cd7d90c9f644d18743020672afbbc7ae06dcbbb9
[sfrench/cifs-2.6.git] / virt / kvm / arm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/cpu_pm.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <linux/kvm_irqfd.h>
31 #include <linux/irqbypass.h>
32 #include <trace/events/kvm.h>
33 #include <kvm/arm_pmu.h>
34
35 #define CREATE_TRACE_POINTS
36 #include "trace.h"
37
38 #include <linux/uaccess.h>
39 #include <asm/ptrace.h>
40 #include <asm/mman.h>
41 #include <asm/tlbflush.h>
42 #include <asm/cacheflush.h>
43 #include <asm/virt.h>
44 #include <asm/kvm_arm.h>
45 #include <asm/kvm_asm.h>
46 #include <asm/kvm_mmu.h>
47 #include <asm/kvm_emulate.h>
48 #include <asm/kvm_coproc.h>
49 #include <asm/kvm_psci.h>
50 #include <asm/sections.h>
51
52 #ifdef REQUIRES_VIRT
53 __asm__(".arch_extension        virt");
54 #endif
55
56 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
57 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
58
59 /* Per-CPU variable containing the currently running vcpu. */
60 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
61
62 /* The VMID used in the VTTBR */
63 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
64 static u32 kvm_next_vmid;
65 static unsigned int kvm_vmid_bits __read_mostly;
66 static DEFINE_SPINLOCK(kvm_vmid_lock);
67
68 static bool vgic_present;
69
70 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
71
72 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
73 {
74         BUG_ON(preemptible());
75         __this_cpu_write(kvm_arm_running_vcpu, vcpu);
76 }
77
78 /**
79  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
80  * Must be called from non-preemptible context
81  */
82 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
83 {
84         BUG_ON(preemptible());
85         return __this_cpu_read(kvm_arm_running_vcpu);
86 }
87
88 /**
89  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
90  */
91 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
92 {
93         return &kvm_arm_running_vcpu;
94 }
95
96 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
97 {
98         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
99 }
100
101 int kvm_arch_hardware_setup(void)
102 {
103         return 0;
104 }
105
106 void kvm_arch_check_processor_compat(void *rtn)
107 {
108         *(int *)rtn = 0;
109 }
110
111
112 /**
113  * kvm_arch_init_vm - initializes a VM data structure
114  * @kvm:        pointer to the KVM struct
115  */
116 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
117 {
118         int ret, cpu;
119
120         if (type)
121                 return -EINVAL;
122
123         kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
124         if (!kvm->arch.last_vcpu_ran)
125                 return -ENOMEM;
126
127         for_each_possible_cpu(cpu)
128                 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
129
130         ret = kvm_alloc_stage2_pgd(kvm);
131         if (ret)
132                 goto out_fail_alloc;
133
134         ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
135         if (ret)
136                 goto out_free_stage2_pgd;
137
138         kvm_vgic_early_init(kvm);
139
140         /* Mark the initial VMID generation invalid */
141         kvm->arch.vmid_gen = 0;
142
143         /* The maximum number of VCPUs is limited by the host's GIC model */
144         kvm->arch.max_vcpus = vgic_present ?
145                                 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
146
147         return ret;
148 out_free_stage2_pgd:
149         kvm_free_stage2_pgd(kvm);
150 out_fail_alloc:
151         free_percpu(kvm->arch.last_vcpu_ran);
152         kvm->arch.last_vcpu_ran = NULL;
153         return ret;
154 }
155
156 bool kvm_arch_has_vcpu_debugfs(void)
157 {
158         return false;
159 }
160
161 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
162 {
163         return 0;
164 }
165
166 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
167 {
168         return VM_FAULT_SIGBUS;
169 }
170
171
172 /**
173  * kvm_arch_destroy_vm - destroy the VM data structure
174  * @kvm:        pointer to the KVM struct
175  */
176 void kvm_arch_destroy_vm(struct kvm *kvm)
177 {
178         int i;
179
180         kvm_vgic_destroy(kvm);
181
182         free_percpu(kvm->arch.last_vcpu_ran);
183         kvm->arch.last_vcpu_ran = NULL;
184
185         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
186                 if (kvm->vcpus[i]) {
187                         kvm_arch_vcpu_free(kvm->vcpus[i]);
188                         kvm->vcpus[i] = NULL;
189                 }
190         }
191         atomic_set(&kvm->online_vcpus, 0);
192 }
193
194 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
195 {
196         int r;
197         switch (ext) {
198         case KVM_CAP_IRQCHIP:
199                 r = vgic_present;
200                 break;
201         case KVM_CAP_IOEVENTFD:
202         case KVM_CAP_DEVICE_CTRL:
203         case KVM_CAP_USER_MEMORY:
204         case KVM_CAP_SYNC_MMU:
205         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
206         case KVM_CAP_ONE_REG:
207         case KVM_CAP_ARM_PSCI:
208         case KVM_CAP_ARM_PSCI_0_2:
209         case KVM_CAP_READONLY_MEM:
210         case KVM_CAP_MP_STATE:
211         case KVM_CAP_IMMEDIATE_EXIT:
212                 r = 1;
213                 break;
214         case KVM_CAP_ARM_SET_DEVICE_ADDR:
215                 r = 1;
216                 break;
217         case KVM_CAP_NR_VCPUS:
218                 r = num_online_cpus();
219                 break;
220         case KVM_CAP_MAX_VCPUS:
221                 r = KVM_MAX_VCPUS;
222                 break;
223         case KVM_CAP_NR_MEMSLOTS:
