Merge branch 'smp-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / tools / perf / util / machine.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include "callchain.h"
7 #include "debug.h"
8 #include "event.h"
9 #include "evsel.h"
10 #include "hist.h"
11 #include "machine.h"
12 #include "map.h"
13 #include "symbol.h"
14 #include "sort.h"
15 #include "strlist.h"
16 #include "thread.h"
17 #include "vdso.h"
18 #include <stdbool.h>
19 #include <sys/types.h>
20 #include <sys/stat.h>
21 #include <unistd.h>
22 #include "unwind.h"
23 #include "linux/hash.h"
24 #include "asm/bug.h"
25 #include "bpf-event.h"
26
27 #include "sane_ctype.h"
28 #include <symbol/kallsyms.h>
29 #include <linux/mman.h>
30
31 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
32
33 static void dsos__init(struct dsos *dsos)
34 {
35         INIT_LIST_HEAD(&dsos->head);
36         dsos->root = RB_ROOT;
37         init_rwsem(&dsos->lock);
38 }
39
40 static void machine__threads_init(struct machine *machine)
41 {
42         int i;
43
44         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
45                 struct threads *threads = &machine->threads[i];
46                 threads->entries = RB_ROOT_CACHED;
47                 init_rwsem(&threads->lock);
48                 threads->nr = 0;
49                 INIT_LIST_HEAD(&threads->dead);
50                 threads->last_match = NULL;
51         }
52 }
53
54 static int machine__set_mmap_name(struct machine *machine)
55 {
56         if (machine__is_host(machine))
57                 machine->mmap_name = strdup("[kernel.kallsyms]");
58         else if (machine__is_default_guest(machine))
59                 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
60         else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
61                           machine->pid) < 0)
62                 machine->mmap_name = NULL;
63
64         return machine->mmap_name ? 0 : -ENOMEM;
65 }
66
67 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
68 {
69         int err = -ENOMEM;
70
71         memset(machine, 0, sizeof(*machine));
72         map_groups__init(&machine->kmaps, machine);
73         RB_CLEAR_NODE(&machine->rb_node);
74         dsos__init(&machine->dsos);
75
76         machine__threads_init(machine);
77
78         machine->vdso_info = NULL;
79         machine->env = NULL;
80
81         machine->pid = pid;
82
83         machine->id_hdr_size = 0;
84         machine->kptr_restrict_warned = false;
85         machine->comm_exec = false;
86         machine->kernel_start = 0;
87         machine->vmlinux_map = NULL;
88
89         machine->root_dir = strdup(root_dir);
90         if (machine->root_dir == NULL)
91                 return -ENOMEM;
92
93         if (machine__set_mmap_name(machine))
94                 goto out;
95
96         if (pid != HOST_KERNEL_ID) {
97                 struct thread *thread = machine__findnew_thread(machine, -1,
98                                                                 pid);
99                 char comm[64];
100
101                 if (thread == NULL)
102                         goto out;
103
104                 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
105                 thread__set_comm(thread, comm, 0);
106                 thread__put(thread);
107         }
108
109         machine->current_tid = NULL;
110         err = 0;
111
112 out:
113         if (err) {
114                 zfree(&machine->root_dir);
115                 zfree(&machine->mmap_name);
116         }
117         return 0;
118 }
119
120 struct machine *machine__new_host(void)
121 {
122         struct machine *machine = malloc(sizeof(*machine));
123
124         if (machine != NULL) {
125                 machine__init(machine, "", HOST_KERNEL_ID);
126
127                 if (machine__create_kernel_maps(machine) < 0)
128                         goto out_delete;
129         }
130
131         return machine;
132 out_delete:
133         free(machine);
134         return NULL;
135 }
136
137 struct machine *machine__new_kallsyms(void)
138 {
139         struct machine *machine = machine__new_host();
140         /*
141          * FIXME:
142          * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
143          *    ask for not using the kcore parsing code, once this one is fixed
144          *    to create a map per module.
