Merge tag 'iwlwifi-for-kalle-2017-11-28' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / virt / kvm / arm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/cpu_pm.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <linux/kvm_irqfd.h>
31 #include <linux/irqbypass.h>
32 #include <trace/events/kvm.h>
33 #include <kvm/arm_pmu.h>
34
35 #define CREATE_TRACE_POINTS
36 #include "trace.h"
37
38 #include <linux/uaccess.h>
39 #include <asm/ptrace.h>
40 #include <asm/mman.h>
41 #include <asm/tlbflush.h>
42 #include <asm/cacheflush.h>
43 #include <asm/virt.h>
44 #include <asm/kvm_arm.h>
45 #include <asm/kvm_asm.h>
46 #include <asm/kvm_mmu.h>
47 #include <asm/kvm_emulate.h>
48 #include <asm/kvm_coproc.h>
49 #include <asm/kvm_psci.h>
50 #include <asm/sections.h>
51
52 #ifdef REQUIRES_VIRT
53 __asm__(".arch_extension        virt");
54 #endif
55
56 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
57 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
58
59 /* Per-CPU variable containing the currently running vcpu. */
60 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
61
62 /* The VMID used in the VTTBR */
63 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
64 static u32 kvm_next_vmid;
65 static unsigned int kvm_vmid_bits __read_mostly;
66 static DEFINE_SPINLOCK(kvm_vmid_lock);
67
68 static bool vgic_present;
69
70 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
71
72 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
73 {
74         BUG_ON(preemptible());
75         __this_cpu_write(kvm_arm_running_vcpu, vcpu);
76 }
77
78 /**
79  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
80  * Must be called from non-preemptible context
81  */
82 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
83 {
84         BUG_ON(preemptible());
85         return __this_cpu_read(kvm_arm_running_vcpu);
86 }
87
88 /**
89  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
90  */
91 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
92 {
93         return &kvm_arm_running_vcpu;
94 }
95
96 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
97 {
98         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
99 }
100
101 int kvm_arch_hardware_setup(void)
102 {
103         return 0;
104 }
105
106 void kvm_arch_check_processor_compat(void *rtn)
107 {
108         *(int *)rtn = 0;
109 }
110
111
112 /**
113  * kvm_arch_init_vm - initializes a VM data structure
114  * @kvm:        pointer to the KVM struct
115  */
116 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
117 {
118         int ret, cpu;
119
120         if (type)
121                 return -EINVAL;
122
123         kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
124         if (!kvm->arch.last_vcpu_ran)
125                 return -ENOMEM;
126
127         for_each_possible_cpu(cpu)
128                 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
129
130         ret = kvm_alloc_stage2_pgd(kvm);
131         if (ret)
132                 goto out_fail_alloc;
133
134         ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
135         if (ret)
136                 goto out_free_stage2_pgd;
137
138         kvm_vgic_early_init(kvm);
139
140         /* Mark the initial VMID generation invalid */
141         kvm->arch.vmid_gen = 0;
142
143         /* The maximum number of VCPUs is limited by the host's GIC model */
144         kvm->arch.max_vcpus = vgic_present ?
145                                 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
146
147         return ret;
148 out_free_stage2_pgd:
149         kvm_free_stage2_pgd(kvm);
150 out_fail_alloc:
151         free_percpu(kvm->arch.last_vcpu_ran);
152         kvm->arch.last_vcpu_ran = NULL;
153         return ret;
154 }
155
156 bool kvm_arch_has_vcpu_debugfs(void)
157 {
158         return false;
159 }
160
161 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
162 {
163         return 0;
164 }
165
166 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
167 {
168         return VM_FAULT_SIGBUS;
169 }
170
171
172 /**
173  * kvm_arch_destroy_vm - destroy the VM data structure
174  * @kvm:        pointer to the KVM struct
175  */
176 void kvm_arch_destroy_vm(struct kvm *kvm)
177 {
178         int i;
179
180         kvm_vgic_destroy(kvm);
181
182         free_percpu(kvm->arch.last_vcpu_ran);
183         kvm->arch.last_vcpu_ran = NULL;
184
185         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
186                 if (kvm->vcpus[i]) {
187                         kvm_arch_vcpu_free(kvm->vcpus[i]);
188                         kvm->vcpus[i] = NULL;
189                 }
190         }
191 }
192
193 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
194 {
195         int r;
196         switch (ext) {
197         case KVM_CAP_IRQCHIP:
198                 r = vgic_present;
199                 break;
200         case KVM_CAP_IOEVENTFD:
201         case KVM_CAP_DEVICE_CTRL:
202         case KVM_CAP_USER_MEMORY:
203         case KVM_CAP_SYNC_MMU:
204         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
205         case KVM_CAP_ONE_REG:
206         case KVM_CAP_ARM_PSCI:
207         case KVM_CAP_ARM_PSCI_0_2:
208         case KVM_CAP_READONLY_MEM:
209         case KVM_CAP_MP_STATE:
210         case KVM_CAP_IMMEDIATE_EXIT:
211                 r = 1;
212                 break;
213         case KVM_CAP_ARM_SET_DEVICE_ADDR:
214                 r = 1;
215                 break;
216         case KVM_CAP_NR_VCPUS:
217                 r = num_online_cpus();
218                 break;
219         case KVM_CAP_MAX_VCPUS:
220                 r = KVM_MAX_VCPUS;
221                 break;
