Merge tag 'gpio-v4.13-2' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[sfrench/cifs-2.6.git] / virt / kvm / arm / vgic / vgic-mmio-v3.c
1 /*
2  * VGICv3 MMIO handling functions
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  */
13
14 #include <linux/irqchip/arm-gic-v3.h>
15 #include <linux/kvm.h>
16 #include <linux/kvm_host.h>
17 #include <kvm/iodev.h>
18 #include <kvm/arm_vgic.h>
19
20 #include <asm/kvm_emulate.h>
21 #include <asm/kvm_arm.h>
22 #include <asm/kvm_mmu.h>
23
24 #include "vgic.h"
25 #include "vgic-mmio.h"
26
27 /* extract @num bytes at @offset bytes offset in data */
28 unsigned long extract_bytes(u64 data, unsigned int offset,
29                             unsigned int num)
30 {
31         return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
32 }
33
34 /* allows updates of any half of a 64-bit register (or the whole thing) */
35 u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
36                      unsigned long val)
37 {
38         int lower = (offset & 4) * 8;
39         int upper = lower + 8 * len - 1;
40
41         reg &= ~GENMASK_ULL(upper, lower);
42         val &= GENMASK_ULL(len * 8 - 1, 0);
43
44         return reg | ((u64)val << lower);
45 }
46
47 bool vgic_has_its(struct kvm *kvm)
48 {
49         struct vgic_dist *dist = &kvm->arch.vgic;
50
51         if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
52                 return false;
53
54         return dist->has_its;
55 }
56
57 static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
58                                             gpa_t addr, unsigned int len)
59 {
60         u32 value = 0;
61
62         switch (addr & 0x0c) {
63         case GICD_CTLR:
64                 if (vcpu->kvm->arch.vgic.enabled)
65                         value |= GICD_CTLR_ENABLE_SS_G1;
66                 value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
67                 break;
68         case GICD_TYPER:
69                 value = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
70                 value = (value >> 5) - 1;
71                 if (vgic_has_its(vcpu->kvm)) {
72                         value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
73                         value |= GICD_TYPER_LPIS;
74                 } else {
75                         value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
76                 }
77                 break;
78         case GICD_IIDR:
79                 value = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
80                 break;
81         default:
82                 return 0;
83         }
84
85         return value;
86 }
87
88 static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
89                                     gpa_t addr, unsigned int len,
90                                     unsigned long val)
91 {
92         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
93         bool was_enabled = dist->enabled;
94
95         switch (addr & 0x0c) {
96         case GICD_CTLR:
97                 dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
98
99                 if (!was_enabled && dist->enabled)
100                         vgic_kick_vcpus(vcpu->kvm);
101                 break;
102         case GICD_TYPER:
103         case GICD_IIDR:
104                 return;
105         }
106 }
107
108 static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
109                                             gpa_t addr, unsigned int len)
110 {
111         int intid = VGIC_ADDR_TO_INTID(addr, 64);
112         struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
113         unsigned long ret = 0;
114
115         if (!irq)
116                 return 0;
117
118         /* The upper word is RAZ for us. */
119         if (!(addr & 4))
120                 ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
121
122         vgic_put_irq(vcpu->kvm, irq);
123         return ret;
124 }
125
126 static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
127                                     gpa_t addr, unsigned int len,
128                                     unsigned long val)
129 {
130         int intid = VGIC_ADDR_TO_INTID(addr, 64);
131         struct vgic_irq *irq;
132
133         /* The upper word is WI for us since we don't implement Aff3. */
134         if (addr & 4)
135                 return;
