Merge branch 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / virt / kvm / arm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/cpu_pm.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <linux/kvm_irqfd.h>
31 #include <linux/irqbypass.h>
32 #include <trace/events/kvm.h>
33 #include <kvm/arm_pmu.h>
34 #include <kvm/arm_psci.h>
35
36 #define CREATE_TRACE_POINTS
37 #include "trace.h"
38
39 #include <linux/uaccess.h>
40 #include <asm/ptrace.h>
41 #include <asm/mman.h>
42 #include <asm/tlbflush.h>
43 #include <asm/cacheflush.h>
44 #include <asm/virt.h>
45 #include <asm/kvm_arm.h>
46 #include <asm/kvm_asm.h>
47 #include <asm/kvm_mmu.h>
48 #include <asm/kvm_emulate.h>
49 #include <asm/kvm_coproc.h>
50 #include <asm/sections.h>
51
52 #ifdef REQUIRES_VIRT
53 __asm__(".arch_extension        virt");
54 #endif
55
56 DEFINE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state);
57 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
58
59 /* Per-CPU variable containing the currently running vcpu. */
60 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
61
62 /* The VMID used in the VTTBR */
63 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
64 static u32 kvm_next_vmid;
65 static unsigned int kvm_vmid_bits __read_mostly;
66 static DEFINE_SPINLOCK(kvm_vmid_lock);
67
68 static bool vgic_present;
69
70 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
71
72 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
73 {
74         __this_cpu_write(kvm_arm_running_vcpu, vcpu);
75 }
76
77 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
78
79 /**
80  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
81  * Must be called from non-preemptible context
82  */
83 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
84 {
85         return __this_cpu_read(kvm_arm_running_vcpu);
86 }
87
88 /**
89  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
90  */
91 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
92 {
93         return &kvm_arm_running_vcpu;
94 }
95
96 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
97 {
98         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
99 }
100
101 int kvm_arch_hardware_setup(void)
102 {
103         return 0;
104 }
105
106 void kvm_arch_check_processor_compat(void *rtn)
107 {
108         *(int *)rtn = 0;
109 }
110
111
112 /**
113  * kvm_arch_init_vm - initializes a VM data structure
114  * @kvm:        pointer to the KVM struct
115  */
116 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
117 {
118         int ret, cpu;
119
120         if (type)
121                 return -EINVAL;
122
123         kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
124         if (!kvm->arch.last_vcpu_ran)
125                 return -ENOMEM;
126
127         for_each_possible_cpu(cpu)
128                 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
129
130         ret = kvm_alloc_stage2_pgd(kvm);
131         if (ret)
132                 goto out_fail_alloc;
133
134         ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
135         if (ret)
136                 goto out_free_stage2_pgd;
137
138         kvm_vgic_early_init(kvm);
139
140         /* Mark the initial VMID generation invalid */
141         kvm->arch.vmid_gen = 0;
142
143         /* The maximum number of VCPUs is limited by the host's GIC model */
144         kvm->arch.max_vcpus = vgic_present ?
145                                 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
146
147         return ret;
148 out_free_stage2_pgd:
149         kvm_free_stage2_pgd(kvm);
150 out_fail_alloc:
151         free_percpu(kvm->arch.last_vcpu_ran);
152         kvm->arch.last_vcpu_ran = NULL;
153         return ret;
154 }
155
156 bool kvm_arch_has_vcpu_debugfs(void)
157 {
158         return false;
159 }
160
161 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
162 {
163         return 0;
164 }
165
166 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
167 {
168         return VM_FAULT_SIGBUS;
169 }
170
171
172 /**
173  * kvm_arch_destroy_vm - destroy the VM data structure
174  * @kvm:        pointer to the KVM struct
175  */
176 void kvm_arch_destroy_vm(struct kvm *kvm)
177 {
178         int i;
179
180         kvm_vgic_destroy(kvm);
181
182         free_percpu(kvm->arch.last_vcpu_ran);
183         kvm->arch.last_vcpu_ran = NULL;
184
185         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
186                 if (kvm->vcpus[i]) {
187                         kvm_arch_vcpu_free(kvm->vcpus[i]);
188                         kvm->vcpus[i] = NULL;
189                 }
190         }
191         atomic_set(&kvm->online_vcpus, 0);
192 }
193
194 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
195 {
196         int r;
197         switch (ext) {
198         case KVM_CAP_IRQCHIP:
199                 r = vgic_present;
200                 break;
201         case KVM_CAP_IOEVENTFD:
202         case KVM_CAP_DEVICE_CTRL:
203         case KVM_CAP_USER_MEMORY:
204         case KVM_CAP_SYNC_MMU:
205         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
206         case KVM_CAP_ONE_REG:
207         case KVM_CAP_ARM_PSCI:
208         case KVM_CAP_ARM_PSCI_0_2:
209         case KVM_CAP_READONLY_MEM:
210         case KVM_CAP_MP_STATE:
211         case KVM_CAP_IMMEDIATE_EXIT:
212                 r = 1;
213                 break;
214         case KVM_CAP_ARM_SET_DEVICE_ADDR:
215                 r = 1;
216                 break;
217         case KVM_CAP_NR_VCPUS:
218                 r = num_online_cpus();
219                 break;
220         case KVM_CAP_MAX_VCPUS:
221                 r = KVM_MAX_VCPUS;
222                 break;
223         case KVM_CAP_NR_MEMSLOTS:
224                 r = KVM_USER_MEM_SLOTS;
225                 break;
