92b95ae9a2ca04b5a474201e0908d265973b1959
[sfrench/cifs-2.6.git] / virt / kvm / arm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/cpu_pm.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <linux/kvm_irqfd.h>
31 #include <linux/irqbypass.h>
32 #include <trace/events/kvm.h>
33 #include <kvm/arm_pmu.h>
34
35 #define CREATE_TRACE_POINTS
36 #include "trace.h"
37
38 #include <linux/uaccess.h>
39 #include <asm/ptrace.h>
40 #include <asm/mman.h>
41 #include <asm/tlbflush.h>
42 #include <asm/cacheflush.h>
43 #include <asm/virt.h>
44 #include <asm/kvm_arm.h>
45 #include <asm/kvm_asm.h>
46 #include <asm/kvm_mmu.h>
47 #include <asm/kvm_emulate.h>
48 #include <asm/kvm_coproc.h>
49 #include <asm/kvm_psci.h>
50 #include <asm/sections.h>
51
52 #ifdef REQUIRES_VIRT
53 __asm__(".arch_extension        virt");
54 #endif
55
56 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
57 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
58
59 /* Per-CPU variable containing the currently running vcpu. */
60 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
61
62 /* The VMID used in the VTTBR */
63 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
64 static u32 kvm_next_vmid;
65 static unsigned int kvm_vmid_bits __read_mostly;
66 static DEFINE_SPINLOCK(kvm_vmid_lock);
67
68 static bool vgic_present;
69
70 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
71
72 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
73 {
74         __this_cpu_write(kvm_arm_running_vcpu, vcpu);
75 }
76
77 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
78
79 /**
80  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
81  * Must be called from non-preemptible context
82  */
83 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
84 {
85         return __this_cpu_read(kvm_arm_running_vcpu);
86 }
87
88 /**
89  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
90  */
91 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
92 {
93         return &kvm_arm_running_vcpu;
94 }
95
96 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
97 {
98         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
99 }
100
101 int kvm_arch_hardware_setup(void)
102 {
103         return 0;
104 }
105
106 void kvm_arch_check_processor_compat(void *rtn)
107 {
108         *(int *)rtn = 0;
109 }
110
111
112 /**
113  * kvm_arch_init_vm - initializes a VM data structure
114  * @kvm:        pointer to the KVM struct
115  */
116 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
117 {
118         int ret, cpu;
119
120         if (type)
121                 return -EINVAL;
122
123         kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
124         if (!kvm->arch.last_vcpu_ran)
125                 return -ENOMEM;
126
127         for_each_possible_cpu(cpu)
128                 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
129
130         ret = kvm_alloc_stage2_pgd(kvm);
131         if (ret)
132                 goto out_fail_alloc;
133
134         ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
135         if (ret)
136                 goto out_free_stage2_pgd;
137
138         kvm_vgic_early_init(kvm);
139
140         /* Mark the initial VMID generation invalid */
141         kvm->arch.vmid_gen = 0;
142
143         /* The maximum number of VCPUs is limited by the host's GIC model */
144         kvm->arch.max_vcpus = vgic_present ?
145                                 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
146
147         return ret;
148 out_free_stage2_pgd:
149         kvm_free_stage2_pgd(kvm);
150 out_fail_alloc:
151         free_percpu(kvm->arch.last_vcpu_ran);
152         kvm->arch.last_vcpu_ran = NULL;
153         return ret;
154 }
155
156 bool kvm_arch_has_vcpu_debugfs(void)
157 {
158         return false;
159 }
160
161 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
162 {
163         return 0;
164 }
165
166 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
167 {
168         return VM_FAULT_SIGBUS;
169 }
170
171
172 /**
173  * kvm_arch_destroy_vm - destroy the VM data structure
174  * @kvm:        pointer to the KVM struct
175  */
176 void kvm_arch_destroy_vm(struct kvm *kvm)
177 {
178         int i;
179
180         kvm_vgic_destroy(kvm);
181
182         free_percpu(kvm->arch.last_vcpu_ran);
183         kvm->arch.last_vcpu_ran = NULL;
184
185         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
186                 if (kvm->vcpus[i]) {
187                         kvm_arch_vcpu_free(kvm->vcpus[i]);
188                         kvm->vcpus[i] = NULL;
189                 }
190         }
191         atomic_set(&kvm->online_vcpus, 0);
192 }
193
194 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
195 {
196         int r;
197         switch (ext) {
198         case KVM_CAP_IRQCHIP:
199                 r = vgic_present;
200                 break;
201         case KVM_CAP_IOEVENTFD:
202         case KVM_CAP_DEVICE_CTRL:
203         case KVM_CAP_USER_MEMORY:
204         case KVM_CAP_SYNC_MMU:
205         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
206         case KVM_CAP_ONE_REG:
207         case KVM_CAP_ARM_PSCI:
208         case KVM_CAP_ARM_PSCI_0_2:
209         case KVM_CAP_READONLY_MEM:
210         case KVM_CAP_MP_STATE:
211         case KVM_CAP_IMMEDIATE_EXIT:
212                 r = 1;
213                 break;
214         case KVM_CAP_ARM_SET_DEVICE_ADDR:
215                 r = 1;
216                 break;
217         case KVM_CAP_NR_VCPUS:
218                 r = num_online_cpus();
219                 break;
220         case KVM_CAP_MAX_VCPUS:
221                 r = KVM_MAX_VCPUS;
222                 break;
223         case KVM_CAP_NR_MEMSLOTS:
224                 r = KVM_USER_MEM_SLOTS;
225                 break;
226         case KVM_CAP_MSI_DEVID:
