Merge tag 'gpio-v4.15-2' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[sfrench/cifs-2.6.git] / virt / kvm / arm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/cpu_pm.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <linux/kvm_irqfd.h>
31 #include <linux/irqbypass.h>
32 #include <trace/events/kvm.h>
33 #include <kvm/arm_pmu.h>
34
35 #define CREATE_TRACE_POINTS
36 #include "trace.h"
37
38 #include <linux/uaccess.h>
39 #include <asm/ptrace.h>
40 #include <asm/mman.h>
41 #include <asm/tlbflush.h>
42 #include <asm/cacheflush.h>
43 #include <asm/virt.h>
44 #include <asm/kvm_arm.h>
45 #include <asm/kvm_asm.h>
46 #include <asm/kvm_mmu.h>
47 #include <asm/kvm_emulate.h>
48 #include <asm/kvm_coproc.h>
49 #include <asm/kvm_psci.h>
50 #include <asm/sections.h>
51
52 #ifdef REQUIRES_VIRT
53 __asm__(".arch_extension        virt");
54 #endif
55
56 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
57 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
58
59 /* Per-CPU variable containing the currently running vcpu. */
60 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
61
62 /* The VMID used in the VTTBR */
63 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
64 static u32 kvm_next_vmid;
65 static unsigned int kvm_vmid_bits __read_mostly;
66 static DEFINE_SPINLOCK(kvm_vmid_lock);
67
68 static bool vgic_present;
69
70 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
71
72 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
73 {
74         BUG_ON(preemptible());
75         __this_cpu_write(kvm_arm_running_vcpu, vcpu);
76 }
77
78 /**
79  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
80  * Must be called from non-preemptible context
81  */
82 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
83 {
84         BUG_ON(preemptible());
85         return __this_cpu_read(kvm_arm_running_vcpu);
86 }
87
88 /**
89  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
90  */
91 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
92 {
93         return &kvm_arm_running_vcpu;
94 }
95
96 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
97 {
98         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
99 }
100
101 int kvm_arch_hardware_setup(void)
102 {
103         return 0;
104 }
105
106 void kvm_arch_check_processor_compat(void *rtn)
107 {
108         *(int *)rtn = 0;
109 }
110
111
112 /**
113  * kvm_arch_init_vm - initializes a VM data structure
114  * @kvm:        pointer to the KVM struct
115  */
116 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
117 {
118         int ret, cpu;
119
120         if (type)
121                 return -EINVAL;
122
123         kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
124         if (!kvm->arch.last_vcpu_ran)
125                 return -ENOMEM;
126
127         for_each_possible_cpu(cpu)
128                 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
129
130         ret = kvm_alloc_stage2_pgd(kvm);
131         if (ret)
132                 goto out_fail_alloc;
133
134         ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
135         if (ret)
136                 goto out_free_stage2_pgd;
137
138         kvm_vgic_early_init(kvm);
139
140         /* Mark the initial VMID generation invalid */
141         kvm->arch.vmid_gen = 0;
142
143         /* The maximum number of VCPUs is limited by the host's GIC model */
144         kvm->arch.max_vcpus = vgic_present ?
145                                 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
146
147         return ret;
148 out_free_stage2_pgd:
149         kvm_free_stage2_pgd(kvm);
150 out_fail_alloc:
151         free_percpu(kvm->arch.last_vcpu_ran);
152         kvm->arch.last_vcpu_ran = NULL;
153         return ret;
154 }
155
156 bool kvm_arch_has_vcpu_debugfs(void)
157 {
158         return false;
159 }
160
161 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
162 {
163         return 0;
164 }
165
166 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
167 {
168         return VM_FAULT_SIGBUS;
169 }
170
171
172 /**
173  * kvm_arch_destroy_vm - destroy the VM data structure
174  * @kvm:        pointer to the KVM struct
175  */
176 void kvm_arch_destroy_vm(struct kvm *kvm)
177 {
178         int i;
179
180         kvm_vgic_destroy(kvm);
181
182         free_percpu(kvm->arch.last_vcpu_ran);
183         kvm->arch.last_vcpu_ran = NULL;
184
185         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
186                 if (kvm->vcpus[i]) {
187                         kvm_arch_vcpu_free(kvm->vcpus[i]);
188                         kvm->vcpus[i] = NULL;
189                 }
190         }
191 }
192
193 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
194 {
195         int r;
196         switch (ext) {
197         case KVM_CAP_IRQCHIP:
198                 r = vgic_present;
199                 break;
200         case KVM_CAP_IOEVENTFD:
201         case KVM_CAP_DEVICE_CTRL:
202         case KVM_CAP_USER_MEMORY:
203         case KVM_CAP_SYNC_MMU:
204         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
205         case KVM_CAP_ONE_REG:
206         case KVM_CAP_ARM_PSCI:
207         case KVM_CAP_ARM_PSCI_0_2:
208         case KVM_CAP_READONLY_MEM:
209         case KVM_CAP_MP_STATE:
210         case KVM_CAP_IMMEDIATE_EXIT:
211                 r = 1;
212                 break;
213         case KVM_CAP_ARM_SET_DEVICE_ADDR:
214                 r = 1;
215                 break;
216         case KVM_CAP_NR_VCPUS:
217                 r = num_online_cpus();
218                 break;
219         case KVM_CAP_MAX_VCPUS:
220                 r = KVM_MAX_VCPUS;
221                 break;