226         case KVM_CAP_MSI_DEVID:
227                 if (!kvm)
228                         r = -EINVAL;
229                 else
230                         r = kvm->arch.vgic.msis_require_devid;
231                 break;
232         case KVM_CAP_ARM_USER_IRQ:
233                 /*
234                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
235                  * (bump this number if adding more devices)
236                  */
237                 r = 1;
238                 break;
239         default:
240                 r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
241                 break;
242         }
243         return r;
244 }
245
246 long kvm_arch_dev_ioctl(struct file *filp,
247                         unsigned int ioctl, unsigned long arg)
248 {
249         return -EINVAL;
250 }
251
252
253 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
254 {
255         int err;
256         struct kvm_vcpu *vcpu;
257
258         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
259                 err = -EBUSY;
260                 goto out;
261         }
262
263         if (id >= kvm->arch.max_vcpus) {
264                 err = -EINVAL;
265                 goto out;
266         }
267
268         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
269         if (!vcpu) {
270                 err = -ENOMEM;
271                 goto out;
272         }
273
274         err = kvm_vcpu_init(vcpu, kvm, id);
275         if (err)
276                 goto free_vcpu;
277
278         err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
279         if (err)
280                 goto vcpu_uninit;
281
282         return vcpu;
283 vcpu_uninit:
284         kvm_vcpu_uninit(vcpu);
285 free_vcpu:
286         kmem_cache_free(kvm_vcpu_cache, vcpu);
287 out:
288         return ERR_PTR(err);
289 }
290
291 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
292 {
293         kvm_vgic_vcpu_early_init(vcpu);
294 }
295
296 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
297 {
298         if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
299                 static_branch_dec(&userspace_irqchip_in_use);
300
301         kvm_mmu_free_memory_caches(vcpu);
302         kvm_timer_vcpu_terminate(vcpu);
303         kvm_pmu_vcpu_destroy(vcpu);
304         kvm_vcpu_uninit(vcpu);
305         kmem_cache_free(kvm_vcpu_cache, vcpu);
306 }
307
308 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
309 {
310         kvm_arch_vcpu_free(vcpu);
311 }
312
313 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
314 {
315         return kvm_timer_is_pending(vcpu);
316 }
317
318 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
319 {
320         kvm_timer_schedule(vcpu);
321         kvm_vgic_v4_enable_doorbell(vcpu);
322 }
323
324 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
325 {
326         kvm_timer_unschedule(vcpu);
327         kvm_vgic_v4_disable_doorbell(vcpu);
328 }
329
330 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
331 {
332         /* Force users to call KVM_ARM_VCPU_INIT */
333         vcpu->arch.target = -1;
334         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
335
336         /* Set up the timer */
337         kvm_timer_vcpu_init(vcpu);
338
339         kvm_arm_reset_debug_ptr(vcpu);
340
341         return kvm_vgic_vcpu_init(vcpu);
342 }
343
344 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
345 {
346         int *last_ran;
347
348         last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
349
350         /*
351          * We might get preempted before the vCPU actually runs, but
352          * over-invalidation doesn't affect correctness.
353          */
354         if (*last_ran != vcpu->vcpu_id) {
355                 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
356                 *last_ran = vcpu->vcpu_id;
357         }
358
359         vcpu->cpu = cpu;
360         vcpu->arch.host_cpu_context = this_cpu_ptr(&kvm_host_cpu_state);
361
362         kvm_arm_set_running_vcpu(vcpu);
363         kvm_vgic_load(vcpu);
364         kvm_timer_vcpu_load(vcpu);
365 }
366
367 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
368 {
369         kvm_timer_vcpu_put(vcpu);
370         kvm_vgic_put(vcpu);
371
372         vcpu->cpu = -1;
373
374         kvm_arm_set_running_vcpu(NULL);
375 }
376
377 static void vcpu_power_off(struct kvm_vcpu *vcpu)
378 {
379         vcpu->arch.power_off = true;
380         kvm_make_request(KVM_REQ_SLEEP, vcpu);
381         kvm_vcpu_kick(vcpu);
382 }
383
384 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
385                                     struct kvm_mp_state *mp_state)
386 {
387         vcpu_load(vcpu);
388
389         if (vcpu->arch.power_off)
390                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
391         else
392                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
393
394         vcpu_put(vcpu);
395         return 0;
396 }
397
398 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
399                                     struct kvm_mp_state *mp_state)
400 {
401         int ret = 0;
402
403         vcpu_load(vcpu);
404
405         switch (mp_state->mp_state) {
406         case KVM_MP_STATE_RUNNABLE:
407                 vcpu->arch.power_off = false;
408                 break;
409         case KVM_MP_STATE_STOPPED:
410                 vcpu_power_off(vcpu);
411                 break;
412         default:
413                 ret = -EINVAL;
414         }
415
416         vcpu_put(vcpu);
417         return ret;
418 }
419
420 /**
421  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
422  * @v:          The VCPU pointer
423  *
424  * If the guest CPU is not waiting for interrupts or an interrupt line is
425  * asserted, the CPU is by definition runnable.