227                 if (!kvm)
228                         r = -EINVAL;
229                 else
230                         r = kvm->arch.vgic.msis_require_devid;
231                 break;
232         case KVM_CAP_ARM_USER_IRQ:
233                 /*
234                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
235                  * (bump this number if adding more devices)
236                  */
237                 r = 1;
238                 break;
239         default:
240                 r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
241                 break;
242         }
243         return r;
244 }
245
246 long kvm_arch_dev_ioctl(struct file *filp,
247                         unsigned int ioctl, unsigned long arg)
248 {
249         return -EINVAL;
250 }
251
252
253 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
254 {
255         int err;
256         struct kvm_vcpu *vcpu;
257
258         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
259                 err = -EBUSY;
260                 goto out;
261         }
262
263         if (id >= kvm->arch.max_vcpus) {
264                 err = -EINVAL;
265                 goto out;
266         }
267
268         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
269         if (!vcpu) {
270                 err = -ENOMEM;
271                 goto out;
272         }
273
274         err = kvm_vcpu_init(vcpu, kvm, id);
275         if (err)
276                 goto free_vcpu;
277
278         err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
279         if (err)
280                 goto vcpu_uninit;
281
282         return vcpu;
283 vcpu_uninit:
284         kvm_vcpu_uninit(vcpu);
285 free_vcpu:
286         kmem_cache_free(kvm_vcpu_cache, vcpu);
287 out:
288         return ERR_PTR(err);
289 }
290
291 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
292 {
293         kvm_vgic_vcpu_early_init(vcpu);
294 }
295
296 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
297 {
298         if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
299                 static_branch_dec(&userspace_irqchip_in_use);
300
301         kvm_mmu_free_memory_caches(vcpu);
302         kvm_timer_vcpu_terminate(vcpu);
303         kvm_pmu_vcpu_destroy(vcpu);
304         kvm_vcpu_uninit(vcpu);
305         kmem_cache_free(kvm_vcpu_cache, vcpu);
306 }
307
308 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
309 {
310         kvm_arch_vcpu_free(vcpu);
311 }
312
313 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
314 {
315         return kvm_timer_is_pending(vcpu);
316 }
317
318 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
319 {
320         kvm_timer_schedule(vcpu);
321         kvm_vgic_v4_enable_doorbell(vcpu);
322 }
323
324 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
325 {
326         kvm_timer_unschedule(vcpu);
327         kvm_vgic_v4_disable_doorbell(vcpu);
328 }
329
330 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
331 {
332         /* Force users to call KVM_ARM_VCPU_INIT */
333         vcpu->arch.target = -1;
334         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
335
336         /* Set up the timer */
337         kvm_timer_vcpu_init(vcpu);
338
339         kvm_arm_reset_debug_ptr(vcpu);
340
341         return kvm_vgic_vcpu_init(vcpu);
342 }
343
344 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
345 {
346         int *last_ran;
347
348         last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
349
350         /*
351          * We might get preempted before the vCPU actually runs, but
352          * over-invalidation doesn't affect correctness.
353          */
354         if (*last_ran != vcpu->vcpu_id) {
355                 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
356                 *last_ran = vcpu->vcpu_id;
357         }
358
359         vcpu->cpu = cpu;
360         vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
361
362         kvm_arm_set_running_vcpu(vcpu);
363         kvm_vgic_load(vcpu);
364         kvm_timer_vcpu_load(vcpu);
365 }
366
367 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
368 {
369         kvm_timer_vcpu_put(vcpu);
370         kvm_vgic_put(vcpu);
371
372         vcpu->cpu = -1;
373
374         kvm_arm_set_running_vcpu(NULL);
375 }
376
377 static void vcpu_power_off(struct kvm_vcpu *vcpu)
378 {
379         vcpu->arch.power_off = true;
380         kvm_make_request(KVM_REQ_SLEEP, vcpu);
381         kvm_vcpu_kick(vcpu);
382 }
383
384 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
385                                     struct kvm_mp_state *mp_state)
386 {
387         vcpu_load(vcpu);
388
389         if (vcpu->arch.power_off)
390                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
391         else
392                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
393
394         vcpu_put(vcpu);
395         return 0;
396 }
397
398 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
399                                     struct kvm_mp_state *mp_state)
400 {
401         int ret = 0;
402
403         vcpu_load(vcpu);
404
405         switch (mp_state->mp_state) {
406         case KVM_MP_STATE_RUNNABLE:
407                 vcpu->arch.power_off = false;
408                 break;
409         case KVM_MP_STATE_STOPPED:
410                 vcpu_power_off(vcpu);
411                 break;
412         default:
413                 ret = -EINVAL;
414         }
415
416         vcpu_put(vcpu);
417         return ret;
418 }
419
420 /**
421  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
422  * @v:          The VCPU pointer
423  *
424  * If the guest CPU is not waiting for interrupts or an interrupt line is
425  * asserted, the CPU is by definition runnable.