222         case KVM_CAP_NR_MEMSLOTS:
223                 r = KVM_USER_MEM_SLOTS;
224                 break;
225         case KVM_CAP_MSI_DEVID:
226                 if (!kvm)
227                         r = -EINVAL;
228                 else
229                         r = kvm->arch.vgic.msis_require_devid;
230                 break;
231         case KVM_CAP_ARM_USER_IRQ:
232                 /*
233                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
234                  * (bump this number if adding more devices)
235                  */
236                 r = 1;
237                 break;
238         default:
239                 r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
240                 break;
241         }
242         return r;
243 }
244
245 long kvm_arch_dev_ioctl(struct file *filp,
246                         unsigned int ioctl, unsigned long arg)
247 {
248         return -EINVAL;
249 }
250
251
252 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
253 {
254         int err;
255         struct kvm_vcpu *vcpu;
256
257         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
258                 err = -EBUSY;
259                 goto out;
260         }
261
262         if (id >= kvm->arch.max_vcpus) {
263                 err = -EINVAL;
264                 goto out;
265         }
266
267         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
268         if (!vcpu) {
269                 err = -ENOMEM;
270                 goto out;
271         }
272
273         err = kvm_vcpu_init(vcpu, kvm, id);
274         if (err)
275                 goto free_vcpu;
276
277         err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
278         if (err)
279                 goto vcpu_uninit;
280
281         return vcpu;
282 vcpu_uninit:
283         kvm_vcpu_uninit(vcpu);
284 free_vcpu:
285         kmem_cache_free(kvm_vcpu_cache, vcpu);
286 out:
287         return ERR_PTR(err);
288 }
289
290 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
291 {
292         kvm_vgic_vcpu_early_init(vcpu);
293 }
294
295 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
296 {
297         kvm_mmu_free_memory_caches(vcpu);
298         kvm_timer_vcpu_terminate(vcpu);
299         kvm_vgic_vcpu_destroy(vcpu);
300         kvm_pmu_vcpu_destroy(vcpu);
301         kvm_vcpu_uninit(vcpu);
302         kmem_cache_free(kvm_vcpu_cache, vcpu);
303 }
304
305 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
306 {
307         kvm_arch_vcpu_free(vcpu);
308 }
309
310 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
311 {
312         return kvm_timer_is_pending(vcpu);
313 }
314
315 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
316 {
317         kvm_timer_schedule(vcpu);
318         kvm_vgic_v4_enable_doorbell(vcpu);
319 }
320
321 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
322 {
323         kvm_timer_unschedule(vcpu);
324         kvm_vgic_v4_disable_doorbell(vcpu);
325 }
326
327 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
328 {
329         /* Force users to call KVM_ARM_VCPU_INIT */
330         vcpu->arch.target = -1;
331         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
332
333         /* Set up the timer */
334         kvm_timer_vcpu_init(vcpu);
335
336         kvm_arm_reset_debug_ptr(vcpu);
337
338         return kvm_vgic_vcpu_init(vcpu);
339 }
340
341 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
342 {
343         int *last_ran;
344
345         last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
346
347         /*
348          * We might get preempted before the vCPU actually runs, but
349          * over-invalidation doesn't affect correctness.
350          */
351         if (*last_ran != vcpu->vcpu_id) {
352                 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
353                 *last_ran = vcpu->vcpu_id;
354         }
355
356         vcpu->cpu = cpu;
357         vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
358
359         kvm_arm_set_running_vcpu(vcpu);
360         kvm_vgic_load(vcpu);
361         kvm_timer_vcpu_load(vcpu);
362 }
363
364 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
365 {
366         kvm_timer_vcpu_put(vcpu);
367         kvm_vgic_put(vcpu);
368
369         vcpu->cpu = -1;
370
371         kvm_arm_set_running_vcpu(NULL);
372 }
373
374 static void vcpu_power_off(struct kvm_vcpu *vcpu)
375 {
376         vcpu->arch.power_off = true;
377         kvm_make_request(KVM_REQ_SLEEP, vcpu);
378         kvm_vcpu_kick(vcpu);
379 }
380
381 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
382                                     struct kvm_mp_state *mp_state)
383 {
384         if (vcpu->arch.power_off)
385                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
386         else
387                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
388
389         return 0;
390 }
391
392 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
393                                     struct kvm_mp_state *mp_state)
394 {
395         switch (mp_state->mp_state) {
396         case KVM_MP_STATE_RUNNABLE:
397                 vcpu->arch.power_off = false;
398                 break;
399         case KVM_MP_STATE_STOPPED:
400                 vcpu_power_off(vcpu);
401                 break;
402         default:
403                 return -EINVAL;
404         }
405
406         return 0;
407 }
408
409 /**
410  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
411  * @v:          The VCPU pointer
412  *
413  * If the guest CPU is not waiting for interrupts or an interrupt line is
414  * asserted, the CPU is by definition runnable.