222         case KVM_CAP_NR_MEMSLOTS:
223                 r = KVM_USER_MEM_SLOTS;
224                 break;
225         case KVM_CAP_MSI_DEVID:
226                 if (!kvm)
227                         r = -EINVAL;
228                 else
229                         r = kvm->arch.vgic.msis_require_devid;
230                 break;
231         case KVM_CAP_ARM_USER_IRQ:
232                 /*
233                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
234                  * (bump this number if adding more devices)
235                  */
236                 r = 1;
237                 break;
238         default:
239                 r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
240                 break;
241         }
242         return r;
243 }
244
245 long kvm_arch_dev_ioctl(struct file *filp,
246                         unsigned int ioctl, unsigned long arg)
247 {
248         return -EINVAL;
249 }
250
251
252 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
253 {
254         int err;
255         struct kvm_vcpu *vcpu;
256
257         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
258                 err = -EBUSY;
259                 goto out;
260         }
261
262         if (id >= kvm->arch.max_vcpus) {
263                 err = -EINVAL;
264                 goto out;
265         }
266
267         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
268         if (!vcpu) {
269                 err = -ENOMEM;
270                 goto out;
271         }
272
273         err = kvm_vcpu_init(vcpu, kvm, id);
274         if (err)
275                 goto free_vcpu;
276
277         err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
278         if (err)
279                 goto vcpu_uninit;
280
281         return vcpu;
282 vcpu_uninit:
283         kvm_vcpu_uninit(vcpu);
284 free_vcpu:
285         kmem_cache_free(kvm_vcpu_cache, vcpu);
286 out:
287         return ERR_PTR(err);
288 }
289
290 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
291 {
292         kvm_vgic_vcpu_early_init(vcpu);
293 }
294
295 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
296 {
297         kvm_mmu_free_memory_caches(vcpu);
298         kvm_timer_vcpu_terminate(vcpu);
299         kvm_vgic_vcpu_destroy(vcpu);
300         kvm_pmu_vcpu_destroy(vcpu);
301         kvm_vcpu_uninit(vcpu);
302         kmem_cache_free(kvm_vcpu_cache, vcpu);
303 }
304
305 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
306 {
307         kvm_arch_vcpu_free(vcpu);
308 }
309
310 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
311 {
312         return kvm_timer_is_pending(vcpu);
313 }
314
315 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
316 {
317         kvm_timer_schedule(vcpu);
318         kvm_vgic_v4_enable_doorbell(vcpu);
319 }
320
321 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
322 {
323         kvm_timer_unschedule(vcpu);
324         kvm_vgic_v4_disable_doorbell(vcpu);
325 }
326
327 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
328 {
329         /* Force users to call KVM_ARM_VCPU_INIT */
330         vcpu->arch.target = -1;
331         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
332
333         /* Set up the timer */
334         kvm_timer_vcpu_init(vcpu);
335
336         kvm_arm_reset_debug_ptr(vcpu);
337
338         return kvm_vgic_vcpu_init(vcpu);
339 }
340
341 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
342 {
343         int *last_ran;
344
345         last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
346
347         /*
348          * We might get preempted before the vCPU actually runs, but
349          * over-invalidation doesn't affect correctness.
350          */
351         if (*last_ran != vcpu->vcpu_id) {
352                 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
353                 *last_ran = vcpu->vcpu_id;
354         }
355
356         vcpu->cpu = cpu;
357         vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
358
359         kvm_arm_set_running_vcpu(vcpu);
360         kvm_vgic_load(vcpu);
361         kvm_timer_vcpu_load(vcpu);
362 }
363
364 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
365 {
366         kvm_timer_vcpu_put(vcpu);
367         kvm_vgic_put(vcpu);
368
369         vcpu->cpu = -1;
370
371         kvm_arm_set_running_vcpu(NULL);
372 }
373
374 static void vcpu_power_off(struct kvm_vcpu *vcpu)
375 {
376         vcpu->arch.power_off = true;
377         kvm_make_request(KVM_REQ_SLEEP, vcpu);
378         kvm_vcpu_kick(vcpu);
379 }
380
381 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
382                                     struct kvm_mp_state *mp_state)
383 {
384         if (vcpu->arch.power_off)
385                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
386         else
387                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
388
389         return 0;
390 }
391
392 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
393                                     struct kvm_mp_state *mp_state)
394 {
395         switch (mp_state->mp_state) {
396         case KVM_MP_STATE_RUNNABLE:
397                 vcpu->arch.power_off = false;
398                 break;
399         case KVM_MP_STATE_STOPPED:
400                 vcpu_power_off(vcpu);
401                 break;
402         default:
403                 return -EINVAL;
404         }
405
406         return 0;
407 }
408
409 /**
410  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
411  * @v:          The VCPU pointer
412  *
413  * If the guest CPU is not waiting for interrupts or an interrupt line is
414  * asserted, the CPU is by definition runnable.
