Merge tag 'drm-fixes-for-v4.12-rc2' of git://people.freedesktop.org/~airlied/linux
[sfrench/cifs-2.6.git] / virt / kvm / arm / mmu.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/mman.h>
20 #include <linux/kvm_host.h>
21 #include <linux/io.h>
22 #include <linux/hugetlb.h>
23 #include <trace/events/kvm.h>
24 #include <asm/pgalloc.h>
25 #include <asm/cacheflush.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/kvm_mmio.h>
29 #include <asm/kvm_asm.h>
30 #include <asm/kvm_emulate.h>
31 #include <asm/virt.h>
32
33 #include "trace.h"
34
35 static pgd_t *boot_hyp_pgd;
36 static pgd_t *hyp_pgd;
37 static pgd_t *merged_hyp_pgd;
38 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
39
40 static unsigned long hyp_idmap_start;
41 static unsigned long hyp_idmap_end;
42 static phys_addr_t hyp_idmap_vector;
43
44 #define S2_PGD_SIZE     (PTRS_PER_S2_PGD * sizeof(pgd_t))
45 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
46
47 #define KVM_S2PTE_FLAG_IS_IOMAP         (1UL << 0)
48 #define KVM_S2_FLAG_LOGGING_ACTIVE      (1UL << 1)
49
50 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
51 {
52         return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
53 }
54
55 /**
56  * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
57  * @kvm:        pointer to kvm structure.
58  *
59  * Interface to HYP function to flush all VM TLB entries
60  */
61 void kvm_flush_remote_tlbs(struct kvm *kvm)
62 {
63         kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
64 }
65
66 static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
67 {
68         kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
69 }
70
71 /*
72  * D-Cache management functions. They take the page table entries by
73  * value, as they are flushing the cache using the kernel mapping (or
74  * kmap on 32bit).
75  */
76 static void kvm_flush_dcache_pte(pte_t pte)
77 {
78         __kvm_flush_dcache_pte(pte);
79 }
80
81 static void kvm_flush_dcache_pmd(pmd_t pmd)
82 {
83         __kvm_flush_dcache_pmd(pmd);
84 }
85
86 static void kvm_flush_dcache_pud(pud_t pud)
87 {
88         __kvm_flush_dcache_pud(pud);
89 }
90
91 static bool kvm_is_device_pfn(unsigned long pfn)
92 {
93         return !pfn_valid(pfn);
94 }
95
96 /**
97  * stage2_dissolve_pmd() - clear and flush huge PMD entry
98  * @kvm:        pointer to kvm structure.
99  * @addr:       IPA
100  * @pmd:        pmd pointer for IPA
101  *
102  * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
103  * pages in the range dirty.
104  */
105 static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
106 {
107         if (!pmd_thp_or_huge(*pmd))
108                 return;
109
110         pmd_clear(pmd);
111         kvm_tlb_flush_vmid_ipa(kvm, addr);
112         put_page(virt_to_page(pmd));
113 }
114
115 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
116                                   int min, int max)
117 {
118         void *page;
119
120         BUG_ON(max > KVM_NR_MEM_OBJS);
121         if (cache->nobjs >= min)
122                 return 0;
123         while (cache->nobjs < max) {
124                 page = (void *)__get_free_page(PGALLOC_GFP);
125                 if (!page)
126                         return -ENOMEM;
127                 cache->objects[cache->nobjs++] = page;
128         }
129         return 0;
130 }
131
132 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
133 {
134         while (mc->nobjs)
135                 free_page((unsigned long)mc->objects[--mc->nobjs]);
136 }
137
138 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
139 {
140         void *p;
141
142         BUG_ON(!mc || !mc->nobjs);
143         p = mc->objects[--mc->nobjs];
144         return p;
145 }
146
147 static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
148 {
149         pud_t *pud_table __maybe_unused = stage2_pud_offset(pgd, 0UL);
150         stage2_pgd_clear(pgd);
151         kvm_tlb_flush_vmid_ipa(kvm, addr);
152         stage2_pud_free(pud_table);
153         put_page(virt_to_page(pgd));
154 }
155
156 static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
157 {
158         pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(pud, 0);
159         VM_BUG_ON(stage2_pud_huge(*pud));
160         stage2_pud_clear(pud);
161         kvm_tlb_flush_vmid_ipa(kvm, addr);
162         stage2_pmd_free(pmd_table);
163         put_page(virt_to_page(pud));
164 }
165
166 static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
167 {
168         pte_t *pte_table = pte_offset_kernel(pmd, 0);
169         VM_BUG_ON(pmd_thp_or_huge(*pmd));
170         pmd_clear(pmd);
171         kvm_tlb_flush_vmid_ipa(kvm, addr);
172         pte_free_kernel(NULL, pte_table);
173         put_page(virt_to_page(pmd));
174 }
175
176 /*
177  * Unmapping vs dcache management:
178  *
179  * If a guest maps certain memory pages as uncached, all writes will
180  * bypass the data cache and go directly to RAM.  However, the CPUs
181  * can still speculate reads (not writes) and fill cache lines with
182  * data.
183  *
184  * Those cache lines will be *clean* cache lines though, so a
185  * clean+invalidate operation is equivalent to an invalidate
186  * operation, because no cache lines are marked dirty.
187  *
188  * Those clean cache lines could be filled prior to an uncached write
189  * by the guest, and the cache coherent IO subsystem would therefore
190  * end up writing old data to disk.
191  *
192  * This is why right after unmapping a page/section and invalidating
193  * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
194  * the IO subsystem will never hit in the cache.
195  */
196 static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
197                        phys_addr_t addr, phys_addr_t end)
198 {
199         phys_addr_t start_addr = addr;
200         pte_t *pte, *start_pte;
201
202         start_pte = pte = pte_offset_kernel(pmd, addr);
203         do {
204                 if (!pte_none(*pte)) {
205                         pte_t old_pte = *pte;
206
207                         kvm_set_pte(pte, __pte(0));
208                         kvm_tlb_flush_vmid_ipa(kvm, addr);
209
210                         /* No need to invalidate the cache for device mappings */
211                         if (!kvm_is_device_pfn(pte_pfn(old_pte)))
212                                 kvm_flush_dcache_pte(old_pte);
213
214                         put_page(virt_to_page(pte));
215                 }
216         } while (pte++, addr += PAGE_SIZE, addr != end);
217
218         if (stage2_pte_table_empty(start_pte))
219                 clear_stage2_pmd_entry(kvm, pmd, start_addr);
220 }
221
222 static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
223                        phys_addr_t addr, phys_addr_t end)
224 {
225         phys_addr_t next, start_addr = addr;
226         pmd_t *pmd, *start_pmd;
227
228         start_pmd = pmd = stage2_pmd_offset(pud, addr);
229         do {
230                 next = stage2_pmd_addr_end(addr, end);
231                 if (!pmd_none(*pmd)) {
232                         if (pmd_thp_or_huge(*pmd)) {
233                                 pmd_t old_pmd = *pmd;
234
235                                 pmd_clear(pmd);
236                                 kvm_tlb_flush_vmid_ipa(kvm, addr);
237
238                                 kvm_flush_dcache_pmd(old_pmd);
239
240                                 put_page(virt_to_page(pmd));
241                         } else {
242                                 unmap_stage2_ptes(kvm, pmd, addr, next);
243                         }
244                 }
245         } while (pmd++, addr = next, addr != end);
246
247         if (stage2_pmd_table_empty(start_pmd))
248                 clear_stage2_pud_entry(kvm, pud, start_addr);
249 }
250
251 static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
252                        phys_addr_t addr, phys_addr_t end)
253 {
254         phys_addr_t next, start_addr = addr;
255         pud_t *pud, *start_pud;
256
257         start_pud = pud = stage2_pud_offset(pgd, addr);
258         do {
259                 next = stage2_pud_addr_end(addr, end);
260                 if (!stage2_pud_none(*pud)) {
261                         if (stage2_pud_huge(*pud)) {
262                                 pud_t old_pud = *pud;
263
264                                 stage2_pud_clear(pud);
265                                 kvm_tlb_flush_vmid_ipa(kvm, addr);
266                                 kvm_flush_dcache_pud(old_pud);
267                                 put_page(virt_to_page(pud));
268                         } else {
269                                 unmap_stage2_pmds(kvm, pud, addr, next);
270                         }
271                 }
272         } while (pud++, addr = next, addr != end);
273
274         if (stage2_pud_table_empty(start_pud))
275                 clear_stage2_pgd_entry(kvm, pgd, start_addr);
276 }
277
278 /**
279  * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
280  * @kvm:   The VM pointer
281  * @start: The intermediate physical base address of the range to unmap
282  * @size:  The size of the area to unmap
283  *
284  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
285  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
286  * destroying the VM), otherwise another faulting VCPU may come in and mess
287  * with things behind our backs.