145          */
146         if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
147                 machine__delete(machine);
148                 machine = NULL;
149         }
150
151         return machine;
152 }
153
154 static void dsos__purge(struct dsos *dsos)
155 {
156         struct dso *pos, *n;
157
158         down_write(&dsos->lock);
159
160         list_for_each_entry_safe(pos, n, &dsos->head, node) {
161                 RB_CLEAR_NODE(&pos->rb_node);
162                 pos->root = NULL;
163                 list_del_init(&pos->node);
164                 dso__put(pos);
165         }
166
167         up_write(&dsos->lock);
168 }
169
170 static void dsos__exit(struct dsos *dsos)
171 {
172         dsos__purge(dsos);
173         exit_rwsem(&dsos->lock);
174 }
175
176 void machine__delete_threads(struct machine *machine)
177 {
178         struct rb_node *nd;
179         int i;
180
181         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
182                 struct threads *threads = &machine->threads[i];
183                 down_write(&threads->lock);
184                 nd = rb_first_cached(&threads->entries);
185                 while (nd) {
186                         struct thread *t = rb_entry(nd, struct thread, rb_node);
187
188                         nd = rb_next(nd);
189                         __machine__remove_thread(machine, t, false);
190                 }
191                 up_write(&threads->lock);
192         }
193 }
194
195 void machine__exit(struct machine *machine)
196 {
197         int i;
198
199         if (machine == NULL)
200                 return;
201
202         machine__destroy_kernel_maps(machine);
203         map_groups__exit(&machine->kmaps);
204         dsos__exit(&machine->dsos);
205         machine__exit_vdso(machine);
206         zfree(&machine->root_dir);
207         zfree(&machine->mmap_name);
208         zfree(&machine->current_tid);
209
210         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
211                 struct threads *threads = &machine->threads[i];
212                 exit_rwsem(&threads->lock);
213         }
214 }
215
216 void machine__delete(struct machine *machine)
217 {
218         if (machine) {
219                 machine__exit(machine);
220                 free(machine);
221         }
222 }
223
224 void machines__init(struct machines *machines)
225 {
226         machine__init(&machines->host, "", HOST_KERNEL_ID);
227         machines->guests = RB_ROOT_CACHED;
228 }
229
230 void machines__exit(struct machines *machines)
231 {
232         machine__exit(&machines->host);
233         /* XXX exit guest */
234 }
235
236 struct machine *machines__add(struct machines *machines, pid_t pid,
237                               const char *root_dir)
238 {
239         struct rb_node **p = &machines->guests.rb_root.rb_node;
240         struct rb_node *parent = NULL;
241         struct machine *pos, *machine = malloc(sizeof(*machine));
242         bool leftmost = true;
243
244         if (machine == NULL)
245                 return NULL;
246
247         if (machine__init(machine, root_dir, pid) != 0) {
248                 free(machine);
249                 return NULL;
250         }
251
252         while (*p != NULL) {
253                 parent = *p;
254                 pos = rb_entry(parent, struct machine, rb_node);
255                 if (pid < pos->pid)
256                         p = &(*p)->rb_left;
257                 else {
258                         p = &(*p)->rb_right;
259                         leftmost = false;
260                 }
261         }
262
263         rb_link_node(&machine->rb_node, parent, p);
264         rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
265
266         return machine;
267 }
268
269 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
270 {
271         struct rb_node *nd;
272
273         machines->host.comm_exec = comm_exec;
274
275         for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
276                 struct machine *machine = rb_entry(nd, struct machine, rb_node);
277
278                 machine->comm_exec = comm_exec;
279         }
280 }
281
282 struct machine *machines__find(struct machines *machines, pid_t pid)
283 {
284         struct rb_node **p = &machines->guests.rb_root.rb_node;
285         struct rb_node *parent = NULL;
286         struct machine *machine;
287         struct machine *default_machine = NULL;
288
289         if (pid == HOST_KERNEL_ID)
290                 return &machines->host;
291
292         while (*p != NULL) {
293                 parent = *p;
294                 machine = rb_entry(parent, struct machine, rb_node);
295                 if (pid < machine->pid)
296                         p = &(*p)->rb_left;
297                 else if (pid > machine->pid)
298                         p = &(*p)->rb_right;
299                 else
300                         return machine;
301                 if (!machine->pid)
302                         default_machine = machine;
303         }
304
305         return default_machine;