415  */
416 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
417 {
418         return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
419                 && !v->arch.power_off && !v->arch.pause);
420 }
421
422 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
423 {
424         return vcpu_mode_priv(vcpu);
425 }
426
427 /* Just ensure a guest exit from a particular CPU */
428 static void exit_vm_noop(void *info)
429 {
430 }
431
432 void force_vm_exit(const cpumask_t *mask)
433 {
434         preempt_disable();
435         smp_call_function_many(mask, exit_vm_noop, NULL, true);
436         preempt_enable();
437 }
438
439 /**
440  * need_new_vmid_gen - check that the VMID is still valid
441  * @kvm: The VM's VMID to check
442  *
443  * return true if there is a new generation of VMIDs being used
444  *
445  * The hardware supports only 256 values with the value zero reserved for the
446  * host, so we check if an assigned value belongs to a previous generation,
447  * which which requires us to assign a new value. If we're the first to use a
448  * VMID for the new generation, we must flush necessary caches and TLBs on all
449  * CPUs.
450  */
451 static bool need_new_vmid_gen(struct kvm *kvm)
452 {
453         return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
454 }
455
456 /**
457  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
458  * @kvm The guest that we are about to run
459  *
460  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
461  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
462  * caches and TLBs.
463  */
464 static void update_vttbr(struct kvm *kvm)
465 {
466         phys_addr_t pgd_phys;
467         u64 vmid;
468
469         if (!need_new_vmid_gen(kvm))
470                 return;
471
472         spin_lock(&kvm_vmid_lock);
473
474         /*
475          * We need to re-check the vmid_gen here to ensure that if another vcpu
476          * already allocated a valid vmid for this vm, then this vcpu should
477          * use the same vmid.
478          */
479         if (!need_new_vmid_gen(kvm)) {
480                 spin_unlock(&kvm_vmid_lock);
481                 return;
482         }
483
484         /* First user of a new VMID generation? */
485         if (unlikely(kvm_next_vmid == 0)) {
486                 atomic64_inc(&kvm_vmid_gen);
487                 kvm_next_vmid = 1;
488
489                 /*
490                  * On SMP we know no other CPUs can use this CPU's or each
491                  * other's VMID after force_vm_exit returns since the
492                  * kvm_vmid_lock blocks them from reentry to the guest.
493                  */
494                 force_vm_exit(cpu_all_mask);
495                 /*
496                  * Now broadcast TLB + ICACHE invalidation over the inner
497                  * shareable domain to make sure all data structures are
498                  * clean.
499                  */
500                 kvm_call_hyp(__kvm_flush_vm_context);
501         }
502
503         kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
504         kvm->arch.vmid = kvm_next_vmid;
505         kvm_next_vmid++;
506         kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
507
508         /* update vttbr to be used with the new vmid */
509         pgd_phys = virt_to_phys(kvm->arch.pgd);
510         BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
511         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
512         kvm->arch.vttbr = pgd_phys | vmid;
513
514         spin_unlock(&kvm_vmid_lock);
515 }
516
517 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
518 {
519         struct kvm *kvm = vcpu->kvm;
520         int ret = 0;
521
522         if (likely(vcpu->arch.has_run_once))
523                 return 0;
524
525         vcpu->arch.has_run_once = true;
526
527         /*
528          * Map the VGIC hardware resources before running a vcpu the first
529          * time on this VM.
530          */
531         if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
532                 ret = kvm_vgic_map_resources(kvm);
533                 if (ret)
534                         return ret;
535         }
536
537         ret = kvm_timer_enable(vcpu);
538         if (ret)
539                 return ret;
540
541         ret = kvm_arm_pmu_v3_enable(vcpu);
542
543         return ret;
544 }
545
546 bool kvm_arch_intc_initialized(struct kvm *kvm)
547 {
548         return vgic_initialized(kvm);
549 }
550
551 void kvm_arm_halt_guest(struct kvm *kvm)
552 {
553         int i;
554         struct kvm_vcpu *vcpu;
555
556         kvm_for_each_vcpu(i, vcpu, kvm)
557                 vcpu->arch.pause = true;
558         kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
559 }
560
561 void kvm_arm_resume_guest(struct kvm *kvm)
562 {
563         int i;
564         struct kvm_vcpu *vcpu;
565
566         kvm_for_each_vcpu(i, vcpu, kvm) {
567                 vcpu->arch.pause = false;
568                 swake_up(kvm_arch_vcpu_wq(vcpu));
569         }
570 }
571
572 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
573 {
574         struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
575
576         swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
577                                        (!vcpu->arch.pause)));
578
579         if (vcpu->arch.power_off || vcpu->arch.pause) {
580                 /* Awaken to handle a signal, request we sleep again later. */
581                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
582         }
583 }
584
585 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
586 {
587         return vcpu->arch.target >= 0;
588 }
589
590 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
591 {
592         if (kvm_request_pending(vcpu)) {
593                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
594                         vcpu_req_sleep(vcpu);
595
596                 /*
597                  * Clear IRQ_PENDING requests that were made to guarantee
598                  * that a VCPU sees new virtual interrupts.
599                  */
600                 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
601         }
602 }
603
604 /**
605  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
606  * @vcpu:       The VCPU pointer
607  * @run:        The kvm_run structure pointer used for userspace state exchange
608  *
609  * This function is called through the VCPU_RUN ioctl called from user space. It
610  * will execute VM code in a loop until the time slice for the process is used
611  * or some emulation is needed from user space in which case the function will
612  * return with return value 0 and with the kvm_run structure filled in with the
613  * required data for the requested emulation.