136
137         irq = vgic_get_irq(vcpu->kvm, NULL, intid);
138
139         if (!irq)
140                 return;
141
142         spin_lock(&irq->irq_lock);
143
144         /* We only care about and preserve Aff0, Aff1 and Aff2. */
145         irq->mpidr = val & GENMASK(23, 0);
146         irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
147
148         spin_unlock(&irq->irq_lock);
149         vgic_put_irq(vcpu->kvm, irq);
150 }
151
152 static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
153                                              gpa_t addr, unsigned int len)
154 {
155         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
156
157         return vgic_cpu->lpis_enabled ? GICR_CTLR_ENABLE_LPIS : 0;
158 }
159
160
161 static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
162                                      gpa_t addr, unsigned int len,
163                                      unsigned long val)
164 {
165         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
166         bool was_enabled = vgic_cpu->lpis_enabled;
167
168         if (!vgic_has_its(vcpu->kvm))
169                 return;
170
171         vgic_cpu->lpis_enabled = val & GICR_CTLR_ENABLE_LPIS;
172
173         if (!was_enabled && vgic_cpu->lpis_enabled)
174                 vgic_enable_lpis(vcpu);
175 }
176
177 static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
178                                               gpa_t addr, unsigned int len)
179 {
180         unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
181         int target_vcpu_id = vcpu->vcpu_id;
182         u64 value;
183
184         value = (u64)(mpidr & GENMASK(23, 0)) << 32;
185         value |= ((target_vcpu_id & 0xffff) << 8);
186         if (target_vcpu_id == atomic_read(&vcpu->kvm->online_vcpus) - 1)
187                 value |= GICR_TYPER_LAST;
188         if (vgic_has_its(vcpu->kvm))
189                 value |= GICR_TYPER_PLPIS;
190
191         return extract_bytes(value, addr & 7, len);
192 }
193
194 static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
195                                              gpa_t addr, unsigned int len)
196 {
197         return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
198 }
199
200 static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
201                                               gpa_t addr, unsigned int len)
202 {
203         switch (addr & 0xffff) {
204         case GICD_PIDR2:
205                 /* report a GICv3 compliant implementation */
206                 return 0x3b;
207         }
208
209         return 0;
210 }
211
212 static unsigned long vgic_v3_uaccess_read_pending(struct kvm_vcpu *vcpu,
213                                                   gpa_t addr, unsigned int len)
214 {
215         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
216         u32 value = 0;
217         int i;
218
219         /*
220          * pending state of interrupt is latched in pending_latch variable.
221          * Userspace will save and restore pending state and line_level
222          * separately.
223          * Refer to Documentation/virtual/kvm/devices/arm-vgic-v3.txt
224          * for handling of ISPENDR and ICPENDR.
225          */
226         for (i = 0; i < len * 8; i++) {
227                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
228
229                 if (irq->pending_latch)
230                         value |= (1U << i);
231
232                 vgic_put_irq(vcpu->kvm, irq);
233         }
234
235         return value;
236 }
237
238 static void vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
239                                           gpa_t addr, unsigned int len,
240                                           unsigned long val)
241 {
242         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
243         int i;
244
245         for (i = 0; i < len * 8; i++) {
246                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
247
248                 spin_lock(&irq->irq_lock);
249                 if (test_bit(i, &val)) {
250                         /*
251                          * pending_latch is set irrespective of irq type
252                          * (level or edge) to avoid dependency that VM should
253                          * restore irq config before pending info.