288  */
289 static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
290 {
291         pgd_t *pgd;
292         phys_addr_t addr = start, end = start + size;
293         phys_addr_t next;
294
295         assert_spin_locked(&kvm->mmu_lock);
296         pgd = kvm->arch.pgd + stage2_pgd_index(addr);
297         do {
298                 /*
299                  * Make sure the page table is still active, as another thread
300                  * could have possibly freed the page table, while we released
301                  * the lock.
302                  */
303                 if (!READ_ONCE(kvm->arch.pgd))
304                         break;
305                 next = stage2_pgd_addr_end(addr, end);
306                 if (!stage2_pgd_none(*pgd))
307                         unmap_stage2_puds(kvm, pgd, addr, next);
308                 /*
309                  * If the range is too large, release the kvm->mmu_lock
310                  * to prevent starvation and lockup detector warnings.
311                  */
312                 if (next != end)
313                         cond_resched_lock(&kvm->mmu_lock);
314         } while (pgd++, addr = next, addr != end);
315 }
316
317 static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
318                               phys_addr_t addr, phys_addr_t end)
319 {
320         pte_t *pte;
321
322         pte = pte_offset_kernel(pmd, addr);
323         do {
324                 if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
325                         kvm_flush_dcache_pte(*pte);
326         } while (pte++, addr += PAGE_SIZE, addr != end);
327 }
328
329 static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
330                               phys_addr_t addr, phys_addr_t end)
331 {
332         pmd_t *pmd;
333         phys_addr_t next;
334
335         pmd = stage2_pmd_offset(pud, addr);
336         do {
337                 next = stage2_pmd_addr_end(addr, end);
338                 if (!pmd_none(*pmd)) {
339                         if (pmd_thp_or_huge(*pmd))
340                                 kvm_flush_dcache_pmd(*pmd);
341                         else
342                                 stage2_flush_ptes(kvm, pmd, addr, next);
343                 }
344         } while (pmd++, addr = next, addr != end);
345 }
346
347 static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
348                               phys_addr_t addr, phys_addr_t end)
349 {
350         pud_t *pud;
351         phys_addr_t next;
352
353         pud = stage2_pud_offset(pgd, addr);
354         do {
355                 next = stage2_pud_addr_end(addr, end);
356                 if (!stage2_pud_none(*pud)) {
357                         if (stage2_pud_huge(*pud))
358                                 kvm_flush_dcache_pud(*pud);
359                         else
360                                 stage2_flush_pmds(kvm, pud, addr, next);
361                 }
362         } while (pud++, addr = next, addr != end);
363 }
364
365 static void stage2_flush_memslot(struct kvm *kvm,
366                                  struct kvm_memory_slot *memslot)
367 {
368         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
369         phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
370         phys_addr_t next;
371         pgd_t *pgd;
372
373         pgd = kvm->arch.pgd + stage2_pgd_index(addr);
374         do {
375                 next = stage2_pgd_addr_end(addr, end);
376                 stage2_flush_puds(kvm, pgd, addr, next);
377         } while (pgd++, addr = next, addr != end);
378 }
379
380 /**
381  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
382  * @kvm: The struct kvm pointer
383  *
384  * Go through the stage 2 page tables and invalidate any cache lines
385  * backing memory already mapped to the VM.
386  */
387 static void stage2_flush_vm(struct kvm *kvm)
388 {
389         struct kvm_memslots *slots;
390         struct kvm_memory_slot *memslot;
391         int idx;
392
393         idx = srcu_read_lock(&kvm->srcu);
394         spin_lock(&kvm->mmu_lock);
395
396         slots = kvm_memslots(kvm);
397         kvm_for_each_memslot(memslot, slots)
398                 stage2_flush_memslot(kvm, memslot);
399
400         spin_unlock(&kvm->mmu_lock);
401         srcu_read_unlock(&kvm->srcu, idx);
402 }
403
404 static void clear_hyp_pgd_entry(pgd_t *pgd)
405 {
406         pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
407         pgd_clear(pgd);
408         pud_free(NULL, pud_table);
409         put_page(virt_to_page(pgd));
410 }
411
412 static void clear_hyp_pud_entry(pud_t *pud)
413 {
414         pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
415         VM_BUG_ON(pud_huge(*pud));
416         pud_clear(pud);
417         pmd_free(NULL, pmd_table);
418         put_page(virt_to_page(pud));
419 }
420
421 static void clear_hyp_pmd_entry(pmd_t *pmd)
422 {
423         pte_t *pte_table = pte_offset_kernel(pmd, 0);
424         VM_BUG_ON(pmd_thp_or_huge(*pmd));
425         pmd_clear(pmd);
426         pte_free_kernel(NULL, pte_table);
427         put_page(virt_to_page(pmd));
428 }
429
430 static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
431 {
432         pte_t *pte, *start_pte;
433
434         start_pte = pte = pte_offset_kernel(pmd, addr);
435         do {
436                 if (!pte_none(*pte)) {
437                         kvm_set_pte(pte, __pte(0));
438                         put_page(virt_to_page(pte));
439                 }
440         } while (pte++, addr += PAGE_SIZE, addr != end);
441
442         if (hyp_pte_table_empty(start_pte))
443                 clear_hyp_pmd_entry(pmd);
444 }
445
446 static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
447 {
448         phys_addr_t next;
449         pmd_t *pmd, *start_pmd;
450
451         start_pmd = pmd = pmd_offset(pud, addr);
452         do {
453                 next = pmd_addr_end(addr, end);
454                 /* Hyp doesn't use huge pmds */
455                 if (!pmd_none(*pmd))
456                         unmap_hyp_ptes(pmd, addr, next);
457         } while (pmd++, addr = next, addr != end);
458
459         if (hyp_pmd_table_empty(start_pmd))
460                 clear_hyp_pud_entry(pud);
461 }
462
463 static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
464 {
465         phys_addr_t next;
466         pud_t *pud, *start_pud;
467
468         start_pud = pud = pud_offset(pgd, addr);
469         do {
470                 next = pud_addr_end(addr, end);
471                 /* Hyp doesn't use huge puds */
472                 if (!pud_none(*pud))
473                         unmap_hyp_pmds(pud, addr, next);
474         } while (pud++, addr = next, addr != end);
475
476         if (hyp_pud_table_empty(start_pud))
477                 clear_hyp_pgd_entry(pgd);
478 }
479
480 static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
481 {
482         pgd_t *pgd;
483         phys_addr_t addr = start, end = start + size;
484         phys_addr_t next;
485
486         /*
487          * We don't unmap anything from HYP, except at the hyp tear down.
488          * Hence, we don't have to invalidate the TLBs here.
489          */
490         pgd = pgdp + pgd_index(addr);
491         do {
492                 next = pgd_addr_end(addr, end);
493                 if (!pgd_none(*pgd))
494                         unmap_hyp_puds(pgd, addr, next);
495         } while (pgd++, addr = next, addr != end);
496 }
497
498 /**
499  * free_hyp_pgds - free Hyp-mode page tables
500  *
501  * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
502  * therefore contains either mappings in the kernel memory area (above
503  * PAGE_OFFSET), or device mappings in the vmalloc range (from
504  * VMALLOC_START to VMALLOC_END).