614  */
615 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
616 {
617         int ret;
618         sigset_t sigsaved;
619
620         if (unlikely(!kvm_vcpu_initialized(vcpu)))
621                 return -ENOEXEC;
622
623         ret = kvm_vcpu_first_run_init(vcpu);
624         if (ret)
625                 return ret;
626
627         if (run->exit_reason == KVM_EXIT_MMIO) {
628                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
629                 if (ret)
630                         return ret;
631         }
632
633         if (run->immediate_exit)
634                 return -EINTR;
635
636         if (vcpu->sigset_active)
637                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
638
639         ret = 1;
640         run->exit_reason = KVM_EXIT_UNKNOWN;
641         while (ret > 0) {
642                 /*
643                  * Check conditions before entering the guest
644                  */
645                 cond_resched();
646
647                 update_vttbr(vcpu->kvm);
648
649                 check_vcpu_requests(vcpu);
650
651                 /*
652                  * Preparing the interrupts to be injected also
653                  * involves poking the GIC, which must be done in a
654                  * non-preemptible context.
655                  */
656                 preempt_disable();
657
658                 /* Flush FP/SIMD state that can't survive guest entry/exit */
659                 kvm_fpsimd_flush_cpu_state();
660
661                 kvm_pmu_flush_hwstate(vcpu);
662
663                 local_irq_disable();
664
665                 kvm_vgic_flush_hwstate(vcpu);
666
667                 /*
668                  * If we have a singal pending, or need to notify a userspace
669                  * irqchip about timer or PMU level changes, then we exit (and
670                  * update the timer level state in kvm_timer_update_run
671                  * below).
672                  */
673                 if (signal_pending(current) ||
674                     kvm_timer_should_notify_user(vcpu) ||
675                     kvm_pmu_should_notify_user(vcpu)) {
676                         ret = -EINTR;
677                         run->exit_reason = KVM_EXIT_INTR;
678                 }
679
680                 /*
681                  * Ensure we set mode to IN_GUEST_MODE after we disable
682                  * interrupts and before the final VCPU requests check.
683                  * See the comment in kvm_vcpu_exiting_guest_mode() and
684                  * Documentation/virtual/kvm/vcpu-requests.rst
685                  */
686                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
687
688                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
689                     kvm_request_pending(vcpu)) {
690                         vcpu->mode = OUTSIDE_GUEST_MODE;
691                         kvm_pmu_sync_hwstate(vcpu);
692                         kvm_timer_sync_hwstate(vcpu);
693                         kvm_vgic_sync_hwstate(vcpu);
694                         local_irq_enable();
695                         preempt_enable();
696                         continue;
697                 }
698
699                 kvm_arm_setup_debug(vcpu);
700
701                 /**************************************************************
702                  * Enter the guest
703                  */
704                 trace_kvm_entry(*vcpu_pc(vcpu));
705                 guest_enter_irqoff();
706
707                 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
708
709                 vcpu->mode = OUTSIDE_GUEST_MODE;
710                 vcpu->stat.exits++;
711                 /*
712                  * Back from guest
713                  *************************************************************/
714
715                 kvm_arm_clear_debug(vcpu);
716
717                 /*
718                  * We must sync the PMU state before the vgic state so
719                  * that the vgic can properly sample the updated state of the
720                  * interrupt line.
721                  */
722                 kvm_pmu_sync_hwstate(vcpu);
723
724                 /*
725                  * Sync the vgic state before syncing the timer state because
726                  * the timer code needs to know if the virtual timer
727                  * interrupts are active.
728                  */
729                 kvm_vgic_sync_hwstate(vcpu);
730
731                 /*
732                  * Sync the timer hardware state before enabling interrupts as
733                  * we don't want vtimer interrupts to race with syncing the
734                  * timer virtual interrupt state.
735                  */
736                 kvm_timer_sync_hwstate(vcpu);
737
738                 /*
739                  * We may have taken a host interrupt in HYP mode (ie
740                  * while executing the guest). This interrupt is still
741                  * pending, as we haven't serviced it yet!
742                  *
743                  * We're now back in SVC mode, with interrupts
744                  * disabled.  Enabling the interrupts now will have
745                  * the effect of taking the interrupt again, in SVC
746                  * mode this time.
747                  */
748                 local_irq_enable();
749
750                 /*
751                  * We do local_irq_enable() before calling guest_exit() so
752                  * that if a timer interrupt hits while running the guest we
753                  * account that tick as being spent in the guest.  We enable
754                  * preemption after calling guest_exit() so that if we get
755                  * preempted we make sure ticks after that is not counted as
756                  * guest time.