254                          */
255                         irq->pending_latch = true;
256                         vgic_queue_irq_unlock(vcpu->kvm, irq);
257                 } else {
258                         irq->pending_latch = false;
259                         spin_unlock(&irq->irq_lock);
260                 }
261
262                 vgic_put_irq(vcpu->kvm, irq);
263         }
264 }
265
266 /* We want to avoid outer shareable. */
267 u64 vgic_sanitise_shareability(u64 field)
268 {
269         switch (field) {
270         case GIC_BASER_OuterShareable:
271                 return GIC_BASER_InnerShareable;
272         default:
273                 return field;
274         }
275 }
276
277 /* Avoid any inner non-cacheable mapping. */
278 u64 vgic_sanitise_inner_cacheability(u64 field)
279 {
280         switch (field) {
281         case GIC_BASER_CACHE_nCnB:
282         case GIC_BASER_CACHE_nC:
283                 return GIC_BASER_CACHE_RaWb;
284         default:
285                 return field;
286         }
287 }
288
289 /* Non-cacheable or same-as-inner are OK. */
290 u64 vgic_sanitise_outer_cacheability(u64 field)
291 {
292         switch (field) {
293         case GIC_BASER_CACHE_SameAsInner:
294         case GIC_BASER_CACHE_nC:
295                 return field;
296         default:
297                 return GIC_BASER_CACHE_nC;
298         }
299 }
300
301 u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
302                         u64 (*sanitise_fn)(u64))
303 {
304         u64 field = (reg & field_mask) >> field_shift;
305
306         field = sanitise_fn(field) << field_shift;
307         return (reg & ~field_mask) | field;
308 }
309
310 #define PROPBASER_RES0_MASK                                             \
311         (GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
312 #define PENDBASER_RES0_MASK                                             \
313         (BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) |      \
314          GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
315
316 static u64 vgic_sanitise_pendbaser(u64 reg)
317 {
318         reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
319                                   GICR_PENDBASER_SHAREABILITY_SHIFT,
320                                   vgic_sanitise_shareability);
321         reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
322                                   GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
323                                   vgic_sanitise_inner_cacheability);
324         reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
325                                   GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
326                                   vgic_sanitise_outer_cacheability);
327
328         reg &= ~PENDBASER_RES0_MASK;
329         reg &= ~GENMASK_ULL(51, 48);
330
331         return reg;
332 }
333
334 static u64 vgic_sanitise_propbaser(u64 reg)
335 {
336         reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
337                                   GICR_PROPBASER_SHAREABILITY_SHIFT,
338                                   vgic_sanitise_shareability);
339         reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
340                                   GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
341                                   vgic_sanitise_inner_cacheability);
342         reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
343                                   GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
344                                   vgic_sanitise_outer_cacheability);
345
346         reg &= ~PROPBASER_RES0_MASK;
347         reg &= ~GENMASK_ULL(51, 48);
348         return reg;
349 }
350
351 static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
352                                              gpa_t addr, unsigned int len)
353 {
354         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
355
356         return extract_bytes(dist->propbaser, addr & 7, len);
357 }
358
359 static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
360                                      gpa_t addr, unsigned int len,
361                                      unsigned long val)
362 {
363         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
364         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
365         u64 old_propbaser, propbaser;
366
367         /* Storing a value with LPIs already enabled is undefined */
368         if (vgic_cpu->lpis_enabled)
369                 return;
370
371         do {
372                 old_propbaser = READ_ONCE(dist->propbaser);
373                 propbaser = old_propbaser;
374                 propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
375                 propbaser = vgic_sanitise_propbaser(propbaser);
376         } while (cmpxchg64(&dist->propbaser, old_propbaser,
377                            propbaser) != old_propbaser);
378 }
379
380 static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
381                                              gpa_t addr, unsigned int len)
382 {
383         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
384
385         return extract_bytes(vgic_cpu->pendbaser, addr & 7, len);
386 }
387
388 static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
389                                      gpa_t addr, unsigned int len,
390                                      unsigned long val)
391 {
392         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
393         u64 old_pendbaser, pendbaser;
394
395         /* Storing a value with LPIs already enabled is undefined */
396         if (vgic_cpu->lpis_enabled)
397                 return;
398
399         do {
400                 old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
401                 pendbaser = old_pendbaser;
402                 pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
403                 pendbaser = vgic_sanitise_pendbaser(pendbaser);
404         } while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
405                            pendbaser) != old_pendbaser);
406 }
407
408 /*
409  * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
410  * redistributors, while SPIs are covered by registers in the distributor
411  * block. Trying to set private IRQs in this block gets ignored.
412  * We take some special care here to fix the calculation of the register
413  * offset.