505  *
506  * boot_hyp_pgd should only map two pages for the init code.
507  */
508 void free_hyp_pgds(void)
509 {
510         unsigned long addr;
511
512         mutex_lock(&kvm_hyp_pgd_mutex);
513
514         if (boot_hyp_pgd) {
515                 unmap_hyp_range(boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
516                 free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
517                 boot_hyp_pgd = NULL;
518         }
519
520         if (hyp_pgd) {
521                 unmap_hyp_range(hyp_pgd, hyp_idmap_start, PAGE_SIZE);
522                 for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
523                         unmap_hyp_range(hyp_pgd, kern_hyp_va(addr), PGDIR_SIZE);
524                 for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
525                         unmap_hyp_range(hyp_pgd, kern_hyp_va(addr), PGDIR_SIZE);
526
527                 free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
528                 hyp_pgd = NULL;
529         }
530         if (merged_hyp_pgd) {
531                 clear_page(merged_hyp_pgd);
532                 free_page((unsigned long)merged_hyp_pgd);
533                 merged_hyp_pgd = NULL;
534         }
535
536         mutex_unlock(&kvm_hyp_pgd_mutex);
537 }
538
539 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
540                                     unsigned long end, unsigned long pfn,
541                                     pgprot_t prot)
542 {
543         pte_t *pte;
544         unsigned long addr;
545
546         addr = start;
547         do {
548                 pte = pte_offset_kernel(pmd, addr);
549                 kvm_set_pte(pte, pfn_pte(pfn, prot));
550                 get_page(virt_to_page(pte));
551                 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
552                 pfn++;
553         } while (addr += PAGE_SIZE, addr != end);
554 }
555
556 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
557                                    unsigned long end, unsigned long pfn,
558                                    pgprot_t prot)
559 {
560         pmd_t *pmd;
561         pte_t *pte;
562         unsigned long addr, next;
563
564         addr = start;
565         do {
566                 pmd = pmd_offset(pud, addr);
567
568                 BUG_ON(pmd_sect(*pmd));
569
570                 if (pmd_none(*pmd)) {
571                         pte = pte_alloc_one_kernel(NULL, addr);
572                         if (!pte) {
573                                 kvm_err("Cannot allocate Hyp pte\n");
574                                 return -ENOMEM;
575                         }
576                         pmd_populate_kernel(NULL, pmd, pte);
577                         get_page(virt_to_page(pmd));
578                         kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
579                 }
580
581                 next = pmd_addr_end(addr, end);
582
583                 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
584                 pfn += (next - addr) >> PAGE_SHIFT;
585         } while (addr = next, addr != end);
586
587         return 0;
588 }
589
590 static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
591                                    unsigned long end, unsigned long pfn,
592                                    pgprot_t prot)
593 {
594         pud_t *pud;
595         pmd_t *pmd;
596         unsigned long addr, next;
597         int ret;
598
599         addr = start;
600         do {
601                 pud = pud_offset(pgd, addr);
602
603                 if (pud_none_or_clear_bad(pud)) {
604                         pmd = pmd_alloc_one(NULL, addr);
605                         if (!pmd) {
606                                 kvm_err("Cannot allocate Hyp pmd\n");
607                                 return -ENOMEM;
608                         }
609                         pud_populate(NULL, pud, pmd);
610                         get_page(virt_to_page(pud));
611                         kvm_flush_dcache_to_poc(pud, sizeof(*pud));
612                 }
613
614                 next = pud_addr_end(addr, end);
615                 ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
616                 if (ret)
617                         return ret;
618                 pfn += (next - addr) >> PAGE_SHIFT;
619         } while (addr = next, addr != end);
620
621         return 0;
622 }
623
624 static int __create_hyp_mappings(pgd_t *pgdp,
625                                  unsigned long start, unsigned long end,
626                                  unsigned long pfn, pgprot_t prot)
627 {
628         pgd_t *pgd;
629         pud_t *pud;
630         unsigned long addr, next;
631         int err = 0;
632
633         mutex_lock(&kvm_hyp_pgd_mutex);
634         addr = start & PAGE_MASK;
635         end = PAGE_ALIGN(end);
636         do {
637                 pgd = pgdp + pgd_index(addr);
638
639                 if (pgd_none(*pgd)) {
640                         pud = pud_alloc_one(NULL, addr);
641                         if (!pud) {
642                                 kvm_err("Cannot allocate Hyp pud\n");
643                                 err = -ENOMEM;
644                                 goto out;
645                         }
646                         pgd_populate(NULL, pgd, pud);
647                         get_page(virt_to_page(pgd));
648                         kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
649                 }
650
651                 next = pgd_addr_end(addr, end);
652                 err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
653                 if (err)
654                         goto out;
655                 pfn += (next - addr) >> PAGE_SHIFT;
656         } while (addr = next, addr != end);
657 out:
658         mutex_unlock(&kvm_hyp_pgd_mutex);
659         return err;
660 }
661
662 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
663 {
664         if (!is_vmalloc_addr(kaddr)) {
665                 BUG_ON(!virt_addr_valid(kaddr));
666                 return __pa(kaddr);
667         } else {
668                 return page_to_phys(vmalloc_to_page(kaddr)) +
669                        offset_in_page(kaddr);
670         }
671 }
672
673 /**
674  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
675  * @from:       The virtual kernel start address of the range
676  * @to:         The virtual kernel end address of the range (exclusive)
677  * @prot:       The protection to be applied to this range
678  *
679  * The same virtual address as the kernel virtual address is also used
680  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
681  * physical pages.
682  */
683 int create_hyp_mappings(void *from, void *to, pgprot_t prot)
684 {
685         phys_addr_t phys_addr;
686         unsigned long virt_addr;
687         unsigned long start = kern_hyp_va((unsigned long)from);
688         unsigned long end = kern_hyp_va((unsigned long)to);
689
690         if (is_kernel_in_hyp_mode())
691                 return 0;
692
693         start = start & PAGE_MASK;
694         end = PAGE_ALIGN(end);
695
696         for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
697                 int err;
698
699                 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
700                 err = __create_hyp_mappings(hyp_pgd, virt_addr,
701                                             virt_addr + PAGE_SIZE,
702                                             __phys_to_pfn(phys_addr),
703                                             prot);
704                 if (err)
705                         return err;
706         }
707
708         return 0;
709 }
710
711 /**
712  * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
713  * @from:       The kernel start VA of the range
714  * @to:         The kernel end VA of the range (exclusive)
715  * @phys_addr:  The physical start address which gets mapped
716  *
717  * The resulting HYP VA is the same as the kernel VA, modulo
718  * HYP_PAGE_OFFSET.
719  */
720 int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
721 {
722         unsigned long start = kern_hyp_va((unsigned long)from);
723         unsigned long end = kern_hyp_va((unsigned long)to);
724
725         if (is_kernel_in_hyp_mode())
726                 return 0;
727
728         /* Check for a valid kernel IO mapping */
729         if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
730                 return -EINVAL;
731
732         return __create_hyp_mappings(hyp_pgd, start, end,
733                                      __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
734 }
735
736 /**
737  * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
738  * @kvm:        The KVM struct pointer for the VM.
739  *
740  * Allocates only the stage-2 HW PGD level table(s) (can support either full
741  * 40-bit input addresses or limited to 32-bit input addresses). Clears the
742  * allocated pages.
743  *
744  * Note we don't need locking here as this is only called when the VM is
745  * created, which can only be done once.