224                 r = KVM_USER_MEM_SLOTS;
225                 break;
226         case KVM_CAP_MSI_DEVID:
227                 if (!kvm)
228                         r = -EINVAL;
229                 else
230                         r = kvm->arch.vgic.msis_require_devid;
231                 break;
232         case KVM_CAP_ARM_USER_IRQ:
233                 /*
234                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
235                  * (bump this number if adding more devices)
236                  */
237                 r = 1;
238                 break;
239         default:
240                 r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
241                 break;
242         }
243         return r;
244 }
245
246 long kvm_arch_dev_ioctl(struct file *filp,
247                         unsigned int ioctl, unsigned long arg)
248 {
249         return -EINVAL;
250 }
251
252
253 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
254 {
255         int err;
256         struct kvm_vcpu *vcpu;
257
258         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
259                 err = -EBUSY;
260                 goto out;
261         }
262
263         if (id >= kvm->arch.max_vcpus) {
264                 err = -EINVAL;
265                 goto out;
266         }
267
268         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
269         if (!vcpu) {
270                 err = -ENOMEM;
271                 goto out;
272         }
273
274         err = kvm_vcpu_init(vcpu, kvm, id);
275         if (err)
276                 goto free_vcpu;
277
278         err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
279         if (err)
280                 goto vcpu_uninit;
281
282         return vcpu;
283 vcpu_uninit:
284         kvm_vcpu_uninit(vcpu);
285 free_vcpu:
286         kmem_cache_free(kvm_vcpu_cache, vcpu);
287 out:
288         return ERR_PTR(err);
289 }
290
291 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
292 {
293         kvm_vgic_vcpu_early_init(vcpu);
294 }
295
296 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
297 {
298         kvm_mmu_free_memory_caches(vcpu);
299         kvm_timer_vcpu_terminate(vcpu);
300         kvm_pmu_vcpu_destroy(vcpu);
301         kvm_vcpu_uninit(vcpu);
302         kmem_cache_free(kvm_vcpu_cache, vcpu);
303 }
304
305 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
306 {
307         kvm_arch_vcpu_free(vcpu);
308 }
309
310 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
311 {
312         return kvm_timer_is_pending(vcpu);
313 }
314
315 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
316 {
317         kvm_timer_schedule(vcpu);
318         kvm_vgic_v4_enable_doorbell(vcpu);
319 }
320
321 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
322 {
323         kvm_timer_unschedule(vcpu);
324         kvm_vgic_v4_disable_doorbell(vcpu);
325 }
326
327 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
328 {
329         /* Force users to call KVM_ARM_VCPU_INIT */
330         vcpu->arch.target = -1;
331         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
332
333         /* Set up the timer */
334         kvm_timer_vcpu_init(vcpu);
335
336         kvm_arm_reset_debug_ptr(vcpu);
337
338         return kvm_vgic_vcpu_init(vcpu);
339 }
340
341 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
342 {
343         int *last_ran;
344
345         last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
346
347         /*
348          * We might get preempted before the vCPU actually runs, but
349          * over-invalidation doesn't affect correctness.
350          */
351         if (*last_ran != vcpu->vcpu_id) {
352                 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
353                 *last_ran = vcpu->vcpu_id;
354         }
355
356         vcpu->cpu = cpu;
357         vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
358
359         kvm_arm_set_running_vcpu(vcpu);
360         kvm_vgic_load(vcpu);
361         kvm_timer_vcpu_load(vcpu);
362 }
363
364 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
365 {
366         kvm_timer_vcpu_put(vcpu);
367         kvm_vgic_put(vcpu);
368
369         vcpu->cpu = -1;
370
371         kvm_arm_set_running_vcpu(NULL);
372 }
373
374 static void vcpu_power_off(struct kvm_vcpu *vcpu)
375 {
376         vcpu->arch.power_off = true;
377         kvm_make_request(KVM_REQ_SLEEP, vcpu);
378         kvm_vcpu_kick(vcpu);
379 }
380
381 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
382                                     struct kvm_mp_state *mp_state)
383 {
384         vcpu_load(vcpu);
385
386         if (vcpu->arch.power_off)
387                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
388         else
389                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
390
391         vcpu_put(vcpu);
392         return 0;
393 }
394
395 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
396                                     struct kvm_mp_state *mp_state)
397 {
398         int ret = 0;
399
400         vcpu_load(vcpu);
401
402         switch (mp_state->mp_state) {
403         case KVM_MP_STATE_RUNNABLE:
404                 vcpu->arch.power_off = false;
405                 break;
406         case KVM_MP_STATE_STOPPED:
407                 vcpu_power_off(vcpu);
408                 break;
409         default:
410                 ret = -EINVAL;
411         }
412
413         vcpu_put(vcpu);
414         return ret;
415 }
416
417 /**
418  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
419  * @v:          The VCPU pointer
420  *
421  * If the guest CPU is not waiting for interrupts or an interrupt line is
422  * asserted, the CPU is by definition runnable.