415  */
416 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
417 {
418         return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
419                 && !v->arch.power_off && !v->arch.pause);
420 }
421
422 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
423 {
424         return vcpu_mode_priv(vcpu);
425 }
426
427 /* Just ensure a guest exit from a particular CPU */
428 static void exit_vm_noop(void *info)
429 {
430 }
431
432 void force_vm_exit(const cpumask_t *mask)
433 {
434         preempt_disable();
435         smp_call_function_many(mask, exit_vm_noop, NULL, true);
436         preempt_enable();
437 }
438
439 /**
440  * need_new_vmid_gen - check that the VMID is still valid
441  * @kvm: The VM's VMID to check
442  *
443  * return true if there is a new generation of VMIDs being used
444  *
445  * The hardware supports only 256 values with the value zero reserved for the
446  * host, so we check if an assigned value belongs to a previous generation,
447  * which which requires us to assign a new value. If we're the first to use a
448  * VMID for the new generation, we must flush necessary caches and TLBs on all
449  * CPUs.
450  */
451 static bool need_new_vmid_gen(struct kvm *kvm)
452 {
453         return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
454 }
455
456 /**
457  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
458  * @kvm The guest that we are about to run
459  *
460  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
461  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
462  * caches and TLBs.
463  */
464 static void update_vttbr(struct kvm *kvm)
465 {
466         phys_addr_t pgd_phys;
467         u64 vmid;
468
469         if (!need_new_vmid_gen(kvm))
470                 return;
471
472         spin_lock(&kvm_vmid_lock);
473
474         /*
475          * We need to re-check the vmid_gen here to ensure that if another vcpu
476          * already allocated a valid vmid for this vm, then this vcpu should
477          * use the same vmid.
478          */
479         if (!need_new_vmid_gen(kvm)) {
480                 spin_unlock(&kvm_vmid_lock);
481                 return;
482         }
483
484         /* First user of a new VMID generation? */
485         if (unlikely(kvm_next_vmid == 0)) {
486                 atomic64_inc(&kvm_vmid_gen);
487                 kvm_next_vmid = 1;
488
489                 /*
490                  * On SMP we know no other CPUs can use this CPU's or each
491                  * other's VMID after force_vm_exit returns since the
492                  * kvm_vmid_lock blocks them from reentry to the guest.
493                  */
494                 force_vm_exit(cpu_all_mask);
495                 /*
496                  * Now broadcast TLB + ICACHE invalidation over the inner
497                  * shareable domain to make sure all data structures are
498                  * clean.
499                  */
500                 kvm_call_hyp(__kvm_flush_vm_context);
501         }
502
503         kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
504         kvm->arch.vmid = kvm_next_vmid;
505         kvm_next_vmid++;
506         kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
507
508         /* update vttbr to be used with the new vmid */
509         pgd_phys = virt_to_phys(kvm->arch.pgd);
510         BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
511         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
512         kvm->arch.vttbr = pgd_phys | vmid;
513
514         spin_unlock(&kvm_vmid_lock);
515 }
516
517 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
518 {
519         struct kvm *kvm = vcpu->kvm;
520         int ret = 0;
521
522         if (likely(vcpu->arch.has_run_once))
523                 return 0;
524
525         vcpu->arch.has_run_once = true;
526
527         /*
528          * Map the VGIC hardware resources before running a vcpu the first
529          * time on this VM.
530          */
531         if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
532                 ret = kvm_vgic_map_resources(kvm);
533                 if (ret)
534                         return ret;
535         }
536
537         ret = kvm_timer_enable(vcpu);
538         if (ret)
539                 return ret;
540
541         ret = kvm_arm_pmu_v3_enable(vcpu);
542
543         return ret;
544 }
545
546 bool kvm_arch_intc_initialized(struct kvm *kvm)
547 {
548         return vgic_initialized(kvm);
549 }
550
551 void kvm_arm_halt_guest(struct kvm *kvm)
552 {
553         int i;
554         struct kvm_vcpu *vcpu;
555
556         kvm_for_each_vcpu(i, vcpu, kvm)
557                 vcpu->arch.pause = true;
558         kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
559 }
560
561 void kvm_arm_resume_guest(struct kvm *kvm)
562 {
563         int i;
564         struct kvm_vcpu *vcpu;
565
566         kvm_for_each_vcpu(i, vcpu, kvm) {
567                 vcpu->arch.pause = false;
568                 swake_up(kvm_arch_vcpu_wq(vcpu));
569         }
570 }
571
572 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
573 {
574         struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
575
576         swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
577                                        (!vcpu->arch.pause)));
578
579         if (vcpu->arch.power_off || vcpu->arch.pause) {
580                 /* Awaken to handle a signal, request we sleep again later. */
581                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
582         }
583 }
584
585 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
586 {
587         return vcpu->arch.target >= 0;
588 }
589
590 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
591 {
592         if (kvm_request_pending(vcpu)) {
593                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
594                         vcpu_req_sleep(vcpu);
595
596                 /*
597                  * Clear IRQ_PENDING requests that were made to guarantee
598                  * that a VCPU sees new virtual interrupts.
599                  */
600                 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
601         }
602 }
603
604 /**
605  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
606  * @vcpu:       The VCPU pointer
607  * @run:        The kvm_run structure pointer used for userspace state exchange
608  *
609  * This function is called through the VCPU_RUN ioctl called from user space. It
610  * will execute VM code in a loop until the time slice for the process is used
611  * or some emulation is needed from user space in which case the function will
612  * return with return value 0 and with the kvm_run structure filled in with the
613  * required data for the requested emulation.