426  */
427 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
428 {
429         return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
430                 && !v->arch.power_off && !v->arch.pause);
431 }
432
433 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
434 {
435         return vcpu_mode_priv(vcpu);
436 }
437
438 /* Just ensure a guest exit from a particular CPU */
439 static void exit_vm_noop(void *info)
440 {
441 }
442
443 void force_vm_exit(const cpumask_t *mask)
444 {
445         preempt_disable();
446         smp_call_function_many(mask, exit_vm_noop, NULL, true);
447         preempt_enable();
448 }
449
450 /**
451  * need_new_vmid_gen - check that the VMID is still valid
452  * @kvm: The VM's VMID to check
453  *
454  * return true if there is a new generation of VMIDs being used
455  *
456  * The hardware supports only 256 values with the value zero reserved for the
457  * host, so we check if an assigned value belongs to a previous generation,
458  * which which requires us to assign a new value. If we're the first to use a
459  * VMID for the new generation, we must flush necessary caches and TLBs on all
460  * CPUs.
461  */
462 static bool need_new_vmid_gen(struct kvm *kvm)
463 {
464         return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
465 }
466
467 /**
468  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
469  * @kvm The guest that we are about to run
470  *
471  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
472  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
473  * caches and TLBs.
474  */
475 static void update_vttbr(struct kvm *kvm)
476 {
477         phys_addr_t pgd_phys;
478         u64 vmid;
479
480         if (!need_new_vmid_gen(kvm))
481                 return;
482
483         spin_lock(&kvm_vmid_lock);
484
485         /*
486          * We need to re-check the vmid_gen here to ensure that if another vcpu
487          * already allocated a valid vmid for this vm, then this vcpu should
488          * use the same vmid.
489          */
490         if (!need_new_vmid_gen(kvm)) {
491                 spin_unlock(&kvm_vmid_lock);
492                 return;
493         }
494
495         /* First user of a new VMID generation? */
496         if (unlikely(kvm_next_vmid == 0)) {
497                 atomic64_inc(&kvm_vmid_gen);
498                 kvm_next_vmid = 1;
499
500                 /*
501                  * On SMP we know no other CPUs can use this CPU's or each
502                  * other's VMID after force_vm_exit returns since the
503                  * kvm_vmid_lock blocks them from reentry to the guest.
504                  */
505                 force_vm_exit(cpu_all_mask);
506                 /*
507                  * Now broadcast TLB + ICACHE invalidation over the inner
508                  * shareable domain to make sure all data structures are
509                  * clean.
510                  */
511                 kvm_call_hyp(__kvm_flush_vm_context);
512         }
513
514         kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
515         kvm->arch.vmid = kvm_next_vmid;
516         kvm_next_vmid++;
517         kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
518
519         /* update vttbr to be used with the new vmid */
520         pgd_phys = virt_to_phys(kvm->arch.pgd);
521         BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
522         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
523         kvm->arch.vttbr = kvm_phys_to_vttbr(pgd_phys) | vmid;
524
525         spin_unlock(&kvm_vmid_lock);
526 }
527
528 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
529 {
530         struct kvm *kvm = vcpu->kvm;
531         int ret = 0;
532
533         if (likely(vcpu->arch.has_run_once))
534                 return 0;
535
536         vcpu->arch.has_run_once = true;
537
538         if (likely(irqchip_in_kernel(kvm))) {
539                 /*
540                  * Map the VGIC hardware resources before running a vcpu the
541                  * first time on this VM.
542                  */
543                 if (unlikely(!vgic_ready(kvm))) {
544                         ret = kvm_vgic_map_resources(kvm);
545                         if (ret)
546                                 return ret;
547                 }
548         } else {
549                 /*
550                  * Tell the rest of the code that there are userspace irqchip
551                  * VMs in the wild.
552                  */
553                 static_branch_inc(&userspace_irqchip_in_use);
554         }
555
556         ret = kvm_timer_enable(vcpu);
557         if (ret)
558                 return ret;
559
560         ret = kvm_arm_pmu_v3_enable(vcpu);
561
562         return ret;
563 }
564
565 bool kvm_arch_intc_initialized(struct kvm *kvm)
566 {
567         return vgic_initialized(kvm);
568 }
569
570 void kvm_arm_halt_guest(struct kvm *kvm)
571 {
572         int i;
573         struct kvm_vcpu *vcpu;
574
575         kvm_for_each_vcpu(i, vcpu, kvm)
576                 vcpu->arch.pause = true;
577         kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
578 }
579
580 void kvm_arm_resume_guest(struct kvm *kvm)
581 {
582         int i;
583         struct kvm_vcpu *vcpu;
584
585         kvm_for_each_vcpu(i, vcpu, kvm) {
586                 vcpu->arch.pause = false;
587                 swake_up(kvm_arch_vcpu_wq(vcpu));
588         }
589 }
590
591 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
592 {
593         struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
594
595         swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
596                                        (!vcpu->arch.pause)));
597
598         if (vcpu->arch.power_off || vcpu->arch.pause) {
599                 /* Awaken to handle a signal, request we sleep again later. */
600                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
601         }
602 }
603
604 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
605 {
606         return vcpu->arch.target >= 0;
607 }
608
609 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
610 {
611         if (kvm_request_pending(vcpu)) {
612                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
613                         vcpu_req_sleep(vcpu);
614
615                 /*
616                  * Clear IRQ_PENDING requests that were made to guarantee
617                  * that a VCPU sees new virtual interrupts.
618                  */
619                 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
620         }
621 }
622
623 /**
624  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
625  * @vcpu:       The VCPU pointer
626  * @run:        The kvm_run structure pointer used for userspace state exchange
627  *
628  * This function is called through the VCPU_RUN ioctl called from user space. It
629  * will execute VM code in a loop until the time slice for the process is used
630  * or some emulation is needed from user space in which case the function will
631  * return with return value 0 and with the kvm_run structure filled in with the
632  * required data for the requested emulation.