423  */
424 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
425 {
426         return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
427                 && !v->arch.power_off && !v->arch.pause);
428 }
429
430 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
431 {
432         return vcpu_mode_priv(vcpu);
433 }
434
435 /* Just ensure a guest exit from a particular CPU */
436 static void exit_vm_noop(void *info)
437 {
438 }
439
440 void force_vm_exit(const cpumask_t *mask)
441 {
442         preempt_disable();
443         smp_call_function_many(mask, exit_vm_noop, NULL, true);
444         preempt_enable();
445 }
446
447 /**
448  * need_new_vmid_gen - check that the VMID is still valid
449  * @kvm: The VM's VMID to check
450  *
451  * return true if there is a new generation of VMIDs being used
452  *
453  * The hardware supports only 256 values with the value zero reserved for the
454  * host, so we check if an assigned value belongs to a previous generation,
455  * which which requires us to assign a new value. If we're the first to use a
456  * VMID for the new generation, we must flush necessary caches and TLBs on all
457  * CPUs.
458  */
459 static bool need_new_vmid_gen(struct kvm *kvm)
460 {
461         return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
462 }
463
464 /**
465  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
466  * @kvm The guest that we are about to run
467  *
468  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
469  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
470  * caches and TLBs.
471  */
472 static void update_vttbr(struct kvm *kvm)
473 {
474         phys_addr_t pgd_phys;
475         u64 vmid;
476
477         if (!need_new_vmid_gen(kvm))
478                 return;
479
480         spin_lock(&kvm_vmid_lock);
481
482         /*
483          * We need to re-check the vmid_gen here to ensure that if another vcpu
484          * already allocated a valid vmid for this vm, then this vcpu should
485          * use the same vmid.
486          */
487         if (!need_new_vmid_gen(kvm)) {
488                 spin_unlock(&kvm_vmid_lock);
489                 return;
490         }
491
492         /* First user of a new VMID generation? */
493         if (unlikely(kvm_next_vmid == 0)) {
494                 atomic64_inc(&kvm_vmid_gen);
495                 kvm_next_vmid = 1;
496
497                 /*
498                  * On SMP we know no other CPUs can use this CPU's or each
499                  * other's VMID after force_vm_exit returns since the
500                  * kvm_vmid_lock blocks them from reentry to the guest.
501                  */
502                 force_vm_exit(cpu_all_mask);
503                 /*
504                  * Now broadcast TLB + ICACHE invalidation over the inner
505                  * shareable domain to make sure all data structures are
506                  * clean.
507                  */
508                 kvm_call_hyp(__kvm_flush_vm_context);
509         }
510
511         kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
512         kvm->arch.vmid = kvm_next_vmid;
513         kvm_next_vmid++;
514         kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
515
516         /* update vttbr to be used with the new vmid */
517         pgd_phys = virt_to_phys(kvm->arch.pgd);
518         BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
519         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
520         kvm->arch.vttbr = pgd_phys | vmid;
521
522         spin_unlock(&kvm_vmid_lock);
523 }
524
525 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
526 {
527         struct kvm *kvm = vcpu->kvm;
528         int ret = 0;
529
530         if (likely(vcpu->arch.has_run_once))
531                 return 0;
532
533         vcpu->arch.has_run_once = true;
534
535         /*
536          * Map the VGIC hardware resources before running a vcpu the first
537          * time on this VM.
538          */
539         if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
540                 ret = kvm_vgic_map_resources(kvm);
541                 if (ret)
542                         return ret;
543         }
544
545         ret = kvm_timer_enable(vcpu);
546         if (ret)
547                 return ret;
548
549         ret = kvm_arm_pmu_v3_enable(vcpu);
550
551         return ret;
552 }
553
554 bool kvm_arch_intc_initialized(struct kvm *kvm)
555 {
556         return vgic_initialized(kvm);
557 }
558
559 void kvm_arm_halt_guest(struct kvm *kvm)
560 {
561         int i;
562         struct kvm_vcpu *vcpu;
563
564         kvm_for_each_vcpu(i, vcpu, kvm)
565                 vcpu->arch.pause = true;
566         kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
567 }
568
569 void kvm_arm_resume_guest(struct kvm *kvm)
570 {
571         int i;
572         struct kvm_vcpu *vcpu;
573
574         kvm_for_each_vcpu(i, vcpu, kvm) {
575                 vcpu->arch.pause = false;
576                 swake_up(kvm_arch_vcpu_wq(vcpu));
577         }
578 }
579
580 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
581 {
582         struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
583
584         swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
585                                        (!vcpu->arch.pause)));
586
587         if (vcpu->arch.power_off || vcpu->arch.pause) {
588                 /* Awaken to handle a signal, request we sleep again later. */
589                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
590         }
591 }
592
593 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
594 {
595         return vcpu->arch.target >= 0;
596 }
597
598 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
599 {
600         if (kvm_request_pending(vcpu)) {
601                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
602                         vcpu_req_sleep(vcpu);
603
604                 /*
605                  * Clear IRQ_PENDING requests that were made to guarantee
606                  * that a VCPU sees new virtual interrupts.
607                  */
608                 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
609         }
610 }
611
612 /**
613  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
614  * @vcpu:       The VCPU pointer
615  * @run:        The kvm_run structure pointer used for userspace state exchange
616  *
617  * This function is called through the VCPU_RUN ioctl called from user space. It
618  * will execute VM code in a loop until the time slice for the process is used
619  * or some emulation is needed from user space in which case the function will
620  * return with return value 0 and with the kvm_run structure filled in with the
621  * required data for the requested emulation.