614  */
615 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
616 {
617         int ret;
618
619         if (unlikely(!kvm_vcpu_initialized(vcpu)))
620                 return -ENOEXEC;
621
622         ret = kvm_vcpu_first_run_init(vcpu);
623         if (ret)
624                 return ret;
625
626         if (run->exit_reason == KVM_EXIT_MMIO) {
627                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
628                 if (ret)
629                         return ret;
630         }
631
632         if (run->immediate_exit)
633                 return -EINTR;
634
635         kvm_sigset_activate(vcpu);
636
637         ret = 1;
638         run->exit_reason = KVM_EXIT_UNKNOWN;
639         while (ret > 0) {
640                 /*
641                  * Check conditions before entering the guest
642                  */
643                 cond_resched();
644
645                 update_vttbr(vcpu->kvm);
646
647                 check_vcpu_requests(vcpu);
648
649                 /*
650                  * Preparing the interrupts to be injected also
651                  * involves poking the GIC, which must be done in a
652                  * non-preemptible context.
653                  */
654                 preempt_disable();
655
656                 /* Flush FP/SIMD state that can't survive guest entry/exit */
657                 kvm_fpsimd_flush_cpu_state();
658
659                 kvm_pmu_flush_hwstate(vcpu);
660
661                 local_irq_disable();
662
663                 kvm_vgic_flush_hwstate(vcpu);
664
665                 /*
666                  * If we have a singal pending, or need to notify a userspace
667                  * irqchip about timer or PMU level changes, then we exit (and
668                  * update the timer level state in kvm_timer_update_run
669                  * below).
670                  */
671                 if (signal_pending(current) ||
672                     kvm_timer_should_notify_user(vcpu) ||
673                     kvm_pmu_should_notify_user(vcpu)) {
674                         ret = -EINTR;
675                         run->exit_reason = KVM_EXIT_INTR;
676                 }
677
678                 /*
679                  * Ensure we set mode to IN_GUEST_MODE after we disable
680                  * interrupts and before the final VCPU requests check.
681                  * See the comment in kvm_vcpu_exiting_guest_mode() and
682                  * Documentation/virtual/kvm/vcpu-requests.rst
683                  */
684                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
685
686                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
687                     kvm_request_pending(vcpu)) {
688                         vcpu->mode = OUTSIDE_GUEST_MODE;
689                         kvm_pmu_sync_hwstate(vcpu);
690                         kvm_timer_sync_hwstate(vcpu);
691                         kvm_vgic_sync_hwstate(vcpu);
692                         local_irq_enable();
693                         preempt_enable();
694                         continue;
695                 }
696
697                 kvm_arm_setup_debug(vcpu);
698
699                 /**************************************************************
700                  * Enter the guest
701                  */
702                 trace_kvm_entry(*vcpu_pc(vcpu));
703                 guest_enter_irqoff();
704
705                 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
706
707                 vcpu->mode = OUTSIDE_GUEST_MODE;
708                 vcpu->stat.exits++;
709                 /*
710                  * Back from guest
711                  *************************************************************/
712
713                 kvm_arm_clear_debug(vcpu);
714
715                 /*
716                  * We must sync the PMU state before the vgic state so
717                  * that the vgic can properly sample the updated state of the
718                  * interrupt line.
719                  */
720                 kvm_pmu_sync_hwstate(vcpu);
721
722                 /*
723                  * Sync the vgic state before syncing the timer state because
724                  * the timer code needs to know if the virtual timer
725                  * interrupts are active.
726                  */
727                 kvm_vgic_sync_hwstate(vcpu);
728
729                 /*
730                  * Sync the timer hardware state before enabling interrupts as
731                  * we don't want vtimer interrupts to race with syncing the
732                  * timer virtual interrupt state.
733                  */
734                 kvm_timer_sync_hwstate(vcpu);
735
736                 /*
737                  * We may have taken a host interrupt in HYP mode (ie
738                  * while executing the guest). This interrupt is still
739                  * pending, as we haven't serviced it yet!
740                  *
741                  * We're now back in SVC mode, with interrupts
742                  * disabled.  Enabling the interrupts now will have
743                  * the effect of taking the interrupt again, in SVC
744                  * mode this time.
745                  */
746                 local_irq_enable();
747
748                 /*
749                  * We do local_irq_enable() before calling guest_exit() so
750                  * that if a timer interrupt hits while running the guest we
751                  * account that tick as being spent in the guest.  We enable
752                  * preemption after calling guest_exit() so that if we get
753                  * preempted we make sure ticks after that is not counted as
754                  * guest time.