746  */
747 int kvm_alloc_stage2_pgd(struct kvm *kvm)
748 {
749         pgd_t *pgd;
750
751         if (kvm->arch.pgd != NULL) {
752                 kvm_err("kvm_arch already initialized?\n");
753                 return -EINVAL;
754         }
755
756         /* Allocate the HW PGD, making sure that each page gets its own refcount */
757         pgd = alloc_pages_exact(S2_PGD_SIZE, GFP_KERNEL | __GFP_ZERO);
758         if (!pgd)
759                 return -ENOMEM;
760
761         kvm->arch.pgd = pgd;
762         return 0;
763 }
764
765 static void stage2_unmap_memslot(struct kvm *kvm,
766                                  struct kvm_memory_slot *memslot)
767 {
768         hva_t hva = memslot->userspace_addr;
769         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
770         phys_addr_t size = PAGE_SIZE * memslot->npages;
771         hva_t reg_end = hva + size;
772
773         /*
774          * A memory region could potentially cover multiple VMAs, and any holes
775          * between them, so iterate over all of them to find out if we should
776          * unmap any of them.
777          *
778          *     +--------------------------------------------+
779          * +---------------+----------------+   +----------------+
780          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
781          * +---------------+----------------+   +----------------+
782          *     |               memory region                |
783          *     +--------------------------------------------+
784          */
785         do {
786                 struct vm_area_struct *vma = find_vma(current->mm, hva);
787                 hva_t vm_start, vm_end;
788
789                 if (!vma || vma->vm_start >= reg_end)
790                         break;
791
792                 /*
793                  * Take the intersection of this VMA with the memory region
794                  */
795                 vm_start = max(hva, vma->vm_start);
796                 vm_end = min(reg_end, vma->vm_end);
797
798                 if (!(vma->vm_flags & VM_PFNMAP)) {
799                         gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
800                         unmap_stage2_range(kvm, gpa, vm_end - vm_start);
801                 }
802                 hva = vm_end;
803         } while (hva < reg_end);
804 }
805
806 /**
807  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
808  * @kvm: The struct kvm pointer
809  *
810  * Go through the memregions and unmap any reguler RAM
811  * backing memory already mapped to the VM.
812  */
813 void stage2_unmap_vm(struct kvm *kvm)
814 {
815         struct kvm_memslots *slots;
816         struct kvm_memory_slot *memslot;
817         int idx;
818
819         idx = srcu_read_lock(&kvm->srcu);
820         down_read(&current->mm->mmap_sem);
821         spin_lock(&kvm->mmu_lock);
822
823         slots = kvm_memslots(kvm);
824         kvm_for_each_memslot(memslot, slots)
825                 stage2_unmap_memslot(kvm, memslot);
826
827         spin_unlock(&kvm->mmu_lock);
828         up_read(&current->mm->mmap_sem);
829         srcu_read_unlock(&kvm->srcu, idx);
830 }
831
832 /**
833  * kvm_free_stage2_pgd - free all stage-2 tables
834  * @kvm:        The KVM struct pointer for the VM.
835  *
836  * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
837  * underlying level-2 and level-3 tables before freeing the actual level-1 table
838  * and setting the struct pointer to NULL.
839  */
840 void kvm_free_stage2_pgd(struct kvm *kvm)
841 {
842         void *pgd = NULL;
843
844         spin_lock(&kvm->mmu_lock);
845         if (kvm->arch.pgd) {
846                 unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
847                 pgd = READ_ONCE(kvm->arch.pgd);
848                 kvm->arch.pgd = NULL;
849         }
850         spin_unlock(&kvm->mmu_lock);
851
852         /* Free the HW pgd, one page at a time */
853         if (pgd)
854                 free_pages_exact(pgd, S2_PGD_SIZE);
855 }
856
857 static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
858                              phys_addr_t addr)
859 {
860         pgd_t *pgd;
861         pud_t *pud;
862
863         pgd = kvm->arch.pgd + stage2_pgd_index(addr);
864         if (WARN_ON(stage2_pgd_none(*pgd))) {
865                 if (!cache)
866                         return NULL;
867                 pud = mmu_memory_cache_alloc(cache);
868                 stage2_pgd_populate(pgd, pud);
869                 get_page(virt_to_page(pgd));
870         }
871
872         return stage2_pud_offset(pgd, addr);
873 }
874
875 static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
876                              phys_addr_t addr)
877 {
878         pud_t *pud;
879         pmd_t *pmd;
880
881         pud = stage2_get_pud(kvm, cache, addr);
882         if (stage2_pud_none(*pud)) {
883                 if (!cache)
884                         return NULL;
885                 pmd = mmu_memory_cache_alloc(cache);
886                 stage2_pud_populate(pud, pmd);
887                 get_page(virt_to_page(pud));
888         }
889
890         return stage2_pmd_offset(pud, addr);
891 }
892
893 static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
894                                *cache, phys_addr_t addr, const pmd_t *new_pmd)
895 {
896         pmd_t *pmd, old_pmd;
897
898         pmd = stage2_get_pmd(kvm, cache, addr);
899         VM_BUG_ON(!pmd);
900
901         /*
902          * Mapping in huge pages should only happen through a fault.  If a
903          * page is merged into a transparent huge page, the individual
904          * subpages of that huge page should be unmapped through MMU
905          * notifiers before we get here.
906          *
907          * Merging of CompoundPages is not supported; they should become
908          * splitting first, unmapped, merged, and mapped back in on-demand.
909          */
910         VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
911
912         old_pmd = *pmd;
913         if (pmd_present(old_pmd)) {
914                 pmd_clear(pmd);
915                 kvm_tlb_flush_vmid_ipa(kvm, addr);
916         } else {
917                 get_page(virt_to_page(pmd));
918         }
919
920         kvm_set_pmd(pmd, *new_pmd);
921         return 0;
922 }
923
924 static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
925                           phys_addr_t addr, const pte_t *new_pte,
926                           unsigned long flags)
927 {
928         pmd_t *pmd;
929         pte_t *pte, old_pte;
930         bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
931         bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
932
933         VM_BUG_ON(logging_active && !cache);
934
935         /* Create stage-2 page table mapping - Levels 0 and 1 */
936         pmd = stage2_get_pmd(kvm, cache, addr);
937         if (!pmd) {
938                 /*
939                  * Ignore calls from kvm_set_spte_hva for unallocated
940                  * address ranges.
941                  */
942                 return 0;
943         }
944
945         /*
946          * While dirty page logging - dissolve huge PMD, then continue on to
947          * allocate page.
948          */
949         if (logging_active)
950                 stage2_dissolve_pmd(kvm, addr, pmd);
951
952         /* Create stage-2 page mappings - Level 2 */
953         if (pmd_none(*pmd)) {
954                 if (!cache)
955                         return 0; /* ignore calls from kvm_set_spte_hva */
956                 pte = mmu_memory_cache_alloc(cache);
957                 pmd_populate_kernel(NULL, pmd, pte);
958                 get_page(virt_to_page(pmd));
959         }
960
961         pte = pte_offset_kernel(pmd, addr);
962
963         if (iomap && pte_present(*pte))
964                 return -EFAULT;
965
966         /* Create 2nd stage page table mapping - Level 3 */
967         old_pte = *pte;
968         if (pte_present(old_pte)) {
969                 kvm_set_pte(pte, __pte(0));
970                 kvm_tlb_flush_vmid_ipa(kvm, addr);
971         } else {
972                 get_page(virt_to_page(pte));
973         }
974
975         kvm_set_pte(pte, *new_pte);
976         return 0;
977 }
978
979 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
980 static int stage2_ptep_test_and_clear_young(pte_t *pte)
981 {
982         if (pte_young(*pte)) {
983                 *pte = pte_mkold(*pte);
984                 return 1;
985         }
986         return 0;
987 }
988 #else
989 static int stage2_ptep_test_and_clear_young(pte_t *pte)
990 {
991         return __ptep_test_and_clear_young(pte);
992 }
993 #endif
994
995 static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
996 {
997         return stage2_ptep_test_and_clear_young((pte_t *)pmd);
998 }
999
1000 /**
1001  * kvm_phys_addr_ioremap - map a device range to guest IPA
1002  *
1003  * @kvm:        The KVM pointer
1004  * @guest_ipa:  The IPA at which to insert the mapping
1005  * @pa:         The physical address of the device
1006  * @size:       The size of the mapping
1007  */
1008 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1009                           phys_addr_t pa, unsigned long size, bool writable)
1010 {
1011         phys_addr_t addr, end;
1012         int ret = 0;
1013         unsigned long pfn;
1014         struct kvm_mmu_memory_cache cache = { 0, };
1015
1016         end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
1017         pfn = __phys_to_pfn(pa);
1018
1019         for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1020                 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
1021
1022                 if (writable)
1023                         pte = kvm_s2pte_mkwrite(pte);
1024
1025                 ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
1026                                                 KVM_NR_MEM_OBJS);
1027                 if (ret)
1028                         goto out;
1029                 spin_lock(&kvm->mmu_lock);
1030                 ret = stage2_set_pte(kvm, &cache, addr, &pte,
1031                                                 KVM_S2PTE_FLAG_IS_IOMAP);
1032                 spin_unlock(&kvm->mmu_lock);
1033                 if (ret)
1034                         goto out;
1035
1036                 pfn++;
1037         }
1038
1039 out:
1040         mmu_free_memory_cache(&cache);
1041         return ret;
1042 }
1043
1044 static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1045 {
1046         kvm_pfn_t pfn = *pfnp;
1047         gfn_t gfn = *ipap >> PAGE_SHIFT;
1048
1049         if (PageTransCompoundMap(pfn_to_page(pfn))) {
1050                 unsigned long mask;
1051                 /*
1052                  * The address we faulted on is backed by a transparent huge
1053                  * page.  However, because we map the compound huge page and
1054                  * not the individual tail page, we need to transfer the
1055                  * refcount to the head page.  We have to be careful that the
1056                  * THP doesn't start to split while we are adjusting the
1057                  * refcounts.