622  */
623 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
624 {
625         int ret;
626
627         if (unlikely(!kvm_vcpu_initialized(vcpu)))
628                 return -ENOEXEC;
629
630         vcpu_load(vcpu);
631
632         ret = kvm_vcpu_first_run_init(vcpu);
633         if (ret)
634                 goto out;
635
636         if (run->exit_reason == KVM_EXIT_MMIO) {
637                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
638                 if (ret)
639                         goto out;
640                 if (kvm_arm_handle_step_debug(vcpu, vcpu->run)) {
641                         ret = 0;
642                         goto out;
643                 }
644
645         }
646
647         if (run->immediate_exit) {
648                 ret = -EINTR;
649                 goto out;
650         }
651
652         kvm_sigset_activate(vcpu);
653
654         ret = 1;
655         run->exit_reason = KVM_EXIT_UNKNOWN;
656         while (ret > 0) {
657                 /*
658                  * Check conditions before entering the guest
659                  */
660                 cond_resched();
661
662                 update_vttbr(vcpu->kvm);
663
664                 check_vcpu_requests(vcpu);
665
666                 /*
667                  * Preparing the interrupts to be injected also
668                  * involves poking the GIC, which must be done in a
669                  * non-preemptible context.
670                  */
671                 preempt_disable();
672
673                 /* Flush FP/SIMD state that can't survive guest entry/exit */
674                 kvm_fpsimd_flush_cpu_state();
675
676                 kvm_pmu_flush_hwstate(vcpu);
677
678                 local_irq_disable();
679
680                 kvm_vgic_flush_hwstate(vcpu);
681
682                 /*
683                  * If we have a singal pending, or need to notify a userspace
684                  * irqchip about timer or PMU level changes, then we exit (and
685                  * update the timer level state in kvm_timer_update_run
686                  * below).
687                  */
688                 if (signal_pending(current) ||
689                     kvm_timer_should_notify_user(vcpu) ||
690                     kvm_pmu_should_notify_user(vcpu)) {
691                         ret = -EINTR;
692                         run->exit_reason = KVM_EXIT_INTR;
693                 }
694
695                 /*
696                  * Ensure we set mode to IN_GUEST_MODE after we disable
697                  * interrupts and before the final VCPU requests check.
698                  * See the comment in kvm_vcpu_exiting_guest_mode() and
699                  * Documentation/virtual/kvm/vcpu-requests.rst
700                  */
701                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
702
703                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
704                     kvm_request_pending(vcpu)) {
705                         vcpu->mode = OUTSIDE_GUEST_MODE;
706                         kvm_pmu_sync_hwstate(vcpu);
707                         kvm_timer_sync_hwstate(vcpu);
708                         kvm_vgic_sync_hwstate(vcpu);
709                         local_irq_enable();
710                         preempt_enable();
711                         continue;
712                 }
713
714                 kvm_arm_setup_debug(vcpu);
715
716                 /**************************************************************
717                  * Enter the guest
718                  */
719                 trace_kvm_entry(*vcpu_pc(vcpu));
720                 guest_enter_irqoff();
721
722                 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
723
724                 vcpu->mode = OUTSIDE_GUEST_MODE;
725                 vcpu->stat.exits++;
726                 /*
727                  * Back from guest
728                  *************************************************************/
729
730                 kvm_arm_clear_debug(vcpu);
731
732                 /*
733                  * We must sync the PMU state before the vgic state so
734                  * that the vgic can properly sample the updated state of the
735                  * interrupt line.
736                  */
737                 kvm_pmu_sync_hwstate(vcpu);
738
739                 /*
740                  * Sync the vgic state before syncing the timer state because
741                  * the timer code needs to know if the virtual timer
742                  * interrupts are active.
743                  */
744                 kvm_vgic_sync_hwstate(vcpu);
745
746                 /*
747                  * Sync the timer hardware state before enabling interrupts as
748                  * we don't want vtimer interrupts to race with syncing the
749                  * timer virtual interrupt state.
750                  */
751                 kvm_timer_sync_hwstate(vcpu);
752
753                 /*
754                  * We may have taken a host interrupt in HYP mode (ie
755                  * while executing the guest). This interrupt is still
756                  * pending, as we haven't serviced it yet!
757                  *
758                  * We're now back in SVC mode, with interrupts
759                  * disabled.  Enabling the interrupts now will have
760                  * the effect of taking the interrupt again, in SVC
761                  * mode this time.
762                  */
763                 local_irq_enable();
764
765                 /*
766                  * We do local_irq_enable() before calling guest_exit() so
767                  * that if a timer interrupt hits while running the guest we
768                  * account that tick as being spent in the guest.  We enable
769                  * preemption after calling guest_exit() so that if we get
770                  * preempted we make sure ticks after that is not counted as
771                  * guest time.