757                  */
758                 guest_exit();
759                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
760
761                 preempt_enable();
762
763                 ret = handle_exit(vcpu, run, ret);
764         }
765
766         /* Tell userspace about in-kernel device output levels */
767         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
768                 kvm_timer_update_run(vcpu);
769                 kvm_pmu_update_run(vcpu);
770         }
771
772         if (vcpu->sigset_active)
773                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
774         return ret;
775 }
776
777 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
778 {
779         int bit_index;
780         bool set;
781         unsigned long *ptr;
782
783         if (number == KVM_ARM_IRQ_CPU_IRQ)
784                 bit_index = __ffs(HCR_VI);
785         else /* KVM_ARM_IRQ_CPU_FIQ */
786                 bit_index = __ffs(HCR_VF);
787
788         ptr = (unsigned long *)&vcpu->arch.irq_lines;
789         if (level)
790                 set = test_and_set_bit(bit_index, ptr);
791         else
792                 set = test_and_clear_bit(bit_index, ptr);
793
794         /*
795          * If we didn't change anything, no need to wake up or kick other CPUs
796          */
797         if (set == level)
798                 return 0;
799
800         /*
801          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
802          * trigger a world-switch round on the running physical CPU to set the
803          * virtual IRQ/FIQ fields in the HCR appropriately.
804          */
805         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
806         kvm_vcpu_kick(vcpu);
807
808         return 0;
809 }
810
811 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
812                           bool line_status)
813 {
814         u32 irq = irq_level->irq;
815         unsigned int irq_type, vcpu_idx, irq_num;
816         int nrcpus = atomic_read(&kvm->online_vcpus);
817         struct kvm_vcpu *vcpu = NULL;
818         bool level = irq_level->level;
819
820         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
821         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
822         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
823
824         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
825
826         switch (irq_type) {
827         case KVM_ARM_IRQ_TYPE_CPU:
828                 if (irqchip_in_kernel(kvm))
829                         return -ENXIO;
830
831                 if (vcpu_idx >= nrcpus)
832                         return -EINVAL;
833
834                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
835                 if (!vcpu)
836                         return -EINVAL;
837
838                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
839                         return -EINVAL;
840
841                 return vcpu_interrupt_line(vcpu, irq_num, level);
842         case KVM_ARM_IRQ_TYPE_PPI:
843                 if (!irqchip_in_kernel(kvm))
844                         return -ENXIO;
845
846                 if (vcpu_idx >= nrcpus)
847                         return -EINVAL;
848
849                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
850                 if (!vcpu)
851                         return -EINVAL;
852
853                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
854                         return -EINVAL;
855
856                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
857         case KVM_ARM_IRQ_TYPE_SPI:
858                 if (!irqchip_in_kernel(kvm))
859                         return -ENXIO;
860
861                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
862                         return -EINVAL;
863
864                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
865         }
866
867         return -EINVAL;
868 }
869
870 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
871                                const struct kvm_vcpu_init *init)
872 {
873         unsigned int i;
874         int phys_target = kvm_target_cpu();
875
876         if (init->target != phys_target)
877                 return -EINVAL;
878
879         /*
880          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
881          * use the same target.
882          */
883         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
884                 return -EINVAL;
885
886         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
887         for (i = 0; i < sizeof(init->features) * 8; i++) {
888                 bool set = (init->features[i / 32] & (1 << (i % 32)));
889
890                 if (set && i >= KVM_VCPU_MAX_FEATURES)
891                         return -ENOENT;
892
893                 /*
894                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
895                  * use the same feature set.
896                  */
897                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
898                     test_bit(i, vcpu->arch.features) != set)
899                         return -EINVAL;
900
901                 if (set)
902                         set_bit(i, vcpu->arch.features);
903         }
904
905         vcpu->arch.target = phys_target;
906
907         /* Now we know what it is, we can reset it. */
908         return kvm_reset_vcpu(vcpu);
909 }
910
911
912 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
913                                          struct kvm_vcpu_init *init)
914 {
915         int ret;
916
917         ret = kvm_vcpu_set_target(vcpu, init);
918         if (ret)
919                 return ret;
920
921         /*
922          * Ensure a rebooted VM will fault in RAM pages and detect if the
923          * guest MMU is turned off and flush the caches as needed.
924          */
925         if (vcpu->arch.has_run_once)
926                 stage2_unmap_vm(vcpu->kvm);
927
928         vcpu_reset_hcr(vcpu);
929
930         /*
931          * Handle the "start in power-off" case.
