Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[sfrench/cifs-2.6.git] / virt / kvm / arm / vgic / vgic.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015, 2016 ARM Ltd.
4  */
5
6 #include <linux/interrupt.h>
7 #include <linux/irq.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/list_sort.h>
11 #include <linux/nospec.h>
12
13 #include <asm/kvm_hyp.h>
14
15 #include "vgic.h"
16
17 #define CREATE_TRACE_POINTS
18 #include "trace.h"
19
20 struct vgic_global kvm_vgic_global_state __ro_after_init = {
21         .gicv3_cpuif = STATIC_KEY_FALSE_INIT,
22 };
23
24 /*
25  * Locking order is always:
26  * kvm->lock (mutex)
27  *   its->cmd_lock (mutex)
28  *     its->its_lock (mutex)
29  *       vgic_cpu->ap_list_lock         must be taken with IRQs disabled
30  *         kvm->lpi_list_lock           must be taken with IRQs disabled
31  *           vgic_irq->irq_lock         must be taken with IRQs disabled
32  *
33  * As the ap_list_lock might be taken from the timer interrupt handler,
34  * we have to disable IRQs before taking this lock and everything lower
35  * than it.
36  *
37  * If you need to take multiple locks, always take the upper lock first,
38  * then the lower ones, e.g. first take the its_lock, then the irq_lock.
39  * If you are already holding a lock and need to take a higher one, you
40  * have to drop the lower ranking lock first and re-aquire it after having
41  * taken the upper one.
42  *
43  * When taking more than one ap_list_lock at the same time, always take the
44  * lowest numbered VCPU's ap_list_lock first, so:
45  *   vcpuX->vcpu_id < vcpuY->vcpu_id:
46  *     raw_spin_lock(vcpuX->arch.vgic_cpu.ap_list_lock);
47  *     raw_spin_lock(vcpuY->arch.vgic_cpu.ap_list_lock);
48  *
49  * Since the VGIC must support injecting virtual interrupts from ISRs, we have
50  * to use the raw_spin_lock_irqsave/raw_spin_unlock_irqrestore versions of outer
51  * spinlocks for any lock that may be taken while injecting an interrupt.
52  */
53
54 /*
55  * Iterate over the VM's list of mapped LPIs to find the one with a
56  * matching interrupt ID and return a reference to the IRQ structure.
57  */
58 static struct vgic_irq *vgic_get_lpi(struct kvm *kvm, u32 intid)
59 {
60         struct vgic_dist *dist = &kvm->arch.vgic;
61         struct vgic_irq *irq = NULL;
62         unsigned long flags;
63
64         raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
65
66         list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
67                 if (irq->intid != intid)
68                         continue;
69
70                 /*
71                  * This increases the refcount, the caller is expected to
72                  * call vgic_put_irq() later once it's finished with the IRQ.
73                  */
74                 vgic_get_irq_kref(irq);
75                 goto out_unlock;
76         }
77         irq = NULL;
78
79 out_unlock:
80         raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
81
82         return irq;
83 }
84
85 /*
86  * This looks up the virtual interrupt ID to get the corresponding
87  * struct vgic_irq. It also increases the refcount, so any caller is expected
88  * to call vgic_put_irq() once it's finished with this IRQ.
89  */
90 struct vgic_irq *vgic_get_irq(struct kvm *kvm, struct kvm_vcpu *vcpu,
91                               u32 intid)
92 {
93         /* SGIs and PPIs */
94         if (intid <= VGIC_MAX_PRIVATE) {
95                 intid = array_index_nospec(intid, VGIC_MAX_PRIVATE + 1);
96                 return &vcpu->arch.vgic_cpu.private_irqs[intid];
97         }
98
99         /* SPIs */
100         if (intid < (kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS)) {
101                 intid = array_index_nospec(intid, kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS);
102                 return &kvm->arch.vgic.spis[intid - VGIC_NR_PRIVATE_IRQS];
103         }
104
105         /* LPIs */
106         if (intid >= VGIC_MIN_LPI)
107                 return vgic_get_lpi(kvm, intid);
108
109         WARN(1, "Looking up struct vgic_irq for reserved INTID");
110         return NULL;
111 }
112
113 /*
114  * We can't do anything in here, because we lack the kvm pointer to
115  * lock and remove the item from the lpi_list. So we keep this function
116  * empty and use the return value of kref_put() to trigger the freeing.