633  */
634 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
635 {
636         int ret;
637
638         if (unlikely(!kvm_vcpu_initialized(vcpu)))
639                 return -ENOEXEC;
640
641         vcpu_load(vcpu);
642
643         ret = kvm_vcpu_first_run_init(vcpu);
644         if (ret)
645                 goto out;
646
647         if (run->exit_reason == KVM_EXIT_MMIO) {
648                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
649                 if (ret)
650                         goto out;
651                 if (kvm_arm_handle_step_debug(vcpu, vcpu->run)) {
652                         ret = 0;
653                         goto out;
654                 }
655
656         }
657
658         if (run->immediate_exit) {
659                 ret = -EINTR;
660                 goto out;
661         }
662
663         kvm_sigset_activate(vcpu);
664
665         ret = 1;
666         run->exit_reason = KVM_EXIT_UNKNOWN;
667         while (ret > 0) {
668                 /*
669                  * Check conditions before entering the guest
670                  */
671                 cond_resched();
672
673                 update_vttbr(vcpu->kvm);
674
675                 check_vcpu_requests(vcpu);
676
677                 /*
678                  * Preparing the interrupts to be injected also
679                  * involves poking the GIC, which must be done in a
680                  * non-preemptible context.
681                  */
682                 preempt_disable();
683
684                 /* Flush FP/SIMD state that can't survive guest entry/exit */
685                 kvm_fpsimd_flush_cpu_state();
686
687                 kvm_pmu_flush_hwstate(vcpu);
688
689                 local_irq_disable();
690
691                 kvm_vgic_flush_hwstate(vcpu);
692
693                 /*
694                  * Exit if we have a signal pending so that we can deliver the
695                  * signal to user space.
696                  */
697                 if (signal_pending(current)) {
698                         ret = -EINTR;
699                         run->exit_reason = KVM_EXIT_INTR;
700                 }
701
702                 /*
703                  * If we're using a userspace irqchip, then check if we need
704                  * to tell a userspace irqchip about timer or PMU level
705                  * changes and if so, exit to userspace (the actual level
706                  * state gets updated in kvm_timer_update_run and
707                  * kvm_pmu_update_run below).
708                  */
709                 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
710                         if (kvm_timer_should_notify_user(vcpu) ||
711                             kvm_pmu_should_notify_user(vcpu)) {
712                                 ret = -EINTR;
713                                 run->exit_reason = KVM_EXIT_INTR;
714                         }
715                 }
716
717                 /*
718                  * Ensure we set mode to IN_GUEST_MODE after we disable
719                  * interrupts and before the final VCPU requests check.
720                  * See the comment in kvm_vcpu_exiting_guest_mode() and
721                  * Documentation/virtual/kvm/vcpu-requests.rst
722                  */
723                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
724
725                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
726                     kvm_request_pending(vcpu)) {
727                         vcpu->mode = OUTSIDE_GUEST_MODE;
728                         kvm_pmu_sync_hwstate(vcpu);
729                         if (static_branch_unlikely(&userspace_irqchip_in_use))
730                                 kvm_timer_sync_hwstate(vcpu);
731                         kvm_vgic_sync_hwstate(vcpu);
732                         local_irq_enable();
733                         preempt_enable();
734                         continue;
735                 }
736
737                 kvm_arm_setup_debug(vcpu);
738
739                 /**************************************************************
740                  * Enter the guest
741                  */
742                 trace_kvm_entry(*vcpu_pc(vcpu));
743                 guest_enter_irqoff();
744                 if (has_vhe())
745                         kvm_arm_vhe_guest_enter();
746
747                 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
748
749                 if (has_vhe())
750                         kvm_arm_vhe_guest_exit();
751                 vcpu->mode = OUTSIDE_GUEST_MODE;
752                 vcpu->stat.exits++;
753                 /*
754                  * Back from guest
755                  *************************************************************/
756
757                 kvm_arm_clear_debug(vcpu);
758
759                 /*
760                  * We must sync the PMU state before the vgic state so
761                  * that the vgic can properly sample the updated state of the
762                  * interrupt line.
763                  */
764                 kvm_pmu_sync_hwstate(vcpu);
765
766                 /*
767                  * Sync the vgic state before syncing the timer state because
768                  * the timer code needs to know if the virtual timer
769                  * interrupts are active.
770                  */
771                 kvm_vgic_sync_hwstate(vcpu);
772
773                 /*
774                  * Sync the timer hardware state before enabling interrupts as
775                  * we don't want vtimer interrupts to race with syncing the
776                  * timer virtual interrupt state.
777                  */
778                 if (static_branch_unlikely(&userspace_irqchip_in_use))
779                         kvm_timer_sync_hwstate(vcpu);
780
781                 /*
782                  * We may have taken a host interrupt in HYP mode (ie
783                  * while executing the guest). This interrupt is still
784                  * pending, as we haven't serviced it yet!
785                  *
786                  * We're now back in SVC mode, with interrupts
787                  * disabled.  Enabling the interrupts now will have
788                  * the effect of taking the interrupt again, in SVC
789                  * mode this time.
790                  */
791                 local_irq_enable();
792
793                 /*
794                  * We do local_irq_enable() before calling guest_exit() so
795                  * that if a timer interrupt hits while running the guest we
796                  * account that tick as being spent in the guest.  We enable
797                  * preemption after calling guest_exit() so that if we get
798                  * preempted we make sure ticks after that is not counted as
799                  * guest time.