426  */
427 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
428 {
429         return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
430                 && !v->arch.power_off && !v->arch.pause);
431 }
432
433 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
434 {
435         return vcpu_mode_priv(vcpu);
436 }
437
438 /* Just ensure a guest exit from a particular CPU */
439 static void exit_vm_noop(void *info)
440 {
441 }
442
443 void force_vm_exit(const cpumask_t *mask)
444 {
445         preempt_disable();
446         smp_call_function_many(mask, exit_vm_noop, NULL, true);
447         preempt_enable();
448 }
449
450 /**
451  * need_new_vmid_gen - check that the VMID is still valid
452  * @kvm: The VM's VMID to check
453  *
454  * return true if there is a new generation of VMIDs being used
455  *
456  * The hardware supports only 256 values with the value zero reserved for the
457  * host, so we check if an assigned value belongs to a previous generation,
458  * which which requires us to assign a new value. If we're the first to use a
459  * VMID for the new generation, we must flush necessary caches and TLBs on all
460  * CPUs.
461  */
462 static bool need_new_vmid_gen(struct kvm *kvm)
463 {
464         return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
465 }
466
467 /**
468  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
469  * @kvm The guest that we are about to run
470  *
471  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
472  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
473  * caches and TLBs.
474  */
475 static void update_vttbr(struct kvm *kvm)
476 {
477         phys_addr_t pgd_phys;
478         u64 vmid;
479
480         if (!need_new_vmid_gen(kvm))
481                 return;
482
483         spin_lock(&kvm_vmid_lock);
484
485         /*
486          * We need to re-check the vmid_gen here to ensure that if another vcpu
487          * already allocated a valid vmid for this vm, then this vcpu should
488          * use the same vmid.
489          */
490         if (!need_new_vmid_gen(kvm)) {
491                 spin_unlock(&kvm_vmid_lock);
492                 return;
493         }
494
495         /* First user of a new VMID generation? */
496         if (unlikely(kvm_next_vmid == 0)) {
497                 atomic64_inc(&kvm_vmid_gen);
498                 kvm_next_vmid = 1;
499
500                 /*
501                  * On SMP we know no other CPUs can use this CPU's or each
502                  * other's VMID after force_vm_exit returns since the
503                  * kvm_vmid_lock blocks them from reentry to the guest.
504                  */
505                 force_vm_exit(cpu_all_mask);
506                 /*
507                  * Now broadcast TLB + ICACHE invalidation over the inner
508                  * shareable domain to make sure all data structures are
509                  * clean.
510                  */
511                 kvm_call_hyp(__kvm_flush_vm_context);
512         }
513
514         kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
515         kvm->arch.vmid = kvm_next_vmid;
516         kvm_next_vmid++;
517         kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
518
519         /* update vttbr to be used with the new vmid */
520         pgd_phys = virt_to_phys(kvm->arch.pgd);
521         BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
522         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
523         kvm->arch.vttbr = pgd_phys | vmid;
524
525         spin_unlock(&kvm_vmid_lock);
526 }
527
528 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
529 {
530         struct kvm *kvm = vcpu->kvm;
531         int ret = 0;
532
533         if (likely(vcpu->arch.has_run_once))
534                 return 0;
535
536         vcpu->arch.has_run_once = true;
537
538         if (likely(irqchip_in_kernel(kvm))) {
539                 /*
540                  * Map the VGIC hardware resources before running a vcpu the
541                  * first time on this VM.
542                  */
543                 if (unlikely(!vgic_ready(kvm))) {
544                         ret = kvm_vgic_map_resources(kvm);
545                         if (ret)
546                                 return ret;
547                 }
548         } else {
549                 /*
550                  * Tell the rest of the code that there are userspace irqchip
551                  * VMs in the wild.
552                  */
553                 static_branch_inc(&userspace_irqchip_in_use);
554         }
555
556         ret = kvm_timer_enable(vcpu);
557         if (ret)
558                 return ret;
559
560         ret = kvm_arm_pmu_v3_enable(vcpu);
561
562         return ret;
563 }
564
565 bool kvm_arch_intc_initialized(struct kvm *kvm)
566 {
567         return vgic_initialized(kvm);
568 }
569
570 void kvm_arm_halt_guest(struct kvm *kvm)
571 {
572         int i;
573         struct kvm_vcpu *vcpu;
574
575         kvm_for_each_vcpu(i, vcpu, kvm)
576                 vcpu->arch.pause = true;
577         kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
578 }
579
580 void kvm_arm_resume_guest(struct kvm *kvm)
581 {
582         int i;
583         struct kvm_vcpu *vcpu;
584
585         kvm_for_each_vcpu(i, vcpu, kvm) {
586                 vcpu->arch.pause = false;
587                 swake_up(kvm_arch_vcpu_wq(vcpu));
588         }
589 }
590
591 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
592 {
593         struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
594
595         swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
596                                        (!vcpu->arch.pause)));
597
598         if (vcpu->arch.power_off || vcpu->arch.pause) {
599                 /* Awaken to handle a signal, request we sleep again later. */
600                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
601         }
602 }
603
604 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
605 {
606         return vcpu->arch.target >= 0;
607 }
608
609 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
610 {
611         if (kvm_request_pending(vcpu)) {
612                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
613                         vcpu_req_sleep(vcpu);
614
615                 /*
616                  * Clear IRQ_PENDING requests that were made to guarantee
617                  * that a VCPU sees new virtual interrupts.
618                  */
619                 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
620         }
621 }
622
623 /**
624  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
625  * @vcpu:       The VCPU pointer
626  * @run:        The kvm_run structure pointer used for userspace state exchange
627  *
628  * This function is called through the VCPU_RUN ioctl called from user space. It
629  * will execute VM code in a loop until the time slice for the process is used
630  * or some emulation is needed from user space in which case the function will
631  * return with return value 0 and with the kvm_run structure filled in with the
632  * required data for the requested emulation.
