Merge branches 'acpi-video' and 'acpi-x86'
[sfrench/cifs-2.6.git] / virt / kvm / arm / vgic / vgic-mmio.c
1 /*
2  * VGIC MMIO handling functions
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  */
13
14 #include <linux/bitops.h>
15 #include <linux/bsearch.h>
16 #include <linux/kvm.h>
17 #include <linux/kvm_host.h>
18 #include <kvm/iodev.h>
19 #include <kvm/arm_arch_timer.h>
20 #include <kvm/arm_vgic.h>
21
22 #include "vgic.h"
23 #include "vgic-mmio.h"
24
25 unsigned long vgic_mmio_read_raz(struct kvm_vcpu *vcpu,
26                                  gpa_t addr, unsigned int len)
27 {
28         return 0;
29 }
30
31 unsigned long vgic_mmio_read_rao(struct kvm_vcpu *vcpu,
32                                  gpa_t addr, unsigned int len)
33 {
34         return -1UL;
35 }
36
37 void vgic_mmio_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
38                         unsigned int len, unsigned long val)
39 {
40         /* Ignore */
41 }
42
43 int vgic_mmio_uaccess_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
44                                unsigned int len, unsigned long val)
45 {
46         /* Ignore */
47         return 0;
48 }
49
50 unsigned long vgic_mmio_read_group(struct kvm_vcpu *vcpu,
51                                    gpa_t addr, unsigned int len)
52 {
53         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
54         u32 value = 0;
55         int i;
56
57         /* Loop over all IRQs affected by this read */
58         for (i = 0; i < len * 8; i++) {
59                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
60
61                 if (irq->group)
62                         value |= BIT(i);
63
64                 vgic_put_irq(vcpu->kvm, irq);
65         }
66
67         return value;
68 }
69
70 void vgic_mmio_write_group(struct kvm_vcpu *vcpu, gpa_t addr,
71                            unsigned int len, unsigned long val)
72 {
73         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
74         int i;
75         unsigned long flags;
76
77         for (i = 0; i < len * 8; i++) {
78                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
79
80                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
81                 irq->group = !!(val & BIT(i));
82                 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
83
84                 vgic_put_irq(vcpu->kvm, irq);
85         }
86 }
87
88 /*
89  * Read accesses to both GICD_ICENABLER and GICD_ISENABLER return the value
90  * of the enabled bit, so there is only one function for both here.
91  */
92 unsigned long vgic_mmio_read_enable(struct kvm_vcpu *vcpu,
93                                     gpa_t addr, unsigned int len)
94 {
95         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
96         u32 value = 0;
97         int i;
98
99         /* Loop over all IRQs affected by this read */
100         for (i = 0; i < len * 8; i++) {
101                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
102
103                 if (irq->enabled)
104                         value |= (1U << i);
105
106                 vgic_put_irq(vcpu->kvm, irq);
107         }
108
109         return value;
110 }
111
112 void vgic_mmio_write_senable(struct kvm_vcpu *vcpu,
113                              gpa_t addr, unsigned int len,
114                              unsigned long val)
115 {
116         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
117         int i;
118         unsigned long flags;
119
120         for_each_set_bit(i, &val, len * 8) {
121                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
122
123                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
124                 irq->enabled = true;
125                 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
126
127                 vgic_put_irq(vcpu->kvm, irq);
128         }
129 }
130
131 void vgic_mmio_write_cenable(struct kvm_vcpu *vcpu,
132                              gpa_t addr, unsigned int len,
133                              unsigned long val)
134 {
135         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
136         int i;
137         unsigned long flags;
138
139         for_each_set_bit(i, &val, len * 8) {
140                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
141
142                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
143
144                 irq->enabled = false;
145
146                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
147                 vgic_put_irq(vcpu->kvm, irq);
148         }
149 }
150
151 unsigned long vgic_mmio_read_pending(struct kvm_vcpu *vcpu,
152                                      gpa_t addr, unsigned int len)
153 {
154         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
155         u32 value = 0;
156         int i;
157
158         /* Loop over all IRQs affected by this read */
159         for (i = 0; i < len * 8; i++) {
160                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
161                 unsigned long flags;
162
163                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
164                 if (irq_is_pending(irq))
165                         value |= (1U << i);
166                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
167
168                 vgic_put_irq(vcpu->kvm, irq);
169         }
170
171         return value;
172 }
173
174 /*
175  * This function will return the VCPU that performed the MMIO access and
176  * trapped from within the VM, and will return NULL if this is a userspace
177  * access.
