Merge tag 'for-4.15/dm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/device...
[sfrench/cifs-2.6.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88
89 /*
90  * Ordering of locks:
91  *
92  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93  */
94
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115                            unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118                                   unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
122
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
124
125 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
126
127 __visible bool kvm_rebooting;
128 EXPORT_SYMBOL_GPL(kvm_rebooting);
129
130 static bool largepages_enabled = true;
131
132 #define KVM_EVENT_CREATE_VM 0
133 #define KVM_EVENT_DESTROY_VM 1
134 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
135 static unsigned long long kvm_createvm_count;
136 static unsigned long long kvm_active_vms;
137
138 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
139                 unsigned long start, unsigned long end)
140 {
141 }
142
143 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
144 {
145         if (pfn_valid(pfn))
146                 return PageReserved(pfn_to_page(pfn));
147
148         return true;
149 }
150
151 /*
152  * Switches to specified vcpu, until a matching vcpu_put()
153  */
154 int vcpu_load(struct kvm_vcpu *vcpu)
155 {
156         int cpu;
157
158         if (mutex_lock_killable(&vcpu->mutex))
159                 return -EINTR;
160         cpu = get_cpu();
161         preempt_notifier_register(&vcpu->preempt_notifier);
162         kvm_arch_vcpu_load(vcpu, cpu);
163         put_cpu();
164         return 0;
165 }
166 EXPORT_SYMBOL_GPL(vcpu_load);
167
168 void vcpu_put(struct kvm_vcpu *vcpu)
169 {
170         preempt_disable();
171         kvm_arch_vcpu_put(vcpu);
172         preempt_notifier_unregister(&vcpu->preempt_notifier);
173         preempt_enable();
174         mutex_unlock(&vcpu->mutex);
175 }
176 EXPORT_SYMBOL_GPL(vcpu_put);
177
178 /* TODO: merge with kvm_arch_vcpu_should_kick */
179 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
180 {
181         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
182
183         /*
184          * We need to wait for the VCPU to reenable interrupts and get out of
185          * READING_SHADOW_PAGE_TABLES mode.
186          */
187         if (req & KVM_REQUEST_WAIT)
188                 return mode != OUTSIDE_GUEST_MODE;
189
190         /*
191          * Need to kick a running VCPU, but otherwise there is nothing to do.
192          */
193         return mode == IN_GUEST_MODE;
194 }
195
196 static void ack_flush(void *_completed)
197 {
198 }
199
200 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
201 {
202         if (unlikely(!cpus))
203                 cpus = cpu_online_mask;
204
205         if (cpumask_empty(cpus))
206                 return false;
207
208         smp_call_function_many(cpus, ack_flush, NULL, wait);
209         return true;
210 }
211
212 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
213 {
214         int i, cpu, me;
215         cpumask_var_t cpus;
216         bool called;
217         struct kvm_vcpu *vcpu;
218
219         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
220
221         me = get_cpu();
222         kvm_for_each_vcpu(i, vcpu, kvm) {
223                 kvm_make_request(req, vcpu);
224                 cpu = vcpu->cpu;
225
226                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
227                         continue;
228
229                 if (cpus != NULL && cpu != -1 && cpu != me &&
230                     kvm_request_needs_ipi(vcpu, req))
231                         __cpumask_set_cpu(cpu, cpus);
232         }
233         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
234         put_cpu();
235         free_cpumask_var(cpus);
236         return called;
237 }
238
239 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
240 void kvm_flush_remote_tlbs(struct kvm *kvm)
241 {
242         /*
243          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
244          * kvm_make_all_cpus_request.
245          */
246         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
247
248         /*
249          * We want to publish modifications to the page tables before reading
250          * mode. Pairs with a memory barrier in arch-specific code.
251          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
252          * and smp_mb in walk_shadow_page_lockless_begin/end.
253          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
254          *
255          * There is already an smp_mb__after_atomic() before
256          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
257          * barrier here.
258          */
259         if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
260                 ++kvm->stat.remote_tlb_flush;
261         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
262 }
263 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
264 #endif
265
266 void kvm_reload_remote_mmus(struct kvm *kvm)
267 {
268         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
269 }
270
271 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
272 {
273         struct page *page;
274         int r;
275
276         mutex_init(&vcpu->mutex);
277         vcpu->cpu = -1;
278         vcpu->kvm = kvm;
279         vcpu->vcpu_id = id;
280         vcpu->pid = NULL;
281         init_swait_queue_head(&vcpu->wq);
282         kvm_async_pf_vcpu_init(vcpu);
283
284         vcpu->pre_pcpu = -1;
285         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
286
287         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
288         if (!page) {
289                 r = -ENOMEM;
290                 goto fail;
291         }
292         vcpu->run = page_address(page);
293
294         kvm_vcpu_set_in_spin_loop(vcpu, false);
295         kvm_vcpu_set_dy_eligible(vcpu, false);
296         vcpu->preempted = false;
297
298         r = kvm_arch_vcpu_init(vcpu);
299         if (r < 0)
300                 goto fail_free_run;
301         return 0;
302
303 fail_free_run:
304         free_page((unsigned long)vcpu->run);
305 fail:
306         return r;
307 }
308 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
309
310 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
311 {
312         /*
313          * no need for rcu_read_lock as VCPU_RUN is the only place that
314          * will change the vcpu->pid pointer and on uninit all file
315          * descriptors are already gone.
316          */
317         put_pid(rcu_dereference_protected(vcpu->pid, 1));
318         kvm_arch_vcpu_uninit(vcpu);
319         free_page((unsigned long)vcpu->run);
320 }
321 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
322
323 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
324 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
325 {
326         return container_of(mn, struct kvm, mmu_notifier);
327 }
328
329 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
330                                         struct mm_struct *mm,
331                                         unsigned long address,
332                                         pte_t pte)
333 {
334         struct kvm *kvm = mmu_notifier_to_kvm(mn);
335         int idx;
336
337         idx = srcu_read_lock(&kvm->srcu);
338         spin_lock(&kvm->mmu_lock);
339         kvm->mmu_notifier_seq++;
340         kvm_set_spte_hva(kvm, address, pte);
341         spin_unlock(&kvm->mmu_lock);
342         srcu_read_unlock(&kvm->srcu, idx);
343 }
344
345 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
346                                                     struct mm_struct *mm,
347                                                     unsigned long start,
348                                                     unsigned long end)
349 {
350         struct kvm *kvm = mmu_notifier_to_kvm(mn);
351         int need_tlb_flush = 0, idx;
352
353         idx = srcu_read_lock(&kvm->srcu);
354         spin_lock(&kvm->mmu_lock);
355         /*
356          * The count increase must become visible at unlock time as no
357          * spte can be established without taking the mmu_lock and
358          * count is also read inside the mmu_lock critical section.
359          */
360         kvm->mmu_notifier_count++;
361         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
362         need_tlb_flush |= kvm->tlbs_dirty;
363         /* we've to flush the tlb before the pages can be freed */
364         if (need_tlb_flush)
365                 kvm_flush_remote_tlbs(kvm);
366
367         spin_unlock(&kvm->mmu_lock);
368
369         kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
370
371         srcu_read_unlock(&kvm->srcu, idx);
372 }
373
374 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
375                                                   struct mm_struct *mm,
376                                                   unsigned long start,
377                                                   unsigned long end)
378 {
379         struct kvm *kvm = mmu_notifier_to_kvm(mn);
380
381         spin_lock(&kvm->mmu_lock);
382         /*
383          * This sequence increase will notify the kvm page fault that
384          * the page that is going to be mapped in the spte could have
385          * been freed.
386          */
387         kvm->mmu_notifier_seq++;
388         smp_wmb();
389         /*
390          * The above sequence increase must be visible before the
391          * below count decrease, which is ensured by the smp_wmb above
392          * in conjunction with the smp_rmb in mmu_notifier_retry().
393          */
394         kvm->mmu_notifier_count--;
395         spin_unlock(&kvm->mmu_lock);
396
397         BUG_ON(kvm->mmu_notifier_count < 0);
398 }
399
400 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
401                                               struct mm_struct *mm,
402                                               unsigned long start,
403                                               unsigned long end)
404 {
405         struct kvm *kvm = mmu_notifier_to_kvm(mn);
406         int young, idx;
407
408         idx = srcu_read_lock(&kvm->srcu);
409         spin_lock(&kvm->mmu_lock);
410
411         young = kvm_age_hva(kvm, start, end);
412         if (young)
413                 kvm_flush_remote_tlbs(kvm);
414
415         spin_unlock(&kvm->mmu_lock);
416         srcu_read_unlock(&kvm->srcu, idx);
417
418         return young;
419 }
420
421 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
422                                         struct mm_struct *mm,
423                                         unsigned long start,
424                                         unsigned long end)
425 {
426         struct kvm *kvm = mmu_notifier_to_kvm(mn);
427         int young, idx;
428
429         idx = srcu_read_lock(&kvm->srcu);
430         spin_lock(&kvm->mmu_lock);
431         /*
432          * Even though we do not flush TLB, this will still adversely
433          * affect performance on pre-Haswell Intel EPT, where there is
434          * no EPT Access Bit to clear so that we have to tear down EPT
435          * tables instead. If we find this unacceptable, we can always
436          * add a parameter to kvm_age_hva so that it effectively doesn't
437          * do anything on clear_young.
438          *
439          * Also note that currently we never issue secondary TLB flushes
440          * from clear_young, leaving this job up to the regular system
441          * cadence. If we find this inaccurate, we might come up with a
442          * more sophisticated heuristic later.
443          */
444         young = kvm_age_hva(kvm, start, end);
445         spin_unlock(&kvm->mmu_lock);
446         srcu_read_unlock(&kvm->srcu, idx);
447
448         return young;
449 }
450
451 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
452                                        struct mm_struct *mm,
453                                        unsigned long address)
454 {
455         struct kvm *kvm = mmu_notifier_to_kvm(mn);
456         int young, idx;
457
458         idx = srcu_read_lock(&kvm->srcu);
459         spin_lock(&kvm->mmu_lock);
460         young = kvm_test_age_hva(kvm, address);
461         spin_unlock(&kvm->mmu_lock);
462         srcu_read_unlock(&kvm->srcu, idx);
463
464         return young;
465 }
466
467 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
468                                      struct mm_struct *mm)
469 {
470         struct kvm *kvm = mmu_notifier_to_kvm(mn);
471         int idx;
472
473         idx = srcu_read_lock(&kvm->srcu);
474         kvm_arch_flush_shadow_all(kvm);
475         srcu_read_unlock(&kvm->srcu, idx);
476 }
477
478 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
479         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
480         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
481         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
482         .clear_young            = kvm_mmu_notifier_clear_young,
483         .test_young             = kvm_mmu_notifier_test_young,
484         .change_pte             = kvm_mmu_notifier_change_pte,
485         .release                = kvm_mmu_notifier_release,
486 };
487
488 static int kvm_init_mmu_notifier(struct kvm *kvm)
489 {
490         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
491         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
492 }
493
494 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
495
496 static int kvm_init_mmu_notifier(struct kvm *kvm)
497 {
498         return 0;
499 }
500
501 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
502
503 static struct kvm_memslots *kvm_alloc_memslots(void)
504 {
505         int i;
506         struct kvm_memslots *slots;
507
508         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
509         if (!slots)
510                 return NULL;
511
512         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
513                 slots->id_to_index[i] = slots->memslots[i].id = i;
514
515         return slots;
516 }
517
518 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
519 {
520         if (!memslot->dirty_bitmap)
521                 return;
522
523         kvfree(memslot->dirty_bitmap);
524         memslot->dirty_bitmap = NULL;
525 }
526
527 /*
528  * Free any memory in @free but not in @dont.
529  */
530 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
531                               struct kvm_memory_slot *dont)
532 {
533         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
534                 kvm_destroy_dirty_bitmap(free);
535
536         kvm_arch_free_memslot(kvm, free, dont);
537
538         free->npages = 0;
539 }
540
541 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
542 {
543         struct kvm_memory_slot *memslot;
544
545         if (!slots)
546                 return;
547
548         kvm_for_each_memslot(memslot, slots)
549                 kvm_free_memslot(kvm, memslot, NULL);
550
551         kvfree(slots);
552 }
553
554 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
555 {
556         int i;
557
558         if (!kvm->debugfs_dentry)
559                 return;
560
561         debugfs_remove_recursive(kvm->debugfs_dentry);
562
563         if (kvm->debugfs_stat_data) {
564                 for (i = 0; i < kvm_debugfs_num_entries; i++)
565                         kfree(kvm->debugfs_stat_data[i]);
566                 kfree(kvm->debugfs_stat_data);
567         }
568 }
569
570 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
571 {
572         char dir_name[ITOA_MAX_LEN * 2];
573         struct kvm_stat_data *stat_data;
574         struct kvm_stats_debugfs_item *p;
575
576         if (!debugfs_initialized())
577                 return 0;
578
579         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
580         kvm->debugfs_dentry = debugfs_create_dir(dir_name,
581                                                  kvm_debugfs_dir);
582         if (!kvm->debugfs_dentry)
583                 return -ENOMEM;
584
585         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
586                                          sizeof(*kvm->debugfs_stat_data),
587                                          GFP_KERNEL);
588         if (!kvm->debugfs_stat_data)
589                 return -ENOMEM;
590
591         for (p = debugfs_entries; p->name; p++) {
592                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
593                 if (!stat_data)
594                         return -ENOMEM;
595
596                 stat_data->kvm = kvm;
597                 stat_data->offset = p->offset;
598                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
599                 if (!debugfs_create_file(p->name, 0644,
600                                          kvm->debugfs_dentry,
601                                          stat_data,
602                                          stat_fops_per_vm[p->kind]))
603                         return -ENOMEM;
604         }
605         return 0;
606 }
607
608 static struct kvm *kvm_create_vm(unsigned long type)
609 {
610         int r, i;
611         struct kvm *kvm = kvm_arch_alloc_vm();
612
613         if (!kvm)
614                 return ERR_PTR(-ENOMEM);
615
616         spin_lock_init(&kvm->mmu_lock);
617         mmgrab(current->mm);
618         kvm->mm = current->mm;
619         kvm_eventfd_init(kvm);
620         mutex_init(&kvm->lock);
621         mutex_init(&kvm->irq_lock);
622         mutex_init(&kvm->slots_lock);
623         refcount_set(&kvm->users_count, 1);
624         INIT_LIST_HEAD(&kvm->devices);
625
626         r = kvm_arch_init_vm(kvm, type);
627         if (r)
628                 goto out_err_no_disable;
629
630         r = hardware_enable_all();
631         if (r)
632                 goto out_err_no_disable;
633
634 #ifdef CONFIG_HAVE_KVM_IRQFD
635         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
636 #endif
637
638         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
639
640         r = -ENOMEM;
641         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
642                 struct kvm_memslots *slots = kvm_alloc_memslots();
643                 if (!slots)
644                         goto out_err_no_srcu;
645                 /*
646                  * Generations must be different for each address space.