633  */
634 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
635 {
636         int ret;
637
638         if (unlikely(!kvm_vcpu_initialized(vcpu)))
639                 return -ENOEXEC;
640
641         vcpu_load(vcpu);
642
643         ret = kvm_vcpu_first_run_init(vcpu);
644         if (ret)
645                 goto out;
646
647         if (run->exit_reason == KVM_EXIT_MMIO) {
648                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
649                 if (ret)
650                         goto out;
651                 if (kvm_arm_handle_step_debug(vcpu, vcpu->run)) {
652                         ret = 0;
653                         goto out;
654                 }
655
656         }
657
658         if (run->immediate_exit) {
659                 ret = -EINTR;
660                 goto out;
661         }
662
663         kvm_sigset_activate(vcpu);
664
665         ret = 1;
666         run->exit_reason = KVM_EXIT_UNKNOWN;
667         while (ret > 0) {
668                 /*
669                  * Check conditions before entering the guest
670                  */
671                 cond_resched();
672
673                 update_vttbr(vcpu->kvm);
674
675                 check_vcpu_requests(vcpu);
676
677                 /*
678                  * Preparing the interrupts to be injected also
679                  * involves poking the GIC, which must be done in a
680                  * non-preemptible context.
681                  */
682                 preempt_disable();
683
684                 /* Flush FP/SIMD state that can't survive guest entry/exit */
685                 kvm_fpsimd_flush_cpu_state();
686
687                 kvm_pmu_flush_hwstate(vcpu);
688
689                 local_irq_disable();
690
691                 kvm_vgic_flush_hwstate(vcpu);
692
693                 /*
694                  * Exit if we have a signal pending so that we can deliver the
695                  * signal to user space.
696                  */
697                 if (signal_pending(current)) {
698                         ret = -EINTR;
699                         run->exit_reason = KVM_EXIT_INTR;
700                 }
701
702                 /*
703                  * If we're using a userspace irqchip, then check if we need
704                  * to tell a userspace irqchip about timer or PMU level
705                  * changes and if so, exit to userspace (the actual level
706                  * state gets updated in kvm_timer_update_run and
707                  * kvm_pmu_update_run below).
708                  */
709                 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
710                         if (kvm_timer_should_notify_user(vcpu) ||
711                             kvm_pmu_should_notify_user(vcpu)) {
712                                 ret = -EINTR;
713                                 run->exit_reason = KVM_EXIT_INTR;
714                         }
715                 }
716
717                 /*
718                  * Ensure we set mode to IN_GUEST_MODE after we disable
719                  * interrupts and before the final VCPU requests check.
720                  * See the comment in kvm_vcpu_exiting_guest_mode() and
721                  * Documentation/virtual/kvm/vcpu-requests.rst
722                  */
723                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
724
725                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
726                     kvm_request_pending(vcpu)) {
727                         vcpu->mode = OUTSIDE_GUEST_MODE;
728                         kvm_pmu_sync_hwstate(vcpu);
729                         if (static_branch_unlikely(&userspace_irqchip_in_use))
730                                 kvm_timer_sync_hwstate(vcpu);
731                         kvm_vgic_sync_hwstate(vcpu);
732                         local_irq_enable();
733                         preempt_enable();
734                         continue;
735                 }
736
737                 kvm_arm_setup_debug(vcpu);
738
739                 /**************************************************************
740                  * Enter the guest
741                  */
742                 trace_kvm_entry(*vcpu_pc(vcpu));
743                 guest_enter_irqoff();
744
745                 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
746
747                 vcpu->mode = OUTSIDE_GUEST_MODE;
748                 vcpu->stat.exits++;
749                 /*
750                  * Back from guest
751                  *************************************************************/
752
753                 kvm_arm_clear_debug(vcpu);
754
755                 /*
756                  * We must sync the PMU state before the vgic state so
757                  * that the vgic can properly sample the updated state of the
758                  * interrupt line.
759                  */
760                 kvm_pmu_sync_hwstate(vcpu);
761
762                 /*
763                  * Sync the vgic state before syncing the timer state because
764                  * the timer code needs to know if the virtual timer
765                  * interrupts are active.
766                  */
767                 kvm_vgic_sync_hwstate(vcpu);
768
769                 /*
770                  * Sync the timer hardware state before enabling interrupts as
771                  * we don't want vtimer interrupts to race with syncing the
772                  * timer virtual interrupt state.
773                  */
774                 if (static_branch_unlikely(&userspace_irqchip_in_use))
775                         kvm_timer_sync_hwstate(vcpu);
776
777                 /*
778                  * We may have taken a host interrupt in HYP mode (ie
779                  * while executing the guest). This interrupt is still
780                  * pending, as we haven't serviced it yet!
781                  *
782                  * We're now back in SVC mode, with interrupts
783                  * disabled.  Enabling the interrupts now will have
784                  * the effect of taking the interrupt again, in SVC
785                  * mode this time.
786                  */
787                 local_irq_enable();
788
789                 /*
790                  * We do local_irq_enable() before calling guest_exit() so
791                  * that if a timer interrupt hits while running the guest we
792                  * account that tick as being spent in the guest.  We enable
793                  * preemption after calling guest_exit() so that if we get
794                  * preempted we make sure ticks after that is not counted as
795                  * guest time.