178  *
179  * We can disable preemption locally around accessing the per-CPU variable,
180  * and use the resolved vcpu pointer after enabling preemption again, because
181  * even if the current thread is migrated to another CPU, reading the per-CPU
182  * value later will give us the same value as we update the per-CPU variable
183  * in the preempt notifier handlers.
184  */
185 static struct kvm_vcpu *vgic_get_mmio_requester_vcpu(void)
186 {
187         struct kvm_vcpu *vcpu;
188
189         preempt_disable();
190         vcpu = kvm_arm_get_running_vcpu();
191         preempt_enable();
192         return vcpu;
193 }
194
195 /* Must be called with irq->irq_lock held */
196 static void vgic_hw_irq_spending(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
197                                  bool is_uaccess)
198 {
199         if (is_uaccess)
200                 return;
201
202         irq->pending_latch = true;
203         vgic_irq_set_phys_active(irq, true);
204 }
205
206 void vgic_mmio_write_spending(struct kvm_vcpu *vcpu,
207                               gpa_t addr, unsigned int len,
208                               unsigned long val)
209 {
210         bool is_uaccess = !vgic_get_mmio_requester_vcpu();
211         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
212         int i;
213         unsigned long flags;
214
215         for_each_set_bit(i, &val, len * 8) {
216                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
217
218                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
219                 if (irq->hw)
220                         vgic_hw_irq_spending(vcpu, irq, is_uaccess);
221                 else
222                         irq->pending_latch = true;
223                 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
224                 vgic_put_irq(vcpu->kvm, irq);
225         }
226 }
227
228 /* Must be called with irq->irq_lock held */
229 static void vgic_hw_irq_cpending(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
230                                  bool is_uaccess)
231 {
232         if (is_uaccess)
233                 return;
234
235         irq->pending_latch = false;
236
237         /*
238          * We don't want the guest to effectively mask the physical
239          * interrupt by doing a write to SPENDR followed by a write to
240          * CPENDR for HW interrupts, so we clear the active state on
241          * the physical side if the virtual interrupt is not active.
242          * This may lead to taking an additional interrupt on the
243          * host, but that should not be a problem as the worst that
244          * can happen is an additional vgic injection.  We also clear
245          * the pending state to maintain proper semantics for edge HW
246          * interrupts.
247          */
248         vgic_irq_set_phys_pending(irq, false);
249         if (!irq->active)
250                 vgic_irq_set_phys_active(irq, false);
251 }
252
253 void vgic_mmio_write_cpending(struct kvm_vcpu *vcpu,
254                               gpa_t addr, unsigned int len,
255                               unsigned long val)
256 {
257         bool is_uaccess = !vgic_get_mmio_requester_vcpu();
258         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
259         int i;
260         unsigned long flags;
261
262         for_each_set_bit(i, &val, len * 8) {
263                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
264
265                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
266
267                 if (irq->hw)
268                         vgic_hw_irq_cpending(vcpu, irq, is_uaccess);
269                 else
270                         irq->pending_latch = false;
271
272                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
273                 vgic_put_irq(vcpu->kvm, irq);
274         }
275 }
276
277 unsigned long vgic_mmio_read_active(struct kvm_vcpu *vcpu,
278                                     gpa_t addr, unsigned int len)
279 {
280         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
281         u32 value = 0;
282         int i;
283
284         /* Loop over all IRQs affected by this read */
285         for (i = 0; i < len * 8; i++) {
286                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
287
288                 if (irq->active)
289                         value |= (1U << i);
290
291                 vgic_put_irq(vcpu->kvm, irq);
292         }
293
294         return value;
295 }
296
297 /* Must be called with irq->irq_lock held */
298 static void vgic_hw_irq_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
299                                       bool active, bool is_uaccess)
300 {
301         if (is_uaccess)
302                 return;
303
304         irq->active = active;
305         vgic_irq_set_phys_active(irq, active);
306 }
307
308 static void vgic_mmio_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
309                                     bool active)
310 {
311         unsigned long flags;
312         struct kvm_vcpu *requester_vcpu = vgic_get_mmio_requester_vcpu();
313
314         raw_spin_lock_irqsave(&irq->irq_lock, flags);
315
316         if (irq->hw) {
317                 vgic_hw_irq_change_active(vcpu, irq, active, !requester_vcpu);
318         } else {
319                 u32 model = vcpu->kvm->arch.vgic.vgic_model;
320                 u8 active_source;
321
322                 irq->active = active;
323
324                 /*
325                  * The GICv2 architecture indicates that the source CPUID for
326                  * an SGI should be provided during an EOI which implies that
327                  * the active state is stored somewhere, but at the same time
328                  * this state is not architecturally exposed anywhere and we
329                  * have no way of knowing the right source.