117  */
118 static void vgic_irq_release(struct kref *ref)
119 {
120 }
121
122 void vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq)
123 {
124         struct vgic_dist *dist = &kvm->arch.vgic;
125         unsigned long flags;
126
127         if (irq->intid < VGIC_MIN_LPI)
128                 return;
129
130         raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
131         if (!kref_put(&irq->refcount, vgic_irq_release)) {
132                 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
133                 return;
134         };
135
136         list_del(&irq->lpi_list);
137         dist->lpi_list_count--;
138         raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
139
140         kfree(irq);
141 }
142
143 void vgic_flush_pending_lpis(struct kvm_vcpu *vcpu)
144 {
145         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
146         struct vgic_irq *irq, *tmp;
147         unsigned long flags;
148
149         raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
150
151         list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
152                 if (irq->intid >= VGIC_MIN_LPI) {
153                         raw_spin_lock(&irq->irq_lock);
154                         list_del(&irq->ap_list);
155                         irq->vcpu = NULL;
156                         raw_spin_unlock(&irq->irq_lock);
157                         vgic_put_irq(vcpu->kvm, irq);
158                 }
159         }
160
161         raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
162 }
163
164 void vgic_irq_set_phys_pending(struct vgic_irq *irq, bool pending)
165 {
166         WARN_ON(irq_set_irqchip_state(irq->host_irq,
167                                       IRQCHIP_STATE_PENDING,
168                                       pending));
169 }
170
171 bool vgic_get_phys_line_level(struct vgic_irq *irq)
172 {
173         bool line_level;
174
175         BUG_ON(!irq->hw);
176
177         if (irq->get_input_level)
178                 return irq->get_input_level(irq->intid);
179
180         WARN_ON(irq_get_irqchip_state(irq->host_irq,
181                                       IRQCHIP_STATE_PENDING,
182                                       &line_level));
183         return line_level;
184 }
185
186 /* Set/Clear the physical active state */
187 void vgic_irq_set_phys_active(struct vgic_irq *irq, bool active)
188 {
189
190         BUG_ON(!irq->hw);
191         WARN_ON(irq_set_irqchip_state(irq->host_irq,
192                                       IRQCHIP_STATE_ACTIVE,
193                                       active));
194 }
195
196 /**
197  * kvm_vgic_target_oracle - compute the target vcpu for an irq
198  *
199  * @irq:        The irq to route. Must be already locked.
200  *
201  * Based on the current state of the interrupt (enabled, pending,
202  * active, vcpu and target_vcpu), compute the next vcpu this should be
203  * given to. Return NULL if this shouldn't be injected at all.
204  *
205  * Requires the IRQ lock to be held.
206  */
207 static struct kvm_vcpu *vgic_target_oracle(struct vgic_irq *irq)
208 {
209         lockdep_assert_held(&irq->irq_lock);
210
211         /* If the interrupt is active, it must stay on the current vcpu */
212         if (irq->active)
213                 return irq->vcpu ? : irq->target_vcpu;
214
215         /*
216          * If the IRQ is not active but enabled and pending, we should direct
217          * it to its configured target VCPU.
218          * If the distributor is disabled, pending interrupts shouldn't be
219          * forwarded.
220          */
221         if (irq->enabled && irq_is_pending(irq)) {
222                 if (unlikely(irq->target_vcpu &&
223                              !irq->target_vcpu->kvm->arch.vgic.enabled))
224                         return NULL;
225
226                 return irq->target_vcpu;
227         }
228
229         /* If neither active nor pending and enabled, then this IRQ should not
230          * be queued to any VCPU.
231          */
232         return NULL;
233 }
234
235 /*
236  * The order of items in the ap_lists defines how we'll pack things in LRs as
237  * well, the first items in the list being the first things populated in the
238  * LRs.
239  *
240  * A hard rule is that active interrupts can never be pushed out of the LRs
241  * (and therefore take priority) since we cannot reliably trap on deactivation
242  * of IRQs and therefore they have to be present in the LRs.