772                  */
773                 guest_exit();
774                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
775
776                 preempt_enable();
777
778                 ret = handle_exit(vcpu, run, ret);
779         }
780
781         /* Tell userspace about in-kernel device output levels */
782         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
783                 kvm_timer_update_run(vcpu);
784                 kvm_pmu_update_run(vcpu);
785         }
786
787         kvm_sigset_deactivate(vcpu);
788
789 out:
790         vcpu_put(vcpu);
791         return ret;
792 }
793
794 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
795 {
796         int bit_index;
797         bool set;
798         unsigned long *ptr;
799
800         if (number == KVM_ARM_IRQ_CPU_IRQ)
801                 bit_index = __ffs(HCR_VI);
802         else /* KVM_ARM_IRQ_CPU_FIQ */
803                 bit_index = __ffs(HCR_VF);
804
805         ptr = (unsigned long *)&vcpu->arch.irq_lines;
806         if (level)
807                 set = test_and_set_bit(bit_index, ptr);
808         else
809                 set = test_and_clear_bit(bit_index, ptr);
810
811         /*
812          * If we didn't change anything, no need to wake up or kick other CPUs
813          */
814         if (set == level)
815                 return 0;
816
817         /*
818          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
819          * trigger a world-switch round on the running physical CPU to set the
820          * virtual IRQ/FIQ fields in the HCR appropriately.
821          */
822         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
823         kvm_vcpu_kick(vcpu);
824
825         return 0;
826 }
827
828 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
829                           bool line_status)
830 {
831         u32 irq = irq_level->irq;
832         unsigned int irq_type, vcpu_idx, irq_num;
833         int nrcpus = atomic_read(&kvm->online_vcpus);
834         struct kvm_vcpu *vcpu = NULL;
835         bool level = irq_level->level;
836
837         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
838         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
839         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
840
841         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
842
843         switch (irq_type) {
844         case KVM_ARM_IRQ_TYPE_CPU:
845                 if (irqchip_in_kernel(kvm))
846                         return -ENXIO;
847
848                 if (vcpu_idx >= nrcpus)
849                         return -EINVAL;
850
851                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
852                 if (!vcpu)
853                         return -EINVAL;
854
855                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
856                         return -EINVAL;
857
858                 return vcpu_interrupt_line(vcpu, irq_num, level);
859         case KVM_ARM_IRQ_TYPE_PPI:
860                 if (!irqchip_in_kernel(kvm))
861                         return -ENXIO;
862
863                 if (vcpu_idx >= nrcpus)
864                         return -EINVAL;
865
866                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
867                 if (!vcpu)
868                         return -EINVAL;
869
870                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
871                         return -EINVAL;
872
873                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
874         case KVM_ARM_IRQ_TYPE_SPI:
875                 if (!irqchip_in_kernel(kvm))
876                         return -ENXIO;
877
878                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
879                         return -EINVAL;
880
881                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
882         }
883
884         return -EINVAL;
885 }
886
887 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
888                                const struct kvm_vcpu_init *init)
889 {
890         unsigned int i;
891         int phys_target = kvm_target_cpu();
892
893         if (init->target != phys_target)
894                 return -EINVAL;
895
896         /*
897          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
898          * use the same target.
899          */
900         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
901                 return -EINVAL;
902
903         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
904         for (i = 0; i < sizeof(init->features) * 8; i++) {
905                 bool set = (init->features[i / 32] & (1 << (i % 32)));
906
907                 if (set && i >= KVM_VCPU_MAX_FEATURES)
908                         return -ENOENT;
909
910                 /*
911                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
912                  * use the same feature set.
913                  */
914                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
915                     test_bit(i, vcpu->arch.features) != set)
916                         return -EINVAL;
917
918                 if (set)
919                         set_bit(i, vcpu->arch.features);
920         }
921
922         vcpu->arch.target = phys_target;
923
924         /* Now we know what it is, we can reset it. */
925         return kvm_reset_vcpu(vcpu);
926 }
927
928
929 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
930                                          struct kvm_vcpu_init *init)
931 {
932         int ret;
933
934         ret = kvm_vcpu_set_target(vcpu, init);
935         if (ret)
936                 return ret;
937
938         /*
939          * Ensure a rebooted VM will fault in RAM pages and detect if the
940          * guest MMU is turned off and flush the caches as needed.
941          */
942         if (vcpu->arch.has_run_once)
943                 stage2_unmap_vm(vcpu->kvm);
944
945         vcpu_reset_hcr(vcpu);
946
947         /*
948          * Handle the "start in power-off" case.