800                  */
801                 guest_exit();
802                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
803
804                 /* Exit types that need handling before we can be preempted */
805                 handle_exit_early(vcpu, run, ret);
806
807                 preempt_enable();
808
809                 ret = handle_exit(vcpu, run, ret);
810         }
811
812         /* Tell userspace about in-kernel device output levels */
813         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
814                 kvm_timer_update_run(vcpu);
815                 kvm_pmu_update_run(vcpu);
816         }
817
818         kvm_sigset_deactivate(vcpu);
819
820 out:
821         vcpu_put(vcpu);
822         return ret;
823 }
824
825 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
826 {
827         int bit_index;
828         bool set;
829         unsigned long *ptr;
830
831         if (number == KVM_ARM_IRQ_CPU_IRQ)
832                 bit_index = __ffs(HCR_VI);
833         else /* KVM_ARM_IRQ_CPU_FIQ */
834                 bit_index = __ffs(HCR_VF);
835
836         ptr = (unsigned long *)&vcpu->arch.irq_lines;
837         if (level)
838                 set = test_and_set_bit(bit_index, ptr);
839         else
840                 set = test_and_clear_bit(bit_index, ptr);
841
842         /*
843          * If we didn't change anything, no need to wake up or kick other CPUs
844          */
845         if (set == level)
846                 return 0;
847
848         /*
849          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
850          * trigger a world-switch round on the running physical CPU to set the
851          * virtual IRQ/FIQ fields in the HCR appropriately.
852          */
853         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
854         kvm_vcpu_kick(vcpu);
855
856         return 0;
857 }
858
859 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
860                           bool line_status)
861 {
862         u32 irq = irq_level->irq;
863         unsigned int irq_type, vcpu_idx, irq_num;
864         int nrcpus = atomic_read(&kvm->online_vcpus);
865         struct kvm_vcpu *vcpu = NULL;
866         bool level = irq_level->level;
867
868         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
869         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
870         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
871
872         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
873
874         switch (irq_type) {
875         case KVM_ARM_IRQ_TYPE_CPU:
876                 if (irqchip_in_kernel(kvm))
877                         return -ENXIO;
878
879                 if (vcpu_idx >= nrcpus)
880                         return -EINVAL;
881
882                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
883                 if (!vcpu)
884                         return -EINVAL;
885
886                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
887                         return -EINVAL;
888
889                 return vcpu_interrupt_line(vcpu, irq_num, level);
890         case KVM_ARM_IRQ_TYPE_PPI:
891                 if (!irqchip_in_kernel(kvm))
892                         return -ENXIO;
893
894                 if (vcpu_idx >= nrcpus)
895                         return -EINVAL;
896
897                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
898                 if (!vcpu)
899                         return -EINVAL;
900
901                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
902                         return -EINVAL;
903
904                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
905         case KVM_ARM_IRQ_TYPE_SPI:
906                 if (!irqchip_in_kernel(kvm))
907                         return -ENXIO;
908
909                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
910                         return -EINVAL;
911
912                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
913         }
914
915         return -EINVAL;
916 }
917
918 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
919                                const struct kvm_vcpu_init *init)
920 {
921         unsigned int i;
922         int phys_target = kvm_target_cpu();
923
924         if (init->target != phys_target)
925                 return -EINVAL;
926
927         /*
928          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
929          * use the same target.
930          */
931         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
932                 return -EINVAL;
933
934         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
935         for (i = 0; i < sizeof(init->features) * 8; i++) {
936                 bool set = (init->features[i / 32] & (1 << (i % 32)));
937
938                 if (set && i >= KVM_VCPU_MAX_FEATURES)
939                         return -ENOENT;
940
941                 /*
942                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
943                  * use the same feature set.
944                  */
945                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
946                     test_bit(i, vcpu->arch.features) != set)
947                         return -EINVAL;
948
949                 if (set)
950                         set_bit(i, vcpu->arch.features);
951         }
952
953         vcpu->arch.target = phys_target;
954
955         /* Now we know what it is, we can reset it. */
956         return kvm_reset_vcpu(vcpu);
957 }
958
959
960 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
961                                          struct kvm_vcpu_init *init)
962 {
963         int ret;
964
965         ret = kvm_vcpu_set_target(vcpu, init);
966         if (ret)
967                 return ret;
968
969         /*
970          * Ensure a rebooted VM will fault in RAM pages and detect if the
971          * guest MMU is turned off and flush the caches as needed.
972          */
973         if (vcpu->arch.has_run_once)
974                 stage2_unmap_vm(vcpu->kvm);
975
976         vcpu_reset_hcr(vcpu);
977
978         /*
979          * Handle the "start in power-off" case.