755                  */
756                 guest_exit();
757                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
758
759                 preempt_enable();
760
761                 ret = handle_exit(vcpu, run, ret);
762         }
763
764         /* Tell userspace about in-kernel device output levels */
765         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
766                 kvm_timer_update_run(vcpu);
767                 kvm_pmu_update_run(vcpu);
768         }
769
770         kvm_sigset_deactivate(vcpu);
771
772         return ret;
773 }
774
775 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
776 {
777         int bit_index;
778         bool set;
779         unsigned long *ptr;
780
781         if (number == KVM_ARM_IRQ_CPU_IRQ)
782                 bit_index = __ffs(HCR_VI);
783         else /* KVM_ARM_IRQ_CPU_FIQ */
784                 bit_index = __ffs(HCR_VF);
785
786         ptr = (unsigned long *)&vcpu->arch.irq_lines;
787         if (level)
788                 set = test_and_set_bit(bit_index, ptr);
789         else
790                 set = test_and_clear_bit(bit_index, ptr);
791
792         /*
793          * If we didn't change anything, no need to wake up or kick other CPUs
794          */
795         if (set == level)
796                 return 0;
797
798         /*
799          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
800          * trigger a world-switch round on the running physical CPU to set the
801          * virtual IRQ/FIQ fields in the HCR appropriately.
802          */
803         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
804         kvm_vcpu_kick(vcpu);
805
806         return 0;
807 }
808
809 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
810                           bool line_status)
811 {
812         u32 irq = irq_level->irq;
813         unsigned int irq_type, vcpu_idx, irq_num;
814         int nrcpus = atomic_read(&kvm->online_vcpus);
815         struct kvm_vcpu *vcpu = NULL;
816         bool level = irq_level->level;
817
818         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
819         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
820         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
821
822         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
823
824         switch (irq_type) {
825         case KVM_ARM_IRQ_TYPE_CPU:
826                 if (irqchip_in_kernel(kvm))
827                         return -ENXIO;
828
829                 if (vcpu_idx >= nrcpus)
830                         return -EINVAL;
831
832                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
833                 if (!vcpu)
834                         return -EINVAL;
835
836                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
837                         return -EINVAL;
838
839                 return vcpu_interrupt_line(vcpu, irq_num, level);
840         case KVM_ARM_IRQ_TYPE_PPI:
841                 if (!irqchip_in_kernel(kvm))
842                         return -ENXIO;
843
844                 if (vcpu_idx >= nrcpus)
845                         return -EINVAL;
846
847                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
848                 if (!vcpu)
849                         return -EINVAL;
850
851                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
852                         return -EINVAL;
853
854                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
855         case KVM_ARM_IRQ_TYPE_SPI:
856                 if (!irqchip_in_kernel(kvm))
857                         return -ENXIO;
858
859                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
860                         return -EINVAL;
861
862                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
863         }
864
865         return -EINVAL;
866 }
867
868 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
869                                const struct kvm_vcpu_init *init)
870 {
871         unsigned int i;
872         int phys_target = kvm_target_cpu();
873
874         if (init->target != phys_target)
875                 return -EINVAL;
876
877         /*
878          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
879          * use the same target.
880          */
881         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
882                 return -EINVAL;
883
884         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
885         for (i = 0; i < sizeof(init->features) * 8; i++) {
886                 bool set = (init->features[i / 32] & (1 << (i % 32)));
887
888                 if (set && i >= KVM_VCPU_MAX_FEATURES)
889                         return -ENOENT;
890
891                 /*
892                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
893                  * use the same feature set.
894                  */
895                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
896                     test_bit(i, vcpu->arch.features) != set)
897                         return -EINVAL;
898
899                 if (set)
900                         set_bit(i, vcpu->arch.features);
901         }
902
903         vcpu->arch.target = phys_target;
904
905         /* Now we know what it is, we can reset it. */
906         return kvm_reset_vcpu(vcpu);
907 }
908
909
910 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
911                                          struct kvm_vcpu_init *init)
912 {
913         int ret;
914
915         ret = kvm_vcpu_set_target(vcpu, init);
916         if (ret)
917                 return ret;
918
919         /*
920          * Ensure a rebooted VM will fault in RAM pages and detect if the
921          * guest MMU is turned off and flush the caches as needed.
922          */
923         if (vcpu->arch.has_run_once)
924                 stage2_unmap_vm(vcpu->kvm);
925
926         vcpu_reset_hcr(vcpu);
927
928         /*
929          * Handle the "start in power-off" case.