949          */
950         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
951                 vcpu_power_off(vcpu);
952         else
953                 vcpu->arch.power_off = false;
954
955         return 0;
956 }
957
958 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
959                                  struct kvm_device_attr *attr)
960 {
961         int ret = -ENXIO;
962
963         switch (attr->group) {
964         default:
965                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
966                 break;
967         }
968
969         return ret;
970 }
971
972 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
973                                  struct kvm_device_attr *attr)
974 {
975         int ret = -ENXIO;
976
977         switch (attr->group) {
978         default:
979                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
980                 break;
981         }
982
983         return ret;
984 }
985
986 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
987                                  struct kvm_device_attr *attr)
988 {
989         int ret = -ENXIO;
990
991         switch (attr->group) {
992         default:
993                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
994                 break;
995         }
996
997         return ret;
998 }
999
1000 long kvm_arch_vcpu_ioctl(struct file *filp,
1001                          unsigned int ioctl, unsigned long arg)
1002 {
1003         struct kvm_vcpu *vcpu = filp->private_data;
1004         void __user *argp = (void __user *)arg;
1005         struct kvm_device_attr attr;
1006         long r;
1007
1008         vcpu_load(vcpu);
1009
1010         switch (ioctl) {
1011         case KVM_ARM_VCPU_INIT: {
1012                 struct kvm_vcpu_init init;
1013
1014                 r = -EFAULT;
1015                 if (copy_from_user(&init, argp, sizeof(init)))
1016                         break;
1017
1018                 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1019                 break;
1020         }
1021         case KVM_SET_ONE_REG:
1022         case KVM_GET_ONE_REG: {
1023                 struct kvm_one_reg reg;
1024
1025                 r = -ENOEXEC;
1026                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1027                         break;
1028
1029                 r = -EFAULT;
1030                 if (copy_from_user(&reg, argp, sizeof(reg)))
1031                         break;
1032
1033                 if (ioctl == KVM_SET_ONE_REG)
1034                         r = kvm_arm_set_reg(vcpu, &reg);
1035                 else
1036                         r = kvm_arm_get_reg(vcpu, &reg);
1037                 break;
1038         }
1039         case KVM_GET_REG_LIST: {
1040                 struct kvm_reg_list __user *user_list = argp;
1041                 struct kvm_reg_list reg_list;
1042                 unsigned n;
1043
1044                 r = -ENOEXEC;
1045                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1046                         break;
1047
1048                 r = -EFAULT;
1049                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1050                         break;
1051                 n = reg_list.n;
1052                 reg_list.n = kvm_arm_num_regs(vcpu);
1053                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1054                         break;
1055                 r = -E2BIG;
1056                 if (n < reg_list.n)
1057                         break;
1058                 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1059                 break;
1060         }
1061         case KVM_SET_DEVICE_ATTR: {
1062                 r = -EFAULT;
1063                 if (copy_from_user(&attr, argp, sizeof(attr)))
1064                         break;
1065                 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1066                 break;
1067         }
1068         case KVM_GET_DEVICE_ATTR: {
1069                 r = -EFAULT;
1070                 if (copy_from_user(&attr, argp, sizeof(attr)))
1071                         break;
1072                 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1073                 break;
1074         }
1075         case KVM_HAS_DEVICE_ATTR: {
1076                 r = -EFAULT;
1077                 if (copy_from_user(&attr, argp, sizeof(attr)))
1078                         break;
1079                 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1080                 break;
1081         }
1082         default:
1083                 r = -EINVAL;
1084         }
1085
1086         vcpu_put(vcpu);
1087         return r;
1088 }
1089
1090 /**
1091  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1092  * @kvm: kvm instance
1093  * @log: slot id and address to which we copy the log
1094  *
1095  * Steps 1-4 below provide general overview of dirty page logging. See
1096  * kvm_get_dirty_log_protect() function description for additional details.
1097  *
1098  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1099  * always flush the TLB (step 4) even if previous step failed  and the dirty
1100  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1101  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1102  * writes will be marked dirty for next log read.
1103  *
1104  *   1. Take a snapshot of the bit and clear it if needed.
1105  *   2. Write protect the corresponding page.
1106  *   3. Copy the snapshot to the userspace.
1107  *   4. Flush TLB's if needed.
1108  */
1109 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1110 {
1111         bool is_dirty = false;
1112         int r;
1113
1114         mutex_lock(&kvm->slots_lock);
1115
1116         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1117
1118         if (is_dirty)
1119                 kvm_flush_remote_tlbs(kvm);
1120
1121         mutex_unlock(&kvm->slots_lock);
1122         return r;
1123 }
1124
1125 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1126                                         struct kvm_arm_device_addr *dev_addr)
1127 {
1128         unsigned long dev_id, type;
1129
1130         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1131                 KVM_ARM_DEVICE_ID_SHIFT;
1132         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1133                 KVM_ARM_DEVICE_TYPE_SHIFT;
1134
1135         switch (dev_id) {
1136         case KVM_ARM_DEVICE_VGIC_V2:
1137                 if (!vgic_present)
1138                         return -ENXIO;
1139                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1140         default:
1141                 return -ENODEV;
1142         }
1143 }
1144
1145 long kvm_arch_vm_ioctl(struct file *filp,
1146                        unsigned int ioctl, unsigned long arg)
1147 {
1148         struct kvm *kvm = filp->private_data;
1149         void __user *argp = (void __user *)arg;
1150
1151         switch (ioctl) {
1152         case KVM_CREATE_IRQCHIP: {
1153                 int ret;
1154                 if (!vgic_present)
1155                         return -ENXIO;
1156                 mutex_lock(&kvm->lock);
1157                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1158                 mutex_unlock(&kvm->lock);
1159                 return ret;
1160         }
1161         case KVM_ARM_SET_DEVICE_ADDR: {
1162                 struct kvm_arm_device_addr dev_addr;
1163
1164                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1165                         return -EFAULT;
1166                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1167         }
1168         case KVM_ARM_PREFERRED_TARGET: {
1169                 int err;
1170                 struct kvm_vcpu_init init;
1171
1172                 err = kvm_vcpu_preferred_target(&init);
1173                 if (err)
1174                         return err;
1175
1176                 if (copy_to_user(argp, &init, sizeof(init)))
1177                         return -EFAULT;
1178
1179                 return 0;
1180         }
1181         default:
1182                 return -EINVAL;
1183         }
1184 }
1185
1186 static void cpu_init_hyp_mode(void *dummy)
1187 {
1188         phys_addr_t pgd_ptr;
1189         unsigned long hyp_stack_ptr;
1190         unsigned long stack_page;
1191         unsigned long vector_ptr;
1192
1193         /* Switch from the HYP stub to our own HYP init vector */
1194         __hyp_set_vectors(kvm_get_idmap_vector());
1195
1196         pgd_ptr = kvm_mmu_get_httbr();
1197         stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1198         hyp_stack_ptr = stack_page + PAGE_SIZE;
1199         vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
1200
1201         __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1202         __cpu_init_stage2();
1203
1204         kvm_arm_init_debug();
1205 }
1206
1207 static void cpu_hyp_reset(void)
1208 {
1209         if (!is_kernel_in_hyp_mode())
1210                 __hyp_reset_vectors();
1211 }
1212
1213 static void cpu_hyp_reinit(void)
1214 {
1215         cpu_hyp_reset();
1216
1217         if (is_kernel_in_hyp_mode()) {
1218                 /*
1219                  * __cpu_init_stage2() is safe to call even if the PM
1220                  * event was cancelled before the CPU was reset.