980          */
981         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
982                 vcpu_power_off(vcpu);
983         else
984                 vcpu->arch.power_off = false;
985
986         return 0;
987 }
988
989 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
990                                  struct kvm_device_attr *attr)
991 {
992         int ret = -ENXIO;
993
994         switch (attr->group) {
995         default:
996                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
997                 break;
998         }
999
1000         return ret;
1001 }
1002
1003 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1004                                  struct kvm_device_attr *attr)
1005 {
1006         int ret = -ENXIO;
1007
1008         switch (attr->group) {
1009         default:
1010                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1011                 break;
1012         }
1013
1014         return ret;
1015 }
1016
1017 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1018                                  struct kvm_device_attr *attr)
1019 {
1020         int ret = -ENXIO;
1021
1022         switch (attr->group) {
1023         default:
1024                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1025                 break;
1026         }
1027
1028         return ret;
1029 }
1030
1031 long kvm_arch_vcpu_ioctl(struct file *filp,
1032                          unsigned int ioctl, unsigned long arg)
1033 {
1034         struct kvm_vcpu *vcpu = filp->private_data;
1035         void __user *argp = (void __user *)arg;
1036         struct kvm_device_attr attr;
1037         long r;
1038
1039         vcpu_load(vcpu);
1040
1041         switch (ioctl) {
1042         case KVM_ARM_VCPU_INIT: {
1043                 struct kvm_vcpu_init init;
1044
1045                 r = -EFAULT;
1046                 if (copy_from_user(&init, argp, sizeof(init)))
1047                         break;
1048
1049                 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1050                 break;
1051         }
1052         case KVM_SET_ONE_REG:
1053         case KVM_GET_ONE_REG: {
1054                 struct kvm_one_reg reg;
1055
1056                 r = -ENOEXEC;
1057                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1058                         break;
1059
1060                 r = -EFAULT;
1061                 if (copy_from_user(&reg, argp, sizeof(reg)))
1062                         break;
1063
1064                 if (ioctl == KVM_SET_ONE_REG)
1065                         r = kvm_arm_set_reg(vcpu, &reg);
1066                 else
1067                         r = kvm_arm_get_reg(vcpu, &reg);
1068                 break;
1069         }
1070         case KVM_GET_REG_LIST: {
1071                 struct kvm_reg_list __user *user_list = argp;
1072                 struct kvm_reg_list reg_list;
1073                 unsigned n;
1074
1075                 r = -ENOEXEC;
1076                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1077                         break;
1078
1079                 r = -EFAULT;
1080                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1081                         break;
1082                 n = reg_list.n;
1083                 reg_list.n = kvm_arm_num_regs(vcpu);
1084                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1085                         break;
1086                 r = -E2BIG;
1087                 if (n < reg_list.n)
1088                         break;
1089                 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1090                 break;
1091         }
1092         case KVM_SET_DEVICE_ATTR: {
1093                 r = -EFAULT;
1094                 if (copy_from_user(&attr, argp, sizeof(attr)))
1095                         break;
1096                 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1097                 break;
1098         }
1099         case KVM_GET_DEVICE_ATTR: {
1100                 r = -EFAULT;
1101                 if (copy_from_user(&attr, argp, sizeof(attr)))
1102                         break;
1103                 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1104                 break;
1105         }
1106         case KVM_HAS_DEVICE_ATTR: {
1107                 r = -EFAULT;
1108                 if (copy_from_user(&attr, argp, sizeof(attr)))
1109                         break;
1110                 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1111                 break;
1112         }
1113         default:
1114                 r = -EINVAL;
1115         }
1116
1117         vcpu_put(vcpu);
1118         return r;
1119 }
1120
1121 /**
1122  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1123  * @kvm: kvm instance
1124  * @log: slot id and address to which we copy the log
1125  *
1126  * Steps 1-4 below provide general overview of dirty page logging. See
1127  * kvm_get_dirty_log_protect() function description for additional details.
1128  *
1129  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1130  * always flush the TLB (step 4) even if previous step failed  and the dirty
1131  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1132  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1133  * writes will be marked dirty for next log read.
1134  *
1135  *   1. Take a snapshot of the bit and clear it if needed.
1136  *   2. Write protect the corresponding page.
1137  *   3. Copy the snapshot to the userspace.
1138  *   4. Flush TLB's if needed.
1139  */
1140 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1141 {
1142         bool is_dirty = false;
1143         int r;
1144
1145         mutex_lock(&kvm->slots_lock);
1146
1147         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1148
1149         if (is_dirty)
1150                 kvm_flush_remote_tlbs(kvm);
1151
1152         mutex_unlock(&kvm->slots_lock);
1153         return r;
1154 }
1155
1156 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1157                                         struct kvm_arm_device_addr *dev_addr)
1158 {
1159         unsigned long dev_id, type;
1160
1161         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1162                 KVM_ARM_DEVICE_ID_SHIFT;
1163         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1164                 KVM_ARM_DEVICE_TYPE_SHIFT;
1165
1166         switch (dev_id) {
1167         case KVM_ARM_DEVICE_VGIC_V2:
1168                 if (!vgic_present)
1169                         return -ENXIO;
1170                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1171         default:
1172                 return -ENODEV;
1173         }
1174 }
1175
1176 long kvm_arch_vm_ioctl(struct file *filp,
1177                        unsigned int ioctl, unsigned long arg)
1178 {
1179         struct kvm *kvm = filp->private_data;
1180         void __user *argp = (void __user *)arg;
1181
1182         switch (ioctl) {
1183         case KVM_CREATE_IRQCHIP: {
1184                 int ret;
1185                 if (!vgic_present)
1186                         return -ENXIO;
1187                 mutex_lock(&kvm->lock);
1188                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1189                 mutex_unlock(&kvm->lock);
1190                 return ret;
1191         }
1192         case KVM_ARM_SET_DEVICE_ADDR: {
1193                 struct kvm_arm_device_addr dev_addr;
1194
1195                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1196                         return -EFAULT;
1197                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1198         }
1199         case KVM_ARM_PREFERRED_TARGET: {
1200                 int err;
1201                 struct kvm_vcpu_init init;
1202
1203                 err = kvm_vcpu_preferred_target(&init);
1204                 if (err)
1205                         return err;
1206
1207                 if (copy_to_user(argp, &init, sizeof(init)))
1208                         return -EFAULT;
1209
1210                 return 0;
1211         }
1212         default:
1213                 return -EINVAL;
1214         }
1215 }
1216
1217 static void cpu_init_hyp_mode(void *dummy)
1218 {
1219         phys_addr_t pgd_ptr;
1220         unsigned long hyp_stack_ptr;
1221         unsigned long stack_page;
1222         unsigned long vector_ptr;
1223
1224         /* Switch from the HYP stub to our own HYP init vector */
1225         __hyp_set_vectors(kvm_get_idmap_vector());
1226
1227         pgd_ptr = kvm_mmu_get_httbr();
1228         stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1229         hyp_stack_ptr = stack_page + PAGE_SIZE;
1230         vector_ptr = (unsigned long)kvm_get_hyp_vector();
1231
1232         __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1233         __cpu_init_stage2();
1234
1235         kvm_arm_init_debug();
1236 }
1237
1238 static void cpu_hyp_reset(void)
1239 {
1240         if (!is_kernel_in_hyp_mode())
1241                 __hyp_reset_vectors();
1242 }
1243
1244 static void cpu_hyp_reinit(void)
1245 {
1246         cpu_hyp_reset();
1247
1248         if (is_kernel_in_hyp_mode()) {
1249                 /*
1250                  * __cpu_init_stage2() is safe to call even if the PM
1251                  * event was cancelled before the CPU was reset.