414  */
415 #define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
416         {                                                               \
417                 .reg_offset = off,                                      \
418                 .bits_per_irq = bpi,                                    \
419                 .len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8,                \
420                 .access_flags = acc,                                    \
421                 .read = vgic_mmio_read_raz,                             \
422                 .write = vgic_mmio_write_wi,                            \
423         }, {                                                            \
424                 .reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8,   \
425                 .bits_per_irq = bpi,                                    \
426                 .len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8,       \
427                 .access_flags = acc,                                    \
428                 .read = rd,                                             \
429                 .write = wr,                                            \
430                 .uaccess_read = ur,                                     \
431                 .uaccess_write = uw,                                    \
432         }
433
434 static const struct vgic_register_region vgic_v3_dist_registers[] = {
435         REGISTER_DESC_WITH_LENGTH(GICD_CTLR,
436                 vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc, 16,
437                 VGIC_ACCESS_32bit),
438         REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
439                 vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
440                 VGIC_ACCESS_32bit),
441         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
442                 vgic_mmio_read_rao, vgic_mmio_write_wi, NULL, NULL, 1,
443                 VGIC_ACCESS_32bit),
444         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
445                 vgic_mmio_read_enable, vgic_mmio_write_senable, NULL, NULL, 1,
446                 VGIC_ACCESS_32bit),
447         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
448                 vgic_mmio_read_enable, vgic_mmio_write_cenable, NULL, NULL, 1,
449                 VGIC_ACCESS_32bit),
450         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
451                 vgic_mmio_read_pending, vgic_mmio_write_spending,
452                 vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
453                 VGIC_ACCESS_32bit),
454         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
455                 vgic_mmio_read_pending, vgic_mmio_write_cpending,
456                 vgic_mmio_read_raz, vgic_mmio_write_wi, 1,
457                 VGIC_ACCESS_32bit),
458         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
459                 vgic_mmio_read_active, vgic_mmio_write_sactive,
460                 NULL, vgic_mmio_uaccess_write_sactive, 1,
461                 VGIC_ACCESS_32bit),
462         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
463                 vgic_mmio_read_active, vgic_mmio_write_cactive,
464                 NULL, vgic_mmio_uaccess_write_cactive,
465                 1, VGIC_ACCESS_32bit),
466         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
467                 vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
468                 8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
469         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
470                 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
471                 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
472         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
473                 vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
474                 VGIC_ACCESS_32bit),
475         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
476                 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
477                 VGIC_ACCESS_32bit),
478         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
479                 vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
480                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
481         REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
482                 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
483                 VGIC_ACCESS_32bit),
484 };
485
486 static const struct vgic_register_region vgic_v3_rdbase_registers[] = {
487         REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
488                 vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
489                 VGIC_ACCESS_32bit),
490         REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
491                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
492                 VGIC_ACCESS_32bit),
493         REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
494                 vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
495                 VGIC_ACCESS_32bit),
496         REGISTER_DESC_WITH_LENGTH(GICR_TYPER,
497                 vgic_mmio_read_v3r_typer, vgic_mmio_write_wi, 8,