932          */
933         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
934                 vcpu_power_off(vcpu);
935         else
936                 vcpu->arch.power_off = false;
937
938         return 0;
939 }
940
941 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
942                                  struct kvm_device_attr *attr)
943 {
944         int ret = -ENXIO;
945
946         switch (attr->group) {
947         default:
948                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
949                 break;
950         }
951
952         return ret;
953 }
954
955 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
956                                  struct kvm_device_attr *attr)
957 {
958         int ret = -ENXIO;
959
960         switch (attr->group) {
961         default:
962                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
963                 break;
964         }
965
966         return ret;
967 }
968
969 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
970                                  struct kvm_device_attr *attr)
971 {
972         int ret = -ENXIO;
973
974         switch (attr->group) {
975         default:
976                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
977                 break;
978         }
979
980         return ret;
981 }
982
983 long kvm_arch_vcpu_ioctl(struct file *filp,
984                          unsigned int ioctl, unsigned long arg)
985 {
986         struct kvm_vcpu *vcpu = filp->private_data;
987         void __user *argp = (void __user *)arg;
988         struct kvm_device_attr attr;
989
990         switch (ioctl) {
991         case KVM_ARM_VCPU_INIT: {
992                 struct kvm_vcpu_init init;
993
994                 if (copy_from_user(&init, argp, sizeof(init)))
995                         return -EFAULT;
996
997                 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
998         }
999         case KVM_SET_ONE_REG:
1000         case KVM_GET_ONE_REG: {
1001                 struct kvm_one_reg reg;
1002
1003                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1004                         return -ENOEXEC;
1005
1006                 if (copy_from_user(&reg, argp, sizeof(reg)))
1007                         return -EFAULT;
1008                 if (ioctl == KVM_SET_ONE_REG)
1009                         return kvm_arm_set_reg(vcpu, &reg);
1010                 else
1011                         return kvm_arm_get_reg(vcpu, &reg);
1012         }
1013         case KVM_GET_REG_LIST: {
1014                 struct kvm_reg_list __user *user_list = argp;
1015                 struct kvm_reg_list reg_list;
1016                 unsigned n;
1017
1018                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1019                         return -ENOEXEC;
1020
1021                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1022                         return -EFAULT;
1023                 n = reg_list.n;
1024                 reg_list.n = kvm_arm_num_regs(vcpu);
1025                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1026                         return -EFAULT;
1027                 if (n < reg_list.n)
1028                         return -E2BIG;
1029                 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1030         }
1031         case KVM_SET_DEVICE_ATTR: {
1032                 if (copy_from_user(&attr, argp, sizeof(attr)))
1033                         return -EFAULT;
1034                 return kvm_arm_vcpu_set_attr(vcpu, &attr);
1035         }
1036         case KVM_GET_DEVICE_ATTR: {
1037                 if (copy_from_user(&attr, argp, sizeof(attr)))
1038                         return -EFAULT;
1039                 return kvm_arm_vcpu_get_attr(vcpu, &attr);
1040         }
1041         case KVM_HAS_DEVICE_ATTR: {
1042                 if (copy_from_user(&attr, argp, sizeof(attr)))
1043                         return -EFAULT;
1044                 return kvm_arm_vcpu_has_attr(vcpu, &attr);
1045         }
1046         default:
1047                 return -EINVAL;
1048         }
1049 }
1050
1051 /**
1052  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1053  * @kvm: kvm instance
1054  * @log: slot id and address to which we copy the log
1055  *
1056  * Steps 1-4 below provide general overview of dirty page logging. See
1057  * kvm_get_dirty_log_protect() function description for additional details.
1058  *
1059  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1060  * always flush the TLB (step 4) even if previous step failed  and the dirty
1061  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1062  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1063  * writes will be marked dirty for next log read.
1064  *
1065  *   1. Take a snapshot of the bit and clear it if needed.
1066  *   2. Write protect the corresponding page.
1067  *   3. Copy the snapshot to the userspace.
1068  *   4. Flush TLB's if needed.
1069  */
1070 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1071 {
1072         bool is_dirty = false;
1073         int r;
1074
1075         mutex_lock(&kvm->slots_lock);
1076
1077         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1078
1079         if (is_dirty)
1080                 kvm_flush_remote_tlbs(kvm);
1081
1082         mutex_unlock(&kvm->slots_lock);
1083         return r;
1084 }
1085
1086 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1087                                         struct kvm_arm_device_addr *dev_addr)
1088 {
1089         unsigned long dev_id, type;
1090
1091         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1092                 KVM_ARM_DEVICE_ID_SHIFT;
1093         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1094                 KVM_ARM_DEVICE_TYPE_SHIFT;
1095
1096         switch (dev_id) {
1097         case KVM_ARM_DEVICE_VGIC_V2:
1098                 if (!vgic_present)
1099                         return -ENXIO;
1100                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1101         default:
1102                 return -ENODEV;
1103         }
1104 }
1105
1106 long kvm_arch_vm_ioctl(struct file *filp,
1107                        unsigned int ioctl, unsigned long arg)
1108 {
1109         struct kvm *kvm = filp->private_data;
1110         void __user *argp = (void __user *)arg;
1111
1112         switch (ioctl) {
1113         case KVM_CREATE_IRQCHIP: {
1114                 int ret;
1115                 if (!vgic_present)
1116                         return -ENXIO;
1117                 mutex_lock(&kvm->lock);
1118                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1119                 mutex_unlock(&kvm->lock);
1120                 return ret;
1121         }
1122         case KVM_ARM_SET_DEVICE_ADDR: {
1123                 struct kvm_arm_device_addr dev_addr;
1124
1125                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1126                         return -EFAULT;
1127                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1128         }
1129         case KVM_ARM_PREFERRED_TARGET: {
1130                 int err;
1131                 struct kvm_vcpu_init init;
1132
1133                 err = kvm_vcpu_preferred_target(&init);
1134                 if (err)
1135                         return err;
1136
1137                 if (copy_to_user(argp, &init, sizeof(init)))
1138                         return -EFAULT;
1139
1140                 return 0;
1141         }
1142         default:
1143                 return -EINVAL;
1144         }
1145 }
1146
1147 static void cpu_init_hyp_mode(void *dummy)
1148 {
1149         phys_addr_t pgd_ptr;
1150         unsigned long hyp_stack_ptr;
1151         unsigned long stack_page;
1152         unsigned long vector_ptr;
1153
1154         /* Switch from the HYP stub to our own HYP init vector */
1155         __hyp_set_vectors(kvm_get_idmap_vector());
1156
1157         pgd_ptr = kvm_mmu_get_httbr();
1158         stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1159         hyp_stack_ptr = stack_page + PAGE_SIZE;
1160         vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
1161
1162         __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1163         __cpu_init_stage2();
1164
1165         kvm_arm_init_debug();
1166 }
1167
1168 static void cpu_hyp_reset(void)
1169 {
1170         if (!is_kernel_in_hyp_mode())
1171                 __hyp_reset_vectors();
1172 }
1173
1174 static void cpu_hyp_reinit(void)
1175 {
1176         cpu_hyp_reset();
1177
1178         if (is_kernel_in_hyp_mode()) {
1179                 /*
1180                  * __cpu_init_stage2() is safe to call even if the PM
1181                  * event was cancelled before the CPU was reset.