330                  *
331                  * This may lead to a VCPU not being able to receive
332                  * additional instances of a particular SGI after migration
333                  * for a GICv2 VM on some GIC implementations.  Oh well.
334                  */
335                 active_source = (requester_vcpu) ? requester_vcpu->vcpu_id : 0;
336
337                 if (model == KVM_DEV_TYPE_ARM_VGIC_V2 &&
338                     active && vgic_irq_is_sgi(irq->intid))
339                         irq->active_source = active_source;
340         }
341
342         if (irq->active)
343                 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
344         else
345                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
346 }
347
348 /*
349  * If we are fiddling with an IRQ's active state, we have to make sure the IRQ
350  * is not queued on some running VCPU's LRs, because then the change to the
351  * active state can be overwritten when the VCPU's state is synced coming back
352  * from the guest.
353  *
354  * For shared interrupts, we have to stop all the VCPUs because interrupts can
355  * be migrated while we don't hold the IRQ locks and we don't want to be
356  * chasing moving targets.
357  *
358  * For private interrupts we don't have to do anything because userspace
359  * accesses to the VGIC state already require all VCPUs to be stopped, and
360  * only the VCPU itself can modify its private interrupts active state, which
361  * guarantees that the VCPU is not running.
362  */
363 static void vgic_change_active_prepare(struct kvm_vcpu *vcpu, u32 intid)
364 {
365         if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3 ||
366             intid > VGIC_NR_PRIVATE_IRQS)
367                 kvm_arm_halt_guest(vcpu->kvm);
368 }
369
370 /* See vgic_change_active_prepare */
371 static void vgic_change_active_finish(struct kvm_vcpu *vcpu, u32 intid)
372 {
373         if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3 ||
374             intid > VGIC_NR_PRIVATE_IRQS)
375                 kvm_arm_resume_guest(vcpu->kvm);
376 }
377
378 static void __vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
379                                       gpa_t addr, unsigned int len,
380                                       unsigned long val)
381 {
382         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
383         int i;
384
385         for_each_set_bit(i, &val, len * 8) {
386                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
387                 vgic_mmio_change_active(vcpu, irq, false);
388                 vgic_put_irq(vcpu->kvm, irq);
389         }
390 }
391
392 void vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
393                              gpa_t addr, unsigned int len,
394                              unsigned long val)
395 {
396         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
397
398         mutex_lock(&vcpu->kvm->lock);
399         vgic_change_active_prepare(vcpu, intid);
400
401         __vgic_mmio_write_cactive(vcpu, addr, len, val);
402
403         vgic_change_active_finish(vcpu, intid);
404         mutex_unlock(&vcpu->kvm->lock);
405 }
406
407 int vgic_mmio_uaccess_write_cactive(struct kvm_vcpu *vcpu,
408                                      gpa_t addr, unsigned int len,
409                                      unsigned long val)
410 {
411         __vgic_mmio_write_cactive(vcpu, addr, len, val);
412         return 0;
413 }
414
415 static void __vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
416                                       gpa_t addr, unsigned int len,
417                                       unsigned long val)
418 {
419         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
420         int i;
421
422         for_each_set_bit(i, &val, len * 8) {
423                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
424                 vgic_mmio_change_active(vcpu, irq, true);
425                 vgic_put_irq(vcpu->kvm, irq);
426         }
427 }
428
429 void vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
430                              gpa_t addr, unsigned int len,
431                              unsigned long val)
432 {
433         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
434
435         mutex_lock(&vcpu->kvm->lock);
436         vgic_change_active_prepare(vcpu, intid);
437
438         __vgic_mmio_write_sactive(vcpu, addr, len, val);
439
440         vgic_change_active_finish(vcpu, intid);
441         mutex_unlock(&vcpu->kvm->lock);
442 }
443
444 int vgic_mmio_uaccess_write_sactive(struct kvm_vcpu *vcpu,
445                                      gpa_t addr, unsigned int len,
446                                      unsigned long val)
447 {
448         __vgic_mmio_write_sactive(vcpu, addr, len, val);
449         return 0;
450 }
451
452 unsigned long vgic_mmio_read_priority(struct kvm_vcpu *vcpu,
453                                       gpa_t addr, unsigned int len)
454 {
455         u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
456         int i;
457         u64 val = 0;
458
459         for (i = 0; i < len; i++) {
460                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
461
462                 val |= (u64)irq->priority << (i * 8);
463
464                 vgic_put_irq(vcpu->kvm, irq);
465         }
466
467         return val;
468 }
469
470 /*
471  * We currently don't handle changing the priority of an interrupt that
472  * is already pending on a VCPU. If there is a need for this, we would
473  * need to make this VCPU exit and re-evaluate the priorities, potentially
474  * leading to this interrupt getting presented now to the guest (if it has
475  * been masked by the priority mask before).