498                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
499         REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
500                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
501                 VGIC_ACCESS_32bit),
502         REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
503                 vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
504                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
505         REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
506                 vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
507                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
508         REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
509                 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
510                 VGIC_ACCESS_32bit),
511 };
512
513 static const struct vgic_register_region vgic_v3_sgibase_registers[] = {
514         REGISTER_DESC_WITH_LENGTH(GICR_IGROUPR0,
515                 vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
516                 VGIC_ACCESS_32bit),
517         REGISTER_DESC_WITH_LENGTH(GICR_ISENABLER0,
518                 vgic_mmio_read_enable, vgic_mmio_write_senable, 4,
519                 VGIC_ACCESS_32bit),
520         REGISTER_DESC_WITH_LENGTH(GICR_ICENABLER0,
521                 vgic_mmio_read_enable, vgic_mmio_write_cenable, 4,
522                 VGIC_ACCESS_32bit),
523         REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ISPENDR0,
524                 vgic_mmio_read_pending, vgic_mmio_write_spending,
525                 vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
526                 VGIC_ACCESS_32bit),
527         REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ICPENDR0,
528                 vgic_mmio_read_pending, vgic_mmio_write_cpending,
529                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
530                 VGIC_ACCESS_32bit),
531         REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ISACTIVER0,
532                 vgic_mmio_read_active, vgic_mmio_write_sactive,
533                 NULL, vgic_mmio_uaccess_write_sactive,
534                 4, VGIC_ACCESS_32bit),
535         REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ICACTIVER0,
536                 vgic_mmio_read_active, vgic_mmio_write_cactive,
537                 NULL, vgic_mmio_uaccess_write_cactive,
538                 4, VGIC_ACCESS_32bit),
539         REGISTER_DESC_WITH_LENGTH(GICR_IPRIORITYR0,
540                 vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
541                 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
542         REGISTER_DESC_WITH_LENGTH(GICR_ICFGR0,
543                 vgic_mmio_read_config, vgic_mmio_write_config, 8,
544                 VGIC_ACCESS_32bit),
545         REGISTER_DESC_WITH_LENGTH(GICR_IGRPMODR0,
546                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
547                 VGIC_ACCESS_32bit),
548         REGISTER_DESC_WITH_LENGTH(GICR_NSACR,
549                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
550                 VGIC_ACCESS_32bit),
551 };
552
553 unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
554 {
555         dev->regions = vgic_v3_dist_registers;
556         dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
557
558         kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
559
560         return SZ_64K;
561 }
562
563 /**
564  * vgic_register_redist_iodev - register a single redist iodev
565  * @vcpu:    The VCPU to which the redistributor belongs
566  *
567  * Register a KVM iodev for this VCPU's redistributor using the address
568  * provided.
569  *
570  * Return 0 on success, -ERRNO otherwise.
571  */
572 int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
573 {
574         struct kvm *kvm = vcpu->kvm;
575         struct vgic_dist *vgic = &kvm->arch.vgic;
576         struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
577         struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev;
578         gpa_t rd_base, sgi_base;
579         int ret;
580
581         /*
582          * We may be creating VCPUs before having set the base address for the
583          * redistributor region, in which case we will come back to this
584          * function for all VCPUs when the base address is set.  Just return
585          * without doing any work for now.
586          */
587         if (IS_VGIC_ADDR_UNDEF(vgic->vgic_redist_base))
588                 return 0;
589
590         if (!vgic_v3_check_base(kvm))
591                 return -EINVAL;
592
593         rd_base = vgic->vgic_redist_base + vgic->vgic_redist_free_offset;
594         sgi_base = rd_base + SZ_64K;
595
596         kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
597         rd_dev->base_addr = rd_base;
598         rd_dev->iodev_type = IODEV_REDIST;
599         rd_dev->regions = vgic_v3_rdbase_registers;
600         rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers);
601         rd_dev->redist_vcpu = vcpu;
602
603         mutex_lock(&kvm->slots_lock);
604         ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
605                                       SZ_64K, &rd_dev->dev);
