Merge tag 'docs-4.12-2' of git://git.lwn.net/linux
[sfrench/cifs-2.6.git] / virt / kvm / arm / vgic / vgic-init.c
1 /*
2  * Copyright (C) 2015, 2016 ARM Ltd.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
15  */
16
17 #include <linux/uaccess.h>
18 #include <linux/interrupt.h>
19 #include <linux/cpu.h>
20 #include <linux/kvm_host.h>
21 #include <kvm/arm_vgic.h>
22 #include <asm/kvm_mmu.h>
23 #include "vgic.h"
24
25 /*
26  * Initialization rules: there are multiple stages to the vgic
27  * initialization, both for the distributor and the CPU interfaces.  The basic
28  * idea is that even though the VGIC is not functional or not requested from
29  * user space, the critical path of the run loop can still call VGIC functions
30  * that just won't do anything, without them having to check additional
31  * initialization flags to ensure they don't look at uninitialized data
32  * structures.
33  *
34  * Distributor:
35  *
36  * - kvm_vgic_early_init(): initialization of static data that doesn't
37  *   depend on any sizing information or emulation type. No allocation
38  *   is allowed there.
39  *
40  * - vgic_init(): allocation and initialization of the generic data
41  *   structures that depend on sizing information (number of CPUs,
42  *   number of interrupts). Also initializes the vcpu specific data
43  *   structures. Can be executed lazily for GICv2.
44  *
45  * CPU Interface:
46  *
47  * - kvm_vgic_vcpu_early_init(): initialization of static data that
48  *   doesn't depend on any sizing information or emulation type. No
49  *   allocation is allowed there.
50  */
51
52 /* EARLY INIT */
53
54 /**
55  * kvm_vgic_early_init() - Initialize static VGIC VCPU data structures
56  * @kvm: The VM whose VGIC districutor should be initialized
57  *
58  * Only do initialization of static structures that don't require any
59  * allocation or sizing information from userspace.  vgic_init() called
60  * kvm_vgic_dist_init() which takes care of the rest.
61  */
62 void kvm_vgic_early_init(struct kvm *kvm)
63 {
64         struct vgic_dist *dist = &kvm->arch.vgic;
65
66         INIT_LIST_HEAD(&dist->lpi_list_head);
67         spin_lock_init(&dist->lpi_list_lock);
68 }
69
70 /**
71  * kvm_vgic_vcpu_early_init() - Initialize static VGIC VCPU data structures
72  * @vcpu: The VCPU whose VGIC data structures whould be initialized
73  *
74  * Only do initialization, but do not actually enable the VGIC CPU interface
75  * yet.
76  */
77 void kvm_vgic_vcpu_early_init(struct kvm_vcpu *vcpu)
78 {
79         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
80         int i;
81
82         INIT_LIST_HEAD(&vgic_cpu->ap_list_head);
83         spin_lock_init(&vgic_cpu->ap_list_lock);
84
85         /*
86          * Enable and configure all SGIs to be edge-triggered and
87          * configure all PPIs as level-triggered.
88          */
89         for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) {
90                 struct vgic_irq *irq = &vgic_cpu->private_irqs[i];
91
92                 INIT_LIST_HEAD(&irq->ap_list);
93                 spin_lock_init(&irq->irq_lock);
94                 irq->intid = i;
95                 irq->vcpu = NULL;
96                 irq->target_vcpu = vcpu;
97                 irq->targets = 1U << vcpu->vcpu_id;
98                 kref_init(&irq->refcount);
99                 if (vgic_irq_is_sgi(i)) {
100                         /* SGIs */
101                         irq->enabled = 1;
102                         irq->config = VGIC_CONFIG_EDGE;
103                 } else {
104                         /* PPIs */
105                         irq->config = VGIC_CONFIG_LEVEL;
106                 }
107         }
108 }
109
110 /* CREATION */
111
112 /**
113  * kvm_vgic_create: triggered by the instantiation of the VGIC device by
114  * user space, either through the legacy KVM_CREATE_IRQCHIP ioctl (v2 only)
115  * or through the generic KVM_CREATE_DEVICE API ioctl.
116  * irqchip_in_kernel() tells you if this function succeeded or not.
117  * @kvm: kvm struct pointer
118  * @type: KVM_DEV_TYPE_ARM_VGIC_V[23]
119  */
120 int kvm_vgic_create(struct kvm *kvm, u32 type)
121 {
122         int i, vcpu_lock_idx = -1, ret;
123         struct kvm_vcpu *vcpu;
124
125         if (irqchip_in_kernel(kvm))
126                 return -EEXIST;
127
128         /*
129          * This function is also called by the KVM_CREATE_IRQCHIP handler,
130          * which had no chance yet to check the availability of the GICv2
131          * emulation. So check this here again. KVM_CREATE_DEVICE does
132          * the proper checks already.