930          */
931         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
932                 vcpu_power_off(vcpu);
933         else
934                 vcpu->arch.power_off = false;
935
936         return 0;
937 }
938
939 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
940                                  struct kvm_device_attr *attr)
941 {
942         int ret = -ENXIO;
943
944         switch (attr->group) {
945         default:
946                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
947                 break;
948         }
949
950         return ret;
951 }
952
953 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
954                                  struct kvm_device_attr *attr)
955 {
956         int ret = -ENXIO;
957
958         switch (attr->group) {
959         default:
960                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
961                 break;
962         }
963
964         return ret;
965 }
966
967 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
968                                  struct kvm_device_attr *attr)
969 {
970         int ret = -ENXIO;
971
972         switch (attr->group) {
973         default:
974                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
975                 break;
976         }
977
978         return ret;
979 }
980
981 long kvm_arch_vcpu_ioctl(struct file *filp,
982                          unsigned int ioctl, unsigned long arg)
983 {
984         struct kvm_vcpu *vcpu = filp->private_data;
985         void __user *argp = (void __user *)arg;
986         struct kvm_device_attr attr;
987
988         switch (ioctl) {
989         case KVM_ARM_VCPU_INIT: {
990                 struct kvm_vcpu_init init;
991
992                 if (copy_from_user(&init, argp, sizeof(init)))
993                         return -EFAULT;
994
995                 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
996         }
997         case KVM_SET_ONE_REG:
998         case KVM_GET_ONE_REG: {
999                 struct kvm_one_reg reg;
1000
1001                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1002                         return -ENOEXEC;
1003
1004                 if (copy_from_user(&reg, argp, sizeof(reg)))
1005                         return -EFAULT;
1006                 if (ioctl == KVM_SET_ONE_REG)
1007                         return kvm_arm_set_reg(vcpu, &reg);
1008                 else
1009                         return kvm_arm_get_reg(vcpu, &reg);
1010         }
1011         case KVM_GET_REG_LIST: {
1012                 struct kvm_reg_list __user *user_list = argp;
1013                 struct kvm_reg_list reg_list;
1014                 unsigned n;
1015
1016                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1017                         return -ENOEXEC;
1018
1019                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1020                         return -EFAULT;
1021                 n = reg_list.n;
1022                 reg_list.n = kvm_arm_num_regs(vcpu);
1023                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1024                         return -EFAULT;
1025                 if (n < reg_list.n)
1026                         return -E2BIG;
1027                 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1028         }
1029         case KVM_SET_DEVICE_ATTR: {
1030                 if (copy_from_user(&attr, argp, sizeof(attr)))
1031                         return -EFAULT;
1032                 return kvm_arm_vcpu_set_attr(vcpu, &attr);
1033         }
1034         case KVM_GET_DEVICE_ATTR: {
1035                 if (copy_from_user(&attr, argp, sizeof(attr)))
1036                         return -EFAULT;
1037                 return kvm_arm_vcpu_get_attr(vcpu, &attr);
1038         }
1039         case KVM_HAS_DEVICE_ATTR: {
1040                 if (copy_from_user(&attr, argp, sizeof(attr)))
1041                         return -EFAULT;
1042                 return kvm_arm_vcpu_has_attr(vcpu, &attr);
1043         }
1044         default:
1045                 return -EINVAL;
1046         }
1047 }
1048
1049 /**
1050  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1051  * @kvm: kvm instance
1052  * @log: slot id and address to which we copy the log
1053  *
1054  * Steps 1-4 below provide general overview of dirty page logging. See
1055  * kvm_get_dirty_log_protect() function description for additional details.
1056  *
1057  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1058  * always flush the TLB (step 4) even if previous step failed  and the dirty
1059  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1060  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1061  * writes will be marked dirty for next log read.
1062  *
1063  *   1. Take a snapshot of the bit and clear it if needed.
1064  *   2. Write protect the corresponding page.
1065  *   3. Copy the snapshot to the userspace.
1066  *   4. Flush TLB's if needed.
1067  */
1068 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1069 {
1070         bool is_dirty = false;
1071         int r;
1072
1073         mutex_lock(&kvm->slots_lock);
1074
1075         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1076
1077         if (is_dirty)
1078                 kvm_flush_remote_tlbs(kvm);
1079
1080         mutex_unlock(&kvm->slots_lock);
1081         return r;
1082 }
1083
1084 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1085                                         struct kvm_arm_device_addr *dev_addr)
1086 {
1087         unsigned long dev_id, type;
1088
1089         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1090                 KVM_ARM_DEVICE_ID_SHIFT;
1091         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1092                 KVM_ARM_DEVICE_TYPE_SHIFT;
1093
1094         switch (dev_id) {
1095         case KVM_ARM_DEVICE_VGIC_V2:
1096                 if (!vgic_present)
1097                         return -ENXIO;
1098                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1099         default:
1100                 return -ENODEV;
1101         }
1102 }
1103
1104 long kvm_arch_vm_ioctl(struct file *filp,
1105                        unsigned int ioctl, unsigned long arg)
1106 {
1107         struct kvm *kvm = filp->private_data;
1108         void __user *argp = (void __user *)arg;
1109
1110         switch (ioctl) {
1111         case KVM_CREATE_IRQCHIP: {
1112                 int ret;
1113                 if (!vgic_present)
1114                         return -ENXIO;
1115                 mutex_lock(&kvm->lock);
1116                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1117                 mutex_unlock(&kvm->lock);
1118                 return ret;
1119         }
1120         case KVM_ARM_SET_DEVICE_ADDR: {
1121                 struct kvm_arm_device_addr dev_addr;
1122
1123                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1124                         return -EFAULT;
1125                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1126         }
1127         case KVM_ARM_PREFERRED_TARGET: {
1128                 int err;
1129                 struct kvm_vcpu_init init;
1130
1131                 err = kvm_vcpu_preferred_target(&init);
1132                 if (err)
1133                         return err;
1134
1135                 if (copy_to_user(argp, &init, sizeof(init)))
1136                         return -EFAULT;
1137
1138                 return 0;
1139         }
1140         default:
1141                 return -EINVAL;
1142         }
1143 }
1144
1145 static void cpu_init_hyp_mode(void *dummy)
1146 {
1147         phys_addr_t pgd_ptr;
1148         unsigned long hyp_stack_ptr;
1149         unsigned long stack_page;
1150         unsigned long vector_ptr;
1151
1152         /* Switch from the HYP stub to our own HYP init vector */
1153         __hyp_set_vectors(kvm_get_idmap_vector());
1154
1155         pgd_ptr = kvm_mmu_get_httbr();
1156         stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1157         hyp_stack_ptr = stack_page + PAGE_SIZE;
1158         vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
1159
1160         __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1161         __cpu_init_stage2();
1162
1163         kvm_arm_init_debug();
1164 }
1165
1166 static void cpu_hyp_reset(void)
1167 {
1168         if (!is_kernel_in_hyp_mode())
1169                 __hyp_reset_vectors();
1170 }
1171
1172 static void cpu_hyp_reinit(void)
1173 {
1174         cpu_hyp_reset();
1175
1176         if (is_kernel_in_hyp_mode()) {
1177                 /*
1178                  * __cpu_init_stage2() is safe to call even if the PM
1179                  * event was cancelled before the CPU was reset.