796                  */
797                 guest_exit();
798                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
799
800                 preempt_enable();
801
802                 ret = handle_exit(vcpu, run, ret);
803         }
804
805         /* Tell userspace about in-kernel device output levels */
806         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
807                 kvm_timer_update_run(vcpu);
808                 kvm_pmu_update_run(vcpu);
809         }
810
811         kvm_sigset_deactivate(vcpu);
812
813 out:
814         vcpu_put(vcpu);
815         return ret;
816 }
817
818 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
819 {
820         int bit_index;
821         bool set;
822         unsigned long *ptr;
823
824         if (number == KVM_ARM_IRQ_CPU_IRQ)
825                 bit_index = __ffs(HCR_VI);
826         else /* KVM_ARM_IRQ_CPU_FIQ */
827                 bit_index = __ffs(HCR_VF);
828
829         ptr = (unsigned long *)&vcpu->arch.irq_lines;
830         if (level)
831                 set = test_and_set_bit(bit_index, ptr);
832         else
833                 set = test_and_clear_bit(bit_index, ptr);
834
835         /*
836          * If we didn't change anything, no need to wake up or kick other CPUs
837          */
838         if (set == level)
839                 return 0;
840
841         /*
842          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
843          * trigger a world-switch round on the running physical CPU to set the
844          * virtual IRQ/FIQ fields in the HCR appropriately.
845          */
846         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
847         kvm_vcpu_kick(vcpu);
848
849         return 0;
850 }
851
852 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
853                           bool line_status)
854 {
855         u32 irq = irq_level->irq;
856         unsigned int irq_type, vcpu_idx, irq_num;
857         int nrcpus = atomic_read(&kvm->online_vcpus);
858         struct kvm_vcpu *vcpu = NULL;
859         bool level = irq_level->level;
860
861         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
862         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
863         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
864
865         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
866
867         switch (irq_type) {
868         case KVM_ARM_IRQ_TYPE_CPU:
869                 if (irqchip_in_kernel(kvm))
870                         return -ENXIO;
871
872                 if (vcpu_idx >= nrcpus)
873                         return -EINVAL;
874
875                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
876                 if (!vcpu)
877                         return -EINVAL;
878
879                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
880                         return -EINVAL;
881
882                 return vcpu_interrupt_line(vcpu, irq_num, level);
883         case KVM_ARM_IRQ_TYPE_PPI:
884                 if (!irqchip_in_kernel(kvm))
885                         return -ENXIO;
886
887                 if (vcpu_idx >= nrcpus)
888                         return -EINVAL;
889
890                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
891                 if (!vcpu)
892                         return -EINVAL;
893
894                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
895                         return -EINVAL;
896
897                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
898         case KVM_ARM_IRQ_TYPE_SPI:
899                 if (!irqchip_in_kernel(kvm))
900                         return -ENXIO;
901
902                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
903                         return -EINVAL;
904
905                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
906         }
907
908         return -EINVAL;
909 }
910
911 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
912                                const struct kvm_vcpu_init *init)
913 {
914         unsigned int i;
915         int phys_target = kvm_target_cpu();
916
917         if (init->target != phys_target)
918                 return -EINVAL;
919
920         /*
921          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
922          * use the same target.
923          */
924         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
925                 return -EINVAL;
926
927         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
928         for (i = 0; i < sizeof(init->features) * 8; i++) {
929                 bool set = (init->features[i / 32] & (1 << (i % 32)));
930
931                 if (set && i >= KVM_VCPU_MAX_FEATURES)
932                         return -ENOENT;
933
934                 /*
935                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
936                  * use the same feature set.
937                  */
938                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
939                     test_bit(i, vcpu->arch.features) != set)
940                         return -EINVAL;
941
942                 if (set)
943                         set_bit(i, vcpu->arch.features);
944         }
945
946         vcpu->arch.target = phys_target;
947
948         /* Now we know what it is, we can reset it. */
949         return kvm_reset_vcpu(vcpu);
950 }
951
952
953 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
954                                          struct kvm_vcpu_init *init)
955 {
956         int ret;
957
958         ret = kvm_vcpu_set_target(vcpu, init);
959         if (ret)
960                 return ret;
961
962         /*
963          * Ensure a rebooted VM will fault in RAM pages and detect if the
964          * guest MMU is turned off and flush the caches as needed.
965          */
966         if (vcpu->arch.has_run_once)
967                 stage2_unmap_vm(vcpu->kvm);
968
969         vcpu_reset_hcr(vcpu);
970
971         /*
972          * Handle the "start in power-off" case.