1252                  */
1253                 __cpu_init_stage2();
1254                 kvm_timer_init_vhe();
1255         } else {
1256                 cpu_init_hyp_mode(NULL);
1257         }
1258
1259         if (vgic_present)
1260                 kvm_vgic_init_cpu_hardware();
1261 }
1262
1263 static void _kvm_arch_hardware_enable(void *discard)
1264 {
1265         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1266                 cpu_hyp_reinit();
1267                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1268         }
1269 }
1270
1271 int kvm_arch_hardware_enable(void)
1272 {
1273         _kvm_arch_hardware_enable(NULL);
1274         return 0;
1275 }
1276
1277 static void _kvm_arch_hardware_disable(void *discard)
1278 {
1279         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1280                 cpu_hyp_reset();
1281                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1282         }
1283 }
1284
1285 void kvm_arch_hardware_disable(void)
1286 {
1287         _kvm_arch_hardware_disable(NULL);
1288 }
1289
1290 #ifdef CONFIG_CPU_PM
1291 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1292                                     unsigned long cmd,
1293                                     void *v)
1294 {
1295         /*
1296          * kvm_arm_hardware_enabled is left with its old value over
1297          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1298          * re-enable hyp.
1299          */
1300         switch (cmd) {
1301         case CPU_PM_ENTER:
1302                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1303                         /*
1304                          * don't update kvm_arm_hardware_enabled here
1305                          * so that the hardware will be re-enabled
1306                          * when we resume. See below.
1307                          */
1308                         cpu_hyp_reset();
1309
1310                 return NOTIFY_OK;
1311         case CPU_PM_ENTER_FAILED:
1312         case CPU_PM_EXIT:
1313                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1314                         /* The hardware was enabled before suspend. */
1315                         cpu_hyp_reinit();
1316
1317                 return NOTIFY_OK;
1318
1319         default:
1320                 return NOTIFY_DONE;
1321         }
1322 }
1323
1324 static struct notifier_block hyp_init_cpu_pm_nb = {
1325         .notifier_call = hyp_init_cpu_pm_notifier,
1326 };
1327
1328 static void __init hyp_cpu_pm_init(void)
1329 {
1330         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1331 }
1332 static void __init hyp_cpu_pm_exit(void)
1333 {
1334         cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1335 }
1336 #else
1337 static inline void hyp_cpu_pm_init(void)
1338 {
1339 }
1340 static inline void hyp_cpu_pm_exit(void)
1341 {
1342 }
1343 #endif
1344
1345 static int init_common_resources(void)
1346 {
1347         /* set size of VMID supported by CPU */
1348         kvm_vmid_bits = kvm_get_vmid_bits();
1349         kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1350
1351         return 0;
1352 }
1353
1354 static int init_subsystems(void)
1355 {
1356         int err = 0;
1357
1358         /*
1359          * Enable hardware so that subsystem initialisation can access EL2.