647                  * Init kvm generation close to the maximum to easily test the
648                  * code of handling generation number wrap-around.
649                  */
650                 slots->generation = i * 2 - 150;
651                 rcu_assign_pointer(kvm->memslots[i], slots);
652         }
653
654         if (init_srcu_struct(&kvm->srcu))
655                 goto out_err_no_srcu;
656         if (init_srcu_struct(&kvm->irq_srcu))
657                 goto out_err_no_irq_srcu;
658         for (i = 0; i < KVM_NR_BUSES; i++) {
659                 rcu_assign_pointer(kvm->buses[i],
660                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
661                 if (!kvm->buses[i])
662                         goto out_err;
663         }
664
665         r = kvm_init_mmu_notifier(kvm);
666         if (r)
667                 goto out_err;
668
669         spin_lock(&kvm_lock);
670         list_add(&kvm->vm_list, &vm_list);
671         spin_unlock(&kvm_lock);
672
673         preempt_notifier_inc();
674
675         return kvm;
676
677 out_err:
678         cleanup_srcu_struct(&kvm->irq_srcu);
679 out_err_no_irq_srcu:
680         cleanup_srcu_struct(&kvm->srcu);
681 out_err_no_srcu:
682         hardware_disable_all();
683 out_err_no_disable:
684         refcount_set(&kvm->users_count, 0);
685         for (i = 0; i < KVM_NR_BUSES; i++)
686                 kfree(kvm_get_bus(kvm, i));
687         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
688                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
689         kvm_arch_free_vm(kvm);
690         mmdrop(current->mm);
691         return ERR_PTR(r);
692 }
693
694 static void kvm_destroy_devices(struct kvm *kvm)
695 {
696         struct kvm_device *dev, *tmp;
697
698         /*
699          * We do not need to take the kvm->lock here, because nobody else
700          * has a reference to the struct kvm at this point and therefore
701          * cannot access the devices list anyhow.
702          */
703         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
704                 list_del(&dev->vm_node);
705                 dev->ops->destroy(dev);
706         }
707 }
708
709 static void kvm_destroy_vm(struct kvm *kvm)
710 {
711         int i;
712         struct mm_struct *mm = kvm->mm;
713
714         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
715         kvm_destroy_vm_debugfs(kvm);
716         kvm_arch_sync_events(kvm);
717         spin_lock(&kvm_lock);
718         list_del(&kvm->vm_list);
719         spin_unlock(&kvm_lock);
720         kvm_free_irq_routing(kvm);
721         for (i = 0; i < KVM_NR_BUSES; i++) {
722                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
723
724                 if (bus)
725                         kvm_io_bus_destroy(bus);
726                 kvm->buses[i] = NULL;
727         }
728         kvm_coalesced_mmio_free(kvm);
729 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
730         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
731 #else
732         kvm_arch_flush_shadow_all(kvm);
733 #endif
734         kvm_arch_destroy_vm(kvm);
735         kvm_destroy_devices(kvm);
736         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
737                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
738         cleanup_srcu_struct(&kvm->irq_srcu);
739         cleanup_srcu_struct(&kvm->srcu);
740         kvm_arch_free_vm(kvm);
741         preempt_notifier_dec();
742         hardware_disable_all();
743         mmdrop(mm);
744 }
745
746 void kvm_get_kvm(struct kvm *kvm)
747 {
748         refcount_inc(&kvm->users_count);
749 }
750 EXPORT_SYMBOL_GPL(kvm_get_kvm);
751
752 void kvm_put_kvm(struct kvm *kvm)
753 {
754         if (refcount_dec_and_test(&kvm->users_count))
755                 kvm_destroy_vm(kvm);
756 }
757 EXPORT_SYMBOL_GPL(kvm_put_kvm);
758
759
760 static int kvm_vm_release(struct inode *inode, struct file *filp)
761 {
762         struct kvm *kvm = filp->private_data;
763
764         kvm_irqfd_release(kvm);
765
766         kvm_put_kvm(kvm);
767         return 0;
768 }
769
770 /*
771  * Allocation size is twice as large as the actual dirty bitmap size.
772  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
773  */
774 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
775 {
776         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
777
778         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
779         if (!memslot->dirty_bitmap)
780                 return -ENOMEM;
781
782         return 0;
783 }
784
785 /*
786  * Insert memslot and re-sort memslots based on their GFN,
787  * so binary search could be used to lookup GFN.
788  * Sorting algorithm takes advantage of having initially
789  * sorted array and known changed memslot position.
790  */
791 static void update_memslots(struct kvm_memslots *slots,
792                             struct kvm_memory_slot *new)
793 {
794         int id = new->id;
795         int i = slots->id_to_index[id];
796         struct kvm_memory_slot *mslots = slots->memslots;
797
798         WARN_ON(mslots[i].id != id);
799         if (!new->npages) {
800                 WARN_ON(!mslots[i].npages);
801                 if (mslots[i].npages)
802                         slots->used_slots--;
803         } else {
804                 if (!mslots[i].npages)
805                         slots->used_slots++;
806         }
807
808         while (i < KVM_MEM_SLOTS_NUM - 1 &&
809                new->base_gfn <= mslots[i + 1].base_gfn) {
810                 if (!mslots[i + 1].npages)
811                         break;
812                 mslots[i] = mslots[i + 1];
813                 slots->id_to_index[mslots[i].id] = i;
814                 i++;
815         }
816
817         /*
818          * The ">=" is needed when creating a slot with base_gfn == 0,
819          * so that it moves before all those with base_gfn == npages == 0.
820          *
821          * On the other hand, if new->npages is zero, the above loop has
822          * already left i pointing to the beginning of the empty part of
823          * mslots, and the ">=" would move the hole backwards in this
824          * case---which is wrong.  So skip the loop when deleting a slot.
825          */
826         if (new->npages) {
827                 while (i > 0 &&
828                        new->base_gfn >= mslots[i - 1].base_gfn) {
829                         mslots[i] = mslots[i - 1];
830                         slots->id_to_index[mslots[i].id] = i;
831                         i--;
832                 }
833         } else
834                 WARN_ON_ONCE(i != slots->used_slots);
835
836         mslots[i] = *new;
837         slots->id_to_index[mslots[i].id] = i;
838 }
839
840 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
841 {
842         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
843
844 #ifdef __KVM_HAVE_READONLY_MEM
845         valid_flags |= KVM_MEM_READONLY;
846 #endif
847
848         if (mem->flags & ~valid_flags)
849                 return -EINVAL;
850
851         return 0;
852 }
853
854 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
855                 int as_id, struct kvm_memslots *slots)
856 {
857         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
858
859         /*
860          * Set the low bit in the generation, which disables SPTE caching
861          * until the end of synchronize_srcu_expedited.
862          */
863         WARN_ON(old_memslots->generation & 1);
864         slots->generation = old_memslots->generation + 1;
865
866         rcu_assign_pointer(kvm->memslots[as_id], slots);
867         synchronize_srcu_expedited(&kvm->srcu);
868
869         /*
870          * Increment the new memslot generation a second time. This prevents
871          * vm exits that race with memslot updates from caching a memslot
872          * generation that will (potentially) be valid forever.
873          *
874          * Generations must be unique even across address spaces.  We do not need
875          * a global counter for that, instead the generation space is evenly split
876          * across address spaces.  For example, with two address spaces, address
877          * space 0 will use generations 0, 4, 8, ... while * address space 1 will
878          * use generations 2, 6, 10, 14, ...
879          */
880         slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
881
882         kvm_arch_memslots_updated(kvm, slots);
883
884         return old_memslots;
885 }
886
887 /*
888  * Allocate some memory and give it an address in the guest physical address
889  * space.
890  *
891  * Discontiguous memory is allowed, mostly for framebuffers.
892  *
893  * Must be called holding kvm->slots_lock for write.
894  */
895 int __kvm_set_memory_region(struct kvm *kvm,
896                             const struct kvm_userspace_memory_region *mem)
897 {
898         int r;
899         gfn_t base_gfn;
900         unsigned long npages;
901         struct kvm_memory_slot *slot;
902         struct kvm_memory_slot old, new;
903         struct kvm_memslots *slots = NULL, *old_memslots;
904         int as_id, id;
905         enum kvm_mr_change change;
906
907         r = check_memory_region_flags(mem);
908         if (r)
909                 goto out;
910
911         r = -EINVAL;
912         as_id = mem->slot >> 16;
913         id = (u16)mem->slot;
914
915         /* General sanity checks */
916         if (mem->memory_size & (PAGE_SIZE - 1))
917                 goto out;
918         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
919                 goto out;
920         /* We can read the guest memory with __xxx_user() later on. */
921         if ((id < KVM_USER_MEM_SLOTS) &&
922             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
923              !access_ok(VERIFY_WRITE,
924                         (void __user *)(unsigned long)mem->userspace_addr,
925                         mem->memory_size)))
926                 goto out;
927         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
928                 goto out;
929         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
930                 goto out;
931
932         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
933         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
934         npages = mem->memory_size >> PAGE_SHIFT;
935
936         if (npages > KVM_MEM_MAX_NR_PAGES)
937                 goto out;
938
939         new = old = *slot;
940
941         new.id = id;
942         new.base_gfn = base_gfn;
943         new.npages = npages;
944         new.flags = mem->flags;
945
946         if (npages) {
947                 if (!old.npages)
948                         change = KVM_MR_CREATE;
949                 else { /* Modify an existing slot. */
950                         if ((mem->userspace_addr != old.userspace_addr) ||
951                             (npages != old.npages) ||
952                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
953                                 goto out;
954
955                         if (base_gfn != old.base_gfn)
956                                 change = KVM_MR_MOVE;
957                         else if (new.flags != old.flags)
958                                 change = KVM_MR_FLAGS_ONLY;
959                         else { /* Nothing to change. */
960                                 r = 0;
961                                 goto out;
962                         }
963                 }
964         } else {
965                 if (!old.npages)
966                         goto out;
967
968                 change = KVM_MR_DELETE;
969                 new.base_gfn = 0;
970                 new.flags = 0;
971         }
972
973         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
974                 /* Check for overlaps */
975                 r = -EEXIST;
976                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
977                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
978                             (slot->id == id))
979                                 continue;
980                         if (!((base_gfn + npages <= slot->base_gfn) ||
981                               (base_gfn >= slot->base_gfn + slot->npages)))
982                                 goto out;
983                 }
984         }
985
986         /* Free page dirty bitmap if unneeded */
987         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
988                 new.dirty_bitmap = NULL;
989
990         r = -ENOMEM;
991         if (change == KVM_MR_CREATE) {
992                 new.userspace_addr = mem->userspace_addr;
993
994                 if (kvm_arch_create_memslot(kvm, &new, npages))
995                         goto out_free;
996         }
997
998         /* Allocate page dirty bitmap if needed */
999         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1000                 if (kvm_create_dirty_bitmap(&new) < 0)
1001                         goto out_free;
1002         }
1003
1004         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1005         if (!slots)
1006                 goto out_free;
1007         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1008
1009         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1010                 slot = id_to_memslot(slots, id);
1011                 slot->flags |= KVM_MEMSLOT_INVALID;
1012
1013                 old_memslots = install_new_memslots(kvm, as_id, slots);
1014
1015                 /* From this point no new shadow pages pointing to a deleted,
1016                  * or moved, memslot will be created.
1017                  *
1018                  * validation of sp->gfn happens in:
1019                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1020                  *      - kvm_is_visible_gfn (mmu_check_roots)
1021                  */
1022                 kvm_arch_flush_shadow_memslot(kvm, slot);
1023
1024                 /*
1025                  * We can re-use the old_memslots from above, the only difference
1026                  * from the currently installed memslots is the invalid flag.  This
1027                  * will get overwritten by update_memslots anyway.