243  *
244  * Otherwise things should be sorted by the priority field and the GIC
245  * hardware support will take care of preemption of priority groups etc.
246  *
247  * Return negative if "a" sorts before "b", 0 to preserve order, and positive
248  * to sort "b" before "a".
249  */
250 static int vgic_irq_cmp(void *priv, struct list_head *a, struct list_head *b)
251 {
252         struct vgic_irq *irqa = container_of(a, struct vgic_irq, ap_list);
253         struct vgic_irq *irqb = container_of(b, struct vgic_irq, ap_list);
254         bool penda, pendb;
255         int ret;
256
257         /*
258          * list_sort may call this function with the same element when
259          * the list is fairly long.
260          */
261         if (unlikely(irqa == irqb))
262                 return 0;
263
264         raw_spin_lock(&irqa->irq_lock);
265         raw_spin_lock_nested(&irqb->irq_lock, SINGLE_DEPTH_NESTING);
266
267         if (irqa->active || irqb->active) {
268                 ret = (int)irqb->active - (int)irqa->active;
269                 goto out;
270         }
271
272         penda = irqa->enabled && irq_is_pending(irqa);
273         pendb = irqb->enabled && irq_is_pending(irqb);
274
275         if (!penda || !pendb) {
276                 ret = (int)pendb - (int)penda;
277                 goto out;
278         }
279
280         /* Both pending and enabled, sort by priority */
281         ret = irqa->priority - irqb->priority;
282 out:
283         raw_spin_unlock(&irqb->irq_lock);
284         raw_spin_unlock(&irqa->irq_lock);
285         return ret;
286 }
287
288 /* Must be called with the ap_list_lock held */
289 static void vgic_sort_ap_list(struct kvm_vcpu *vcpu)
290 {
291         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
292
293         lockdep_assert_held(&vgic_cpu->ap_list_lock);
294
295         list_sort(NULL, &vgic_cpu->ap_list_head, vgic_irq_cmp);
296 }
297
298 /*
299  * Only valid injection if changing level for level-triggered IRQs or for a
300  * rising edge, and in-kernel connected IRQ lines can only be controlled by
301  * their owner.
302  */
303 static bool vgic_validate_injection(struct vgic_irq *irq, bool level, void *owner)
304 {
305         if (irq->owner != owner)
306                 return false;
307
308         switch (irq->config) {
309         case VGIC_CONFIG_LEVEL:
310                 return irq->line_level != level;
311         case VGIC_CONFIG_EDGE:
312                 return level;
313         }
314
315         return false;
316 }
317
318 /*
319  * Check whether an IRQ needs to (and can) be queued to a VCPU's ap list.
320  * Do the queuing if necessary, taking the right locks in the right order.
321  * Returns true when the IRQ was queued, false otherwise.
322  *
323  * Needs to be entered with the IRQ lock already held, but will return
324  * with all locks dropped.
325  */
326 bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq,
327                            unsigned long flags)
328 {
329         struct kvm_vcpu *vcpu;
330
331         lockdep_assert_held(&irq->irq_lock);
332
333 retry:
334         vcpu = vgic_target_oracle(irq);
335         if (irq->vcpu || !vcpu) {
336                 /*
337                  * If this IRQ is already on a VCPU's ap_list, then it
338                  * cannot be moved or modified and there is no more work for
339                  * us to do.
340                  *
341                  * Otherwise, if the irq is not pending and enabled, it does
342                  * not need to be inserted into an ap_list and there is also
343                  * no more work for us to do.
344                  */
345                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
346
347                 /*
348                  * We have to kick the VCPU here, because we could be
349                  * queueing an edge-triggered interrupt for which we
350                  * get no EOI maintenance interrupt. In that case,
351                  * while the IRQ is already on the VCPU's AP list, the
352                  * VCPU could have EOI'ed the original interrupt and
353                  * won't see this one until it exits for some other
354                  * reason.
355                  */
356                 if (vcpu) {
357                         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
358                         kvm_vcpu_kick(vcpu);
359                 }
360                 return false;
361         }
362
363         /*
364          * We must unlock the irq lock to take the ap_list_lock where
365          * we are going to insert this new pending interrupt.