973          */
974         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
975                 vcpu_power_off(vcpu);
976         else
977                 vcpu->arch.power_off = false;
978
979         return 0;
980 }
981
982 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
983                                  struct kvm_device_attr *attr)
984 {
985         int ret = -ENXIO;
986
987         switch (attr->group) {
988         default:
989                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
990                 break;
991         }
992
993         return ret;
994 }
995
996 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
997                                  struct kvm_device_attr *attr)
998 {
999         int ret = -ENXIO;
1000
1001         switch (attr->group) {
1002         default:
1003                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1004                 break;
1005         }
1006
1007         return ret;
1008 }
1009
1010 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1011                                  struct kvm_device_attr *attr)
1012 {
1013         int ret = -ENXIO;
1014
1015         switch (attr->group) {
1016         default:
1017                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1018                 break;
1019         }
1020
1021         return ret;
1022 }
1023
1024 long kvm_arch_vcpu_ioctl(struct file *filp,
1025                          unsigned int ioctl, unsigned long arg)
1026 {
1027         struct kvm_vcpu *vcpu = filp->private_data;
1028         void __user *argp = (void __user *)arg;
1029         struct kvm_device_attr attr;
1030         long r;
1031
1032         vcpu_load(vcpu);
1033
1034         switch (ioctl) {
1035         case KVM_ARM_VCPU_INIT: {
1036                 struct kvm_vcpu_init init;
1037
1038                 r = -EFAULT;
1039                 if (copy_from_user(&init, argp, sizeof(init)))
1040                         break;
1041
1042                 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1043                 break;
1044         }
1045         case KVM_SET_ONE_REG:
1046         case KVM_GET_ONE_REG: {
1047                 struct kvm_one_reg reg;
1048
1049                 r = -ENOEXEC;
1050                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1051                         break;
1052
1053                 r = -EFAULT;
1054                 if (copy_from_user(&reg, argp, sizeof(reg)))
1055                         break;
1056
1057                 if (ioctl == KVM_SET_ONE_REG)
1058                         r = kvm_arm_set_reg(vcpu, &reg);
1059                 else
1060                         r = kvm_arm_get_reg(vcpu, &reg);
1061                 break;
1062         }
1063         case KVM_GET_REG_LIST: {
1064                 struct kvm_reg_list __user *user_list = argp;
1065                 struct kvm_reg_list reg_list;
1066                 unsigned n;
1067
1068                 r = -ENOEXEC;
1069                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1070                         break;
1071
1072                 r = -EFAULT;
1073                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1074                         break;
1075                 n = reg_list.n;
1076                 reg_list.n = kvm_arm_num_regs(vcpu);
1077                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1078                         break;
1079                 r = -E2BIG;
1080                 if (n < reg_list.n)
1081                         break;
1082                 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1083                 break;
1084         }
1085         case KVM_SET_DEVICE_ATTR: {
1086                 r = -EFAULT;
1087                 if (copy_from_user(&attr, argp, sizeof(attr)))
1088                         break;
1089                 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1090                 break;
1091         }
1092         case KVM_GET_DEVICE_ATTR: {
1093                 r = -EFAULT;
1094                 if (copy_from_user(&attr, argp, sizeof(attr)))
1095                         break;
1096                 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1097                 break;
1098         }
1099         case KVM_HAS_DEVICE_ATTR: {
1100                 r = -EFAULT;
1101                 if (copy_from_user(&attr, argp, sizeof(attr)))
1102                         break;
1103                 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1104                 break;
1105         }
1106         default:
1107                 r = -EINVAL;
1108         }
1109
1110         vcpu_put(vcpu);
1111         return r;
1112 }
1113
1114 /**
1115  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1116  * @kvm: kvm instance
1117  * @log: slot id and address to which we copy the log
1118  *
1119  * Steps 1-4 below provide general overview of dirty page logging. See
1120  * kvm_get_dirty_log_protect() function description for additional details.
1121  *
1122  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1123  * always flush the TLB (step 4) even if previous step failed  and the dirty
1124  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1125  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1126  * writes will be marked dirty for next log read.
1127  *
1128  *   1. Take a snapshot of the bit and clear it if needed.
1129  *   2. Write protect the corresponding page.
1130  *   3. Copy the snapshot to the userspace.
1131  *   4. Flush TLB's if needed.
1132  */
1133 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1134 {
1135         bool is_dirty = false;
1136         int r;
1137
1138         mutex_lock(&kvm->slots_lock);
1139
1140         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1141
1142         if (is_dirty)
1143                 kvm_flush_remote_tlbs(kvm);
1144
1145         mutex_unlock(&kvm->slots_lock);
1146         return r;
1147 }
1148
1149 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1150                                         struct kvm_arm_device_addr *dev_addr)
1151 {
1152         unsigned long dev_id, type;
1153
1154         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1155                 KVM_ARM_DEVICE_ID_SHIFT;
1156         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1157                 KVM_ARM_DEVICE_TYPE_SHIFT;
1158
1159         switch (dev_id) {
1160         case KVM_ARM_DEVICE_VGIC_V2:
1161                 if (!vgic_present)
1162                         return -ENXIO;
1163                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1164         default:
1165                 return -ENODEV;
1166         }
1167 }
1168
1169 long kvm_arch_vm_ioctl(struct file *filp,
1170                        unsigned int ioctl, unsigned long arg)
1171 {
1172         struct kvm *kvm = filp->private_data;
1173         void __user *argp = (void __user *)arg;
1174
1175         switch (ioctl) {
1176         case KVM_CREATE_IRQCHIP: {
1177                 int ret;
1178                 if (!vgic_present)
1179                         return -ENXIO;
1180                 mutex_lock(&kvm->lock);
1181                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1182                 mutex_unlock(&kvm->lock);
1183                 return ret;
1184         }
1185         case KVM_ARM_SET_DEVICE_ADDR: {
1186                 struct kvm_arm_device_addr dev_addr;
1187
1188                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1189                         return -EFAULT;
1190                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1191         }
1192         case KVM_ARM_PREFERRED_TARGET: {
1193                 int err;
1194                 struct kvm_vcpu_init init;
1195
1196                 err = kvm_vcpu_preferred_target(&init);
1197                 if (err)
1198                         return err;
1199
1200                 if (copy_to_user(argp, &init, sizeof(init)))
1201                         return -EFAULT;
1202
1203                 return 0;
1204         }
1205         default:
1206                 return -EINVAL;
1207         }
1208 }
1209
1210 static void cpu_init_hyp_mode(void *dummy)
1211 {
1212         phys_addr_t pgd_ptr;
1213         unsigned long hyp_stack_ptr;
1214         unsigned long stack_page;
1215         unsigned long vector_ptr;
1216
1217         /* Switch from the HYP stub to our own HYP init vector */
1218         __hyp_set_vectors(kvm_get_idmap_vector());
1219
1220         pgd_ptr = kvm_mmu_get_httbr();
1221         stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1222         hyp_stack_ptr = stack_page + PAGE_SIZE;
1223         vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
1224
1225         __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1226         __cpu_init_stage2();
1227
1228         kvm_arm_init_debug();
1229 }
1230
1231 static void cpu_hyp_reset(void)
1232 {
1233         if (!is_kernel_in_hyp_mode())
1234                 __hyp_reset_vectors();
1235 }
1236
1237 static void cpu_hyp_reinit(void)
1238 {
1239         cpu_hyp_reset();
1240
1241         if (is_kernel_in_hyp_mode()) {
1242                 /*
1243                  * __cpu_init_stage2() is safe to call even if the PM
1244                  * event was cancelled before the CPU was reset.