1028                  */
1029                 slots = old_memslots;
1030         }
1031
1032         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1033         if (r)
1034                 goto out_slots;
1035
1036         /* actual memory is freed via old in kvm_free_memslot below */
1037         if (change == KVM_MR_DELETE) {
1038                 new.dirty_bitmap = NULL;
1039                 memset(&new.arch, 0, sizeof(new.arch));
1040         }
1041
1042         update_memslots(slots, &new);
1043         old_memslots = install_new_memslots(kvm, as_id, slots);
1044
1045         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1046
1047         kvm_free_memslot(kvm, &old, &new);
1048         kvfree(old_memslots);
1049         return 0;
1050
1051 out_slots:
1052         kvfree(slots);
1053 out_free:
1054         kvm_free_memslot(kvm, &new, &old);
1055 out:
1056         return r;
1057 }
1058 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1059
1060 int kvm_set_memory_region(struct kvm *kvm,
1061                           const struct kvm_userspace_memory_region *mem)
1062 {
1063         int r;
1064
1065         mutex_lock(&kvm->slots_lock);
1066         r = __kvm_set_memory_region(kvm, mem);
1067         mutex_unlock(&kvm->slots_lock);
1068         return r;
1069 }
1070 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1071
1072 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1073                                           struct kvm_userspace_memory_region *mem)
1074 {
1075         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1076                 return -EINVAL;
1077
1078         return kvm_set_memory_region(kvm, mem);
1079 }
1080
1081 int kvm_get_dirty_log(struct kvm *kvm,
1082                         struct kvm_dirty_log *log, int *is_dirty)
1083 {
1084         struct kvm_memslots *slots;
1085         struct kvm_memory_slot *memslot;
1086         int i, as_id, id;
1087         unsigned long n;
1088         unsigned long any = 0;
1089
1090         as_id = log->slot >> 16;
1091         id = (u16)log->slot;
1092         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1093                 return -EINVAL;
1094
1095         slots = __kvm_memslots(kvm, as_id);
1096         memslot = id_to_memslot(slots, id);
1097         if (!memslot->dirty_bitmap)
1098                 return -ENOENT;
1099
1100         n = kvm_dirty_bitmap_bytes(memslot);
1101
1102         for (i = 0; !any && i < n/sizeof(long); ++i)
1103                 any = memslot->dirty_bitmap[i];
1104
1105         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1106                 return -EFAULT;
1107
1108         if (any)
1109                 *is_dirty = 1;
1110         return 0;
1111 }
1112 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1113
1114 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1115 /**
1116  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1117  *      are dirty write protect them for next write.
1118  * @kvm:        pointer to kvm instance
1119  * @log:        slot id and address to which we copy the log
1120  * @is_dirty:   flag set if any page is dirty
1121  *
1122  * We need to keep it in mind that VCPU threads can write to the bitmap
1123  * concurrently. So, to avoid losing track of dirty pages we keep the
1124  * following order:
1125  *
1126  *    1. Take a snapshot of the bit and clear it if needed.
1127  *    2. Write protect the corresponding page.
1128  *    3. Copy the snapshot to the userspace.
1129  *    4. Upon return caller flushes TLB's if needed.
1130  *
1131  * Between 2 and 4, the guest may write to the page using the remaining TLB
1132  * entry.  This is not a problem because the page is reported dirty using
1133  * the snapshot taken before and step 4 ensures that writes done after
1134  * exiting to userspace will be logged for the next call.
1135  *
1136  */
1137 int kvm_get_dirty_log_protect(struct kvm *kvm,
1138                         struct kvm_dirty_log *log, bool *is_dirty)
1139 {
1140         struct kvm_memslots *slots;
1141         struct kvm_memory_slot *memslot;
1142         int i, as_id, id;
1143         unsigned long n;
1144         unsigned long *dirty_bitmap;
1145         unsigned long *dirty_bitmap_buffer;
1146
1147         as_id = log->slot >> 16;
1148         id = (u16)log->slot;
1149         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1150                 return -EINVAL;
1151
1152         slots = __kvm_memslots(kvm, as_id);
1153         memslot = id_to_memslot(slots, id);
1154
1155         dirty_bitmap = memslot->dirty_bitmap;
1156         if (!dirty_bitmap)
1157                 return -ENOENT;
1158
1159         n = kvm_dirty_bitmap_bytes(memslot);
1160
1161         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1162         memset(dirty_bitmap_buffer, 0, n);
1163
1164         spin_lock(&kvm->mmu_lock);
1165         *is_dirty = false;
1166         for (i = 0; i < n / sizeof(long); i++) {
1167                 unsigned long mask;
1168                 gfn_t offset;
1169
1170                 if (!dirty_bitmap[i])
1171                         continue;
1172
1173                 *is_dirty = true;
1174
1175                 mask = xchg(&dirty_bitmap[i], 0);
1176                 dirty_bitmap_buffer[i] = mask;
1177
1178                 if (mask) {
1179                         offset = i * BITS_PER_LONG;
1180                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1181                                                                 offset, mask);
1182                 }
1183         }
1184
1185         spin_unlock(&kvm->mmu_lock);
1186         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1187                 return -EFAULT;
1188         return 0;
1189 }
1190 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1191 #endif
1192
1193 bool kvm_largepages_enabled(void)
1194 {
1195         return largepages_enabled;
1196 }
1197
1198 void kvm_disable_largepages(void)
1199 {
1200         largepages_enabled = false;
1201 }
1202 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1203
1204 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1205 {
1206         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1207 }
1208 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1209
1210 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1211 {
1212         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1213 }
1214
1215 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1216 {
1217         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1218
1219         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1220               memslot->flags & KVM_MEMSLOT_INVALID)
1221                 return false;
1222
1223         return true;
1224 }
1225 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1226
1227 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1228 {
1229         struct vm_area_struct *vma;
1230         unsigned long addr, size;
1231
1232         size = PAGE_SIZE;
1233
1234         addr = gfn_to_hva(kvm, gfn);
1235         if (kvm_is_error_hva(addr))
1236                 return PAGE_SIZE;
1237
1238         down_read(&current->mm->mmap_sem);
1239         vma = find_vma(current->mm, addr);
1240         if (!vma)
1241                 goto out;
1242
1243         size = vma_kernel_pagesize(vma);
1244
1245 out:
1246         up_read(&current->mm->mmap_sem);
1247
1248         return size;
1249 }
1250
1251 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1252 {
1253         return slot->flags & KVM_MEM_READONLY;
1254 }
1255
1256 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1257                                        gfn_t *nr_pages, bool write)
1258 {
1259         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1260                 return KVM_HVA_ERR_BAD;
1261
1262         if (memslot_is_readonly(slot) && write)
1263                 return KVM_HVA_ERR_RO_BAD;
1264
1265         if (nr_pages)
1266                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1267
1268         return __gfn_to_hva_memslot(slot, gfn);
1269 }
1270
1271 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1272                                      gfn_t *nr_pages)
1273 {
1274         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1275 }
1276
1277 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1278                                         gfn_t gfn)
1279 {
1280         return gfn_to_hva_many(slot, gfn, NULL);
1281 }
1282 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1283
1284 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1285 {
1286         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1287 }
1288 EXPORT_SYMBOL_GPL(gfn_to_hva);
1289
1290 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1291 {
1292         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1293 }
1294 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1295
1296 /*
1297  * If writable is set to false, the hva returned by this function is only
1298  * allowed to be read.
1299  */
1300 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1301                                       gfn_t gfn, bool *writable)
1302 {
1303         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1304
1305         if (!kvm_is_error_hva(hva) && writable)
1306                 *writable = !memslot_is_readonly(slot);
1307
1308         return hva;
1309 }
1310
1311 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1312 {
1313         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1314
1315         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1316 }
1317
1318 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1319 {
1320         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1321
1322         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1323 }
1324
1325 static int get_user_page_nowait(unsigned long start, int write,
1326                 struct page **page)
1327 {
1328         int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1329
1330         if (write)
1331                 flags |= FOLL_WRITE;
1332
1333         return get_user_pages(start, 1, flags, page, NULL);
1334 }
1335
1336 static inline int check_user_page_hwpoison(unsigned long addr)
1337 {
1338         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1339
1340         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1341         return rc == -EHWPOISON;
1342 }
1343
1344 /*
1345  * The atomic path to get the writable pfn which will be stored in @pfn,
1346  * true indicates success, otherwise false is returned.
1347  */
1348 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1349                             bool write_fault, bool *writable, kvm_pfn_t *pfn)
1350 {
1351         struct page *page[1];
1352         int npages;
1353
1354         if (!(async || atomic))
1355                 return false;
1356
1357         /*
1358          * Fast pin a writable pfn only if it is a write fault request
1359          * or the caller allows to map a writable pfn for a read fault
1360          * request.
1361          */
1362         if (!(write_fault || writable))
1363                 return false;
1364
1365         npages = __get_user_pages_fast(addr, 1, 1, page);
1366         if (npages == 1) {
1367                 *pfn = page_to_pfn(page[0]);
1368
1369                 if (writable)
1370                         *writable = true;
1371                 return true;
1372         }
1373
1374         return false;
1375 }
1376
1377 /*
1378  * The slow path to get the pfn of the specified host virtual address,
1379  * 1 indicates success, -errno is returned if error is detected.
1380  */
1381 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1382                            bool *writable, kvm_pfn_t *pfn)
1383 {
1384         struct page *page[1];
1385         int npages = 0;
1386
1387         might_sleep();
1388
1389         if (writable)
1390                 *writable = write_fault;
1391
1392         if (async) {
1393                 down_read(&current->mm->mmap_sem);
1394                 npages = get_user_page_nowait(addr, write_fault, page);
1395                 up_read(&current->mm->mmap_sem);
1396         } else {
1397                 unsigned int flags = FOLL_HWPOISON;
1398
1399                 if (write_fault)
1400                         flags |= FOLL_WRITE;
1401
1402                 npages = get_user_pages_unlocked(addr, 1, page, flags);
1403         }
1404         if (npages != 1)
1405                 return npages;
1406
1407         /* map read fault as writable if possible */
1408         if (unlikely(!write_fault) && writable) {
1409                 struct page *wpage[1];
1410
1411                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1412                 if (npages == 1) {
1413                         *writable = true;
1414                         put_page(page[0]);
1415                         page[0] = wpage[0];
1416                 }
1417
1418                 npages = 1;
1419         }
1420         *pfn = page_to_pfn(page[0]);
1421         return npages;
1422 }
1423
1424 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1425 {
1426         if (unlikely(!(vma->vm_flags & VM_READ)))
1427                 return false;
1428
1429         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1430                 return false;
1431
1432         return true;
1433 }
1434
1435 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1436                                unsigned long addr, bool *async,
1437                                bool write_fault, kvm_pfn_t *p_pfn)
1438 {
1439         unsigned long pfn;
1440         int r;
1441
1442         r = follow_pfn(vma, addr, &pfn);
1443         if (r) {
1444                 /*
1445                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1446                  * not call the fault handler, so do it here.
1447                  */
1448                 bool unlocked = false;
1449                 r = fixup_user_fault(current, current->mm, addr,
1450                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1451                                      &unlocked);
1452                 if (unlocked)
1453                         return -EAGAIN;
1454                 if (r)
1455                         return r;
1456
1457                 r = follow_pfn(vma, addr, &pfn);
1458                 if (r)
1459                         return r;
1460
1461         }
1462
1463
1464         /*
1465          * Get a reference here because callers of *hva_to_pfn* and
1466          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1467          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1468          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1469          * simply do nothing for reserved pfns.
1470          *
1471          * Whoever called remap_pfn_range is also going to call e.g.
1472          * unmap_mapping_range before the underlying pages are freed,
1473          * causing a call to our MMU notifier.
1474          */ 
1475         kvm_get_pfn(pfn);
1476
1477         *p_pfn = pfn;
1478         return 0;
1479 }
1480
1481 /*
1482  * Pin guest page in memory and return its pfn.
1483  * @addr: host virtual address which maps memory to the guest
1484  * @atomic: whether this function can sleep
1485  * @async: whether this function need to wait IO complete if the
1486  *         host page is not in the memory
1487  * @write_fault: whether we should get a writable host page
1488  * @writable: whether it allows to map a writable host page for !@write_fault
1489  *
1490  * The function will map a writable host page for these two cases:
1491  * 1): @write_fault = true
1492  * 2): @write_fault = false && @writable, @writable will tell the caller
1493  *     whether the mapping is writable.