476  */
477 void vgic_mmio_write_priority(struct kvm_vcpu *vcpu,
478                               gpa_t addr, unsigned int len,
479                               unsigned long val)
480 {
481         u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
482         int i;
483         unsigned long flags;
484
485         for (i = 0; i < len; i++) {
486                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
487
488                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
489                 /* Narrow the priority range to what we actually support */
490                 irq->priority = (val >> (i * 8)) & GENMASK(7, 8 - VGIC_PRI_BITS);
491                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
492
493                 vgic_put_irq(vcpu->kvm, irq);
494         }
495 }
496
497 unsigned long vgic_mmio_read_config(struct kvm_vcpu *vcpu,
498                                     gpa_t addr, unsigned int len)
499 {
500         u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
501         u32 value = 0;
502         int i;
503
504         for (i = 0; i < len * 4; i++) {
505                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
506
507                 if (irq->config == VGIC_CONFIG_EDGE)
508                         value |= (2U << (i * 2));
509
510                 vgic_put_irq(vcpu->kvm, irq);
511         }
512
513         return value;
514 }
515
516 void vgic_mmio_write_config(struct kvm_vcpu *vcpu,
517                             gpa_t addr, unsigned int len,
518                             unsigned long val)
519 {
520         u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
521         int i;
522         unsigned long flags;
523
524         for (i = 0; i < len * 4; i++) {
525                 struct vgic_irq *irq;
526
527                 /*
528                  * The configuration cannot be changed for SGIs in general,
529                  * for PPIs this is IMPLEMENTATION DEFINED. The arch timer
530                  * code relies on PPIs being level triggered, so we also
531                  * make them read-only here.
532                  */
533                 if (intid + i < VGIC_NR_PRIVATE_IRQS)
534                         continue;
535
536                 irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
537                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
538
539                 if (test_bit(i * 2 + 1, &val))
540                         irq->config = VGIC_CONFIG_EDGE;
541                 else
542                         irq->config = VGIC_CONFIG_LEVEL;
543
544                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
545                 vgic_put_irq(vcpu->kvm, irq);
546         }
547 }
548
549 u64 vgic_read_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid)
550 {
551         int i;
552         u64 val = 0;
553         int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
554
555         for (i = 0; i < 32; i++) {
556                 struct vgic_irq *irq;
557
558                 if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
559                         continue;
560
561                 irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
562                 if (irq->config == VGIC_CONFIG_LEVEL && irq->line_level)
563                         val |= (1U << i);
564
565                 vgic_put_irq(vcpu->kvm, irq);
566         }
567
568         return val;
569 }
570
571 void vgic_write_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid,
572                                     const u64 val)
573 {
574         int i;
575         int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
576         unsigned long flags;
577
578         for (i = 0; i < 32; i++) {
579                 struct vgic_irq *irq;
580                 bool new_level;
581
582                 if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
583                         continue;
584
585                 irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
586
587                 /*
588                  * Line level is set irrespective of irq type
589                  * (level or edge) to avoid dependency that VM should
590                  * restore irq config before line level.