1245                  */
1246                 __cpu_init_stage2();
1247                 kvm_timer_init_vhe();
1248         } else {
1249                 cpu_init_hyp_mode(NULL);
1250         }
1251
1252         if (vgic_present)
1253                 kvm_vgic_init_cpu_hardware();
1254 }
1255
1256 static void _kvm_arch_hardware_enable(void *discard)
1257 {
1258         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1259                 cpu_hyp_reinit();
1260                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1261         }
1262 }
1263
1264 int kvm_arch_hardware_enable(void)
1265 {
1266         _kvm_arch_hardware_enable(NULL);
1267         return 0;
1268 }
1269
1270 static void _kvm_arch_hardware_disable(void *discard)
1271 {
1272         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1273                 cpu_hyp_reset();
1274                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1275         }
1276 }
1277
1278 void kvm_arch_hardware_disable(void)
1279 {
1280         _kvm_arch_hardware_disable(NULL);
1281 }
1282
1283 #ifdef CONFIG_CPU_PM
1284 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1285                                     unsigned long cmd,
1286                                     void *v)
1287 {
1288         /*
1289          * kvm_arm_hardware_enabled is left with its old value over
1290          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1291          * re-enable hyp.
1292          */
1293         switch (cmd) {
1294         case CPU_PM_ENTER:
1295                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1296                         /*
1297                          * don't update kvm_arm_hardware_enabled here
1298                          * so that the hardware will be re-enabled
1299                          * when we resume. See below.
1300                          */
1301                         cpu_hyp_reset();
1302
1303                 return NOTIFY_OK;
1304         case CPU_PM_ENTER_FAILED:
1305         case CPU_PM_EXIT:
1306                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1307                         /* The hardware was enabled before suspend. */
1308                         cpu_hyp_reinit();
1309
1310                 return NOTIFY_OK;
1311
1312         default:
1313                 return NOTIFY_DONE;
1314         }
1315 }
1316
1317 static struct notifier_block hyp_init_cpu_pm_nb = {
1318         .notifier_call = hyp_init_cpu_pm_notifier,
1319 };
1320
1321 static void __init hyp_cpu_pm_init(void)
1322 {
1323         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1324 }
1325 static void __init hyp_cpu_pm_exit(void)
1326 {
1327         cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1328 }
1329 #else
1330 static inline void hyp_cpu_pm_init(void)
1331 {
1332 }
1333 static inline void hyp_cpu_pm_exit(void)
1334 {
1335 }
1336 #endif
1337
1338 static void teardown_common_resources(void)
1339 {
1340         free_percpu(kvm_host_cpu_state);
1341 }
1342
1343 static int init_common_resources(void)
1344 {
1345         kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1346         if (!kvm_host_cpu_state) {
1347                 kvm_err("Cannot allocate host CPU state\n");
1348                 return -ENOMEM;
1349         }
1350
1351         /* set size of VMID supported by CPU */
1352         kvm_vmid_bits = kvm_get_vmid_bits();
1353         kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1354
1355         return 0;
1356 }
1357
1358 static int init_subsystems(void)
1359 {
1360         int err = 0;
1361
1362         /*
1363          * Enable hardware so that subsystem initialisation can access EL2.