1494  */
1495 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1496                         bool write_fault, bool *writable)
1497 {
1498         struct vm_area_struct *vma;
1499         kvm_pfn_t pfn = 0;
1500         int npages, r;
1501
1502         /* we can do it either atomically or asynchronously, not both */
1503         BUG_ON(atomic && async);
1504
1505         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1506                 return pfn;
1507
1508         if (atomic)
1509                 return KVM_PFN_ERR_FAULT;
1510
1511         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1512         if (npages == 1)
1513                 return pfn;
1514
1515         down_read(&current->mm->mmap_sem);
1516         if (npages == -EHWPOISON ||
1517               (!async && check_user_page_hwpoison(addr))) {
1518                 pfn = KVM_PFN_ERR_HWPOISON;
1519                 goto exit;
1520         }
1521
1522 retry:
1523         vma = find_vma_intersection(current->mm, addr, addr + 1);
1524
1525         if (vma == NULL)
1526                 pfn = KVM_PFN_ERR_FAULT;
1527         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1528                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1529                 if (r == -EAGAIN)
1530                         goto retry;
1531                 if (r < 0)
1532                         pfn = KVM_PFN_ERR_FAULT;
1533         } else {
1534                 if (async && vma_is_valid(vma, write_fault))
1535                         *async = true;
1536                 pfn = KVM_PFN_ERR_FAULT;
1537         }
1538 exit:
1539         up_read(&current->mm->mmap_sem);
1540         return pfn;
1541 }
1542
1543 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1544                                bool atomic, bool *async, bool write_fault,
1545                                bool *writable)
1546 {
1547         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1548
1549         if (addr == KVM_HVA_ERR_RO_BAD) {
1550                 if (writable)
1551                         *writable = false;
1552                 return KVM_PFN_ERR_RO_FAULT;
1553         }
1554
1555         if (kvm_is_error_hva(addr)) {
1556                 if (writable)
1557                         *writable = false;
1558                 return KVM_PFN_NOSLOT;
1559         }
1560
1561         /* Do not map writable pfn in the readonly memslot. */
1562         if (writable && memslot_is_readonly(slot)) {
1563                 *writable = false;
1564                 writable = NULL;
1565         }
1566
1567         return hva_to_pfn(addr, atomic, async, write_fault,
1568                           writable);
1569 }
1570 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1571
1572 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1573                       bool *writable)
1574 {
1575         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1576                                     write_fault, writable);
1577 }
1578 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1579
1580 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1581 {
1582         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1583 }
1584 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1585
1586 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1587 {
1588         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1589 }
1590 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1591
1592 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1593 {
1594         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1595 }
1596 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1597
1598 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1599 {
1600         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1601 }
1602 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1603
1604 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1605 {
1606         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1607 }
1608 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1609
1610 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1611 {
1612         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1613 }
1614 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1615
1616 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1617                             struct page **pages, int nr_pages)
1618 {
1619         unsigned long addr;
1620         gfn_t entry = 0;
1621
1622         addr = gfn_to_hva_many(slot, gfn, &entry);
1623         if (kvm_is_error_hva(addr))
1624                 return -1;
1625
1626         if (entry < nr_pages)
1627                 return 0;
1628
1629         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1630 }
1631 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1632
1633 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1634 {
1635         if (is_error_noslot_pfn(pfn))
1636                 return KVM_ERR_PTR_BAD_PAGE;
1637
1638         if (kvm_is_reserved_pfn(pfn)) {
1639                 WARN_ON(1);
1640                 return KVM_ERR_PTR_BAD_PAGE;
1641         }
1642
1643         return pfn_to_page(pfn);
1644 }
1645
1646 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1647 {
1648         kvm_pfn_t pfn;
1649
1650         pfn = gfn_to_pfn(kvm, gfn);
1651
1652         return kvm_pfn_to_page(pfn);
1653 }
1654 EXPORT_SYMBOL_GPL(gfn_to_page);
1655
1656 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1657 {
1658         kvm_pfn_t pfn;
1659
1660         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1661
1662         return kvm_pfn_to_page(pfn);
1663 }
1664 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1665
1666 void kvm_release_page_clean(struct page *page)
1667 {
1668         WARN_ON(is_error_page(page));
1669
1670         kvm_release_pfn_clean(page_to_pfn(page));
1671 }
1672 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1673
1674 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1675 {
1676         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1677                 put_page(pfn_to_page(pfn));
1678 }
1679 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1680
1681 void kvm_release_page_dirty(struct page *page)
1682 {
1683         WARN_ON(is_error_page(page));
1684
1685         kvm_release_pfn_dirty(page_to_pfn(page));
1686 }
1687 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1688
1689 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1690 {
1691         kvm_set_pfn_dirty(pfn);
1692         kvm_release_pfn_clean(pfn);
1693 }
1694 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1695
1696 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1697 {
1698         if (!kvm_is_reserved_pfn(pfn)) {
1699                 struct page *page = pfn_to_page(pfn);
1700
1701                 if (!PageReserved(page))
1702                         SetPageDirty(page);
1703         }
1704 }
1705 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1706
1707 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1708 {
1709         if (!kvm_is_reserved_pfn(pfn))
1710                 mark_page_accessed(pfn_to_page(pfn));
1711 }
1712 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1713
1714 void kvm_get_pfn(kvm_pfn_t pfn)
1715 {
1716         if (!kvm_is_reserved_pfn(pfn))
1717                 get_page(pfn_to_page(pfn));
1718 }
1719 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1720
1721 static int next_segment(unsigned long len, int offset)
1722 {
1723         if (len > PAGE_SIZE - offset)
1724                 return PAGE_SIZE - offset;
1725         else
1726                 return len;
1727 }
1728
1729 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1730                                  void *data, int offset, int len)
1731 {
1732         int r;
1733         unsigned long addr;
1734
1735         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1736         if (kvm_is_error_hva(addr))
1737                 return -EFAULT;
1738         r = __copy_from_user(data, (void __user *)addr + offset, len);
1739         if (r)
1740                 return -EFAULT;
1741         return 0;
1742 }
1743
1744 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1745                         int len)
1746 {
1747         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1748
1749         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1750 }
1751 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1752
1753 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1754                              int offset, int len)
1755 {
1756         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1757
1758         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1759 }
1760 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1761
1762 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1763 {
1764         gfn_t gfn = gpa >> PAGE_SHIFT;
1765         int seg;
1766         int offset = offset_in_page(gpa);
1767         int ret;
1768
1769         while ((seg = next_segment(len, offset)) != 0) {
1770                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1771                 if (ret < 0)
1772                         return ret;
1773                 offset = 0;
1774                 len -= seg;
1775                 data += seg;
1776                 ++gfn;
1777         }
1778         return 0;
1779 }
1780 EXPORT_SYMBOL_GPL(kvm_read_guest);
1781
1782 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1783 {
1784         gfn_t gfn = gpa >> PAGE_SHIFT;
1785         int seg;
1786         int offset = offset_in_page(gpa);
1787         int ret;
1788
1789         while ((seg = next_segment(len, offset)) != 0) {
1790                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1791                 if (ret < 0)
1792                         return ret;
1793                 offset = 0;
1794                 len -= seg;
1795                 data += seg;
1796                 ++gfn;
1797         }
1798         return 0;
1799 }
1800 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1801
1802 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1803                                    void *data, int offset, unsigned long len)
1804 {
1805         int r;
1806         unsigned long addr;
1807
1808         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1809         if (kvm_is_error_hva(addr))
1810                 return -EFAULT;
1811         pagefault_disable();
1812         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1813         pagefault_enable();
1814         if (r)
1815                 return -EFAULT;
1816         return 0;
1817 }
1818
1819 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1820                           unsigned long len)
1821 {
1822         gfn_t gfn = gpa >> PAGE_SHIFT;
1823         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1824         int offset = offset_in_page(gpa);
1825
1826         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1827 }
1828 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1829
1830 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1831                                void *data, unsigned long len)
1832 {
1833         gfn_t gfn = gpa >> PAGE_SHIFT;
1834         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1835         int offset = offset_in_page(gpa);
1836
1837         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1838 }
1839 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1840
1841 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1842                                   const void *data, int offset, int len)
1843 {
1844         int r;
1845         unsigned long addr;
1846
1847         addr = gfn_to_hva_memslot(memslot, gfn);
1848         if (kvm_is_error_hva(addr))
1849                 return -EFAULT;
1850         r = __copy_to_user((void __user *)addr + offset, data, len);
1851         if (r)
1852                 return -EFAULT;
1853         mark_page_dirty_in_slot(memslot, gfn);
1854         return 0;
1855 }
1856
1857 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1858                          const void *data, int offset, int len)
1859 {
1860         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1861
1862         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1863 }
1864 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1865
1866 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1867                               const void *data, int offset, int len)
1868 {
1869         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1870
1871         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1872 }
1873 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1874
1875 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1876                     unsigned long len)
1877 {
1878         gfn_t gfn = gpa >> PAGE_SHIFT;
1879         int seg;
1880         int offset = offset_in_page(gpa);
1881         int ret;
1882
1883         while ((seg = next_segment(len, offset)) != 0) {
1884                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1885                 if (ret < 0)
1886                         return ret;
1887                 offset = 0;
1888                 len -= seg;
1889                 data += seg;
1890                 ++gfn;
1891         }
1892         return 0;
1893 }
1894 EXPORT_SYMBOL_GPL(kvm_write_guest);
1895
1896 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1897                          unsigned long len)
1898 {
1899         gfn_t gfn = gpa >> PAGE_SHIFT;
1900         int seg;
1901         int offset = offset_in_page(gpa);
1902         int ret;
1903
1904         while ((seg = next_segment(len, offset)) != 0) {
1905                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1906                 if (ret < 0)
1907                         return ret;
1908                 offset = 0;
1909                 len -= seg;
1910                 data += seg;
1911                 ++gfn;
1912         }
1913         return 0;
1914 }
1915 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1916
1917 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1918                                        struct gfn_to_hva_cache *ghc,
1919                                        gpa_t gpa, unsigned long len)
1920 {
1921         int offset = offset_in_page(gpa);
1922         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1923         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1924         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1925         gfn_t nr_pages_avail;
1926
1927         ghc->gpa = gpa;
1928         ghc->generation = slots->generation;
1929         ghc->len = len;
1930         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1931         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1932         if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1933                 ghc->hva += offset;
1934         } else {
1935                 /*
1936                  * If the requested region crosses two memslots, we still
1937                  * verify that the entire region is valid here.
1938                  */
1939                 while (start_gfn <= end_gfn) {
1940                         nr_pages_avail = 0;
1941                         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1942                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1943                                                    &nr_pages_avail);
1944                         if (kvm_is_error_hva(ghc->hva))
1945                                 return -EFAULT;
1946                         start_gfn += nr_pages_avail;
1947                 }
1948                 /* Use the slow path for cross page reads and writes. */
1949                 ghc->memslot = NULL;
1950         }
1951         return 0;
1952 }
1953
1954 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1955                               gpa_t gpa, unsigned long len)
1956 {
1957         struct kvm_memslots *slots = kvm_memslots(kvm);
1958         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1959 }
1960 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1961
1962 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1963                            void *data, int offset, unsigned long len)
1964 {
1965         struct kvm_memslots *slots = kvm_memslots(kvm);
1966         int r;
1967         gpa_t gpa = ghc->gpa + offset;
1968
1969         BUG_ON(len + offset > ghc->len);
1970
1971         if (slots->generation != ghc->generation)
1972                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1973
1974         if (unlikely(!ghc->memslot))
1975                 return kvm_write_guest(kvm, gpa, data, len);
1976
1977         if (kvm_is_error_hva(ghc->hva))
1978                 return -EFAULT;
1979
1980         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1981         if (r)
1982                 return -EFAULT;
1983         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1984
1985         return 0;
1986 }
1987 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1988
1989 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1990                            void *data, unsigned long len)
1991 {
1992         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
1993 }
1994 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1995
1996 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1997                            void *data, unsigned long len)
1998 {
1999         struct kvm_memslots *slots = kvm_memslots(kvm);
2000         int r;
2001
2002         BUG_ON(len > ghc->len);
2003
2004         if (slots->generation != ghc->generation)
2005                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2006
2007         if (unlikely(!ghc->memslot))
2008                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2009
2010         if (kvm_is_error_hva(ghc->hva))
2011                 return -EFAULT;
2012
2013         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2014         if (r)
2015                 return -EFAULT;
2016
2017         return 0;
2018 }
2019 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2020
2021 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2022 {
2023         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2024
2025         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2026 }
2027 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2028
2029 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2030 {
2031         gfn_t gfn = gpa >> PAGE_SHIFT;
2032         int seg;
2033         int offset = offset_in_page(gpa);
2034         int ret;
2035
2036         while ((seg = next_segment(len, offset)) != 0) {
2037                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2038                 if (ret < 0)
2039                         return ret;
2040                 offset = 0;
2041                 len -= seg;
2042                 ++gfn;
2043         }
2044         return 0;
2045 }
2046 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2047
2048 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2049                                     gfn_t gfn)
2050 {
2051         if (memslot && memslot->dirty_bitmap) {
2052                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2053
2054                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2055         }
2056 }
2057
2058 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2059 {
2060         struct kvm_memory_slot *memslot;
2061
2062         memslot = gfn_to_memslot(kvm, gfn);
2063         mark_page_dirty_in_slot(memslot, gfn);
2064 }
2065 EXPORT_SYMBOL_GPL(mark_page_dirty);
2066
2067 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2068 {
2069         struct kvm_memory_slot *memslot;
2070
2071         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2072         mark_page_dirty_in_slot(memslot, gfn);
2073 }
2074 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2075
2076 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2077 {
2078         if (!vcpu->sigset_active)
2079                 return;
2080
2081         /*
2082          * This does a lockless modification of ->real_blocked, which is fine
2083          * because, only current can change ->real_blocked and all readers of
2084          * ->real_blocked don't care as long ->real_blocked is always a subset
2085          * of ->blocked.
2086          */
2087         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2088 }
2089
2090 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2091 {
2092         if (!vcpu->sigset_active)
2093                 return;
2094
2095         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2096         sigemptyset(&current->real_blocked);
2097 }
2098
2099 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2100 {
2101         unsigned int old, val, grow;
2102
2103         old = val = vcpu->halt_poll_ns;
2104         grow = READ_ONCE(halt_poll_ns_grow);
2105         /* 10us base */
2106         if (val == 0 && grow)
2107                 val = 10000;
2108         else
2109                 val *= grow;
2110
2111         if (val > halt_poll_ns)
2112                 val = halt_poll_ns;
2113
2114         vcpu->halt_poll_ns = val;
2115         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2116 }
2117
2118 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2119 {
2120         unsigned int old, val, shrink;
2121
2122         old = val = vcpu->halt_poll_ns;
2123         shrink = READ_ONCE(halt_poll_ns_shrink);
2124         if (shrink == 0)
2125                 val = 0;
2126         else
2127                 val /= shrink;
2128
2129         vcpu->halt_poll_ns = val;
2130         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2131 }
2132
2133 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2134 {
2135         if (kvm_arch_vcpu_runnable(vcpu)) {
2136                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2137                 return -EINTR;
2138         }
2139         if (kvm_cpu_has_pending_timer(vcpu))
2140                 return -EINTR;
2141         if (signal_pending(current))
2142                 return -EINTR;
2143
2144         return 0;
2145 }
2146
2147 /*
2148  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2149  */
2150 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2151 {
2152         ktime_t start, cur;
2153         DECLARE_SWAITQUEUE(wait);
2154         bool waited = false;
2155         u64 block_ns;
2156
2157         start = cur = ktime_get();
2158         if (vcpu->halt_poll_ns) {
2159                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2160
2161                 ++vcpu->stat.halt_attempted_poll;
2162                 do {
2163                         /*
2164                          * This sets KVM_REQ_UNHALT if an interrupt
2165                          * arrives.