1180                  */
1181                 __cpu_init_stage2();
1182                 kvm_timer_init_vhe();
1183         } else {
1184                 cpu_init_hyp_mode(NULL);
1185         }
1186
1187         if (vgic_present)
1188                 kvm_vgic_init_cpu_hardware();
1189 }
1190
1191 static void _kvm_arch_hardware_enable(void *discard)
1192 {
1193         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1194                 cpu_hyp_reinit();
1195                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1196         }
1197 }
1198
1199 int kvm_arch_hardware_enable(void)
1200 {
1201         _kvm_arch_hardware_enable(NULL);
1202         return 0;
1203 }
1204
1205 static void _kvm_arch_hardware_disable(void *discard)
1206 {
1207         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1208                 cpu_hyp_reset();
1209                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1210         }
1211 }
1212
1213 void kvm_arch_hardware_disable(void)
1214 {
1215         _kvm_arch_hardware_disable(NULL);
1216 }
1217
1218 #ifdef CONFIG_CPU_PM
1219 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1220                                     unsigned long cmd,
1221                                     void *v)
1222 {
1223         /*
1224          * kvm_arm_hardware_enabled is left with its old value over
1225          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1226          * re-enable hyp.
1227          */
1228         switch (cmd) {
1229         case CPU_PM_ENTER:
1230                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1231                         /*
1232                          * don't update kvm_arm_hardware_enabled here
1233                          * so that the hardware will be re-enabled
1234                          * when we resume. See below.
1235                          */
1236                         cpu_hyp_reset();
1237
1238                 return NOTIFY_OK;
1239         case CPU_PM_EXIT:
1240                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1241                         /* The hardware was enabled before suspend. */
1242                         cpu_hyp_reinit();
1243
1244                 return NOTIFY_OK;
1245
1246         default:
1247                 return NOTIFY_DONE;
1248         }
1249 }
1250
1251 static struct notifier_block hyp_init_cpu_pm_nb = {
1252         .notifier_call = hyp_init_cpu_pm_notifier,
1253 };
1254
1255 static void __init hyp_cpu_pm_init(void)
1256 {
1257         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1258 }
1259 static void __init hyp_cpu_pm_exit(void)
1260 {
1261         cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1262 }
1263 #else
1264 static inline void hyp_cpu_pm_init(void)
1265 {
1266 }
1267 static inline void hyp_cpu_pm_exit(void)
1268 {
1269 }
1270 #endif
1271
1272 static void teardown_common_resources(void)
1273 {
1274         free_percpu(kvm_host_cpu_state);
1275 }
1276
1277 static int init_common_resources(void)
1278 {
1279         kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1280         if (!kvm_host_cpu_state) {
1281                 kvm_err("Cannot allocate host CPU state\n");
1282                 return -ENOMEM;
1283         }
1284
1285         /* set size of VMID supported by CPU */
1286         kvm_vmid_bits = kvm_get_vmid_bits();
1287         kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1288
1289         return 0;
1290 }
1291
1292 static int init_subsystems(void)
1293 {
1294         int err = 0;
1295
1296         /*
1297          * Enable hardware so that subsystem initialisation can access EL2.