1364          */
1365         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1366
1367         /*
1368          * Register CPU lower-power notifier
1369          */
1370         hyp_cpu_pm_init();
1371
1372         /*
1373          * Init HYP view of VGIC
1374          */
1375         err = kvm_vgic_hyp_init();
1376         switch (err) {
1377         case 0:
1378                 vgic_present = true;
1379                 break;
1380         case -ENODEV:
1381         case -ENXIO:
1382                 vgic_present = false;
1383                 err = 0;
1384                 break;
1385         default:
1386                 goto out;
1387         }
1388
1389         /*
1390          * Init HYP architected timer support
1391          */
1392         err = kvm_timer_hyp_init();
1393         if (err)
1394                 goto out;
1395
1396         kvm_perf_init();
1397         kvm_coproc_table_init();
1398
1399 out:
1400         on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1401
1402         return err;
1403 }
1404
1405 static void teardown_hyp_mode(void)
1406 {
1407         int cpu;
1408
1409         free_hyp_pgds();
1410         for_each_possible_cpu(cpu)
1411                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1412         hyp_cpu_pm_exit();
1413 }
1414
1415 /**
1416  * Inits Hyp-mode on all online CPUs
1417  */
1418 static int init_hyp_mode(void)
1419 {
1420         int cpu;
1421         int err = 0;
1422
1423         /*
1424          * Allocate Hyp PGD and setup Hyp identity mapping
1425          */
1426         err = kvm_mmu_init();
1427         if (err)
1428                 goto out_err;
1429
1430         /*
1431          * Allocate stack pages for Hypervisor-mode
1432          */
1433         for_each_possible_cpu(cpu) {
1434                 unsigned long stack_page;
1435
1436                 stack_page = __get_free_page(GFP_KERNEL);
1437                 if (!stack_page) {
1438                         err = -ENOMEM;
1439                         goto out_err;
1440                 }
1441
1442                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1443         }
1444
1445         /*
1446          * Map the Hyp-code called directly from the host
1447          */
1448         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1449                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1450         if (err) {
1451                 kvm_err("Cannot map world-switch code\n");
1452                 goto out_err;
1453         }
1454
1455         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1456                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1457         if (err) {
1458                 kvm_err("Cannot map rodata section\n");
1459                 goto out_err;
1460         }
1461
1462         err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1463                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1464         if (err) {
1465                 kvm_err("Cannot map bss section\n");
1466                 goto out_err;
1467         }
1468
1469         /*
1470          * Map the Hyp stack pages
1471          */
1472         for_each_possible_cpu(cpu) {
1473                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1474                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1475                                           PAGE_HYP);
1476
1477                 if (err) {
1478                         kvm_err("Cannot map hyp stack\n");
1479                         goto out_err;
1480                 }
1481         }
1482
1483         for_each_possible_cpu(cpu) {
1484                 kvm_cpu_context_t *cpu_ctxt;
1485
1486                 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1487                 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1488
1489                 if (err) {
1490                         kvm_err("Cannot map host CPU state: %d\n", err);
1491                         goto out_err;
1492                 }
1493         }
1494
1495         return 0;
1496
1497 out_err:
1498         teardown_hyp_mode();
1499         kvm_err("error initializing Hyp mode: %d\n", err);
1500         return err;
1501 }
1502
1503 static void check_kvm_target_cpu(void *ret)
1504 {
1505         *(int *)ret = kvm_target_cpu();
1506 }
1507
1508 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1509 {
1510         struct kvm_vcpu *vcpu;
1511         int i;
1512
1513         mpidr &= MPIDR_HWID_BITMASK;
1514         kvm_for_each_vcpu(i, vcpu, kvm) {
1515                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1516                         return vcpu;
1517         }
1518         return NULL;
1519 }
1520
1521 bool kvm_arch_has_irq_bypass(void)
1522 {
1523         return true;
1524 }
1525
1526 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1527                                       struct irq_bypass_producer *prod)
1528 {
1529         struct kvm_kernel_irqfd *irqfd =
1530                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1531
1532         return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1533                                           &irqfd->irq_entry);
1534 }
1535 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1536                                       struct irq_bypass_producer *prod)
1537 {
1538         struct kvm_kernel_irqfd *irqfd =
1539                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1540
1541         kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1542                                      &irqfd->irq_entry);
1543 }
1544
1545 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1546 {
1547         struct kvm_kernel_irqfd *irqfd =
1548                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1549
1550         kvm_arm_halt_guest(irqfd->kvm);
1551 }
1552
1553 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1554 {
1555         struct kvm_kernel_irqfd *irqfd =
1556                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1557
1558         kvm_arm_resume_guest(irqfd->kvm);
1559 }
1560
1561 /**
1562  * Initialize Hyp-mode and memory mappings on all CPUs.
1563  */
1564 int kvm_arch_init(void *opaque)
1565 {
1566         int err;
1567         int ret, cpu;
1568         bool in_hyp_mode;
1569
1570         if (!is_hyp_mode_available()) {
1571                 kvm_info("HYP mode not available\n");
1572                 return -ENODEV;
1573         }
1574
1575         for_each_online_cpu(cpu) {
1576                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1577                 if (ret < 0) {
1578                         kvm_err("Error, CPU %d not supported!\n", cpu);
1579                         return -ENODEV;
1580                 }
1581         }
1582
1583         err = init_common_resources();
1584         if (err)
1585                 return err;
1586
1587         in_hyp_mode = is_kernel_in_hyp_mode();
1588
1589         if (!in_hyp_mode) {
1590                 err = init_hyp_mode();
1591                 if (err)
1592                         goto out_err;
1593         }
1594
1595         err = init_subsystems();
1596         if (err)
1597                 goto out_hyp;
1598
1599         if (in_hyp_mode)
1600                 kvm_info("VHE mode initialized successfully\n");
1601         else
1602                 kvm_info("Hyp mode initialized successfully\n");
1603
1604         return 0;
1605
1606 out_hyp:
1607         if (!in_hyp_mode)
1608                 teardown_hyp_mode();
1609 out_err:
1610         teardown_common_resources();
1611         return err;
1612 }
1613
1614 /* NOP: Compiling as a module not supported */
1615 void kvm_arch_exit(void)
1616 {
1617         kvm_perf_teardown();
1618 }
1619
1620 static int arm_init(void)
1621 {
1622         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1623         return rc;
1624 }
1625
1626 module_init(arm_init);