366          */
367         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
368
369         /* someone can do stuff here, which we re-check below */
370
371         raw_spin_lock_irqsave(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
372         raw_spin_lock(&irq->irq_lock);
373
374         /*
375          * Did something change behind our backs?
376          *
377          * There are two cases:
378          * 1) The irq lost its pending state or was disabled behind our
379          *    backs and/or it was queued to another VCPU's ap_list.
380          * 2) Someone changed the affinity on this irq behind our
381          *    backs and we are now holding the wrong ap_list_lock.
382          *
383          * In both cases, drop the locks and retry.
384          */
385
386         if (unlikely(irq->vcpu || vcpu != vgic_target_oracle(irq))) {
387                 raw_spin_unlock(&irq->irq_lock);
388                 raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock,
389                                            flags);
390
391                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
392                 goto retry;
393         }
394
395         /*
396          * Grab a reference to the irq to reflect the fact that it is
397          * now in the ap_list.
398          */
399         vgic_get_irq_kref(irq);
400         list_add_tail(&irq->ap_list, &vcpu->arch.vgic_cpu.ap_list_head);
401         irq->vcpu = vcpu;
402
403         raw_spin_unlock(&irq->irq_lock);
404         raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
405
406         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
407         kvm_vcpu_kick(vcpu);
408
409         return true;
410 }
411
412 /**
413  * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
414  * @kvm:     The VM structure pointer
415  * @cpuid:   The CPU for PPIs
416  * @intid:   The INTID to inject a new state to.
417  * @level:   Edge-triggered:  true:  to trigger the interrupt
418  *                            false: to ignore the call
419  *           Level-sensitive  true:  raise the input signal
420  *                            false: lower the input signal
421  * @owner:   The opaque pointer to the owner of the IRQ being raised to verify
422  *           that the caller is allowed to inject this IRQ.  Userspace
423  *           injections will have owner == NULL.
424  *
425  * The VGIC is not concerned with devices being active-LOW or active-HIGH for
426  * level-sensitive interrupts.  You can think of the level parameter as 1
427  * being HIGH and 0 being LOW and all devices being active-HIGH.
428  */
429 int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int intid,
430                         bool level, void *owner)
431 {
432         struct kvm_vcpu *vcpu;
433         struct vgic_irq *irq;
434         unsigned long flags;
435         int ret;
436
437         trace_vgic_update_irq_pending(cpuid, intid, level);
438
439         ret = vgic_lazy_init(kvm);
440         if (ret)
441                 return ret;
442
443         vcpu = kvm_get_vcpu(kvm, cpuid);
444         if (!vcpu && intid < VGIC_NR_PRIVATE_IRQS)
445                 return -EINVAL;
446
447         irq = vgic_get_irq(kvm, vcpu, intid);
448         if (!irq)
449                 return -EINVAL;
450
451         raw_spin_lock_irqsave(&irq->irq_lock, flags);
452
453         if (!vgic_validate_injection(irq, level, owner)) {
454                 /* Nothing to see here, move along... */
455                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
456                 vgic_put_irq(kvm, irq);
457                 return 0;
458         }
459
460         if (irq->config == VGIC_CONFIG_LEVEL)
461                 irq->line_level = level;
462         else
463                 irq->pending_latch = true;
464
465         vgic_queue_irq_unlock(kvm, irq, flags);
466         vgic_put_irq(kvm, irq);
467
468         return 0;
469 }
470
471 /* @irq->irq_lock must be held */
472 static int kvm_vgic_map_irq(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
473                             unsigned int host_irq,
474                             bool (*get_input_level)(int vindid))
475 {
476         struct irq_desc *desc;
477         struct irq_data *data;
478
479         /*
480          * Find the physical IRQ number corresponding to @host_irq
481          */
482         desc = irq_to_desc(host_irq);
483         if (!desc) {
484                 kvm_err("%s: no interrupt descriptor\n", __func__);
485                 return -EINVAL;
486         }
487         data = irq_desc_get_irq_data(desc);
488         while (data->parent_data)
489                 data = data->parent_data;
490
491         irq->hw = true;
492         irq->host_irq = host_irq;
493         irq->hwintid = data->hwirq;
494         irq->get_input_level = get_input_level;
495         return 0;
496 }
497
498 /* @irq->irq_lock must be held */
499 static inline void kvm_vgic_unmap_irq(struct vgic_irq *irq)
500 {
501         irq->hw = false;
502         irq->hwintid = 0;
503         irq->get_input_level = NULL;
504 }
505
506 int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, unsigned int host_irq,
507                           u32 vintid, bool (*get_input_level)(int vindid))
508 {
509         struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
510         unsigned long flags;
511         int ret;
512
513         BUG_ON(!irq);
514
515         raw_spin_lock_irqsave(&irq->irq_lock, flags);
516         ret = kvm_vgic_map_irq(vcpu, irq, host_irq, get_input_level);
517         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
518         vgic_put_irq(vcpu->kvm, irq);
519
520         return ret;
521 }
522
523 /**
524  * kvm_vgic_reset_mapped_irq - Reset a mapped IRQ
525  * @vcpu: The VCPU pointer
526  * @vintid: The INTID of the interrupt
527  *
528  * Reset the active and pending states of a mapped interrupt.  Kernel
529  * subsystems injecting mapped interrupts should reset their interrupt lines
530  * when we are doing a reset of the VM.