133          */
134         if (type == KVM_DEV_TYPE_ARM_VGIC_V2 &&
135                 !kvm_vgic_global_state.can_emulate_gicv2)
136                 return -ENODEV;
137
138         /*
139          * Any time a vcpu is run, vcpu_load is called which tries to grab the
140          * vcpu->mutex.  By grabbing the vcpu->mutex of all VCPUs we ensure
141          * that no other VCPUs are run while we create the vgic.
142          */
143         ret = -EBUSY;
144         kvm_for_each_vcpu(i, vcpu, kvm) {
145                 if (!mutex_trylock(&vcpu->mutex))
146                         goto out_unlock;
147                 vcpu_lock_idx = i;
148         }
149
150         kvm_for_each_vcpu(i, vcpu, kvm) {
151                 if (vcpu->arch.has_run_once)
152                         goto out_unlock;
153         }
154         ret = 0;
155
156         if (type == KVM_DEV_TYPE_ARM_VGIC_V2)
157                 kvm->arch.max_vcpus = VGIC_V2_MAX_CPUS;
158         else
159                 kvm->arch.max_vcpus = VGIC_V3_MAX_CPUS;
160
161         if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus) {
162                 ret = -E2BIG;
163                 goto out_unlock;
164         }
165
166         kvm->arch.vgic.in_kernel = true;
167         kvm->arch.vgic.vgic_model = type;
168
169         /*
170          * kvm_vgic_global_state.vctrl_base is set on vgic probe (kvm_arch_init)
171          * it is stored in distributor struct for asm save/restore purpose
172          */
173         kvm->arch.vgic.vctrl_base = kvm_vgic_global_state.vctrl_base;
174
175         kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
176         kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
177         kvm->arch.vgic.vgic_redist_base = VGIC_ADDR_UNDEF;
178
179 out_unlock:
180         for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
181                 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
182                 mutex_unlock(&vcpu->mutex);
183         }
184         return ret;
185 }
186
187 /* INIT/DESTROY */
188
189 /**
190  * kvm_vgic_dist_init: initialize the dist data structures
191  * @kvm: kvm struct pointer
192  * @nr_spis: number of spis, frozen by caller
193  */
194 static int kvm_vgic_dist_init(struct kvm *kvm, unsigned int nr_spis)
195 {
196         struct vgic_dist *dist = &kvm->arch.vgic;
197         struct kvm_vcpu *vcpu0 = kvm_get_vcpu(kvm, 0);
198         int i;
199
200         dist->spis = kcalloc(nr_spis, sizeof(struct vgic_irq), GFP_KERNEL);
201         if (!dist->spis)
202                 return  -ENOMEM;
203
204         /*
205          * In the following code we do not take the irq struct lock since
206          * no other action on irq structs can happen while the VGIC is
207          * not initialized yet:
208          * If someone wants to inject an interrupt or does a MMIO access, we
209          * require prior initialization in case of a virtual GICv3 or trigger
210          * initialization when using a virtual GICv2.
211          */
212         for (i = 0; i < nr_spis; i++) {
213                 struct vgic_irq *irq = &dist->spis[i];
214
215                 irq->intid = i + VGIC_NR_PRIVATE_IRQS;
216                 INIT_LIST_HEAD(&irq->ap_list);
217                 spin_lock_init(&irq->irq_lock);
218                 irq->vcpu = NULL;
219                 irq->target_vcpu = vcpu0;
220                 kref_init(&irq->refcount);
221                 if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2)
222                         irq->targets = 0;
223                 else
224                         irq->mpidr = 0;
225         }
226         return 0;
227 }
228
229 /**
230  * kvm_vgic_vcpu_init() - Register VCPU-specific KVM iodevs
231  * @vcpu: pointer to the VCPU being created and initialized
232  */
233 int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
234 {
235         int ret = 0;
236         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
237
238         if (!irqchip_in_kernel(vcpu->kvm))
239                 return 0;
240
241         /*
242          * If we are creating a VCPU with a GICv3 we must also register the
243          * KVM io device for the redistributor that belongs to this VCPU.