1182                  */
1183                 __cpu_init_stage2();
1184                 kvm_timer_init_vhe();
1185         } else {
1186                 cpu_init_hyp_mode(NULL);
1187         }
1188
1189         if (vgic_present)
1190                 kvm_vgic_init_cpu_hardware();
1191 }
1192
1193 static void _kvm_arch_hardware_enable(void *discard)
1194 {
1195         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1196                 cpu_hyp_reinit();
1197                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1198         }
1199 }
1200
1201 int kvm_arch_hardware_enable(void)
1202 {
1203         _kvm_arch_hardware_enable(NULL);
1204         return 0;
1205 }
1206
1207 static void _kvm_arch_hardware_disable(void *discard)
1208 {
1209         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1210                 cpu_hyp_reset();
1211                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1212         }
1213 }
1214
1215 void kvm_arch_hardware_disable(void)
1216 {
1217         _kvm_arch_hardware_disable(NULL);
1218 }
1219
1220 #ifdef CONFIG_CPU_PM
1221 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1222                                     unsigned long cmd,
1223                                     void *v)
1224 {
1225         /*
1226          * kvm_arm_hardware_enabled is left with its old value over
1227          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1228          * re-enable hyp.
1229          */
1230         switch (cmd) {
1231         case CPU_PM_ENTER:
1232                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1233                         /*
1234                          * don't update kvm_arm_hardware_enabled here
1235                          * so that the hardware will be re-enabled
1236                          * when we resume. See below.
1237                          */
1238                         cpu_hyp_reset();
1239
1240                 return NOTIFY_OK;
1241         case CPU_PM_EXIT:
1242                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1243                         /* The hardware was enabled before suspend. */
1244                         cpu_hyp_reinit();
1245
1246                 return NOTIFY_OK;
1247
1248         default:
1249                 return NOTIFY_DONE;
1250         }
1251 }
1252
1253 static struct notifier_block hyp_init_cpu_pm_nb = {
1254         .notifier_call = hyp_init_cpu_pm_notifier,
1255 };
1256
1257 static void __init hyp_cpu_pm_init(void)
1258 {
1259         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1260 }
1261 static void __init hyp_cpu_pm_exit(void)
1262 {
1263         cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1264 }
1265 #else
1266 static inline void hyp_cpu_pm_init(void)
1267 {
1268 }
1269 static inline void hyp_cpu_pm_exit(void)
1270 {
1271 }
1272 #endif
1273
1274 static void teardown_common_resources(void)
1275 {
1276         free_percpu(kvm_host_cpu_state);
1277 }
1278
1279 static int init_common_resources(void)
1280 {
1281         kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1282         if (!kvm_host_cpu_state) {
1283                 kvm_err("Cannot allocate host CPU state\n");
1284                 return -ENOMEM;
1285         }
1286
1287         /* set size of VMID supported by CPU */
1288         kvm_vmid_bits = kvm_get_vmid_bits();
1289         kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1290
1291         return 0;
1292 }
1293
1294 static int init_subsystems(void)
1295 {
1296         int err = 0;
1297
1298         /*
1299          * Enable hardware so that subsystem initialisation can access EL2.