2166                          */
2167                         if (kvm_vcpu_check_block(vcpu) < 0) {
2168                                 ++vcpu->stat.halt_successful_poll;
2169                                 if (!vcpu_valid_wakeup(vcpu))
2170                                         ++vcpu->stat.halt_poll_invalid;
2171                                 goto out;
2172                         }
2173                         cur = ktime_get();
2174                 } while (single_task_running() && ktime_before(cur, stop));
2175         }
2176
2177         kvm_arch_vcpu_blocking(vcpu);
2178
2179         for (;;) {
2180                 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2181
2182                 if (kvm_vcpu_check_block(vcpu) < 0)
2183                         break;
2184
2185                 waited = true;
2186                 schedule();
2187         }
2188
2189         finish_swait(&vcpu->wq, &wait);
2190         cur = ktime_get();
2191
2192         kvm_arch_vcpu_unblocking(vcpu);
2193 out:
2194         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2195
2196         if (!vcpu_valid_wakeup(vcpu))
2197                 shrink_halt_poll_ns(vcpu);
2198         else if (halt_poll_ns) {
2199                 if (block_ns <= vcpu->halt_poll_ns)
2200                         ;
2201                 /* we had a long block, shrink polling */
2202                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2203                         shrink_halt_poll_ns(vcpu);
2204                 /* we had a short halt and our poll time is too small */
2205                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2206                         block_ns < halt_poll_ns)
2207                         grow_halt_poll_ns(vcpu);
2208         } else
2209                 vcpu->halt_poll_ns = 0;
2210
2211         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2212         kvm_arch_vcpu_block_finish(vcpu);
2213 }
2214 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2215
2216 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2217 {
2218         struct swait_queue_head *wqp;
2219
2220         wqp = kvm_arch_vcpu_wq(vcpu);
2221         if (swq_has_sleeper(wqp)) {
2222                 swake_up(wqp);
2223                 ++vcpu->stat.halt_wakeup;
2224                 return true;
2225         }
2226
2227         return false;
2228 }
2229 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2230
2231 #ifndef CONFIG_S390
2232 /*
2233  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2234  */
2235 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2236 {
2237         int me;
2238         int cpu = vcpu->cpu;
2239
2240         if (kvm_vcpu_wake_up(vcpu))
2241                 return;
2242
2243         me = get_cpu();
2244         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2245                 if (kvm_arch_vcpu_should_kick(vcpu))
2246                         smp_send_reschedule(cpu);
2247         put_cpu();
2248 }
2249 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2250 #endif /* !CONFIG_S390 */
2251
2252 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2253 {
2254         struct pid *pid;
2255         struct task_struct *task = NULL;
2256         int ret = 0;
2257
2258         rcu_read_lock();
2259         pid = rcu_dereference(target->pid);
2260         if (pid)
2261                 task = get_pid_task(pid, PIDTYPE_PID);
2262         rcu_read_unlock();
2263         if (!task)
2264                 return ret;
2265         ret = yield_to(task, 1);
2266         put_task_struct(task);
2267
2268         return ret;
2269 }
2270 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2271
2272 /*
2273  * Helper that checks whether a VCPU is eligible for directed yield.
2274  * Most eligible candidate to yield is decided by following heuristics:
2275  *
2276  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2277  *  (preempted lock holder), indicated by @in_spin_loop.
2278  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2279  *
2280  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2281  *  chance last time (mostly it has become eligible now since we have probably
2282  *  yielded to lockholder in last iteration. This is done by toggling
2283  *  @dy_eligible each time a VCPU checked for eligibility.)
2284  *
2285  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2286  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2287  *  burning. Giving priority for a potential lock-holder increases lock
2288  *  progress.
2289  *
2290  *  Since algorithm is based on heuristics, accessing another VCPU data without
2291  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2292  *  and continue with next VCPU and so on.
2293  */
2294 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2295 {
2296 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2297         bool eligible;
2298
2299         eligible = !vcpu->spin_loop.in_spin_loop ||
2300                     vcpu->spin_loop.dy_eligible;
2301
2302         if (vcpu->spin_loop.in_spin_loop)
2303                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2304
2305         return eligible;
2306 #else
2307         return true;
2308 #endif
2309 }
2310
2311 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2312 {
2313         struct kvm *kvm = me->kvm;
2314         struct kvm_vcpu *vcpu;
2315         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2316         int yielded = 0;
2317         int try = 3;
2318         int pass;
2319         int i;
2320
2321         kvm_vcpu_set_in_spin_loop(me, true);
2322         /*
2323          * We boost the priority of a VCPU that is runnable but not
2324          * currently running, because it got preempted by something
2325          * else and called schedule in __vcpu_run.  Hopefully that
2326          * VCPU is holding the lock that we need and will release it.
2327          * We approximate round-robin by starting at the last boosted VCPU.
2328          */
2329         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2330                 kvm_for_each_vcpu(i, vcpu, kvm) {
2331                         if (!pass && i <= last_boosted_vcpu) {
2332                                 i = last_boosted_vcpu;
2333                                 continue;
2334                         } else if (pass && i > last_boosted_vcpu)
2335                                 break;
2336                         if (!READ_ONCE(vcpu->preempted))
2337                                 continue;
2338                         if (vcpu == me)
2339                                 continue;
2340                         if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2341                                 continue;
2342                         if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2343                                 continue;
2344                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2345                                 continue;
2346
2347                         yielded = kvm_vcpu_yield_to(vcpu);
2348                         if (yielded > 0) {
2349                                 kvm->last_boosted_vcpu = i;
2350                                 break;
2351                         } else if (yielded < 0) {
2352                                 try--;
2353                                 if (!try)
2354                                         break;
2355                         }
2356                 }
2357         }
2358         kvm_vcpu_set_in_spin_loop(me, false);
2359
2360         /* Ensure vcpu is not eligible during next spinloop */
2361         kvm_vcpu_set_dy_eligible(me, false);
2362 }
2363 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2364
2365 static int kvm_vcpu_fault(struct vm_fault *vmf)
2366 {
2367         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2368         struct page *page;
2369
2370         if (vmf->pgoff == 0)
2371                 page = virt_to_page(vcpu->run);
2372 #ifdef CONFIG_X86
2373         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2374                 page = virt_to_page(vcpu->arch.pio_data);
2375 #endif
2376 #ifdef CONFIG_KVM_MMIO
2377         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2378                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2379 #endif
2380         else
2381                 return kvm_arch_vcpu_fault(vcpu, vmf);
2382         get_page(page);
2383         vmf->page = page;
2384         return 0;
2385 }
2386
2387 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2388         .fault = kvm_vcpu_fault,
2389 };
2390
2391 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2392 {
2393         vma->vm_ops = &kvm_vcpu_vm_ops;
2394         return 0;
2395 }
2396
2397 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2398 {
2399         struct kvm_vcpu *vcpu = filp->private_data;
2400
2401         debugfs_remove_recursive(vcpu->debugfs_dentry);
2402         kvm_put_kvm(vcpu->kvm);
2403         return 0;
2404 }
2405
2406 static struct file_operations kvm_vcpu_fops = {
2407         .release        = kvm_vcpu_release,
2408         .unlocked_ioctl = kvm_vcpu_ioctl,
2409 #ifdef CONFIG_KVM_COMPAT
2410         .compat_ioctl   = kvm_vcpu_compat_ioctl,
2411 #endif
2412         .mmap           = kvm_vcpu_mmap,
2413         .llseek         = noop_llseek,
2414 };
2415
2416 /*
2417  * Allocates an inode for the vcpu.
2418  */
2419 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2420 {
2421         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2422 }
2423
2424 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2425 {
2426         char dir_name[ITOA_MAX_LEN * 2];
2427         int ret;
2428
2429         if (!kvm_arch_has_vcpu_debugfs())
2430                 return 0;
2431
2432         if (!debugfs_initialized())
2433                 return 0;
2434
2435         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2436         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2437                                                                 vcpu->kvm->debugfs_dentry);
2438         if (!vcpu->debugfs_dentry)
2439                 return -ENOMEM;
2440
2441         ret = kvm_arch_create_vcpu_debugfs(vcpu);
2442         if (ret < 0) {
2443                 debugfs_remove_recursive(vcpu->debugfs_dentry);
2444                 return ret;
2445         }
2446
2447         return 0;
2448 }
2449
2450 /*
2451  * Creates some virtual cpus.  Good luck creating more than one.
2452  */
2453 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2454 {
2455         int r;
2456         struct kvm_vcpu *vcpu;
2457
2458         if (id >= KVM_MAX_VCPU_ID)
2459                 return -EINVAL;
2460
2461         mutex_lock(&kvm->lock);
2462         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2463                 mutex_unlock(&kvm->lock);
2464                 return -EINVAL;
2465         }
2466
2467         kvm->created_vcpus++;
2468         mutex_unlock(&kvm->lock);
2469
2470         vcpu = kvm_arch_vcpu_create(kvm, id);
2471         if (IS_ERR(vcpu)) {
2472                 r = PTR_ERR(vcpu);
2473                 goto vcpu_decrement;
2474         }
2475
2476         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2477
2478         r = kvm_arch_vcpu_setup(vcpu);
2479         if (r)
2480                 goto vcpu_destroy;
2481
2482         r = kvm_create_vcpu_debugfs(vcpu);
2483         if (r)
2484                 goto vcpu_destroy;
2485
2486         mutex_lock(&kvm->lock);
2487         if (kvm_get_vcpu_by_id(kvm, id)) {
2488                 r = -EEXIST;
2489                 goto unlock_vcpu_destroy;
2490         }
2491
2492         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2493
2494         /* Now it's all set up, let userspace reach it */
2495         kvm_get_kvm(kvm);
2496         r = create_vcpu_fd(vcpu);
2497         if (r < 0) {
2498                 kvm_put_kvm(kvm);
2499                 goto unlock_vcpu_destroy;
2500         }
2501
2502         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2503
2504         /*
2505          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2506          * before kvm->online_vcpu's incremented value.
2507          */
2508         smp_wmb();
2509         atomic_inc(&kvm->online_vcpus);
2510
2511         mutex_unlock(&kvm->lock);
2512         kvm_arch_vcpu_postcreate(vcpu);
2513         return r;
2514
2515 unlock_vcpu_destroy:
2516         mutex_unlock(&kvm->lock);
2517         debugfs_remove_recursive(vcpu->debugfs_dentry);
2518 vcpu_destroy:
2519         kvm_arch_vcpu_destroy(vcpu);
2520 vcpu_decrement:
2521         mutex_lock(&kvm->lock);
2522         kvm->created_vcpus--;
2523         mutex_unlock(&kvm->lock);
2524         return r;
2525 }
2526
2527 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2528 {
2529         if (sigset) {
2530                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2531                 vcpu->sigset_active = 1;
2532                 vcpu->sigset = *sigset;
2533         } else
2534                 vcpu->sigset_active = 0;
2535         return 0;
2536 }
2537
2538 static long kvm_vcpu_ioctl(struct file *filp,
2539                            unsigned int ioctl, unsigned long arg)
2540 {
2541         struct kvm_vcpu *vcpu = filp->private_data;
2542         void __user *argp = (void __user *)arg;
2543         int r;
2544         struct kvm_fpu *fpu = NULL;
2545         struct kvm_sregs *kvm_sregs = NULL;
2546
2547         if (vcpu->kvm->mm != current->mm)
2548                 return -EIO;
2549
2550         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2551                 return -EINVAL;
2552
2553 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2554         /*
2555          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2556          * so vcpu_load() would break it.