1058                  *
1059                  * We are sure this doesn't happen, because mmu_notifier_retry
1060                  * was successful and we are holding the mmu_lock, so if this
1061                  * THP is trying to split, it will be blocked in the mmu
1062                  * notifier before touching any of the pages, specifically
1063                  * before being able to call __split_huge_page_refcount().
1064                  *
1065                  * We can therefore safely transfer the refcount from PG_tail
1066                  * to PG_head and switch the pfn from a tail page to the head
1067                  * page accordingly.
1068                  */
1069                 mask = PTRS_PER_PMD - 1;
1070                 VM_BUG_ON((gfn & mask) != (pfn & mask));
1071                 if (pfn & mask) {
1072                         *ipap &= PMD_MASK;
1073                         kvm_release_pfn_clean(pfn);
1074                         pfn &= ~mask;
1075                         kvm_get_pfn(pfn);
1076                         *pfnp = pfn;
1077                 }
1078
1079                 return true;
1080         }
1081
1082         return false;
1083 }
1084
1085 static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
1086 {
1087         if (kvm_vcpu_trap_is_iabt(vcpu))
1088                 return false;
1089
1090         return kvm_vcpu_dabt_iswrite(vcpu);
1091 }
1092
1093 /**
1094  * stage2_wp_ptes - write protect PMD range
1095  * @pmd:        pointer to pmd entry
1096  * @addr:       range start address
1097  * @end:        range end address
1098  */
1099 static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1100 {
1101         pte_t *pte;
1102
1103         pte = pte_offset_kernel(pmd, addr);
1104         do {
1105                 if (!pte_none(*pte)) {
1106                         if (!kvm_s2pte_readonly(pte))
1107                                 kvm_set_s2pte_readonly(pte);
1108                 }
1109         } while (pte++, addr += PAGE_SIZE, addr != end);
1110 }
1111
1112 /**
1113  * stage2_wp_pmds - write protect PUD range
1114  * @pud:        pointer to pud entry
1115  * @addr:       range start address
1116  * @end:        range end address
1117  */
1118 static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
1119 {
1120         pmd_t *pmd;
1121         phys_addr_t next;
1122
1123         pmd = stage2_pmd_offset(pud, addr);
1124
1125         do {
1126                 next = stage2_pmd_addr_end(addr, end);
1127                 if (!pmd_none(*pmd)) {
1128                         if (pmd_thp_or_huge(*pmd)) {
1129                                 if (!kvm_s2pmd_readonly(pmd))
1130                                         kvm_set_s2pmd_readonly(pmd);
1131                         } else {
1132                                 stage2_wp_ptes(pmd, addr, next);
1133                         }
1134                 }
1135         } while (pmd++, addr = next, addr != end);
1136 }
1137
1138 /**
1139   * stage2_wp_puds - write protect PGD range
1140   * @pgd:       pointer to pgd entry
1141   * @addr:      range start address
1142   * @end:       range end address
1143   *
1144   * Process PUD entries, for a huge PUD we cause a panic.
1145   */
1146 static void  stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
1147 {
1148         pud_t *pud;
1149         phys_addr_t next;
1150
1151         pud = stage2_pud_offset(pgd, addr);
1152         do {
1153                 next = stage2_pud_addr_end(addr, end);
1154                 if (!stage2_pud_none(*pud)) {
1155                         /* TODO:PUD not supported, revisit later if supported */
1156                         BUG_ON(stage2_pud_huge(*pud));
1157                         stage2_wp_pmds(pud, addr, next);
1158                 }
1159         } while (pud++, addr = next, addr != end);
1160 }
1161
1162 /**
1163  * stage2_wp_range() - write protect stage2 memory region range
1164  * @kvm:        The KVM pointer
1165  * @addr:       Start address of range
1166  * @end:        End address of range
1167  */
1168 static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1169 {
1170         pgd_t *pgd;
1171         phys_addr_t next;
1172
1173         pgd = kvm->arch.pgd + stage2_pgd_index(addr);
1174         do {
1175                 /*
1176                  * Release kvm_mmu_lock periodically if the memory region is
1177                  * large. Otherwise, we may see kernel panics with
1178                  * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1179                  * CONFIG_LOCKDEP. Additionally, holding the lock too long
1180                  * will also starve other vCPUs. We have to also make sure
1181                  * that the page tables are not freed while we released
1182                  * the lock.
1183                  */
1184                 cond_resched_lock(&kvm->mmu_lock);
1185                 if (!READ_ONCE(kvm->arch.pgd))
1186                         break;
1187                 next = stage2_pgd_addr_end(addr, end);
1188                 if (stage2_pgd_present(*pgd))
1189                         stage2_wp_puds(pgd, addr, next);
1190         } while (pgd++, addr = next, addr != end);
1191 }
1192
1193 /**
1194  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1195  * @kvm:        The KVM pointer
1196  * @slot:       The memory slot to write protect
1197  *
1198  * Called to start logging dirty pages after memory region
1199  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1200  * all present PMD and PTEs are write protected in the memory region.
1201  * Afterwards read of dirty page log can be called.
1202  *
1203  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1204  * serializing operations for VM memory regions.
1205  */
1206 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1207 {
1208         struct kvm_memslots *slots = kvm_memslots(kvm);
1209         struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1210         phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1211         phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1212
1213         spin_lock(&kvm->mmu_lock);
1214         stage2_wp_range(kvm, start, end);
1215         spin_unlock(&kvm->mmu_lock);
1216         kvm_flush_remote_tlbs(kvm);
1217 }
1218
1219 /**
1220  * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1221  * @kvm:        The KVM pointer
1222  * @slot:       The memory slot associated with mask
1223  * @gfn_offset: The gfn offset in memory slot
1224  * @mask:       The mask of dirty pages at offset 'gfn_offset' in this memory
1225  *              slot to be write protected
1226  *
1227  * Walks bits set in mask write protects the associated pte's. Caller must
1228  * acquire kvm_mmu_lock.
1229  */
1230 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1231                 struct kvm_memory_slot *slot,
1232                 gfn_t gfn_offset, unsigned long mask)
1233 {
1234         phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1235         phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
1236         phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1237
1238         stage2_wp_range(kvm, start, end);
1239 }
1240
1241 /*
1242  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1243  * dirty pages.
1244  *
1245  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1246  * enable dirty logging for them.