1300          */
1301         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1302
1303         /*
1304          * Register CPU lower-power notifier
1305          */
1306         hyp_cpu_pm_init();
1307
1308         /*
1309          * Init HYP view of VGIC
1310          */
1311         err = kvm_vgic_hyp_init();
1312         switch (err) {
1313         case 0:
1314                 vgic_present = true;
1315                 break;
1316         case -ENODEV:
1317         case -ENXIO:
1318                 vgic_present = false;
1319                 err = 0;
1320                 break;
1321         default:
1322                 goto out;
1323         }
1324
1325         /*
1326          * Init HYP architected timer support
1327          */
1328         err = kvm_timer_hyp_init();
1329         if (err)
1330                 goto out;
1331
1332         kvm_perf_init();
1333         kvm_coproc_table_init();
1334
1335 out:
1336         on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1337
1338         return err;
1339 }
1340
1341 static void teardown_hyp_mode(void)
1342 {
1343         int cpu;
1344
1345         free_hyp_pgds();
1346         for_each_possible_cpu(cpu)
1347                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1348         hyp_cpu_pm_exit();
1349 }
1350
1351 /**
1352  * Inits Hyp-mode on all online CPUs
1353  */
1354 static int init_hyp_mode(void)
1355 {
1356         int cpu;
1357         int err = 0;
1358
1359         /*
1360          * Allocate Hyp PGD and setup Hyp identity mapping
1361          */
1362         err = kvm_mmu_init();
1363         if (err)
1364                 goto out_err;
1365
1366         /*
1367          * Allocate stack pages for Hypervisor-mode
1368          */
1369         for_each_possible_cpu(cpu) {
1370                 unsigned long stack_page;
1371
1372                 stack_page = __get_free_page(GFP_KERNEL);
1373                 if (!stack_page) {
1374                         err = -ENOMEM;
1375                         goto out_err;
1376                 }
1377
1378                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1379         }
1380
1381         /*
1382          * Map the Hyp-code called directly from the host
1383          */
1384         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1385                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1386         if (err) {
1387                 kvm_err("Cannot map world-switch code\n");
1388                 goto out_err;
1389         }
1390
1391         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1392                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1393         if (err) {
1394                 kvm_err("Cannot map rodata section\n");
1395                 goto out_err;
1396         }
1397
1398         err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1399                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1400         if (err) {
1401                 kvm_err("Cannot map bss section\n");
1402                 goto out_err;
1403         }
1404
1405         /*
1406          * Map the Hyp stack pages
1407          */
1408         for_each_possible_cpu(cpu) {
1409                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1410                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1411                                           PAGE_HYP);
1412
1413                 if (err) {
1414                         kvm_err("Cannot map hyp stack\n");
1415                         goto out_err;
1416                 }
1417         }
1418
1419         for_each_possible_cpu(cpu) {
1420                 kvm_cpu_context_t *cpu_ctxt;
1421
1422                 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1423                 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1424
1425                 if (err) {
1426                         kvm_err("Cannot map host CPU state: %d\n", err);
1427                         goto out_err;
1428                 }
1429         }
1430
1431         return 0;
1432
1433 out_err:
1434         teardown_hyp_mode();
1435         kvm_err("error initializing Hyp mode: %d\n", err);
1436         return err;
1437 }
1438
1439 static void check_kvm_target_cpu(void *ret)
1440 {
1441         *(int *)ret = kvm_target_cpu();
1442 }
1443
1444 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1445 {
1446         struct kvm_vcpu *vcpu;
1447         int i;
1448
1449         mpidr &= MPIDR_HWID_BITMASK;
1450         kvm_for_each_vcpu(i, vcpu, kvm) {
1451                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1452                         return vcpu;
1453         }
1454         return NULL;
1455 }
1456
1457 bool kvm_arch_has_irq_bypass(void)
1458 {
1459         return true;
1460 }
1461
1462 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1463                                       struct irq_bypass_producer *prod)
1464 {
1465         struct kvm_kernel_irqfd *irqfd =
1466                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1467
1468         return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1469                                           &irqfd->irq_entry);
1470 }
1471 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1472                                       struct irq_bypass_producer *prod)
1473 {
1474         struct kvm_kernel_irqfd *irqfd =
1475                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1476
1477         kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1478                                      &irqfd->irq_entry);
1479 }
1480
1481 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1482 {
1483         struct kvm_kernel_irqfd *irqfd =
1484                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1485
1486         kvm_arm_halt_guest(irqfd->kvm);
1487 }
1488
1489 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1490 {
1491         struct kvm_kernel_irqfd *irqfd =
1492                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1493
1494         kvm_arm_resume_guest(irqfd->kvm);
1495 }
1496
1497 /**
1498  * Initialize Hyp-mode and memory mappings on all CPUs.
1499  */
1500 int kvm_arch_init(void *opaque)
1501 {
1502         int err;
1503         int ret, cpu;
1504         bool in_hyp_mode;
1505
1506         if (!is_hyp_mode_available()) {
1507                 kvm_err("HYP mode not available\n");
1508                 return -ENODEV;
1509         }
1510
1511         for_each_online_cpu(cpu) {
1512                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1513                 if (ret < 0) {
1514                         kvm_err("Error, CPU %d not supported!\n", cpu);
1515                         return -ENODEV;
1516                 }
1517         }
1518
1519         err = init_common_resources();
1520         if (err)
1521                 return err;
1522
1523         in_hyp_mode = is_kernel_in_hyp_mode();
1524
1525         if (!in_hyp_mode) {
1526                 err = init_hyp_mode();
1527                 if (err)
1528                         goto out_err;
1529         }
1530
1531         err = init_subsystems();
1532         if (err)
1533                 goto out_hyp;
1534
1535         if (in_hyp_mode)
1536                 kvm_info("VHE mode initialized successfully\n");
1537         else
1538                 kvm_info("Hyp mode initialized successfully\n");
1539
1540         return 0;
1541
1542 out_hyp:
1543         if (!in_hyp_mode)
1544                 teardown_hyp_mode();
1545 out_err:
1546         teardown_common_resources();
1547         return err;
1548 }
1549
1550 /* NOP: Compiling as a module not supported */
1551 void kvm_arch_exit(void)
1552 {
1553         kvm_perf_teardown();
1554 }
1555
1556 static int arm_init(void)
1557 {
1558         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1559         return rc;
1560 }
1561
1562 module_init(arm_init);