2557          */
2558         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2559                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2560 #endif
2561
2562
2563         r = vcpu_load(vcpu);
2564         if (r)
2565                 return r;
2566         switch (ioctl) {
2567         case KVM_RUN: {
2568                 struct pid *oldpid;
2569                 r = -EINVAL;
2570                 if (arg)
2571                         goto out;
2572                 oldpid = rcu_access_pointer(vcpu->pid);
2573                 if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
2574                         /* The thread running this VCPU changed. */
2575                         struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2576
2577                         rcu_assign_pointer(vcpu->pid, newpid);
2578                         if (oldpid)
2579                                 synchronize_rcu();
2580                         put_pid(oldpid);
2581                 }
2582                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2583                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2584                 break;
2585         }
2586         case KVM_GET_REGS: {
2587                 struct kvm_regs *kvm_regs;
2588
2589                 r = -ENOMEM;
2590                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2591                 if (!kvm_regs)
2592                         goto out;
2593                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2594                 if (r)
2595                         goto out_free1;
2596                 r = -EFAULT;
2597                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2598                         goto out_free1;
2599                 r = 0;
2600 out_free1:
2601                 kfree(kvm_regs);
2602                 break;
2603         }
2604         case KVM_SET_REGS: {
2605                 struct kvm_regs *kvm_regs;
2606
2607                 r = -ENOMEM;
2608                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2609                 if (IS_ERR(kvm_regs)) {
2610                         r = PTR_ERR(kvm_regs);
2611                         goto out;
2612                 }
2613                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2614                 kfree(kvm_regs);
2615                 break;
2616         }
2617         case KVM_GET_SREGS: {
2618                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2619                 r = -ENOMEM;
2620                 if (!kvm_sregs)
2621                         goto out;
2622                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2623                 if (r)
2624                         goto out;
2625                 r = -EFAULT;
2626                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2627                         goto out;
2628                 r = 0;
2629                 break;
2630         }
2631         case KVM_SET_SREGS: {
2632                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2633                 if (IS_ERR(kvm_sregs)) {
2634                         r = PTR_ERR(kvm_sregs);
2635                         kvm_sregs = NULL;
2636                         goto out;
2637                 }
2638                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2639                 break;
2640         }
2641         case KVM_GET_MP_STATE: {
2642                 struct kvm_mp_state mp_state;
2643
2644                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2645                 if (r)
2646                         goto out;
2647                 r = -EFAULT;
2648                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2649                         goto out;
2650                 r = 0;
2651                 break;
2652         }
2653         case KVM_SET_MP_STATE: {
2654                 struct kvm_mp_state mp_state;
2655
2656                 r = -EFAULT;
2657                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2658                         goto out;
2659                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2660                 break;
2661         }
2662         case KVM_TRANSLATE: {
2663                 struct kvm_translation tr;
2664
2665                 r = -EFAULT;
2666                 if (copy_from_user(&tr, argp, sizeof(tr)))
2667                         goto out;
2668                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2669                 if (r)
2670                         goto out;
2671                 r = -EFAULT;
2672                 if (copy_to_user(argp, &tr, sizeof(tr)))
2673                         goto out;
2674                 r = 0;
2675                 break;
2676         }
2677         case KVM_SET_GUEST_DEBUG: {
2678                 struct kvm_guest_debug dbg;
2679
2680                 r = -EFAULT;
2681                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2682                         goto out;
2683                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2684                 break;
2685         }
2686         case KVM_SET_SIGNAL_MASK: {
2687                 struct kvm_signal_mask __user *sigmask_arg = argp;
2688                 struct kvm_signal_mask kvm_sigmask;
2689                 sigset_t sigset, *p;
2690
2691                 p = NULL;
2692                 if (argp) {
2693                         r = -EFAULT;
2694                         if (copy_from_user(&kvm_sigmask, argp,
2695                                            sizeof(kvm_sigmask)))
2696                                 goto out;
2697                         r = -EINVAL;
2698                         if (kvm_sigmask.len != sizeof(sigset))
2699                                 goto out;
2700                         r = -EFAULT;
2701                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2702                                            sizeof(sigset)))
2703                                 goto out;
2704                         p = &sigset;
2705                 }
2706                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2707                 break;
2708         }
2709         case KVM_GET_FPU: {
2710                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2711                 r = -ENOMEM;
2712                 if (!fpu)
2713                         goto out;
2714                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2715                 if (r)
2716                         goto out;
2717                 r = -EFAULT;
2718                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2719                         goto out;
2720                 r = 0;
2721                 break;
2722         }
2723         case KVM_SET_FPU: {
2724                 fpu = memdup_user(argp, sizeof(*fpu));
2725                 if (IS_ERR(fpu)) {
2726                         r = PTR_ERR(fpu);
2727                         fpu = NULL;
2728                         goto out;
2729                 }
2730                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2731                 break;
2732         }
2733         default:
2734                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2735         }
2736 out:
2737         vcpu_put(vcpu);
2738         kfree(fpu);
2739         kfree(kvm_sregs);
2740         return r;
2741 }
2742
2743 #ifdef CONFIG_KVM_COMPAT
2744 static long kvm_vcpu_compat_ioctl(struct file *filp,
2745                                   unsigned int ioctl, unsigned long arg)
2746 {
2747         struct kvm_vcpu *vcpu = filp->private_data;
2748         void __user *argp = compat_ptr(arg);
2749         int r;
2750
2751         if (vcpu->kvm->mm != current->mm)
2752                 return -EIO;
2753
2754         switch (ioctl) {
2755         case KVM_SET_SIGNAL_MASK: {
2756                 struct kvm_signal_mask __user *sigmask_arg = argp;
2757                 struct kvm_signal_mask kvm_sigmask;
2758                 sigset_t sigset;
2759
2760                 if (argp) {
2761                         r = -EFAULT;
2762                         if (copy_from_user(&kvm_sigmask, argp,
2763                                            sizeof(kvm_sigmask)))
2764                                 goto out;
2765                         r = -EINVAL;
2766                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
2767                                 goto out;
2768                         r = -EFAULT;
2769                         if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2770                                 goto out;
2771                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2772                 } else
2773                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2774                 break;
2775         }
2776         default:
2777                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2778         }
2779
2780 out:
2781         return r;
2782 }
2783 #endif
2784
2785 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2786                                  int (*accessor)(struct kvm_device *dev,
2787                                                  struct kvm_device_attr *attr),
2788                                  unsigned long arg)
2789 {
2790         struct kvm_device_attr attr;
2791
2792         if (!accessor)
2793                 return -EPERM;
2794
2795         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2796                 return -EFAULT;
2797
2798         return accessor(dev, &attr);
2799 }
2800
2801 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2802                              unsigned long arg)
2803 {
2804         struct kvm_device *dev = filp->private_data;
2805
2806         switch (ioctl) {
2807         case KVM_SET_DEVICE_ATTR:
2808                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2809         case KVM_GET_DEVICE_ATTR:
2810                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2811         case KVM_HAS_DEVICE_ATTR:
2812                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2813         default:
2814                 if (dev->ops->ioctl)
2815                         return dev->ops->ioctl(dev, ioctl, arg);
2816
2817                 return -ENOTTY;
2818         }
2819 }
2820
2821 static int kvm_device_release(struct inode *inode, struct file *filp)
2822 {
2823         struct kvm_device *dev = filp->private_data;
2824         struct kvm *kvm = dev->kvm;
2825
2826         kvm_put_kvm(kvm);
2827         return 0;
2828 }
2829
2830 static const struct file_operations kvm_device_fops = {
2831         .unlocked_ioctl = kvm_device_ioctl,
2832 #ifdef CONFIG_KVM_COMPAT
2833         .compat_ioctl = kvm_device_ioctl,
2834 #endif
2835         .release = kvm_device_release,
2836 };
2837
2838 struct kvm_device *kvm_device_from_filp(struct file *filp)
2839 {
2840         if (filp->f_op != &kvm_device_fops)
2841                 return NULL;
2842
2843         return filp->private_data;
2844 }
2845
2846 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2847 #ifdef CONFIG_KVM_MPIC
2848         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2849         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2850 #endif
2851 };
2852
2853 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2854 {
2855         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2856                 return -ENOSPC;
2857
2858         if (kvm_device_ops_table[type] != NULL)
2859                 return -EEXIST;
2860
2861         kvm_device_ops_table[type] = ops;
2862         return 0;
2863 }
2864
2865 void kvm_unregister_device_ops(u32 type)
2866 {
2867         if (kvm_device_ops_table[type] != NULL)
2868                 kvm_device_ops_table[type] = NULL;
2869 }
2870
2871 static int kvm_ioctl_create_device(struct kvm *kvm,
2872                                    struct kvm_create_device *cd)
2873 {
2874         struct kvm_device_ops *ops = NULL;
2875         struct kvm_device *dev;
2876         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2877         int ret;
2878
2879         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2880                 return -ENODEV;
2881
2882         ops = kvm_device_ops_table[cd->type];
2883         if (ops == NULL)
2884                 return -ENODEV;
2885
2886         if (test)
2887                 return 0;
2888
2889         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2890         if (!dev)
2891                 return -ENOMEM;
2892
2893         dev->ops = ops;
2894         dev->kvm = kvm;
2895
2896         mutex_lock(&kvm->lock);
2897         ret = ops->create(dev, cd->type);
2898         if (ret < 0) {
2899                 mutex_unlock(&kvm->lock);
2900                 kfree(dev);
2901                 return ret;
2902         }
2903         list_add(&dev->vm_node, &kvm->devices);
2904         mutex_unlock(&kvm->lock);
2905
2906         if (ops->init)
2907                 ops->init(dev);
2908
2909         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2910         if (ret < 0) {
2911                 mutex_lock(&kvm->lock);
2912                 list_del(&dev->vm_node);
2913                 mutex_unlock(&kvm->lock);
2914                 ops->destroy(dev);
2915                 return ret;
2916         }
2917
2918         kvm_get_kvm(kvm);
2919         cd->fd = ret;
2920         return 0;
2921 }
2922
2923 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2924 {
2925         switch (arg) {
2926         case KVM_CAP_USER_MEMORY:
2927         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2928         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2929         case KVM_CAP_INTERNAL_ERROR_DATA:
2930 #ifdef CONFIG_HAVE_KVM_MSI
2931         case KVM_CAP_SIGNAL_MSI:
2932 #endif
2933 #ifdef CONFIG_HAVE_KVM_IRQFD
2934         case KVM_CAP_IRQFD:
2935         case KVM_CAP_IRQFD_RESAMPLE:
2936 #endif
2937         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2938         case KVM_CAP_CHECK_EXTENSION_VM:
2939                 return 1;
2940 #ifdef CONFIG_KVM_MMIO
2941         case KVM_CAP_COALESCED_MMIO:
2942                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
2943 #endif
2944 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2945         case KVM_CAP_IRQ_ROUTING:
2946                 return KVM_MAX_IRQ_ROUTES;
2947 #endif
2948 #if KVM_ADDRESS_SPACE_NUM > 1
2949         case KVM_CAP_MULTI_ADDRESS_SPACE:
2950                 return KVM_ADDRESS_SPACE_NUM;
2951 #endif
2952         case KVM_CAP_MAX_VCPU_ID:
2953                 return KVM_MAX_VCPU_ID;
2954         default:
2955                 break;
2956         }
2957         return kvm_vm_ioctl_check_extension(kvm, arg);
2958 }
2959
2960 static long kvm_vm_ioctl(struct file *filp,
2961                            unsigned int ioctl, unsigned long arg)
2962 {
2963         struct kvm *kvm = filp->private_data;
2964         void __user *argp = (void __user *)arg;
2965         int r;
2966
2967         if (kvm->mm != current->mm)
2968                 return -EIO;
2969         switch (ioctl) {
2970         case KVM_CREATE_VCPU:
2971                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2972                 break;
2973         case KVM_SET_USER_MEMORY_REGION: {
2974                 struct kvm_userspace_memory_region kvm_userspace_mem;
2975
2976                 r = -EFAULT;
2977                 if (copy_from_user(&kvm_userspace_mem, argp,
2978                                                 sizeof(kvm_userspace_mem)))
2979                         goto out;
2980
2981                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2982                 break;
2983         }
2984         case KVM_GET_DIRTY_LOG: {
2985                 struct kvm_dirty_log log;
2986
2987                 r = -EFAULT;
2988                 if (copy_from_user(&log, argp, sizeof(log)))
2989                         goto out;
2990                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2991                 break;
2992         }
2993 #ifdef CONFIG_KVM_MMIO
2994         case KVM_REGISTER_COALESCED_MMIO: {
2995                 struct kvm_coalesced_mmio_zone zone;
2996
2997                 r = -EFAULT;
2998                 if (copy_from_user(&zone, argp, sizeof(zone)))
2999                         goto out;
3000                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3001                 break;
3002         }
3003         case KVM_UNREGISTER_COALESCED_MMIO: {
3004                 struct kvm_coalesced_mmio_zone zone;
3005
3006                 r = -EFAULT;
3007                 if (copy_from_user(&zone, argp, sizeof(zone)))
3008                         goto out;
3009                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3010                 break;
3011         }
3012 #endif
3013         case KVM_IRQFD: {
3014                 struct kvm_irqfd data;
3015
3016                 r = -EFAULT;
3017                 if (copy_from_user(&data, argp, sizeof(data)))
3018                         goto out;
3019                 r = kvm_irqfd(kvm, &data);
3020                 break;
3021         }
3022         case KVM_IOEVENTFD: {
3023                 struct kvm_ioeventfd data;
3024
3025                 r = -EFAULT;
3026                 if (copy_from_user(&data, argp, sizeof(data)))
3027                         goto out;
3028                 r = kvm_ioeventfd(kvm, &data);
3029                 break;
3030         }
3031 #ifdef CONFIG_HAVE_KVM_MSI
3032         case KVM_SIGNAL_MSI: {
3033                 struct kvm_msi msi;
3034
3035                 r = -EFAULT;
3036                 if (copy_from_user(&msi, argp, sizeof(msi)))
3037                         goto out;
3038                 r = kvm_send_userspace_msi(kvm, &msi);
3039                 break;
3040         }
3041 #endif
3042 #ifdef __KVM_HAVE_IRQ_LINE
3043         case KVM_IRQ_LINE_STATUS:
3044         case KVM_IRQ_LINE: {
3045                 struct kvm_irq_level irq_event;
3046
3047                 r = -EFAULT;
3048                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3049                         goto out;
3050
3051                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3052                                         ioctl == KVM_IRQ_LINE_STATUS);
3053                 if (r)
3054                         goto out;
3055
3056                 r = -EFAULT;
3057                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3058                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3059                                 goto out;
3060                 }
3061
3062                 r = 0;
3063                 break;
3064         }
3065 #endif
3066 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3067         case KVM_SET_GSI_ROUTING: {
3068                 struct kvm_irq_routing routing;
3069                 struct kvm_irq_routing __user *urouting;
3070                 struct kvm_irq_routing_entry *entries = NULL;
3071
3072                 r = -EFAULT;
3073                 if (copy_from_user(&routing, argp, sizeof(routing)))
3074                         goto out;
3075                 r = -EINVAL;
3076                 if (!kvm_arch_can_set_irq_routing(kvm))
3077                         goto out;
3078                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3079                         goto out;
3080                 if (routing.flags)
3081                         goto out;
3082                 if (routing.nr) {
3083                         r = -ENOMEM;
3084                         entries = vmalloc(routing.nr * sizeof(*entries));
3085                         if (!entries)
3086                                 goto out;
3087                         r = -EFAULT;
3088                         urouting = argp;
3089                         if (copy_from_user(entries, urouting->entries,
3090                                            routing.nr * sizeof(*entries)))
3091                                 goto out_free_irq_routing;
3092                 }
3093                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3094                                         routing.flags);
3095 out_free_irq_routing:
3096                 vfree(entries);
3097                 break;
3098         }
3099 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3100         case KVM_CREATE_DEVICE: {
3101                 struct kvm_create_device cd;
3102
3103                 r = -EFAULT;
3104                 if (copy_from_user(&cd, argp, sizeof(cd)))
3105                         goto out;
3106
3107                 r = kvm_ioctl_create_device(kvm, &cd);
3108                 if (r)
3109                         goto out;
3110
3111                 r = -EFAULT;
3112                 if (copy_to_user(argp, &cd, sizeof(cd)))
3113                         goto out;
3114
3115                 r = 0;
3116                 break;
3117         }
3118         case KVM_CHECK_EXTENSION:
3119                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3120                 break;
3121         default:
3122                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3123         }
3124 out:
3125         return r;
3126 }
3127
3128 #ifdef CONFIG_KVM_COMPAT
3129 struct compat_kvm_dirty_log {
3130         __u32 slot;
3131         __u32 padding1;
3132         union {
3133                 compat_uptr_t dirty_bitmap; /* one bit per page */
3134                 __u64 padding2;
3135         };
3136 };
3137
3138 static long kvm_vm_compat_ioctl(struct file *filp,
3139                            unsigned int ioctl, unsigned long arg)
3140 {
3141         struct kvm *kvm = filp->private_data;
3142         int r;
3143
3144         if (kvm->mm != current->mm)
3145                 return -EIO;
3146         switch (ioctl) {
3147         case KVM_GET_DIRTY_LOG: {
3148                 struct compat_kvm_dirty_log compat_log;
3149                 struct kvm_dirty_log log;
3150
3151                 if (copy_from_user(&compat_log, (void __user *)arg,
3152                                    sizeof(compat_log)))
3153                         return -EFAULT;
3154                 log.slot         = compat_log.slot;
3155                 log.padding1     = compat_log.padding1;
3156                 log.padding2     = compat_log.padding2;
3157                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3158
3159                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3160                 break;
3161         }
3162         default:
3163                 r = kvm_vm_ioctl(filp, ioctl, arg);
3164         }
3165         return r;
3166 }
3167 #endif
3168
3169 static struct file_operations kvm_vm_fops = {
3170         .release        = kvm_vm_release,
3171         .unlocked_ioctl = kvm_vm_ioctl,
3172 #ifdef CONFIG_KVM_COMPAT
3173         .compat_ioctl   = kvm_vm_compat_ioctl,
3174 #endif
3175         .llseek         = noop_llseek,
3176 };
3177
3178 static int kvm_dev_ioctl_create_vm(unsigned long type)
3179 {
3180         int r;
3181         struct kvm *kvm;
3182         struct file *file;
3183
3184         kvm = kvm_create_vm(type);
3185         if (IS_ERR(kvm))
3186                 return PTR_ERR(kvm);
3187 #ifdef CONFIG_KVM_MMIO
3188         r = kvm_coalesced_mmio_init(kvm);
3189         if (r < 0) {
3190                 kvm_put_kvm(kvm);
3191                 return r;
3192         }
3193 #endif
3194         r = get_unused_fd_flags(O_CLOEXEC);
3195         if (r < 0) {
3196                 kvm_put_kvm(kvm);
3197                 return r;
3198         }
3199         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3200         if (IS_ERR(file)) {
3201                 put_unused_fd(r);
3202                 kvm_put_kvm(kvm);
3203                 return PTR_ERR(file);
3204         }
3205
3206         /*
3207          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3208          * already set, with ->release() being kvm_vm_release().  In error
3209          * cases it will be called by the final fput(file) and will take
3210          * care of doing kvm_put_kvm(kvm).