1221                  */
1222                 __cpu_init_stage2();
1223                 kvm_timer_init_vhe();
1224         } else {
1225                 cpu_init_hyp_mode(NULL);
1226         }
1227
1228         if (vgic_present)
1229                 kvm_vgic_init_cpu_hardware();
1230 }
1231
1232 static void _kvm_arch_hardware_enable(void *discard)
1233 {
1234         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1235                 cpu_hyp_reinit();
1236                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1237         }
1238 }
1239
1240 int kvm_arch_hardware_enable(void)
1241 {
1242         _kvm_arch_hardware_enable(NULL);
1243         return 0;
1244 }
1245
1246 static void _kvm_arch_hardware_disable(void *discard)
1247 {
1248         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1249                 cpu_hyp_reset();
1250                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1251         }
1252 }
1253
1254 void kvm_arch_hardware_disable(void)
1255 {
1256         _kvm_arch_hardware_disable(NULL);
1257 }
1258
1259 #ifdef CONFIG_CPU_PM
1260 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1261                                     unsigned long cmd,
1262                                     void *v)
1263 {
1264         /*
1265          * kvm_arm_hardware_enabled is left with its old value over
1266          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1267          * re-enable hyp.
1268          */
1269         switch (cmd) {
1270         case CPU_PM_ENTER:
1271                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1272                         /*
1273                          * don't update kvm_arm_hardware_enabled here
1274                          * so that the hardware will be re-enabled
1275                          * when we resume. See below.
1276                          */
1277                         cpu_hyp_reset();
1278
1279                 return NOTIFY_OK;
1280         case CPU_PM_EXIT:
1281                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1282                         /* The hardware was enabled before suspend. */
1283                         cpu_hyp_reinit();
1284
1285                 return NOTIFY_OK;
1286
1287         default:
1288                 return NOTIFY_DONE;
1289         }
1290 }
1291
1292 static struct notifier_block hyp_init_cpu_pm_nb = {
1293         .notifier_call = hyp_init_cpu_pm_notifier,
1294 };
1295
1296 static void __init hyp_cpu_pm_init(void)
1297 {
1298         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1299 }
1300 static void __init hyp_cpu_pm_exit(void)
1301 {
1302         cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1303 }
1304 #else
1305 static inline void hyp_cpu_pm_init(void)
1306 {
1307 }
1308 static inline void hyp_cpu_pm_exit(void)
1309 {
1310 }
1311 #endif
1312
1313 static void teardown_common_resources(void)
1314 {
1315         free_percpu(kvm_host_cpu_state);
1316 }
1317
1318 static int init_common_resources(void)
1319 {
1320         kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1321         if (!kvm_host_cpu_state) {
1322                 kvm_err("Cannot allocate host CPU state\n");
1323                 return -ENOMEM;
1324         }
1325
1326         /* set size of VMID supported by CPU */
1327         kvm_vmid_bits = kvm_get_vmid_bits();
1328         kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1329
1330         return 0;
1331 }
1332
1333 static int init_subsystems(void)
1334 {
1335         int err = 0;
1336
1337         /*
1338          * Enable hardware so that subsystem initialisation can access EL2.