606         mutex_unlock(&kvm->slots_lock);
607
608         if (ret)
609                 return ret;
610
611         kvm_iodevice_init(&sgi_dev->dev, &kvm_io_gic_ops);
612         sgi_dev->base_addr = sgi_base;
613         sgi_dev->iodev_type = IODEV_REDIST;
614         sgi_dev->regions = vgic_v3_sgibase_registers;
615         sgi_dev->nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers);
616         sgi_dev->redist_vcpu = vcpu;
617
618         mutex_lock(&kvm->slots_lock);
619         ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, sgi_base,
620                                       SZ_64K, &sgi_dev->dev);
621         if (ret) {
622                 kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
623                                           &rd_dev->dev);
624                 goto out;
625         }
626
627         vgic->vgic_redist_free_offset += 2 * SZ_64K;
628 out:
629         mutex_unlock(&kvm->slots_lock);
630         return ret;
631 }
632
633 static void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
634 {
635         struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
636         struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev;
637
638         kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
639         kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &sgi_dev->dev);
640 }
641
642 static int vgic_register_all_redist_iodevs(struct kvm *kvm)
643 {
644         struct kvm_vcpu *vcpu;
645         int c, ret = 0;
646
647         kvm_for_each_vcpu(c, vcpu, kvm) {
648                 ret = vgic_register_redist_iodev(vcpu);
649                 if (ret)
650                         break;
651         }
652
653         if (ret) {
654                 /* The current c failed, so we start with the previous one. */
655                 mutex_lock(&kvm->slots_lock);
656                 for (c--; c >= 0; c--) {
657                         vcpu = kvm_get_vcpu(kvm, c);
658                         vgic_unregister_redist_iodev(vcpu);
659                 }
660                 mutex_unlock(&kvm->slots_lock);
661         }
662
663         return ret;
664 }
665
666 int vgic_v3_set_redist_base(struct kvm *kvm, u64 addr)
667 {
668         struct vgic_dist *vgic = &kvm->arch.vgic;
669         int ret;
670
671         /* vgic_check_ioaddr makes sure we don't do this twice */
672         ret = vgic_check_ioaddr(kvm, &vgic->vgic_redist_base, addr, SZ_64K);
673         if (ret)
674                 return ret;
675
676         vgic->vgic_redist_base = addr;
677         if (!vgic_v3_check_base(kvm)) {
678                 vgic->vgic_redist_base = VGIC_ADDR_UNDEF;
679                 return -EINVAL;
680         }
681
682         /*
683          * Register iodevs for each existing VCPU.  Adding more VCPUs
684          * afterwards will register the iodevs when needed.
685          */
686         ret = vgic_register_all_redist_iodevs(kvm);
687         if (ret)
688                 return ret;
689
690         return 0;
691 }
692
693 int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
694 {
695         const struct vgic_register_region *region;
696         struct vgic_io_device iodev;
697         struct vgic_reg_attr reg_attr;
698         struct kvm_vcpu *vcpu;
699         gpa_t addr;
700         int ret;
701
702         ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
703         if (ret)
704                 return ret;
705
706         vcpu = reg_attr.vcpu;
707         addr = reg_attr.addr;
708
709         switch (attr->group) {
710         case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
711                 iodev.regions = vgic_v3_dist_registers;
712                 iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
713                 iodev.base_addr = 0;
714                 break;
715         case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
716                 iodev.regions = vgic_v3_rdbase_registers;
717                 iodev.nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers);
718                 iodev.base_addr = 0;
719                 break;
720         }
721         case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: {
722                 u64 reg, id;
723
724                 id = (attr->attr & KVM_DEV_ARM_VGIC_SYSREG_INSTR_MASK);
725                 return vgic_v3_has_cpu_sysregs_attr(vcpu, 0, id, &reg);
726         }
727         default:
728                 return -ENXIO;
729         }
730
731         /* We only support aligned 32-bit accesses. */
732         if (addr & 3)
733                 return -ENXIO;
734
735         region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
736         if (!region)
737                 return -ENXIO;
738
739         return 0;
740 }
741 /*
742  * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
743  * generation register ICC_SGI1R_EL1) with a given VCPU.
744  * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
745  * return -1.
746  */
747 static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
748 {
749         unsigned long affinity;
750         int level0;
751
752         /*
753          * Split the current VCPU's MPIDR into affinity level 0 and the
754          * rest as this is what we have to compare against.