1247  */
1248 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1249                 struct kvm_memory_slot *slot,
1250                 gfn_t gfn_offset, unsigned long mask)
1251 {
1252         kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1253 }
1254
1255 static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, kvm_pfn_t pfn,
1256                                       unsigned long size)
1257 {
1258         __coherent_cache_guest_page(vcpu, pfn, size);
1259 }
1260
1261 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1262                           struct kvm_memory_slot *memslot, unsigned long hva,
1263                           unsigned long fault_status)
1264 {
1265         int ret;
1266         bool write_fault, writable, hugetlb = false, force_pte = false;
1267         unsigned long mmu_seq;
1268         gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1269         struct kvm *kvm = vcpu->kvm;
1270         struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1271         struct vm_area_struct *vma;
1272         kvm_pfn_t pfn;
1273         pgprot_t mem_type = PAGE_S2;
1274         bool logging_active = memslot_is_logging(memslot);
1275         unsigned long flags = 0;
1276
1277         write_fault = kvm_is_write_fault(vcpu);
1278         if (fault_status == FSC_PERM && !write_fault) {
1279                 kvm_err("Unexpected L2 read permission error\n");
1280                 return -EFAULT;
1281         }
1282
1283         /* Let's check if we will get back a huge page backed by hugetlbfs */
1284         down_read(&current->mm->mmap_sem);
1285         vma = find_vma_intersection(current->mm, hva, hva + 1);
1286         if (unlikely(!vma)) {
1287                 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1288                 up_read(&current->mm->mmap_sem);
1289                 return -EFAULT;
1290         }
1291
1292         if (is_vm_hugetlb_page(vma) && !logging_active) {
1293                 hugetlb = true;
1294                 gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
1295         } else {
1296                 /*
1297                  * Pages belonging to memslots that don't have the same
1298                  * alignment for userspace and IPA cannot be mapped using
1299                  * block descriptors even if the pages belong to a THP for
1300                  * the process, because the stage-2 block descriptor will
1301                  * cover more than a single THP and we loose atomicity for
1302                  * unmapping, updates, and splits of the THP or other pages
1303                  * in the stage-2 block range.
1304                  */
1305                 if ((memslot->userspace_addr & ~PMD_MASK) !=
1306                     ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
1307                         force_pte = true;
1308         }
1309         up_read(&current->mm->mmap_sem);
1310
1311         /* We need minimum second+third level pages */
1312         ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
1313                                      KVM_NR_MEM_OBJS);
1314         if (ret)
1315                 return ret;
1316
1317         mmu_seq = vcpu->kvm->mmu_notifier_seq;
1318         /*
1319          * Ensure the read of mmu_notifier_seq happens before we call
1320          * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1321          * the page we just got a reference to gets unmapped before we have a
1322          * chance to grab the mmu_lock, which ensure that if the page gets
1323          * unmapped afterwards, the call to kvm_unmap_hva will take it away
1324          * from us again properly. This smp_rmb() interacts with the smp_wmb()
1325          * in kvm_mmu_notifier_invalidate_<page|range_end>.
1326          */
1327         smp_rmb();
1328
1329         pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1330         if (is_error_noslot_pfn(pfn))
1331                 return -EFAULT;
1332
1333         if (kvm_is_device_pfn(pfn)) {
1334                 mem_type = PAGE_S2_DEVICE;
1335                 flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1336         } else if (logging_active) {
1337                 /*
1338                  * Faults on pages in a memslot with logging enabled
1339                  * should not be mapped with huge pages (it introduces churn
1340                  * and performance degradation), so force a pte mapping.
1341                  */
1342                 force_pte = true;
1343                 flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1344
1345                 /*
1346                  * Only actually map the page as writable if this was a write
1347                  * fault.
1348                  */
1349                 if (!write_fault)
1350                         writable = false;
1351         }
1352
1353         spin_lock(&kvm->mmu_lock);
1354         if (mmu_notifier_retry(kvm, mmu_seq))
1355                 goto out_unlock;
1356
1357         if (!hugetlb && !force_pte)
1358                 hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
1359
1360         if (hugetlb) {
1361                 pmd_t new_pmd = pfn_pmd(pfn, mem_type);
1362                 new_pmd = pmd_mkhuge(new_pmd);
1363                 if (writable) {
1364                         new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1365                         kvm_set_pfn_dirty(pfn);
1366                 }
1367                 coherent_cache_guest_page(vcpu, pfn, PMD_SIZE);
1368                 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1369         } else {
1370                 pte_t new_pte = pfn_pte(pfn, mem_type);
1371
1372                 if (writable) {
1373                         new_pte = kvm_s2pte_mkwrite(new_pte);
1374                         kvm_set_pfn_dirty(pfn);
1375                         mark_page_dirty(kvm, gfn);
1376                 }
1377                 coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE);
1378                 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1379         }
1380
1381 out_unlock:
1382         spin_unlock(&kvm->mmu_lock);
1383         kvm_set_pfn_accessed(pfn);
1384         kvm_release_pfn_clean(pfn);
1385         return ret;
1386 }
1387
1388 /*
1389  * Resolve the access fault by making the page young again.
1390  * Note that because the faulting entry is guaranteed not to be
1391  * cached in the TLB, we don't need to invalidate anything.
1392  * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
1393  * so there is no need for atomic (pte|pmd)_mkyoung operations.
1394  */
1395 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1396 {
1397         pmd_t *pmd;
1398         pte_t *pte;
1399         kvm_pfn_t pfn;
1400         bool pfn_valid = false;
1401
1402         trace_kvm_access_fault(fault_ipa);
1403
1404         spin_lock(&vcpu->kvm->mmu_lock);
1405
1406         pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
1407         if (!pmd || pmd_none(*pmd))     /* Nothing there */
1408                 goto out;
1409
1410         if (pmd_thp_or_huge(*pmd)) {    /* THP, HugeTLB */
1411                 *pmd = pmd_mkyoung(*pmd);
1412                 pfn = pmd_pfn(*pmd);
1413                 pfn_valid = true;
1414                 goto out;
1415         }
1416
1417         pte = pte_offset_kernel(pmd, fault_ipa);
1418         if (pte_none(*pte))             /* Nothing there either */
1419                 goto out;
1420
1421         *pte = pte_mkyoung(*pte);       /* Just a page... */
1422         pfn = pte_pfn(*pte);
1423         pfn_valid = true;
1424 out:
1425         spin_unlock(&vcpu->kvm->mmu_lock);
1426         if (pfn_valid)
1427                 kvm_set_pfn_accessed(pfn);
1428 }
1429
1430 /**
1431  * kvm_handle_guest_abort - handles all 2nd stage aborts
1432  * @vcpu:       the VCPU pointer
1433  * @run:        the kvm_run structure
1434  *
1435  * Any abort that gets to the host is almost guaranteed to be caused by a
1436  * missing second stage translation table entry, which can mean that either the
1437  * guest simply needs more memory and we must allocate an appropriate page or it
1438  * can mean that the guest tried to access I/O memory, which is emulated by user
1439  * space. The distinction is based on the IPA causing the fault and whether this
1440  * memory region has been registered as standard RAM by user space.