531  */
532 void kvm_vgic_reset_mapped_irq(struct kvm_vcpu *vcpu, u32 vintid)
533 {
534         struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
535         unsigned long flags;
536
537         if (!irq->hw)
538                 goto out;
539
540         raw_spin_lock_irqsave(&irq->irq_lock, flags);
541         irq->active = false;
542         irq->pending_latch = false;
543         irq->line_level = false;
544         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
545 out:
546         vgic_put_irq(vcpu->kvm, irq);
547 }
548
549 int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int vintid)
550 {
551         struct vgic_irq *irq;
552         unsigned long flags;
553
554         if (!vgic_initialized(vcpu->kvm))
555                 return -EAGAIN;
556
557         irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
558         BUG_ON(!irq);
559
560         raw_spin_lock_irqsave(&irq->irq_lock, flags);
561         kvm_vgic_unmap_irq(irq);
562         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
563         vgic_put_irq(vcpu->kvm, irq);
564
565         return 0;
566 }
567
568 /**
569  * kvm_vgic_set_owner - Set the owner of an interrupt for a VM
570  *
571  * @vcpu:   Pointer to the VCPU (used for PPIs)
572  * @intid:  The virtual INTID identifying the interrupt (PPI or SPI)
573  * @owner:  Opaque pointer to the owner
574  *
575  * Returns 0 if intid is not already used by another in-kernel device and the
576  * owner is set, otherwise returns an error code.
577  */
578 int kvm_vgic_set_owner(struct kvm_vcpu *vcpu, unsigned int intid, void *owner)
579 {
580         struct vgic_irq *irq;
581         unsigned long flags;
582         int ret = 0;
583
584         if (!vgic_initialized(vcpu->kvm))
585                 return -EAGAIN;
586
587         /* SGIs and LPIs cannot be wired up to any device */
588         if (!irq_is_ppi(intid) && !vgic_valid_spi(vcpu->kvm, intid))
589                 return -EINVAL;
590
591         irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
592         raw_spin_lock_irqsave(&irq->irq_lock, flags);
593         if (irq->owner && irq->owner != owner)
594                 ret = -EEXIST;
595         else
596                 irq->owner = owner;
597         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
598
599         return ret;
600 }
601
602 /**
603  * vgic_prune_ap_list - Remove non-relevant interrupts from the list
604  *
605  * @vcpu: The VCPU pointer
606  *
607  * Go over the list of "interesting" interrupts, and prune those that we
608  * won't have to consider in the near future.
609  */
610 static void vgic_prune_ap_list(struct kvm_vcpu *vcpu)
611 {
612         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
613         struct vgic_irq *irq, *tmp;
614
615         DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
616
617 retry:
618         raw_spin_lock(&vgic_cpu->ap_list_lock);
619
620         list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
621                 struct kvm_vcpu *target_vcpu, *vcpuA, *vcpuB;
622                 bool target_vcpu_needs_kick = false;
623
624                 raw_spin_lock(&irq->irq_lock);
625
626                 BUG_ON(vcpu != irq->vcpu);
627
628                 target_vcpu = vgic_target_oracle(irq);
629
630                 if (!target_vcpu) {
631                         /*
632                          * We don't need to process this interrupt any
633                          * further, move it off the list.