244          */
245         if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3)
246                 ret = vgic_register_redist_iodev(vcpu);
247         return ret;
248 }
249
250 static void kvm_vgic_vcpu_enable(struct kvm_vcpu *vcpu)
251 {
252         if (kvm_vgic_global_state.type == VGIC_V2)
253                 vgic_v2_enable(vcpu);
254         else
255                 vgic_v3_enable(vcpu);
256 }
257
258 /*
259  * vgic_init: allocates and initializes dist and vcpu data structures
260  * depending on two dimensioning parameters:
261  * - the number of spis
262  * - the number of vcpus
263  * The function is generally called when nr_spis has been explicitly set
264  * by the guest through the KVM DEVICE API. If not nr_spis is set to 256.
265  * vgic_initialized() returns true when this function has succeeded.
266  * Must be called with kvm->lock held!
267  */
268 int vgic_init(struct kvm *kvm)
269 {
270         struct vgic_dist *dist = &kvm->arch.vgic;
271         struct kvm_vcpu *vcpu;
272         int ret = 0, i;
273
274         if (vgic_initialized(kvm))
275                 return 0;
276
277         /* freeze the number of spis */
278         if (!dist->nr_spis)
279                 dist->nr_spis = VGIC_NR_IRQS_LEGACY - VGIC_NR_PRIVATE_IRQS;
280
281         ret = kvm_vgic_dist_init(kvm, dist->nr_spis);
282         if (ret)
283                 goto out;
284
285         if (vgic_has_its(kvm))
286                 dist->msis_require_devid = true;
287
288         kvm_for_each_vcpu(i, vcpu, kvm)
289                 kvm_vgic_vcpu_enable(vcpu);
290
291         ret = kvm_vgic_setup_default_irq_routing(kvm);
292         if (ret)
293                 goto out;
294
295         vgic_debug_init(kvm);
296
297         dist->initialized = true;
298
299         /*
300          * If we're initializing GICv2 on-demand when first running the VCPU
301          * then we need to load the VGIC state onto the CPU.  We can detect
302          * this easily by checking if we are in between vcpu_load and vcpu_put
303          * when we just initialized the VGIC.
304          */
305         preempt_disable();
306         vcpu = kvm_arm_get_running_vcpu();
307         if (vcpu)
308                 kvm_vgic_load(vcpu);
309         preempt_enable();
310 out:
311         return ret;
312 }
313
314 static void kvm_vgic_dist_destroy(struct kvm *kvm)
315 {
316         struct vgic_dist *dist = &kvm->arch.vgic;
317
318         dist->ready = false;
319         dist->initialized = false;
320
321         kfree(dist->spis);
322         dist->nr_spis = 0;
323 }
324
325 void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
326 {
327         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
328
329         INIT_LIST_HEAD(&vgic_cpu->ap_list_head);
330 }
331
332 /* To be called with kvm->lock held */
333 static void __kvm_vgic_destroy(struct kvm *kvm)
334 {
335         struct kvm_vcpu *vcpu;
336         int i;
337
338         vgic_debug_destroy(kvm);
339
340         kvm_vgic_dist_destroy(kvm);
341
342         kvm_for_each_vcpu(i, vcpu, kvm)
343                 kvm_vgic_vcpu_destroy(vcpu);
344 }
345
346 void kvm_vgic_destroy(struct kvm *kvm)
347 {
348         mutex_lock(&kvm->lock);
349         __kvm_vgic_destroy(kvm);
350         mutex_unlock(&kvm->lock);
351 }
352
353 /**
354  * vgic_lazy_init: Lazy init is only allowed if the GIC exposed to the guest
355  * is a GICv2. A GICv3 must be explicitly initialized by the guest using the
356  * KVM_DEV_ARM_VGIC_GRP_CTRL KVM_DEVICE group.
357  * @kvm: kvm struct pointer
358  */
359 int vgic_lazy_init(struct kvm *kvm)
360 {
361         int ret = 0;
362
363         if (unlikely(!vgic_initialized(kvm))) {
364                 /*
365                  * We only provide the automatic initialization of the VGIC
366                  * for the legacy case of a GICv2. Any other type must
367                  * be explicitly initialized once setup with the respective
368                  * KVM device call.
369                  */
370                 if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2)
371                         return -EBUSY;
372
373                 mutex_lock(&kvm->lock);
374                 ret = vgic_init(kvm);
375                 mutex_unlock(&kvm->lock);
376         }
377
378         return ret;
379 }
380
381 /* RESOURCE MAPPING */
382
383 /**
384  * Map the MMIO regions depending on the VGIC model exposed to the guest
385  * called on the first VCPU run.
386  * Also map the virtual CPU interface into the VM.
387  * v2/v3 derivatives call vgic_init if not already done.