1441  */
1442 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1443 {
1444         unsigned long fault_status;
1445         phys_addr_t fault_ipa;
1446         struct kvm_memory_slot *memslot;
1447         unsigned long hva;
1448         bool is_iabt, write_fault, writable;
1449         gfn_t gfn;
1450         int ret, idx;
1451
1452         is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1453         if (unlikely(!is_iabt && kvm_vcpu_dabt_isextabt(vcpu))) {
1454                 kvm_inject_vabt(vcpu);
1455                 return 1;
1456         }
1457
1458         fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1459
1460         trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1461                               kvm_vcpu_get_hfar(vcpu), fault_ipa);
1462
1463         /* Check the stage-2 fault is trans. fault or write fault */
1464         fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1465         if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1466             fault_status != FSC_ACCESS) {
1467                 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1468                         kvm_vcpu_trap_get_class(vcpu),
1469                         (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1470                         (unsigned long)kvm_vcpu_get_hsr(vcpu));
1471                 return -EFAULT;
1472         }
1473
1474         idx = srcu_read_lock(&vcpu->kvm->srcu);
1475
1476         gfn = fault_ipa >> PAGE_SHIFT;
1477         memslot = gfn_to_memslot(vcpu->kvm, gfn);
1478         hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1479         write_fault = kvm_is_write_fault(vcpu);
1480         if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1481                 if (is_iabt) {
1482                         /* Prefetch Abort on I/O address */
1483                         kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1484                         ret = 1;
1485                         goto out_unlock;
1486                 }
1487
1488                 /*
1489                  * Check for a cache maintenance operation. Since we
1490                  * ended-up here, we know it is outside of any memory
1491                  * slot. But we can't find out if that is for a device,
1492                  * or if the guest is just being stupid. The only thing
1493                  * we know for sure is that this range cannot be cached.
1494                  *
1495                  * So let's assume that the guest is just being
1496                  * cautious, and skip the instruction.
1497                  */
1498                 if (kvm_vcpu_dabt_is_cm(vcpu)) {
1499                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1500                         ret = 1;
1501                         goto out_unlock;
1502                 }
1503
1504                 /*
1505                  * The IPA is reported as [MAX:12], so we need to
1506                  * complement it with the bottom 12 bits from the
1507                  * faulting VA. This is always 12 bits, irrespective
1508                  * of the page size.
1509                  */
1510                 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1511                 ret = io_mem_abort(vcpu, run, fault_ipa);
1512                 goto out_unlock;
1513         }
1514
1515         /* Userspace should not be able to register out-of-bounds IPAs */
1516         VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
1517
1518         if (fault_status == FSC_ACCESS) {
1519                 handle_access_fault(vcpu, fault_ipa);
1520                 ret = 1;
1521                 goto out_unlock;
1522         }
1523
1524         ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1525         if (ret == 0)
1526                 ret = 1;
1527 out_unlock:
1528         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1529         return ret;
1530 }
1531
1532 static int handle_hva_to_gpa(struct kvm *kvm,
1533                              unsigned long start,
1534                              unsigned long end,
1535                              int (*handler)(struct kvm *kvm,
1536                                             gpa_t gpa, u64 size,
1537                                             void *data),
1538                              void *data)
1539 {
1540         struct kvm_memslots *slots;
1541         struct kvm_memory_slot *memslot;
1542         int ret = 0;
1543
1544         slots = kvm_memslots(kvm);
1545
1546         /* we only care about the pages that the guest sees */
1547         kvm_for_each_memslot(memslot, slots) {
1548                 unsigned long hva_start, hva_end;
1549                 gfn_t gpa;
1550
1551                 hva_start = max(start, memslot->userspace_addr);
1552                 hva_end = min(end, memslot->userspace_addr +
1553                                         (memslot->npages << PAGE_SHIFT));
1554                 if (hva_start >= hva_end)
1555                         continue;
1556
1557                 gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
1558                 ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
1559         }
1560
1561         return ret;
1562 }
1563
1564 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1565 {
1566         unmap_stage2_range(kvm, gpa, size);
1567         return 0;
1568 }
1569
1570 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1571 {
1572         unsigned long end = hva + PAGE_SIZE;
1573
1574         if (!kvm->arch.pgd)
1575                 return 0;
1576
1577         trace_kvm_unmap_hva(hva);
1578         handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
1579         return 0;
1580 }
1581
1582 int kvm_unmap_hva_range(struct kvm *kvm,
1583                         unsigned long start, unsigned long end)
1584 {
1585         if (!kvm->arch.pgd)
1586                 return 0;
1587
1588         trace_kvm_unmap_hva_range(start, end);
1589         handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
1590         return 0;
1591 }
1592
1593 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1594 {
1595         pte_t *pte = (pte_t *)data;
1596
1597         WARN_ON(size != PAGE_SIZE);
1598         /*
1599          * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1600          * flag clear because MMU notifiers will have unmapped a huge PMD before
1601          * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1602          * therefore stage2_set_pte() never needs to clear out a huge PMD
1603          * through this calling path.
1604          */
1605         stage2_set_pte(kvm, NULL, gpa, pte, 0);
1606         return 0;
1607 }
1608
1609
1610 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1611 {
1612         unsigned long end = hva + PAGE_SIZE;
1613         pte_t stage2_pte;
1614
1615         if (!kvm->arch.pgd)
1616                 return;
1617
1618         trace_kvm_set_spte_hva(hva);
1619         stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
1620         handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1621 }
1622
1623 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1624 {
1625         pmd_t *pmd;
1626         pte_t *pte;
1627
1628         WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1629         pmd = stage2_get_pmd(kvm, NULL, gpa);
1630         if (!pmd || pmd_none(*pmd))     /* Nothing there */
1631                 return 0;
1632
1633         if (pmd_thp_or_huge(*pmd))      /* THP, HugeTLB */
1634                 return stage2_pmdp_test_and_clear_young(pmd);
1635
1636         pte = pte_offset_kernel(pmd, gpa);
1637         if (pte_none(*pte))
1638                 return 0;
1639
1640         return stage2_ptep_test_and_clear_young(pte);
1641 }
1642
1643 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1644 {
1645         pmd_t *pmd;
1646         pte_t *pte;
1647
1648         WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1649         pmd = stage2_get_pmd(kvm, NULL, gpa);
1650         if (!pmd || pmd_none(*pmd))     /* Nothing there */
1651                 return 0;
1652
1653         if (pmd_thp_or_huge(*pmd))              /* THP, HugeTLB */
1654                 return pmd_young(*pmd);
1655
1656         pte = pte_offset_kernel(pmd, gpa);
1657         if (!pte_none(*pte))            /* Just a page... */
1658                 return pte_young(*pte);
1659
1660         return 0;
1661 }
1662
1663 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1664 {
1665         trace_kvm_age_hva(start, end);
1666         return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
1667 }
1668
1669 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1670 {
1671         trace_kvm_test_age_hva(hva);
1672         return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
1673 }
1674
1675 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1676 {
1677         mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1678 }
1679
1680 phys_addr_t kvm_mmu_get_httbr(void)
1681 {
1682         if (__kvm_cpu_uses_extended_idmap())
1683                 return virt_to_phys(merged_hyp_pgd);
1684         else
1685                 return virt_to_phys(hyp_pgd);
1686 }
1687
1688 phys_addr_t kvm_get_idmap_vector(void)
1689 {
1690         return hyp_idmap_vector;
1691 }
1692
1693 static int kvm_map_idmap_text(pgd_t *pgd)
1694 {
1695         int err;
1696
1697         /* Create the idmap in the boot page tables */
1698         err =   __create_hyp_mappings(pgd,
1699                                       hyp_idmap_start, hyp_idmap_end,
1700                                       __phys_to_pfn(hyp_idmap_start),
1701                                       PAGE_HYP_EXEC);
1702         if (err)
1703                 kvm_err("Failed to idmap %lx-%lx\n",
1704                         hyp_idmap_start, hyp_idmap_end);
1705
1706         return err;
1707 }
1708
1709 int kvm_mmu_init(void)
1710 {
1711         int err;
1712
1713         hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1714         hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1715         hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1716
1717         /*
1718          * We rely on the linker script to ensure at build time that the HYP
1719          * init code does not cross a page boundary.
1720          */
1721         BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1722
1723         kvm_info("IDMAP page: %lx\n", hyp_idmap_start);
1724         kvm_info("HYP VA range: %lx:%lx\n",
1725                  kern_hyp_va(PAGE_OFFSET), kern_hyp_va(~0UL));
1726
1727         if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1728             hyp_idmap_start <  kern_hyp_va(~0UL) &&
1729             hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1730                 /*
1731                  * The idmap page is intersecting with the VA space,
1732                  * it is not safe to continue further.