634                          */
635                         list_del(&irq->ap_list);
636                         irq->vcpu = NULL;
637                         raw_spin_unlock(&irq->irq_lock);
638
639                         /*
640                          * This vgic_put_irq call matches the
641                          * vgic_get_irq_kref in vgic_queue_irq_unlock,
642                          * where we added the LPI to the ap_list. As
643                          * we remove the irq from the list, we drop
644                          * also drop the refcount.
645                          */
646                         vgic_put_irq(vcpu->kvm, irq);
647                         continue;
648                 }
649
650                 if (target_vcpu == vcpu) {
651                         /* We're on the right CPU */
652                         raw_spin_unlock(&irq->irq_lock);
653                         continue;
654                 }
655
656                 /* This interrupt looks like it has to be migrated. */
657
658                 raw_spin_unlock(&irq->irq_lock);
659                 raw_spin_unlock(&vgic_cpu->ap_list_lock);
660
661                 /*
662                  * Ensure locking order by always locking the smallest
663                  * ID first.
664                  */
665                 if (vcpu->vcpu_id < target_vcpu->vcpu_id) {
666                         vcpuA = vcpu;
667                         vcpuB = target_vcpu;
668                 } else {
669                         vcpuA = target_vcpu;
670                         vcpuB = vcpu;
671                 }
672
673                 raw_spin_lock(&vcpuA->arch.vgic_cpu.ap_list_lock);
674                 raw_spin_lock_nested(&vcpuB->arch.vgic_cpu.ap_list_lock,
675                                       SINGLE_DEPTH_NESTING);
676                 raw_spin_lock(&irq->irq_lock);
677
678                 /*
679                  * If the affinity has been preserved, move the
680                  * interrupt around. Otherwise, it means things have
681                  * changed while the interrupt was unlocked, and we
682                  * need to replay this.
683                  *
684                  * In all cases, we cannot trust the list not to have
685                  * changed, so we restart from the beginning.
686                  */
687                 if (target_vcpu == vgic_target_oracle(irq)) {
688                         struct vgic_cpu *new_cpu = &target_vcpu->arch.vgic_cpu;
689
690                         list_del(&irq->ap_list);
691                         irq->vcpu = target_vcpu;
692                         list_add_tail(&irq->ap_list, &new_cpu->ap_list_head);
693                         target_vcpu_needs_kick = true;
694                 }
695
696                 raw_spin_unlock(&irq->irq_lock);
697                 raw_spin_unlock(&vcpuB->arch.vgic_cpu.ap_list_lock);
698                 raw_spin_unlock(&vcpuA->arch.vgic_cpu.ap_list_lock);
699
700                 if (target_vcpu_needs_kick) {
701                         kvm_make_request(KVM_REQ_IRQ_PENDING, target_vcpu);
702                         kvm_vcpu_kick(target_vcpu);
703                 }
704
705                 goto retry;
706         }
707
708         raw_spin_unlock(&vgic_cpu->ap_list_lock);
709 }
710
711 static inline void vgic_fold_lr_state(struct kvm_vcpu *vcpu)
712 {
713         if (kvm_vgic_global_state.type == VGIC_V2)
714                 vgic_v2_fold_lr_state(vcpu);
715         else
716                 vgic_v3_fold_lr_state(vcpu);
717 }
718
719 /* Requires the irq_lock to be held. */
720 static inline void vgic_populate_lr(struct kvm_vcpu *vcpu,
721                                     struct vgic_irq *irq, int lr)
722 {
723         lockdep_assert_held(&irq->irq_lock);
724
725         if (kvm_vgic_global_state.type == VGIC_V2)
726                 vgic_v2_populate_lr(vcpu, irq, lr);
727         else
728                 vgic_v3_populate_lr(vcpu, irq, lr);
729 }
730
731 static inline void vgic_clear_lr(struct kvm_vcpu *vcpu, int lr)
732 {
733         if (kvm_vgic_global_state.type == VGIC_V2)
734                 vgic_v2_clear_lr(vcpu, lr);
735         else
736                 vgic_v3_clear_lr(vcpu, lr);
737 }
738
739 static inline void vgic_set_underflow(struct kvm_vcpu *vcpu)
740 {
741         if (kvm_vgic_global_state.type == VGIC_V2)
742                 vgic_v2_set_underflow(vcpu);
743         else
744                 vgic_v3_set_underflow(vcpu);
745 }
746
747 /* Requires the ap_list_lock to be held. */
748 static int compute_ap_list_depth(struct kvm_vcpu *vcpu,
749                                  bool *multi_sgi)
750 {
751         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
752         struct vgic_irq *irq;
753         int count = 0;
754
755         *multi_sgi = false;
756
757         lockdep_assert_held(&vgic_cpu->ap_list_lock);
758