755          */
756         affinity = kvm_vcpu_get_mpidr_aff(vcpu);
757         level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
758         affinity &= ~MPIDR_LEVEL_MASK;
759
760         /* bail out if the upper three levels don't match */
761         if (sgi_aff != affinity)
762                 return -1;
763
764         /* Is this VCPU's bit set in the mask ? */
765         if (!(sgi_cpu_mask & BIT(level0)))
766                 return -1;
767
768         return level0;
769 }
770
771 /*
772  * The ICC_SGI* registers encode the affinity differently from the MPIDR,
773  * so provide a wrapper to use the existing defines to isolate a certain
774  * affinity level.
775  */
776 #define SGI_AFFINITY_LEVEL(reg, level) \
777         ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
778         >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
779
780 /**
781  * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
782  * @vcpu: The VCPU requesting a SGI
783  * @reg: The value written into the ICC_SGI1R_EL1 register by that VCPU
784  *
785  * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
786  * This will trap in sys_regs.c and call this function.
787  * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
788  * target processors as well as a bitmask of 16 Aff0 CPUs.
789  * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
790  * check for matching ones. If this bit is set, we signal all, but not the
791  * calling VCPU.
792  */
793 void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg)
794 {
795         struct kvm *kvm = vcpu->kvm;
796         struct kvm_vcpu *c_vcpu;
797         u16 target_cpus;
798         u64 mpidr;
799         int sgi, c;
800         int vcpu_id = vcpu->vcpu_id;
801         bool broadcast;
802
803         sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
804         broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
805         target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
806         mpidr = SGI_AFFINITY_LEVEL(reg, 3);
807         mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
808         mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
809
810         /*
811          * We iterate over all VCPUs to find the MPIDRs matching the request.
812          * If we have handled one CPU, we clear its bit to detect early
813          * if we are already finished. This avoids iterating through all
814          * VCPUs when most of the times we just signal a single VCPU.
815          */
816         kvm_for_each_vcpu(c, c_vcpu, kvm) {
817                 struct vgic_irq *irq;
818
819                 /* Exit early if we have dealt with all requested CPUs */
820                 if (!broadcast && target_cpus == 0)
821                         break;
822
823                 /* Don't signal the calling VCPU */
824                 if (broadcast && c == vcpu_id)
825                         continue;
826
827                 if (!broadcast) {
828                         int level0;
829
830                         level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
831                         if (level0 == -1)
832                                 continue;
833
834                         /* remove this matching VCPU from the mask */
835                         target_cpus &= ~BIT(level0);
836                 }
837
838                 irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
839
840                 spin_lock(&irq->irq_lock);
841                 irq->pending_latch = true;
842
843                 vgic_queue_irq_unlock(vcpu->kvm, irq);
844                 vgic_put_irq(vcpu->kvm, irq);
845         }
846 }
847
848 int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
849                          int offset, u32 *val)
850 {
851         struct vgic_io_device dev = {
852                 .regions = vgic_v3_dist_registers,
853                 .nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
854         };
855
856         return vgic_uaccess(vcpu, &dev, is_write, offset, val);
857 }
858
859 int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
860                            int offset, u32 *val)
861 {
862         struct vgic_io_device rd_dev = {
863                 .regions = vgic_v3_rdbase_registers,
864                 .nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers),
865         };
866
867         struct vgic_io_device sgi_dev = {
868                 .regions = vgic_v3_sgibase_registers,
869                 .nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers),
870         };
871
872         /* SGI_base is the next 64K frame after RD_base */
873         if (offset >= SZ_64K)
874                 return vgic_uaccess(vcpu, &sgi_dev, is_write, offset - SZ_64K,
875                                     val);
876         else
877                 return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
878 }
879
880 int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
881                                     u32 intid, u64 *val)
882 {
883         if (intid % 32)
884                 return -EINVAL;
885
886         if (is_write)
887                 vgic_write_irq_line_level_info(vcpu, intid, *val);
888         else
889                 *val = vgic_read_irq_line_level_info(vcpu, intid);
890
891         return 0;
892 }