3211          */
3212         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3213                 put_unused_fd(r);
3214                 fput(file);
3215                 return -ENOMEM;
3216         }
3217         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3218
3219         fd_install(r, file);
3220         return r;
3221 }
3222
3223 static long kvm_dev_ioctl(struct file *filp,
3224                           unsigned int ioctl, unsigned long arg)
3225 {
3226         long r = -EINVAL;
3227
3228         switch (ioctl) {
3229         case KVM_GET_API_VERSION:
3230                 if (arg)
3231                         goto out;
3232                 r = KVM_API_VERSION;
3233                 break;
3234         case KVM_CREATE_VM:
3235                 r = kvm_dev_ioctl_create_vm(arg);
3236                 break;
3237         case KVM_CHECK_EXTENSION:
3238                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3239                 break;
3240         case KVM_GET_VCPU_MMAP_SIZE:
3241                 if (arg)
3242                         goto out;
3243                 r = PAGE_SIZE;     /* struct kvm_run */
3244 #ifdef CONFIG_X86
3245                 r += PAGE_SIZE;    /* pio data page */
3246 #endif
3247 #ifdef CONFIG_KVM_MMIO
3248                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3249 #endif
3250                 break;
3251         case KVM_TRACE_ENABLE:
3252         case KVM_TRACE_PAUSE:
3253         case KVM_TRACE_DISABLE:
3254                 r = -EOPNOTSUPP;
3255                 break;
3256         default:
3257                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3258         }
3259 out:
3260         return r;
3261 }
3262
3263 static struct file_operations kvm_chardev_ops = {
3264         .unlocked_ioctl = kvm_dev_ioctl,
3265         .compat_ioctl   = kvm_dev_ioctl,
3266         .llseek         = noop_llseek,
3267 };
3268
3269 static struct miscdevice kvm_dev = {
3270         KVM_MINOR,
3271         "kvm",
3272         &kvm_chardev_ops,
3273 };
3274
3275 static void hardware_enable_nolock(void *junk)
3276 {
3277         int cpu = raw_smp_processor_id();
3278         int r;
3279
3280         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3281                 return;
3282
3283         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3284
3285         r = kvm_arch_hardware_enable();
3286
3287         if (r) {
3288                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3289                 atomic_inc(&hardware_enable_failed);
3290                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3291         }
3292 }
3293
3294 static int kvm_starting_cpu(unsigned int cpu)
3295 {
3296         raw_spin_lock(&kvm_count_lock);
3297         if (kvm_usage_count)
3298                 hardware_enable_nolock(NULL);
3299         raw_spin_unlock(&kvm_count_lock);
3300         return 0;
3301 }
3302
3303 static void hardware_disable_nolock(void *junk)
3304 {
3305         int cpu = raw_smp_processor_id();
3306
3307         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3308                 return;
3309         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3310         kvm_arch_hardware_disable();
3311 }
3312
3313 static int kvm_dying_cpu(unsigned int cpu)
3314 {
3315         raw_spin_lock(&kvm_count_lock);
3316         if (kvm_usage_count)
3317                 hardware_disable_nolock(NULL);
3318         raw_spin_unlock(&kvm_count_lock);
3319         return 0;
3320 }
3321
3322 static void hardware_disable_all_nolock(void)
3323 {
3324         BUG_ON(!kvm_usage_count);
3325
3326         kvm_usage_count--;
3327         if (!kvm_usage_count)
3328                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3329 }
3330
3331 static void hardware_disable_all(void)
3332 {
3333         raw_spin_lock(&kvm_count_lock);
3334         hardware_disable_all_nolock();
3335         raw_spin_unlock(&kvm_count_lock);
3336 }
3337
3338 static int hardware_enable_all(void)
3339 {
3340         int r = 0;
3341
3342         raw_spin_lock(&kvm_count_lock);
3343
3344         kvm_usage_count++;
3345         if (kvm_usage_count == 1) {
3346                 atomic_set(&hardware_enable_failed, 0);
3347                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3348
3349                 if (atomic_read(&hardware_enable_failed)) {
3350                         hardware_disable_all_nolock();
3351                         r = -EBUSY;
3352                 }
3353         }
3354
3355         raw_spin_unlock(&kvm_count_lock);
3356
3357         return r;
3358 }
3359
3360 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3361                       void *v)
3362 {
3363         /*
3364          * Some (well, at least mine) BIOSes hang on reboot if
3365          * in vmx root mode.
3366          *
3367          * And Intel TXT required VMX off for all cpu when system shutdown.
3368          */
3369         pr_info("kvm: exiting hardware virtualization\n");
3370         kvm_rebooting = true;
3371         on_each_cpu(hardware_disable_nolock, NULL, 1);
3372         return NOTIFY_OK;
3373 }
3374
3375 static struct notifier_block kvm_reboot_notifier = {
3376         .notifier_call = kvm_reboot,
3377         .priority = 0,
3378 };
3379
3380 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3381 {
3382         int i;
3383
3384         for (i = 0; i < bus->dev_count; i++) {
3385                 struct kvm_io_device *pos = bus->range[i].dev;
3386
3387                 kvm_iodevice_destructor(pos);
3388         }
3389         kfree(bus);
3390 }
3391
3392 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3393                                  const struct kvm_io_range *r2)
3394 {
3395         gpa_t addr1 = r1->addr;
3396         gpa_t addr2 = r2->addr;
3397
3398         if (addr1 < addr2)
3399                 return -1;
3400
3401         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3402          * accept any overlapping write.  Any order is acceptable for
3403          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3404          * we process all of them.
3405          */
3406         if (r2->len) {
3407                 addr1 += r1->len;
3408                 addr2 += r2->len;
3409         }
3410
3411         if (addr1 > addr2)
3412                 return 1;
3413
3414         return 0;
3415 }
3416
3417 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3418 {
3419         return kvm_io_bus_cmp(p1, p2);
3420 }
3421
3422 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3423                           gpa_t addr, int len)
3424 {
3425         bus->range[bus->dev_count++] = (struct kvm_io_range) {
3426                 .addr = addr,
3427                 .len = len,
3428                 .dev = dev,
3429         };
3430
3431         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3432                 kvm_io_bus_sort_cmp, NULL);
3433
3434         return 0;
3435 }
3436
3437 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3438                              gpa_t addr, int len)
3439 {
3440         struct kvm_io_range *range, key;
3441         int off;
3442
3443         key = (struct kvm_io_range) {
3444                 .addr = addr,
3445                 .len = len,
3446         };
3447
3448         range = bsearch(&key, bus->range, bus->dev_count,
3449                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3450         if (range == NULL)
3451                 return -ENOENT;
3452
3453         off = range - bus->range;
3454
3455         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3456                 off--;
3457
3458         return off;
3459 }
3460
3461 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3462                               struct kvm_io_range *range, const void *val)
3463 {
3464         int idx;
3465
3466         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3467         if (idx < 0)
3468                 return -EOPNOTSUPP;
3469
3470         while (idx < bus->dev_count &&
3471                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3472                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3473                                         range->len, val))
3474                         return idx;
3475                 idx++;
3476         }
3477
3478         return -EOPNOTSUPP;
3479 }
3480
3481 /* kvm_io_bus_write - called under kvm->slots_lock */
3482 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3483                      int len, const void *val)
3484 {
3485         struct kvm_io_bus *bus;
3486         struct kvm_io_range range;
3487         int r;
3488
3489         range = (struct kvm_io_range) {
3490                 .addr = addr,
3491                 .len = len,
3492         };
3493
3494         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3495         if (!bus)
3496                 return -ENOMEM;
3497         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3498         return r < 0 ? r : 0;
3499 }
3500
3501 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3502 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3503                             gpa_t addr, int len, const void *val, long cookie)
3504 {
3505         struct kvm_io_bus *bus;
3506         struct kvm_io_range range;
3507
3508         range = (struct kvm_io_range) {
3509                 .addr = addr,
3510                 .len = len,
3511         };
3512
3513         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3514         if (!bus)
3515                 return -ENOMEM;
3516
3517         /* First try the device referenced by cookie. */
3518         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3519             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3520                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3521                                         val))
3522                         return cookie;
3523
3524         /*
3525          * cookie contained garbage; fall back to search and return the
3526          * correct cookie value.
3527          */
3528         return __kvm_io_bus_write(vcpu, bus, &range, val);
3529 }
3530
3531 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3532                              struct kvm_io_range *range, void *val)
3533 {
3534         int idx;
3535
3536         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3537         if (idx < 0)
3538                 return -EOPNOTSUPP;
3539
3540         while (idx < bus->dev_count &&
3541                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3542                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3543                                        range->len, val))
3544                         return idx;
3545                 idx++;
3546         }
3547
3548         return -EOPNOTSUPP;
3549 }
3550 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3551
3552 /* kvm_io_bus_read - called under kvm->slots_lock */
3553 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3554                     int len, void *val)
3555 {
3556         struct kvm_io_bus *bus;
3557         struct kvm_io_range range;
3558         int r;
3559
3560         range = (struct kvm_io_range) {
3561                 .addr = addr,
3562                 .len = len,
3563         };
3564
3565         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3566         if (!bus)
3567                 return -ENOMEM;
3568         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3569         return r < 0 ? r : 0;
3570 }
3571
3572
3573 /* Caller must hold slots_lock. */
3574 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3575                             int len, struct kvm_io_device *dev)
3576 {
3577         struct kvm_io_bus *new_bus, *bus;
3578
3579         bus = kvm_get_bus(kvm, bus_idx);
3580         if (!bus)
3581                 return -ENOMEM;
3582
3583         /* exclude ioeventfd which is limited by maximum fd */
3584         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3585                 return -ENOSPC;
3586
3587         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3588                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3589         if (!new_bus)
3590                 return -ENOMEM;
3591         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3592                sizeof(struct kvm_io_range)));
3593         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3594         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3595         synchronize_srcu_expedited(&kvm->srcu);
3596         kfree(bus);
3597
3598         return 0;
3599 }
3600
3601 /* Caller must hold slots_lock. */
3602 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3603                                struct kvm_io_device *dev)
3604 {
3605         int i;
3606         struct kvm_io_bus *new_bus, *bus;
3607
3608         bus = kvm_get_bus(kvm, bus_idx);
3609         if (!bus)
3610                 return;
3611
3612         for (i = 0; i < bus->dev_count; i++)
3613                 if (bus->range[i].dev == dev) {
3614                         break;
3615                 }
3616
3617         if (i == bus->dev_count)
3618                 return;
3619
3620         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3621                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3622         if (!new_bus)  {
3623                 pr_err("kvm: failed to shrink bus, removing it completely\n");
3624                 goto broken;
3625         }
3626
3627         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3628         new_bus->dev_count--;
3629         memcpy(new_bus->range + i, bus->range + i + 1,
3630                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3631
3632 broken:
3633         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3634         synchronize_srcu_expedited(&kvm->srcu);
3635         kfree(bus);
3636         return;
3637 }
3638
3639 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3640                                          gpa_t addr)
3641 {
3642         struct kvm_io_bus *bus;
3643         int dev_idx, srcu_idx;
3644         struct kvm_io_device *iodev = NULL;
3645
3646         srcu_idx = srcu_read_lock(&kvm->srcu);
3647
3648         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3649         if (!bus)
3650                 goto out_unlock;
3651
3652         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3653         if (dev_idx < 0)
3654                 goto out_unlock;
3655
3656         iodev = bus->range[dev_idx].dev;
3657
3658 out_unlock:
3659         srcu_read_unlock(&kvm->srcu, srcu_idx);
3660
3661         return iodev;
3662 }
3663 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3664
3665 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3666                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3667                            const char *fmt)
3668 {
3669         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3670                                           inode->i_private;
3671
3672         /* The debugfs files are a reference to the kvm struct which
3673          * is still valid when kvm_destroy_vm is called.