1298          */
1299         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1300
1301         /*
1302          * Register CPU lower-power notifier
1303          */
1304         hyp_cpu_pm_init();
1305
1306         /*
1307          * Init HYP view of VGIC
1308          */
1309         err = kvm_vgic_hyp_init();
1310         switch (err) {
1311         case 0:
1312                 vgic_present = true;
1313                 break;
1314         case -ENODEV:
1315         case -ENXIO:
1316                 vgic_present = false;
1317                 err = 0;
1318                 break;
1319         default:
1320                 goto out;
1321         }
1322
1323         /*
1324          * Init HYP architected timer support
1325          */
1326         err = kvm_timer_hyp_init();
1327         if (err)
1328                 goto out;
1329
1330         kvm_perf_init();
1331         kvm_coproc_table_init();
1332
1333 out:
1334         on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1335
1336         return err;
1337 }
1338
1339 static void teardown_hyp_mode(void)
1340 {
1341         int cpu;
1342
1343         free_hyp_pgds();
1344         for_each_possible_cpu(cpu)
1345                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1346         hyp_cpu_pm_exit();
1347 }
1348
1349 /**
1350  * Inits Hyp-mode on all online CPUs
1351  */
1352 static int init_hyp_mode(void)
1353 {
1354         int cpu;
1355         int err = 0;
1356
1357         /*
1358          * Allocate Hyp PGD and setup Hyp identity mapping
1359          */
1360         err = kvm_mmu_init();
1361         if (err)
1362                 goto out_err;
1363
1364         /*
1365          * Allocate stack pages for Hypervisor-mode
1366          */
1367         for_each_possible_cpu(cpu) {
1368                 unsigned long stack_page;
1369
1370                 stack_page = __get_free_page(GFP_KERNEL);
1371                 if (!stack_page) {
1372                         err = -ENOMEM;
1373                         goto out_err;
1374                 }
1375
1376                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1377         }
1378
1379         /*
1380          * Map the Hyp-code called directly from the host
1381          */
1382         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1383                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1384         if (err) {
1385                 kvm_err("Cannot map world-switch code\n");
1386                 goto out_err;
1387         }
1388
1389         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1390                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1391         if (err) {
1392                 kvm_err("Cannot map rodata section\n");
1393                 goto out_err;
1394         }
1395
1396         err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1397                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1398         if (err) {
1399                 kvm_err("Cannot map bss section\n");
1400                 goto out_err;
1401         }
1402
1403         /*
1404          * Map the Hyp stack pages
1405          */
1406         for_each_possible_cpu(cpu) {
1407                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1408                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1409                                           PAGE_HYP);
1410
1411                 if (err) {
1412                         kvm_err("Cannot map hyp stack\n");
1413                         goto out_err;
1414                 }
1415         }
1416
1417         for_each_possible_cpu(cpu) {
1418                 kvm_cpu_context_t *cpu_ctxt;
1419
1420                 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1421                 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1422
1423                 if (err) {
1424                         kvm_err("Cannot map host CPU state: %d\n", err);
1425                         goto out_err;
1426                 }
1427         }
1428
1429         return 0;
1430
1431 out_err:
1432         teardown_hyp_mode();
1433         kvm_err("error initializing Hyp mode: %d\n", err);
1434         return err;
1435 }
1436
1437 static void check_kvm_target_cpu(void *ret)
1438 {
1439         *(int *)ret = kvm_target_cpu();
1440 }
1441
1442 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1443 {
1444         struct kvm_vcpu *vcpu;
1445         int i;
1446
1447         mpidr &= MPIDR_HWID_BITMASK;
1448         kvm_for_each_vcpu(i, vcpu, kvm) {
1449                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1450                         return vcpu;
1451         }
1452         return NULL;
1453 }
1454
1455 bool kvm_arch_has_irq_bypass(void)
1456 {
1457         return true;
1458 }
1459
1460 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1461                                       struct irq_bypass_producer *prod)
1462 {
1463         struct kvm_kernel_irqfd *irqfd =
1464                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1465
1466         return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1467                                           &irqfd->irq_entry);
1468 }
1469 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1470                                       struct irq_bypass_producer *prod)
1471 {
1472         struct kvm_kernel_irqfd *irqfd =
1473                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1474
1475         kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1476                                      &irqfd->irq_entry);
1477 }
1478
1479 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1480 {
1481         struct kvm_kernel_irqfd *irqfd =
1482                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1483
1484         kvm_arm_halt_guest(irqfd->kvm);
1485 }
1486
1487 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1488 {
1489         struct kvm_kernel_irqfd *irqfd =
1490                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1491
1492         kvm_arm_resume_guest(irqfd->kvm);
1493 }
1494
1495 /**
1496  * Initialize Hyp-mode and memory mappings on all CPUs.
1497  */
1498 int kvm_arch_init(void *opaque)
1499 {
1500         int err;
1501         int ret, cpu;
1502         bool in_hyp_mode;
1503
1504         if (!is_hyp_mode_available()) {
1505                 kvm_err("HYP mode not available\n");
1506                 return -ENODEV;
1507         }
1508
1509         for_each_online_cpu(cpu) {
1510                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1511                 if (ret < 0) {
1512                         kvm_err("Error, CPU %d not supported!\n", cpu);
1513                         return -ENODEV;
1514                 }
1515         }
1516
1517         err = init_common_resources();
1518         if (err)
1519                 return err;
1520
1521         in_hyp_mode = is_kernel_in_hyp_mode();
1522
1523         if (!in_hyp_mode) {
1524                 err = init_hyp_mode();
1525                 if (err)
1526                         goto out_err;
1527         }
1528
1529         err = init_subsystems();
1530         if (err)
1531                 goto out_hyp;
1532
1533         if (in_hyp_mode)
1534                 kvm_info("VHE mode initialized successfully\n");
1535         else
1536                 kvm_info("Hyp mode initialized successfully\n");
1537
1538         return 0;
1539
1540 out_hyp:
1541         if (!in_hyp_mode)
1542                 teardown_hyp_mode();
1543 out_err:
1544         teardown_common_resources();
1545         return err;
1546 }
1547
1548 /* NOP: Compiling as a module not supported */
1549 void kvm_arch_exit(void)
1550 {
1551         kvm_perf_teardown();
1552 }
1553
1554 static int arm_init(void)
1555 {
1556         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1557         return rc;
1558 }
1559
1560 module_init(arm_init);