759         list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
760                 int w;
761
762                 raw_spin_lock(&irq->irq_lock);
763                 /* GICv2 SGIs can count for more than one... */
764                 w = vgic_irq_get_lr_count(irq);
765                 raw_spin_unlock(&irq->irq_lock);
766
767                 count += w;
768                 *multi_sgi |= (w > 1);
769         }
770         return count;
771 }
772
773 /* Requires the VCPU's ap_list_lock to be held. */
774 static void vgic_flush_lr_state(struct kvm_vcpu *vcpu)
775 {
776         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
777         struct vgic_irq *irq;
778         int count;
779         bool multi_sgi;
780         u8 prio = 0xff;
781
782         lockdep_assert_held(&vgic_cpu->ap_list_lock);
783
784         count = compute_ap_list_depth(vcpu, &multi_sgi);
785         if (count > kvm_vgic_global_state.nr_lr || multi_sgi)
786                 vgic_sort_ap_list(vcpu);
787
788         count = 0;
789
790         list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
791                 raw_spin_lock(&irq->irq_lock);
792
793                 /*
794                  * If we have multi-SGIs in the pipeline, we need to
795                  * guarantee that they are all seen before any IRQ of
796                  * lower priority. In that case, we need to filter out
797                  * these interrupts by exiting early. This is easy as
798                  * the AP list has been sorted already.
799                  */
800                 if (multi_sgi && irq->priority > prio) {
801                         _raw_spin_unlock(&irq->irq_lock);
802                         break;
803                 }
804
805                 if (likely(vgic_target_oracle(irq) == vcpu)) {
806                         vgic_populate_lr(vcpu, irq, count++);
807
808                         if (irq->source)
809                                 prio = irq->priority;
810                 }
811
812                 raw_spin_unlock(&irq->irq_lock);
813
814                 if (count == kvm_vgic_global_state.nr_lr) {
815                         if (!list_is_last(&irq->ap_list,
816                                           &vgic_cpu->ap_list_head))
817                                 vgic_set_underflow(vcpu);
818                         break;
819                 }
820         }
821
822         vcpu->arch.vgic_cpu.used_lrs = count;
823
824         /* Nuke remaining LRs */
825         for ( ; count < kvm_vgic_global_state.nr_lr; count++)
826                 vgic_clear_lr(vcpu, count);
827 }
828
829 static inline bool can_access_vgic_from_kernel(void)
830 {
831         /*
832          * GICv2 can always be accessed from the kernel because it is
833          * memory-mapped, and VHE systems can access GICv3 EL2 system
834          * registers.
835          */
836         return !static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif) || has_vhe();
837 }
838
839 static inline void vgic_save_state(struct kvm_vcpu *vcpu)
840 {
841         if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
842                 vgic_v2_save_state(vcpu);
843         else
844                 __vgic_v3_save_state(vcpu);
845 }
846
847 /* Sync back the hardware VGIC state into our emulation after a guest's run. */
848 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
849 {
850         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
851
852         WARN_ON(vgic_v4_sync_hwstate(vcpu));
853
854         /* An empty ap_list_head implies used_lrs == 0 */
855         if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head))
856                 return;
857
858         if (can_access_vgic_from_kernel())
859                 vgic_save_state(vcpu);
860
861         if (vgic_cpu->used_lrs)
862                 vgic_fold_lr_state(vcpu);
863         vgic_prune_ap_list(vcpu);
864 }
865
866 static inline void vgic_restore_state(struct kvm_vcpu *vcpu)
867 {
868         if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
869                 vgic_v2_restore_state(vcpu);
870         else
871                 __vgic_v3_restore_state(vcpu);
872 }
873
874 /* Flush our emulation state into the GIC hardware before entering the guest. */
875 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
876 {
877         WARN_ON(vgic_v4_flush_hwstate(vcpu));
878
879         /*
880          * If there are no virtual interrupts active or pending for this
881          * VCPU, then there is no work to do and we can bail out without
882          * taking any lock.  There is a potential race with someone injecting
883          * interrupts to the VCPU, but it is a benign race as the VCPU will
884          * either observe the new interrupt before or after doing this check,
885          * and introducing additional synchronization mechanism doesn't change
886          * this.