388  * vgic_ready() returns true if this function has succeeded.
389  * @kvm: kvm struct pointer
390  */
391 int kvm_vgic_map_resources(struct kvm *kvm)
392 {
393         struct vgic_dist *dist = &kvm->arch.vgic;
394         int ret = 0;
395
396         mutex_lock(&kvm->lock);
397         if (!irqchip_in_kernel(kvm))
398                 goto out;
399
400         if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2)
401                 ret = vgic_v2_map_resources(kvm);
402         else
403                 ret = vgic_v3_map_resources(kvm);
404
405         if (ret)
406                 __kvm_vgic_destroy(kvm);
407
408 out:
409         mutex_unlock(&kvm->lock);
410         return ret;
411 }
412
413 /* GENERIC PROBE */
414
415 static int vgic_init_cpu_starting(unsigned int cpu)
416 {
417         enable_percpu_irq(kvm_vgic_global_state.maint_irq, 0);
418         return 0;
419 }
420
421
422 static int vgic_init_cpu_dying(unsigned int cpu)
423 {
424         disable_percpu_irq(kvm_vgic_global_state.maint_irq);
425         return 0;
426 }
427
428 static irqreturn_t vgic_maintenance_handler(int irq, void *data)
429 {
430         /*
431          * We cannot rely on the vgic maintenance interrupt to be
432          * delivered synchronously. This means we can only use it to
433          * exit the VM, and we perform the handling of EOIed
434          * interrupts on the exit path (see vgic_process_maintenance).
435          */
436         return IRQ_HANDLED;
437 }
438
439 /**
440  * kvm_vgic_init_cpu_hardware - initialize the GIC VE hardware
441  *
442  * For a specific CPU, initialize the GIC VE hardware.
443  */
444 void kvm_vgic_init_cpu_hardware(void)
445 {
446         BUG_ON(preemptible());
447
448         /*
449          * We want to make sure the list registers start out clear so that we
450          * only have the program the used registers.
451          */
452         if (kvm_vgic_global_state.type == VGIC_V2)
453                 vgic_v2_init_lrs();
454         else
455                 kvm_call_hyp(__vgic_v3_init_lrs);
456 }
457
458 /**
459  * kvm_vgic_hyp_init: populates the kvm_vgic_global_state variable
460  * according to the host GIC model. Accordingly calls either
461  * vgic_v2/v3_probe which registers the KVM_DEVICE that can be
462  * instantiated by a guest later on .
463  */
464 int kvm_vgic_hyp_init(void)
465 {
466         const struct gic_kvm_info *gic_kvm_info;
467         int ret;
468
469         gic_kvm_info = gic_get_kvm_info();
470         if (!gic_kvm_info)
471                 return -ENODEV;
472
473         if (!gic_kvm_info->maint_irq) {
474                 kvm_err("No vgic maintenance irq\n");
475                 return -ENXIO;
476         }
477
478         switch (gic_kvm_info->type) {
479         case GIC_V2:
480                 ret = vgic_v2_probe(gic_kvm_info);
481                 break;
482         case GIC_V3:
483                 ret = vgic_v3_probe(gic_kvm_info);
484                 if (!ret) {
485                         static_branch_enable(&kvm_vgic_global_state.gicv3_cpuif);
486                         kvm_info("GIC system register CPU interface enabled\n");
487                 }
488                 break;
489         default:
490                 ret = -ENODEV;
491         };
492
493         if (ret)
494                 return ret;
495
496         kvm_vgic_global_state.maint_irq = gic_kvm_info->maint_irq;
497         ret = request_percpu_irq(kvm_vgic_global_state.maint_irq,
498                                  vgic_maintenance_handler,
499                                  "vgic", kvm_get_running_vcpus());
500         if (ret) {
501                 kvm_err("Cannot register interrupt %d\n",
502                         kvm_vgic_global_state.maint_irq);
503                 return ret;
504         }
505
506         ret = cpuhp_setup_state(CPUHP_AP_KVM_ARM_VGIC_INIT_STARTING,
507                                 "kvm/arm/vgic:starting",
508                                 vgic_init_cpu_starting, vgic_init_cpu_dying);
509         if (ret) {
510                 kvm_err("Cannot register vgic CPU notifier\n");
511                 goto out_free_irq;
512         }
513
514         kvm_info("vgic interrupt IRQ%d\n", kvm_vgic_global_state.maint_irq);
515         return 0;
516
517 out_free_irq:
518         free_percpu_irq(kvm_vgic_global_state.maint_irq,
519                         kvm_get_running_vcpus());
520         return ret;
521 }