591                  */
592                 new_level = !!(val & (1U << i));
593                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
594                 irq->line_level = new_level;
595                 if (new_level)
596                         vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
597                 else
598                         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
599
600                 vgic_put_irq(vcpu->kvm, irq);
601         }
602 }
603
604 static int match_region(const void *key, const void *elt)
605 {
606         const unsigned int offset = (unsigned long)key;
607         const struct vgic_register_region *region = elt;
608
609         if (offset < region->reg_offset)
610                 return -1;
611
612         if (offset >= region->reg_offset + region->len)
613                 return 1;
614
615         return 0;
616 }
617
618 const struct vgic_register_region *
619 vgic_find_mmio_region(const struct vgic_register_region *regions,
620                       int nr_regions, unsigned int offset)
621 {
622         return bsearch((void *)(uintptr_t)offset, regions, nr_regions,
623                        sizeof(regions[0]), match_region);
624 }
625
626 void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
627 {
628         if (kvm_vgic_global_state.type == VGIC_V2)
629                 vgic_v2_set_vmcr(vcpu, vmcr);
630         else
631                 vgic_v3_set_vmcr(vcpu, vmcr);
632 }
633
634 void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
635 {
636         if (kvm_vgic_global_state.type == VGIC_V2)
637                 vgic_v2_get_vmcr(vcpu, vmcr);
638         else
639                 vgic_v3_get_vmcr(vcpu, vmcr);
640 }
641
642 /*
643  * kvm_mmio_read_buf() returns a value in a format where it can be converted
644  * to a byte array and be directly observed as the guest wanted it to appear
645  * in memory if it had done the store itself, which is LE for the GIC, as the
646  * guest knows the GIC is always LE.
647  *
648  * We convert this value to the CPUs native format to deal with it as a data
649  * value.
650  */
651 unsigned long vgic_data_mmio_bus_to_host(const void *val, unsigned int len)
652 {
653         unsigned long data = kvm_mmio_read_buf(val, len);
654
655         switch (len) {
656         case 1:
657                 return data;
658         case 2:
659                 return le16_to_cpu(data);
660         case 4:
661                 return le32_to_cpu(data);
662         default:
663                 return le64_to_cpu(data);
664         }
665 }
666
667 /*
668  * kvm_mmio_write_buf() expects a value in a format such that if converted to
669  * a byte array it is observed as the guest would see it if it could perform
670  * the load directly.  Since the GIC is LE, and the guest knows this, the
671  * guest expects a value in little endian format.
672  *
673  * We convert the data value from the CPUs native format to LE so that the
674  * value is returned in the proper format.
675  */
676 void vgic_data_host_to_mmio_bus(void *buf, unsigned int len,
677                                 unsigned long data)
678 {
679         switch (len) {
680         case 1:
681                 break;
682         case 2:
683                 data = cpu_to_le16(data);
684                 break;
685         case 4:
686                 data = cpu_to_le32(data);
687                 break;
688         default:
689                 data = cpu_to_le64(data);
690         }
691
692         kvm_mmio_write_buf(buf, len, data);
693 }
694
695 static
696 struct vgic_io_device *kvm_to_vgic_iodev(const struct kvm_io_device *dev)
697 {
698         return container_of(dev, struct vgic_io_device, dev);
699 }
700
701 static bool check_region(const struct kvm *kvm,
702                          const struct vgic_register_region *region,
703                          gpa_t addr, int len)
704 {
705         int flags, nr_irqs = kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
706
707         switch (len) {
708         case sizeof(u8):
709                 flags = VGIC_ACCESS_8bit;
710                 break;
711         case sizeof(u32):
712                 flags = VGIC_ACCESS_32bit;
713                 break;
714         case sizeof(u64):
715                 flags = VGIC_ACCESS_64bit;
716                 break;
717         default:
718                 return false;
719         }
720
721         if ((region->access_flags & flags) && IS_ALIGNED(addr, len)) {
722                 if (!region->bits_per_irq)
723                         return true;
724
725                 /* Do we access a non-allocated IRQ? */
726                 return VGIC_ADDR_TO_INTID(addr, region->bits_per_irq) < nr_irqs;
727         }
728
729         return false;
730 }
731
732 const struct vgic_register_region *
733 vgic_get_mmio_region(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
734                      gpa_t addr, int len)
735 {
736         const struct vgic_register_region *region;
737
738         region = vgic_find_mmio_region(iodev->regions, iodev->nr_regions,
739                                        addr - iodev->base_addr);
740         if (!region || !check_region(vcpu->kvm, region, addr, len))
741                 return NULL;
742
743         return region;
744 }
745
746 static int vgic_uaccess_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
747                              gpa_t addr, u32 *val)
748 {
749         struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
750         const struct vgic_register_region *region;
751         struct kvm_vcpu *r_vcpu;
752
753         region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
754         if (!region) {
755                 *val = 0;
756                 return 0;
757         }
758
759         r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
760         if (region->uaccess_read)
761                 *val = region->uaccess_read(r_vcpu, addr, sizeof(u32));
762         else
763                 *val = region->read(r_vcpu, addr, sizeof(u32));
764
765         return 0;
766 }
767
768 static int vgic_uaccess_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
769                               gpa_t addr, const u32 *val)
770 {
771         struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
772         const struct vgic_register_region *region;
773         struct kvm_vcpu *r_vcpu;
774
775         region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
776         if (!region)
777                 return 0;
778
779         r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
780         if (region->uaccess_write)
781                 return region->uaccess_write(r_vcpu, addr, sizeof(u32), *val);
782
783         region->write(r_vcpu, addr, sizeof(u32), *val);
784         return 0;
785 }
786
787 /*
788  * Userland access to VGIC registers.