1360          */
1361         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1362
1363         /*
1364          * Register CPU lower-power notifier
1365          */
1366         hyp_cpu_pm_init();
1367
1368         /*
1369          * Init HYP view of VGIC
1370          */
1371         err = kvm_vgic_hyp_init();
1372         switch (err) {
1373         case 0:
1374                 vgic_present = true;
1375                 break;
1376         case -ENODEV:
1377         case -ENXIO:
1378                 vgic_present = false;
1379                 err = 0;
1380                 break;
1381         default:
1382                 goto out;
1383         }
1384
1385         /*
1386          * Init HYP architected timer support
1387          */
1388         err = kvm_timer_hyp_init(vgic_present);
1389         if (err)
1390                 goto out;
1391
1392         kvm_perf_init();
1393         kvm_coproc_table_init();
1394
1395 out:
1396         on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1397
1398         return err;
1399 }
1400
1401 static void teardown_hyp_mode(void)
1402 {
1403         int cpu;
1404
1405         free_hyp_pgds();
1406         for_each_possible_cpu(cpu)
1407                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1408         hyp_cpu_pm_exit();
1409 }
1410
1411 /**
1412  * Inits Hyp-mode on all online CPUs
1413  */
1414 static int init_hyp_mode(void)
1415 {
1416         int cpu;
1417         int err = 0;
1418
1419         /*
1420          * Allocate Hyp PGD and setup Hyp identity mapping
1421          */
1422         err = kvm_mmu_init();
1423         if (err)
1424                 goto out_err;
1425
1426         /*
1427          * Allocate stack pages for Hypervisor-mode
1428          */
1429         for_each_possible_cpu(cpu) {
1430                 unsigned long stack_page;
1431
1432                 stack_page = __get_free_page(GFP_KERNEL);
1433                 if (!stack_page) {
1434                         err = -ENOMEM;
1435                         goto out_err;
1436                 }
1437
1438                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1439         }
1440
1441         /*
1442          * Map the Hyp-code called directly from the host
1443          */
1444         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1445                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1446         if (err) {
1447                 kvm_err("Cannot map world-switch code\n");
1448                 goto out_err;
1449         }
1450
1451         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1452                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1453         if (err) {
1454                 kvm_err("Cannot map rodata section\n");
1455                 goto out_err;
1456         }
1457
1458         err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1459                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1460         if (err) {
1461                 kvm_err("Cannot map bss section\n");
1462                 goto out_err;
1463         }
1464
1465         err = kvm_map_vectors();
1466         if (err) {
1467                 kvm_err("Cannot map vectors\n");
1468                 goto out_err;
1469         }
1470
1471         /*
1472          * Map the Hyp stack pages
1473          */
1474         for_each_possible_cpu(cpu) {
1475                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1476                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1477                                           PAGE_HYP);
1478
1479                 if (err) {
1480                         kvm_err("Cannot map hyp stack\n");
1481                         goto out_err;
1482                 }
1483         }
1484
1485         for_each_possible_cpu(cpu) {
1486                 kvm_cpu_context_t *cpu_ctxt;
1487
1488                 cpu_ctxt = per_cpu_ptr(&kvm_host_cpu_state, cpu);
1489                 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1490
1491                 if (err) {
1492                         kvm_err("Cannot map host CPU state: %d\n", err);
1493                         goto out_err;
1494                 }
1495         }
1496
1497         return 0;
1498
1499 out_err:
1500         teardown_hyp_mode();
1501         kvm_err("error initializing Hyp mode: %d\n", err);
1502         return err;
1503 }
1504
1505 static void check_kvm_target_cpu(void *ret)
1506 {
1507         *(int *)ret = kvm_target_cpu();
1508 }
1509
1510 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1511 {
1512         struct kvm_vcpu *vcpu;
1513         int i;
1514
1515         mpidr &= MPIDR_HWID_BITMASK;
1516         kvm_for_each_vcpu(i, vcpu, kvm) {
1517                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1518                         return vcpu;
1519         }
1520         return NULL;
1521 }
1522
1523 bool kvm_arch_has_irq_bypass(void)
1524 {
1525         return true;
1526 }
1527
1528 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1529                                       struct irq_bypass_producer *prod)
1530 {
1531         struct kvm_kernel_irqfd *irqfd =
1532                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1533
1534         return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1535                                           &irqfd->irq_entry);
1536 }
1537 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1538                                       struct irq_bypass_producer *prod)
1539 {
1540         struct kvm_kernel_irqfd *irqfd =
1541                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1542
1543         kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1544                                      &irqfd->irq_entry);
1545 }
1546
1547 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1548 {
1549         struct kvm_kernel_irqfd *irqfd =
1550                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1551
1552         kvm_arm_halt_guest(irqfd->kvm);
1553 }
1554
1555 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1556 {
1557         struct kvm_kernel_irqfd *irqfd =
1558                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1559
1560         kvm_arm_resume_guest(irqfd->kvm);
1561 }
1562
1563 /**
1564  * Initialize Hyp-mode and memory mappings on all CPUs.
1565  */
1566 int kvm_arch_init(void *opaque)
1567 {
1568         int err;
1569         int ret, cpu;
1570         bool in_hyp_mode;
1571
1572         if (!is_hyp_mode_available()) {
1573                 kvm_info("HYP mode not available\n");
1574                 return -ENODEV;
1575         }
1576
1577         for_each_online_cpu(cpu) {
1578                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1579                 if (ret < 0) {
1580                         kvm_err("Error, CPU %d not supported!\n", cpu);
1581                         return -ENODEV;
1582                 }
1583         }
1584
1585         err = init_common_resources();
1586         if (err)
1587                 return err;
1588
1589         in_hyp_mode = is_kernel_in_hyp_mode();
1590
1591         if (!in_hyp_mode) {
1592                 err = init_hyp_mode();
1593                 if (err)
1594                         goto out_err;
1595         }
1596
1597         err = init_subsystems();
1598         if (err)
1599                 goto out_hyp;
1600
1601         if (in_hyp_mode)
1602                 kvm_info("VHE mode initialized successfully\n");
1603         else
1604                 kvm_info("Hyp mode initialized successfully\n");
1605
1606         return 0;
1607
1608 out_hyp:
1609         if (!in_hyp_mode)
1610                 teardown_hyp_mode();
1611 out_err:
1612         return err;
1613 }
1614
1615 /* NOP: Compiling as a module not supported */
1616 void kvm_arch_exit(void)
1617 {
1618         kvm_perf_teardown();
1619 }
1620
1621 static int arm_init(void)
1622 {
1623         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1624         return rc;
1625 }
1626
1627 module_init(arm_init);