int r = -EEXIST;
3895         struct kvm_stats_debugfs_item *p;
3896
3897         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3898         if (kvm_debugfs_dir == NULL)
3899                 goto out;
3900
3901         kvm_debugfs_num_entries = 0;
3902         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3903                 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3904                                          (void *)(long)p->offset,
3905                                          stat_fops[p->kind]))
3906                         goto out_dir;
3907         }
3908
3909         return 0;
3910
3911 out_dir:
3912         debugfs_remove_recursive(kvm_debugfs_dir);
3913 out:
3914         return r;
3915 }
3916
3917 static int kvm_suspend(void)
3918 {
3919         if (kvm_usage_count)
3920                 hardware_disable_nolock(NULL);
3921         return 0;
3922 }
3923
3924 static void kvm_resume(void)
3925 {
3926         if (kvm_usage_count) {
3927                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3928                 hardware_enable_nolock(NULL);
3929         }
3930 }
3931
3932 static struct syscore_ops kvm_syscore_ops = {
3933         .suspend = kvm_suspend,
3934         .resume = kvm_resume,
3935 };
3936
3937 static inline
3938 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3939 {
3940         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3941 }
3942
3943 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3944 {
3945         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3946
3947         if (vcpu->preempted)
3948                 vcpu->preempted = false;
3949
3950         kvm_arch_sched_in(vcpu, cpu);
3951
3952         kvm_arch_vcpu_load(vcpu, cpu);
3953 }
3954
3955 static void kvm_sched_out(struct preempt_notifier *pn,
3956                           struct task_struct *next)
3957 {
3958         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3959
3960         if (current->state == TASK_RUNNING)
3961                 vcpu->preempted = true;
3962         kvm_arch_vcpu_put(vcpu);
3963 }
3964
3965 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3966                   struct module *module)
3967 {
3968         int r;
3969         int cpu;
3970
3971         r = kvm_arch_init(opaque);
3972         if (r)
3973                 goto out_fail;
3974
3975         /*
3976          * kvm_arch_init makes sure there's at most one caller
3977          * for architectures that support multiple implementations,
3978          * like intel and amd on x86.
3979          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3980          * conflicts in case kvm is already setup for another implementation.
3981          */
3982         r = kvm_irqfd_init();
3983         if (r)
3984                 goto out_irqfd;
3985
3986         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3987                 r = -ENOMEM;
3988                 goto out_free_0;
3989         }
3990
3991         r = kvm_arch_hardware_setup();
3992         if (r < 0)
3993                 goto out_free_0a;
3994
3995         for_each_online_cpu(cpu) {
3996                 smp_call_function_single(cpu,
3997                                 kvm_arch_check_processor_compat,
3998                                 &r, 1);
3999                 if (r < 0)
4000                         goto out_free_1;
4001         }
4002
4003         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4004                                       kvm_starting_cpu, kvm_dying_cpu);
4005         if (r)
4006                 goto out_free_2;
4007         register_reboot_notifier(&kvm_reboot_notifier);
4008
4009         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4010         if (!vcpu_align)
4011                 vcpu_align = __alignof__(struct kvm_vcpu);
4012         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
4013                                            0, NULL);
4014         if (!kvm_vcpu_cache) {
4015                 r = -ENOMEM;
4016                 goto out_free_3;
4017         }
4018
4019         r = kvm_async_pf_init();
4020         if (r)
4021                 goto out_free;
4022
4023         kvm_chardev_ops.owner = module;
4024         kvm_vm_fops.owner = module;
4025         kvm_vcpu_fops.owner = module;
4026
4027         r = misc_register(&kvm_dev);
4028         if (r) {
4029                 pr_err("kvm: misc device register failed\n");
4030                 goto out_unreg;
4031         }
4032
4033         register_syscore_ops(&kvm_syscore_ops);
4034
4035         kvm_preempt_ops.sched_in = kvm_sched_in;
4036         kvm_preempt_ops.sched_out = kvm_sched_out;
4037
4038         r = kvm_init_debug();
4039         if (r) {
4040                 pr_err("kvm: create debugfs files failed\n");
4041                 goto out_undebugfs;
4042         }
4043
4044         r = kvm_vfio_ops_init();
4045         WARN_ON(r);
4046
4047         return 0;
4048
4049 out_undebugfs:
4050         unregister_syscore_ops(&kvm_syscore_ops);
4051         misc_deregister(&kvm_dev);
4052 out_unreg:
4053         kvm_async_pf_deinit();
4054 out_free:
4055         kmem_cache_destroy(kvm_vcpu_cache);
4056 out_free_3:
4057         unregister_reboot_notifier(&kvm_reboot_notifier);
4058         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4059 out_free_2:
4060 out_free_1:
4061         kvm_arch_hardware_unsetup();
4062 out_free_0a:
4063         free_cpumask_var(cpus_hardware_enabled);
4064 out_free_0:
4065         kvm_irqfd_exit();
4066 out_irqfd:
4067         kvm_arch_exit();
4068 out_fail:
4069         return r;
4070 }
4071 EXPORT_SYMBOL_GPL(kvm_init);
4072
4073 void kvm_exit(void)
4074 {
4075         debugfs_remove_recursive(kvm_debugfs_dir);
4076         misc_deregister(&kvm_dev);
4077         kmem_cache_destroy(kvm_vcpu_cache);
4078         kvm_async_pf_deinit();
4079         unregister_syscore_ops(&kvm_syscore_ops);
4080         unregister_reboot_notifier(&kvm_reboot_notifier);
4081         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4082         on_each_cpu(hardware_disable_nolock, NULL, 1);
4083         kvm_arch_hardware_unsetup();
4084         kvm_arch_exit();
4085         kvm_irqfd_exit();
4086         free_cpumask_var(cpus_hardware_enabled);
4087         kvm_vfio_ops_exit();
4088 }
4089 EXPORT_SYMBOL_GPL(kvm_exit);