1339          */
1340         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1341
1342         /*
1343          * Register CPU lower-power notifier
1344          */
1345         hyp_cpu_pm_init();
1346
1347         /*
1348          * Init HYP view of VGIC
1349          */
1350         err = kvm_vgic_hyp_init();
1351         switch (err) {
1352         case 0:
1353                 vgic_present = true;
1354                 break;
1355         case -ENODEV:
1356         case -ENXIO:
1357                 vgic_present = false;
1358                 err = 0;
1359                 break;
1360         default:
1361                 goto out;
1362         }
1363
1364         /*
1365          * Init HYP architected timer support
1366          */
1367         err = kvm_timer_hyp_init();
1368         if (err)
1369                 goto out;
1370
1371         kvm_perf_init();
1372         kvm_coproc_table_init();
1373
1374 out:
1375         on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1376
1377         return err;
1378 }
1379
1380 static void teardown_hyp_mode(void)
1381 {
1382         int cpu;
1383
1384         free_hyp_pgds();
1385         for_each_possible_cpu(cpu)
1386                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1387         hyp_cpu_pm_exit();
1388 }
1389
1390 /**
1391  * Inits Hyp-mode on all online CPUs
1392  */
1393 static int init_hyp_mode(void)
1394 {
1395         int cpu;
1396         int err = 0;
1397
1398         /*
1399          * Allocate Hyp PGD and setup Hyp identity mapping
1400          */
1401         err = kvm_mmu_init();
1402         if (err)
1403                 goto out_err;
1404
1405         /*
1406          * Allocate stack pages for Hypervisor-mode
1407          */
1408         for_each_possible_cpu(cpu) {
1409                 unsigned long stack_page;
1410
1411                 stack_page = __get_free_page(GFP_KERNEL);
1412                 if (!stack_page) {
1413                         err = -ENOMEM;
1414                         goto out_err;
1415                 }
1416
1417                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1418         }
1419
1420         /*
1421          * Map the Hyp-code called directly from the host
1422          */
1423         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1424                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1425         if (err) {
1426                 kvm_err("Cannot map world-switch code\n");
1427                 goto out_err;
1428         }
1429
1430         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1431                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1432         if (err) {
1433                 kvm_err("Cannot map rodata section\n");
1434                 goto out_err;
1435         }
1436
1437         err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1438                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1439         if (err) {
1440                 kvm_err("Cannot map bss section\n");
1441                 goto out_err;
1442         }
1443
1444         /*
1445          * Map the Hyp stack pages
1446          */
1447         for_each_possible_cpu(cpu) {
1448                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1449                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1450                                           PAGE_HYP);
1451
1452                 if (err) {
1453                         kvm_err("Cannot map hyp stack\n");
1454                         goto out_err;
1455                 }
1456         }
1457
1458         for_each_possible_cpu(cpu) {
1459                 kvm_cpu_context_t *cpu_ctxt;
1460
1461                 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1462                 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1463
1464                 if (err) {
1465                         kvm_err("Cannot map host CPU state: %d\n", err);
1466                         goto out_err;
1467                 }
1468         }
1469
1470         return 0;
1471
1472 out_err:
1473         teardown_hyp_mode();
1474         kvm_err("error initializing Hyp mode: %d\n", err);
1475         return err;
1476 }
1477
1478 static void check_kvm_target_cpu(void *ret)
1479 {
1480         *(int *)ret = kvm_target_cpu();
1481 }
1482
1483 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1484 {
1485         struct kvm_vcpu *vcpu;
1486         int i;
1487
1488         mpidr &= MPIDR_HWID_BITMASK;
1489         kvm_for_each_vcpu(i, vcpu, kvm) {
1490                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1491                         return vcpu;
1492         }
1493         return NULL;
1494 }
1495
1496 bool kvm_arch_has_irq_bypass(void)
1497 {
1498         return true;
1499 }
1500
1501 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1502                                       struct irq_bypass_producer *prod)
1503 {
1504         struct kvm_kernel_irqfd *irqfd =
1505                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1506
1507         return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1508                                           &irqfd->irq_entry);
1509 }
1510 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1511                                       struct irq_bypass_producer *prod)
1512 {
1513         struct kvm_kernel_irqfd *irqfd =
1514                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1515
1516         kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1517                                      &irqfd->irq_entry);
1518 }
1519
1520 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1521 {
1522         struct kvm_kernel_irqfd *irqfd =
1523                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1524
1525         kvm_arm_halt_guest(irqfd->kvm);
1526 }
1527
1528 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1529 {
1530         struct kvm_kernel_irqfd *irqfd =
1531                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1532
1533         kvm_arm_resume_guest(irqfd->kvm);
1534 }
1535
1536 /**
1537  * Initialize Hyp-mode and memory mappings on all CPUs.
1538  */
1539 int kvm_arch_init(void *opaque)
1540 {
1541         int err;
1542         int ret, cpu;
1543         bool in_hyp_mode;
1544
1545         if (!is_hyp_mode_available()) {
1546                 kvm_info("HYP mode not available\n");
1547                 return -ENODEV;
1548         }
1549
1550         for_each_online_cpu(cpu) {
1551                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1552                 if (ret < 0) {
1553                         kvm_err("Error, CPU %d not supported!\n", cpu);
1554                         return -ENODEV;
1555                 }
1556         }
1557
1558         err = init_common_resources();
1559         if (err)
1560                 return err;
1561
1562         in_hyp_mode = is_kernel_in_hyp_mode();
1563
1564         if (!in_hyp_mode) {
1565                 err = init_hyp_mode();
1566                 if (err)
1567                         goto out_err;
1568         }
1569
1570         err = init_subsystems();
1571         if (err)
1572                 goto out_hyp;
1573
1574         if (in_hyp_mode)
1575                 kvm_info("VHE mode initialized successfully\n");
1576         else
1577                 kvm_info("Hyp mode initialized successfully\n");
1578
1579         return 0;
1580
1581 out_hyp:
1582         if (!in_hyp_mode)
1583                 teardown_hyp_mode();
1584 out_err:
1585         teardown_common_resources();
1586         return err;
1587 }
1588
1589 /* NOP: Compiling as a module not supported */
1590 void kvm_arch_exit(void)
1591 {
1592         kvm_perf_teardown();
1593 }
1594
1595 static int arm_init(void)
1596 {
1597         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1598         return rc;
1599 }
1600
1601 module_init(arm_init);