887          *
888          * Note that we still need to go through the whole thing if anything
889          * can be directly injected (GICv4).
890          */
891         if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head) &&
892             !vgic_supports_direct_msis(vcpu->kvm))
893                 return;
894
895         DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
896
897         if (!list_empty(&vcpu->arch.vgic_cpu.ap_list_head)) {
898                 raw_spin_lock(&vcpu->arch.vgic_cpu.ap_list_lock);
899                 vgic_flush_lr_state(vcpu);
900                 raw_spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock);
901         }
902
903         if (can_access_vgic_from_kernel())
904                 vgic_restore_state(vcpu);
905 }
906
907 void kvm_vgic_load(struct kvm_vcpu *vcpu)
908 {
909         if (unlikely(!vgic_initialized(vcpu->kvm)))
910                 return;
911
912         if (kvm_vgic_global_state.type == VGIC_V2)
913                 vgic_v2_load(vcpu);
914         else
915                 vgic_v3_load(vcpu);
916 }
917
918 void kvm_vgic_put(struct kvm_vcpu *vcpu)
919 {
920         if (unlikely(!vgic_initialized(vcpu->kvm)))
921                 return;
922
923         if (kvm_vgic_global_state.type == VGIC_V2)
924                 vgic_v2_put(vcpu);
925         else
926                 vgic_v3_put(vcpu);
927 }
928
929 void kvm_vgic_vmcr_sync(struct kvm_vcpu *vcpu)
930 {
931         if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
932                 return;
933
934         if (kvm_vgic_global_state.type == VGIC_V2)
935                 vgic_v2_vmcr_sync(vcpu);
936         else
937                 vgic_v3_vmcr_sync(vcpu);
938 }
939
940 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
941 {
942         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
943         struct vgic_irq *irq;
944         bool pending = false;
945         unsigned long flags;
946         struct vgic_vmcr vmcr;
947
948         if (!vcpu->kvm->arch.vgic.enabled)
949                 return false;
950
951         if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last)
952                 return true;
953
954         vgic_get_vmcr(vcpu, &vmcr);
955
956         raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
957
958         list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
959                 raw_spin_lock(&irq->irq_lock);
960                 pending = irq_is_pending(irq) && irq->enabled &&
961                           !irq->active &&
962                           irq->priority < vmcr.pmr;
963                 raw_spin_unlock(&irq->irq_lock);
964
965                 if (pending)
966                         break;
967         }
968
969         raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
970
971         return pending;
972 }
973
974 void vgic_kick_vcpus(struct kvm *kvm)
975 {
976         struct kvm_vcpu *vcpu;
977         int c;
978
979         /*
980          * We've injected an interrupt, time to find out who deserves
981          * a good kick...
982          */
983         kvm_for_each_vcpu(c, vcpu, kvm) {
984                 if (kvm_vgic_vcpu_pending_irq(vcpu)) {
985                         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
986                         kvm_vcpu_kick(vcpu);
987                 }
988         }
989 }
990
991 bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int vintid)
992 {
993         struct vgic_irq *irq;
994         bool map_is_active;
995         unsigned long flags;
996
997         if (!vgic_initialized(vcpu->kvm))
998                 return false;
999
1000         irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
1001         raw_spin_lock_irqsave(&irq->irq_lock, flags);
1002         map_is_active = irq->hw && irq->active;
1003         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1004         vgic_put_irq(vcpu->kvm, irq);
1005
1006         return map_is_active;
1007 }