3674          * To avoid the race between open and the removal of the debugfs
3675          * directory we test against the users count.
3676          */
3677         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3678                 return -ENOENT;
3679
3680         if (simple_attr_open(inode, file, get, set, fmt)) {
3681                 kvm_put_kvm(stat_data->kvm);
3682                 return -ENOMEM;
3683         }
3684
3685         return 0;
3686 }
3687
3688 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3689 {
3690         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3691                                           inode->i_private;
3692
3693         simple_attr_release(inode, file);
3694         kvm_put_kvm(stat_data->kvm);
3695
3696         return 0;
3697 }
3698
3699 static int vm_stat_get_per_vm(void *data, u64 *val)
3700 {
3701         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3702
3703         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3704
3705         return 0;
3706 }
3707
3708 static int vm_stat_clear_per_vm(void *data, u64 val)
3709 {
3710         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3711
3712         if (val)
3713                 return -EINVAL;
3714
3715         *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3716
3717         return 0;
3718 }
3719
3720 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3721 {
3722         __simple_attr_check_format("%llu\n", 0ull);
3723         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3724                                 vm_stat_clear_per_vm, "%llu\n");
3725 }
3726
3727 static const struct file_operations vm_stat_get_per_vm_fops = {
3728         .owner   = THIS_MODULE,
3729         .open    = vm_stat_get_per_vm_open,
3730         .release = kvm_debugfs_release,
3731         .read    = simple_attr_read,
3732         .write   = simple_attr_write,
3733         .llseek  = no_llseek,
3734 };
3735
3736 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3737 {
3738         int i;
3739         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3740         struct kvm_vcpu *vcpu;
3741
3742         *val = 0;
3743
3744         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3745                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3746
3747         return 0;
3748 }
3749
3750 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3751 {
3752         int i;
3753         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3754         struct kvm_vcpu *vcpu;
3755
3756         if (val)
3757                 return -EINVAL;
3758
3759         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3760                 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3761
3762         return 0;
3763 }
3764
3765 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3766 {
3767         __simple_attr_check_format("%llu\n", 0ull);
3768         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3769                                  vcpu_stat_clear_per_vm, "%llu\n");
3770 }
3771
3772 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3773         .owner   = THIS_MODULE,
3774         .open    = vcpu_stat_get_per_vm_open,
3775         .release = kvm_debugfs_release,
3776         .read    = simple_attr_read,
3777         .write   = simple_attr_write,
3778         .llseek  = no_llseek,
3779 };
3780
3781 static const struct file_operations *stat_fops_per_vm[] = {
3782         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3783         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3784 };
3785
3786 static int vm_stat_get(void *_offset, u64 *val)
3787 {
3788         unsigned offset = (long)_offset;
3789         struct kvm *kvm;
3790         struct kvm_stat_data stat_tmp = {.offset = offset};
3791         u64 tmp_val;
3792
3793         *val = 0;
3794         spin_lock(&kvm_lock);
3795         list_for_each_entry(kvm, &vm_list, vm_list) {
3796                 stat_tmp.kvm = kvm;
3797                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3798                 *val += tmp_val;
3799         }
3800         spin_unlock(&kvm_lock);
3801         return 0;
3802 }
3803
3804 static int vm_stat_clear(void *_offset, u64 val)
3805 {
3806         unsigned offset = (long)_offset;
3807         struct kvm *kvm;
3808         struct kvm_stat_data stat_tmp = {.offset = offset};
3809
3810         if (val)
3811                 return -EINVAL;
3812
3813         spin_lock(&kvm_lock);
3814         list_for_each_entry(kvm, &vm_list, vm_list) {
3815                 stat_tmp.kvm = kvm;
3816                 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3817         }
3818         spin_unlock(&kvm_lock);
3819
3820         return 0;
3821 }
3822
3823 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3824
3825 static int vcpu_stat_get(void *_offset, u64 *val)
3826 {
3827         unsigned offset = (long)_offset;
3828         struct kvm *kvm;
3829         struct kvm_stat_data stat_tmp = {.offset = offset};
3830         u64 tmp_val;
3831
3832         *val = 0;
3833         spin_lock(&kvm_lock);
3834         list_for_each_entry(kvm, &vm_list, vm_list) {
3835                 stat_tmp.kvm = kvm;
3836                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3837                 *val += tmp_val;
3838         }
3839         spin_unlock(&kvm_lock);
3840         return 0;
3841 }
3842
3843 static int vcpu_stat_clear(void *_offset, u64 val)
3844 {
3845         unsigned offset = (long)_offset;
3846         struct kvm *kvm;
3847         struct kvm_stat_data stat_tmp = {.offset = offset};
3848
3849         if (val)
3850                 return -EINVAL;
3851
3852         spin_lock(&kvm_lock);
3853         list_for_each_entry(kvm, &vm_list, vm_list) {
3854                 stat_tmp.kvm = kvm;
3855                 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3856         }
3857         spin_unlock(&kvm_lock);
3858
3859         return 0;
3860 }
3861
3862 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3863                         "%llu\n");
3864
3865 static const struct file_operations *stat_fops[] = {
3866         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3867         [KVM_STAT_VM]   = &vm_stat_fops,
3868 };
3869
3870 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3871 {
3872         struct kobj_uevent_env *env;
3873         unsigned long long created, active;
3874
3875         if (!kvm_dev.this_device || !kvm)
3876                 return;
3877
3878         spin_lock(&kvm_lock);
3879         if (type == KVM_EVENT_CREATE_VM) {
3880                 kvm_createvm_count++;
3881                 kvm_active_vms++;
3882         } else if (type == KVM_EVENT_DESTROY_VM) {
3883                 kvm_active_vms--;
3884         }
3885         created = kvm_createvm_count;
3886         active = kvm_active_vms;
3887         spin_unlock(&kvm_lock);
3888
3889         env = kzalloc(sizeof(*env), GFP_KERNEL);
3890         if (!env)
3891                 return;
3892
3893         add_uevent_var(env, "CREATED=%llu", created);
3894         add_uevent_var(env, "COUNT=%llu", active);
3895
3896         if (type == KVM_EVENT_CREATE_VM) {
3897                 add_uevent_var(env, "EVENT=create");
3898                 kvm->userspace_pid = task_pid_nr(current);
3899         } else if (type == KVM_EVENT_DESTROY_VM) {
3900                 add_uevent_var(env, "EVENT=destroy");
3901         }
3902         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3903
3904         if (kvm->debugfs_dentry) {
3905                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3906
3907                 if (p) {
3908                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3909                         if (!IS_ERR(tmp))
3910                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
3911                         kfree(p);
3912                 }
3913         }
3914         /* no need for checks, since we are adding at most only 5 keys */
3915         env->envp[env->envp_idx++] = NULL;
3916         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3917         kfree(env);
3918 }
3919
3920 static int kvm_init_debug(void)
3921 {
3922         int r = -EEXIST;
3923         struct kvm_stats_debugfs_item *p;
3924
3925         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3926         if (kvm_debugfs_dir == NULL)
3927                 goto out;
3928
3929         kvm_debugfs_num_entries = 0;
3930         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3931                 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3932                                          (void *)(long)p->offset,
3933                                          stat_fops[p->kind]))
3934                         goto out_dir;
3935         }
3936
3937         return 0;
3938
3939 out_dir:
3940         debugfs_remove_recursive(kvm_debugfs_dir);
3941 out:
3942         return r;
3943 }
3944
3945 static int kvm_suspend(void)
3946 {
3947         if (kvm_usage_count)
3948                 hardware_disable_nolock(NULL);
3949         return 0;
3950 }
3951
3952 static void kvm_resume(void)
3953 {
3954         if (kvm_usage_count) {
3955                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3956                 hardware_enable_nolock(NULL);
3957         }
3958 }
3959
3960 static struct syscore_ops kvm_syscore_ops = {
3961         .suspend = kvm_suspend,
3962         .resume = kvm_resume,
3963 };
3964
3965 static inline
3966 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3967 {
3968         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3969 }
3970
3971 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3972 {
3973         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3974
3975         if (vcpu->preempted)
3976                 vcpu->preempted = false;
3977
3978         kvm_arch_sched_in(vcpu, cpu);
3979
3980         kvm_arch_vcpu_load(vcpu, cpu);
3981 }
3982
3983 static void kvm_sched_out(struct preempt_notifier *pn,
3984                           struct task_struct *next)
3985 {
3986         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3987
3988         if (current->state == TASK_RUNNING)
3989                 vcpu->preempted = true;
3990         kvm_arch_vcpu_put(vcpu);
3991 }
3992
3993 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3994                   struct module *module)
3995 {
3996         int r;
3997         int cpu;
3998
3999         r = kvm_arch_init(opaque);
4000         if (r)
4001                 goto out_fail;
4002
4003         /*
4004          * kvm_arch_init makes sure there's at most one caller
4005          * for architectures that support multiple implementations,
4006          * like intel and amd on x86.
4007          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4008          * conflicts in case kvm is already setup for another implementation.
4009          */
4010         r = kvm_irqfd_init();
4011         if (r)
4012                 goto out_irqfd;
4013
4014         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4015                 r = -ENOMEM;
4016                 goto out_free_0;
4017         }
4018
4019         r = kvm_arch_hardware_setup();
4020         if (r < 0)
4021                 goto out_free_0a;
4022
4023         for_each_online_cpu(cpu) {
4024                 smp_call_function_single(cpu,
4025                                 kvm_arch_check_processor_compat,
4026                                 &r, 1);
4027                 if (r < 0)
4028                         goto out_free_1;
4029         }
4030
4031         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4032                                       kvm_starting_cpu, kvm_dying_cpu);
4033         if (r)
4034                 goto out_free_2;
4035         register_reboot_notifier(&kvm_reboot_notifier);
4036
4037         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4038         if (!vcpu_align)
4039                 vcpu_align = __alignof__(struct kvm_vcpu);
4040         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
4041                                            SLAB_ACCOUNT, NULL);
4042         if (!kvm_vcpu_cache) {
4043                 r = -ENOMEM;
4044                 goto out_free_3;
4045         }
4046
4047         r = kvm_async_pf_init();
4048         if (r)
4049                 goto out_free;
4050
4051         kvm_chardev_ops.owner = module;
4052         kvm_vm_fops.owner = module;
4053         kvm_vcpu_fops.owner = module;
4054
4055         r = misc_register(&kvm_dev);
4056         if (r) {
4057                 pr_err("kvm: misc device register failed\n");
4058                 goto out_unreg;
4059         }
4060
4061         register_syscore_ops(&kvm_syscore_ops);
4062
4063         kvm_preempt_ops.sched_in = kvm_sched_in;
4064         kvm_preempt_ops.sched_out = kvm_sched_out;
4065
4066         r = kvm_init_debug();
4067         if (r) {
4068                 pr_err("kvm: create debugfs files failed\n");
4069                 goto out_undebugfs;
4070         }
4071
4072         r = kvm_vfio_ops_init();
4073         WARN_ON(r);
4074
4075         return 0;
4076
4077 out_undebugfs:
4078         unregister_syscore_ops(&kvm_syscore_ops);
4079         misc_deregister(&kvm_dev);
4080 out_unreg:
4081         kvm_async_pf_deinit();
4082 out_free:
4083         kmem_cache_destroy(kvm_vcpu_cache);
4084 out_free_3:
4085         unregister_reboot_notifier(&kvm_reboot_notifier);
4086         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4087 out_free_2:
4088 out_free_1:
4089         kvm_arch_hardware_unsetup();
4090 out_free_0a:
4091         free_cpumask_var(cpus_hardware_enabled);
4092 out_free_0:
4093         kvm_irqfd_exit();
4094 out_irqfd:
4095         kvm_arch_exit();
4096 out_fail:
4097         return r;
4098 }
4099 EXPORT_SYMBOL_GPL(kvm_init);
4100
4101 void kvm_exit(void)
4102 {
4103         debugfs_remove_recursive(kvm_debugfs_dir);
4104         misc_deregister(&kvm_dev);
4105         kmem_cache_destroy(kvm_vcpu_cache);
4106         kvm_async_pf_deinit();
4107         unregister_syscore_ops(&kvm_syscore_ops);
4108         unregister_reboot_notifier(&kvm_reboot_notifier);
4109         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4110         on_each_cpu(hardware_disable_nolock, NULL, 1);
4111         kvm_arch_hardware_unsetup();
4112         kvm_arch_exit();
4113         kvm_irqfd_exit();
4114         free_cpumask_var(cpus_hardware_enabled);
4115         kvm_vfio_ops_exit();
4116 }
4117 EXPORT_SYMBOL_GPL(kvm_exit);