1733                  */
1734                 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1735                 err = -EINVAL;
1736                 goto out;
1737         }
1738
1739         hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1740         if (!hyp_pgd) {
1741                 kvm_err("Hyp mode PGD not allocated\n");
1742                 err = -ENOMEM;
1743                 goto out;
1744         }
1745
1746         if (__kvm_cpu_uses_extended_idmap()) {
1747                 boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1748                                                          hyp_pgd_order);
1749                 if (!boot_hyp_pgd) {
1750                         kvm_err("Hyp boot PGD not allocated\n");
1751                         err = -ENOMEM;
1752                         goto out;
1753                 }
1754
1755                 err = kvm_map_idmap_text(boot_hyp_pgd);
1756                 if (err)
1757                         goto out;
1758
1759                 merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1760                 if (!merged_hyp_pgd) {
1761                         kvm_err("Failed to allocate extra HYP pgd\n");
1762                         goto out;
1763                 }
1764                 __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
1765                                     hyp_idmap_start);
1766         } else {
1767                 err = kvm_map_idmap_text(hyp_pgd);
1768                 if (err)
1769                         goto out;
1770         }
1771
1772         return 0;
1773 out:
1774         free_hyp_pgds();
1775         return err;
1776 }
1777
1778 void kvm_arch_commit_memory_region(struct kvm *kvm,
1779                                    const struct kvm_userspace_memory_region *mem,
1780                                    const struct kvm_memory_slot *old,
1781                                    const struct kvm_memory_slot *new,
1782                                    enum kvm_mr_change change)
1783 {
1784         /*
1785          * At this point memslot has been committed and there is an
1786          * allocated dirty_bitmap[], dirty pages will be be tracked while the
1787          * memory slot is write protected.
1788          */
1789         if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
1790                 kvm_mmu_wp_memory_region(kvm, mem->slot);
1791 }
1792
1793 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1794                                    struct kvm_memory_slot *memslot,
1795                                    const struct kvm_userspace_memory_region *mem,
1796                                    enum kvm_mr_change change)
1797 {
1798         hva_t hva = mem->userspace_addr;
1799         hva_t reg_end = hva + mem->memory_size;
1800         bool writable = !(mem->flags & KVM_MEM_READONLY);
1801         int ret = 0;
1802
1803         if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1804                         change != KVM_MR_FLAGS_ONLY)
1805                 return 0;
1806
1807         /*
1808          * Prevent userspace from creating a memory region outside of the IPA
1809          * space addressable by the KVM guest IPA space.
1810          */
1811         if (memslot->base_gfn + memslot->npages >=
1812             (KVM_PHYS_SIZE >> PAGE_SHIFT))
1813                 return -EFAULT;
1814
1815         down_read(&current->mm->mmap_sem);
1816         /*
1817          * A memory region could potentially cover multiple VMAs, and any holes
1818          * between them, so iterate over all of them to find out if we can map
1819          * any of them right now.
1820          *
1821          *     +--------------------------------------------+
1822          * +---------------+----------------+   +----------------+
1823          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
1824          * +---------------+----------------+   +----------------+
1825          *     |               memory region                |
1826          *     +--------------------------------------------+
1827          */
1828         do {
1829                 struct vm_area_struct *vma = find_vma(current->mm, hva);
1830                 hva_t vm_start, vm_end;
1831
1832                 if (!vma || vma->vm_start >= reg_end)
1833                         break;
1834
1835                 /*
1836                  * Mapping a read-only VMA is only allowed if the
1837                  * memory region is configured as read-only.
1838                  */
1839                 if (writable && !(vma->vm_flags & VM_WRITE)) {
1840                         ret = -EPERM;
1841                         break;
1842                 }
1843
1844                 /*
1845                  * Take the intersection of this VMA with the memory region
1846                  */
1847                 vm_start = max(hva, vma->vm_start);
1848                 vm_end = min(reg_end, vma->vm_end);
1849
1850                 if (vma->vm_flags & VM_PFNMAP) {
1851                         gpa_t gpa = mem->guest_phys_addr +
1852                                     (vm_start - mem->userspace_addr);
1853                         phys_addr_t pa;
1854
1855                         pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
1856                         pa += vm_start - vma->vm_start;
1857
1858                         /* IO region dirty page logging not allowed */
1859                         if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1860                                 ret = -EINVAL;
1861                                 goto out;
1862                         }
1863
1864                         ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
1865                                                     vm_end - vm_start,
1866                                                     writable);
1867                         if (ret)
1868                                 break;
1869                 }
1870                 hva = vm_end;
1871         } while (hva < reg_end);
1872
1873         if (change == KVM_MR_FLAGS_ONLY)
1874                 goto out;
1875
1876         spin_lock(&kvm->mmu_lock);
1877         if (ret)
1878                 unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
1879         else
1880                 stage2_flush_memslot(kvm, memslot);
1881         spin_unlock(&kvm->mmu_lock);
1882 out:
1883         up_read(&current->mm->mmap_sem);
1884         return ret;
1885 }
1886
1887 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
1888                            struct kvm_memory_slot *dont)
1889 {
1890 }
1891
1892 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
1893                             unsigned long npages)
1894 {
1895         return 0;
1896 }
1897
1898 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
1899 {
1900 }
1901
1902 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1903 {
1904         kvm_free_stage2_pgd(kvm);
1905 }
1906
1907 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1908                                    struct kvm_memory_slot *slot)
1909 {
1910         gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1911         phys_addr_t size = slot->npages << PAGE_SHIFT;
1912
1913         spin_lock(&kvm->mmu_lock);
1914         unmap_stage2_range(kvm, gpa, size);
1915         spin_unlock(&kvm->mmu_lock);
1916 }
1917
1918 /*
1919  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1920  *
1921  * Main problems:
1922  * - S/W ops are local to a CPU (not broadcast)
1923  * - We have line migration behind our back (speculation)
1924  * - System caches don't support S/W at all (damn!)
1925  *
1926  * In the face of the above, the best we can do is to try and convert
1927  * S/W ops to VA ops. Because the guest is not allowed to infer the
1928  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1929  * which is a rather good thing for us.
1930  *
1931  * Also, it is only used when turning caches on/off ("The expected
1932  * usage of the cache maintenance instructions that operate by set/way
1933  * is associated with the cache maintenance instructions associated
1934  * with the powerdown and powerup of caches, if this is required by
1935  * the implementation.").
1936  *
1937  * We use the following policy:
1938  *
1939  * - If we trap a S/W operation, we enable VM trapping to detect
1940  *   caches being turned on/off, and do a full clean.
1941  *
1942  * - We flush the caches on both caches being turned on and off.
1943  *
1944  * - Once the caches are enabled, we stop trapping VM ops.
1945  */
1946 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1947 {
1948         unsigned long hcr = vcpu_get_hcr(vcpu);
1949
1950         /*
1951          * If this is the first time we do a S/W operation
1952          * (i.e. HCR_TVM not set) flush the whole memory, and set the
1953          * VM trapping.
1954          *
1955          * Otherwise, rely on the VM trapping to wait for the MMU +
1956          * Caches to be turned off. At that point, we'll be able to
1957          * clean the caches again.
1958          */
1959         if (!(hcr & HCR_TVM)) {
1960                 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
1961                                         vcpu_has_cache_enabled(vcpu));
1962                 stage2_flush_vm(vcpu->kvm);
1963                 vcpu_set_hcr(vcpu, hcr | HCR_TVM);
1964         }
1965 }
1966
1967 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
1968 {
1969         bool now_enabled = vcpu_has_cache_enabled(vcpu);
1970
1971         /*
1972          * If switching the MMU+caches on, need to invalidate the caches.
1973          * If switching it off, need to clean the caches.
1974          * Clean + invalidate does the trick always.
1975          */
1976         if (now_enabled != was_enabled)
1977                 stage2_flush_vm(vcpu->kvm);
1978
1979         /* Caches are now on, stop trapping VM ops (until a S/W op) */
1980         if (now_enabled)
1981                 vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM);
1982
1983         trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
1984 }