789  */
790 int vgic_uaccess(struct kvm_vcpu *vcpu, struct vgic_io_device *dev,
791                  bool is_write, int offset, u32 *val)
792 {
793         if (is_write)
794                 return vgic_uaccess_write(vcpu, &dev->dev, offset, val);
795         else
796                 return vgic_uaccess_read(vcpu, &dev->dev, offset, val);
797 }
798
799 static int dispatch_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
800                               gpa_t addr, int len, void *val)
801 {
802         struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
803         const struct vgic_register_region *region;
804         unsigned long data = 0;
805
806         region = vgic_get_mmio_region(vcpu, iodev, addr, len);
807         if (!region) {
808                 memset(val, 0, len);
809                 return 0;
810         }
811
812         switch (iodev->iodev_type) {
813         case IODEV_CPUIF:
814                 data = region->read(vcpu, addr, len);
815                 break;
816         case IODEV_DIST:
817                 data = region->read(vcpu, addr, len);
818                 break;
819         case IODEV_REDIST:
820                 data = region->read(iodev->redist_vcpu, addr, len);
821                 break;
822         case IODEV_ITS:
823                 data = region->its_read(vcpu->kvm, iodev->its, addr, len);
824                 break;
825         }
826
827         vgic_data_host_to_mmio_bus(val, len, data);
828         return 0;
829 }
830
831 static int dispatch_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
832                                gpa_t addr, int len, const void *val)
833 {
834         struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
835         const struct vgic_register_region *region;
836         unsigned long data = vgic_data_mmio_bus_to_host(val, len);
837
838         region = vgic_get_mmio_region(vcpu, iodev, addr, len);
839         if (!region)
840                 return 0;
841
842         switch (iodev->iodev_type) {
843         case IODEV_CPUIF:
844                 region->write(vcpu, addr, len, data);
845                 break;
846         case IODEV_DIST:
847                 region->write(vcpu, addr, len, data);
848                 break;
849         case IODEV_REDIST:
850                 region->write(iodev->redist_vcpu, addr, len, data);
851                 break;
852         case IODEV_ITS:
853                 region->its_write(vcpu->kvm, iodev->its, addr, len, data);
854                 break;
855         }
856
857         return 0;
858 }
859
860 struct kvm_io_device_ops kvm_io_gic_ops = {
861         .read = dispatch_mmio_read,
862         .write = dispatch_mmio_write,
863 };
864
865 int vgic_register_dist_iodev(struct kvm *kvm, gpa_t dist_base_address,
866                              enum vgic_type type)
867 {
868         struct vgic_io_device *io_device = &kvm->arch.vgic.dist_iodev;
869         int ret = 0;
870         unsigned int len;
871
872         switch (type) {
873         case VGIC_V2:
874                 len = vgic_v2_init_dist_iodev(io_device);
875                 break;
876         case VGIC_V3:
877                 len = vgic_v3_init_dist_iodev(io_device);
878                 break;
879         default:
880                 BUG_ON(1);
881         }
882
883         io_device->base_addr = dist_base_address;
884         io_device->iodev_type = IODEV_DIST;
885         io_device->redist_vcpu = NULL;
886
887         mutex_lock(&kvm->slots_lock);
888         ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, dist_base_address,
889                                       len, &io_device->dev);
890         mutex_unlock(&kvm->slots_lock);
891
892         return ret;
893 }