306 }
307
308 struct machine *machines__findnew(struct machines *machines, pid_t pid)
309 {
310         char path[PATH_MAX];
311         const char *root_dir = "";
312         struct machine *machine = machines__find(machines, pid);
313
314         if (machine && (machine->pid == pid))
315                 goto out;
316
317         if ((pid != HOST_KERNEL_ID) &&
318             (pid != DEFAULT_GUEST_KERNEL_ID) &&
319             (symbol_conf.guestmount)) {
320                 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
321                 if (access(path, R_OK)) {
322                         static struct strlist *seen;
323
324                         if (!seen)
325                                 seen = strlist__new(NULL, NULL);
326
327                         if (!strlist__has_entry(seen, path)) {
328                                 pr_err("Can't access file %s\n", path);
329                                 strlist__add(seen, path);
330                         }
331                         machine = NULL;
332                         goto out;
333                 }
334                 root_dir = path;
335         }
336
337         machine = machines__add(machines, pid, root_dir);
338 out:
339         return machine;
340 }
341
342 void machines__process_guests(struct machines *machines,
343                               machine__process_t process, void *data)
344 {
345         struct rb_node *nd;
346
347         for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
348                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
349                 process(pos, data);
350         }
351 }
352
353 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
354 {
355         struct rb_node *node;
356         struct machine *machine;
357
358         machines->host.id_hdr_size = id_hdr_size;
359
360         for (node = rb_first_cached(&machines->guests); node;
361              node = rb_next(node)) {
362                 machine = rb_entry(node, struct machine, rb_node);
363                 machine->id_hdr_size = id_hdr_size;
364         }
365
366         return;
367 }
368
369 static void machine__update_thread_pid(struct machine *machine,
370                                        struct thread *th, pid_t pid)
371 {
372         struct thread *leader;
373
374         if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
375                 return;
376
377         th->pid_ = pid;
378
379         if (th->pid_ == th->tid)
380                 return;
381
382         leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
383         if (!leader)
384                 goto out_err;
385
386         if (!leader->mg)
387                 leader->mg = map_groups__new(machine);
388
389         if (!leader->mg)
390                 goto out_err;
391
392         if (th->mg == leader->mg)
393                 return;
394
395         if (th->mg) {
396                 /*
397                  * Maps are created from MMAP events which provide the pid and
398                  * tid.  Consequently there never should be any maps on a thread
399                  * with an unknown pid.  Just print an error if there are.
400                  */
401                 if (!map_groups__empty(th->mg))
402                         pr_err("Discarding thread maps for %d:%d\n",
403                                th->pid_, th->tid);
404                 map_groups__put(th->mg);
405         }
406
407         th->mg = map_groups__get(leader->mg);
408 out_put:
409         thread__put(leader);
410         return;
411 out_err:
412         pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
413         goto out_put;
414 }
415
416 /*
417  * Front-end cache - TID lookups come in blocks,
418  * so most of the time we dont have to look up
419  * the full rbtree:
420  */
421 static struct thread*
422 __threads__get_last_match(struct threads *threads, struct machine *machine,
423                           int pid, int tid)
424 {
425         struct thread *th;
426
427         th = threads->last_match;
428         if (th != NULL) {
429                 if (th->tid == tid) {
430                         machine__update_thread_pid(machine, th, pid);
431                         return thread__get(th);
432                 }
433
434                 threads->last_match = NULL;
435         }
436
437         return NULL;
438 }
439
440 static struct thread*
441 threads__get_last_match(struct threads *threads, struct machine *machine,
442                         int pid, int tid)
443 {
444         struct thread *th = NULL;
445
446         if (perf_singlethreaded)
447                 th = __threads__get_last_match(threads, machine, pid, tid);
448
449         return th;
450 }
451
452 static void
453 __threads__set_last_match(struct threads *threads, struct thread *th)
454 {
455         threads->last_match = th;
456 }
457
458 static void
459 threads__set_last_match(struct threads *threads, struct thread *th)
460 {
461         if (perf_singlethreaded)
462                 __threads__set_last_match(threads, th);
463 }
464
465 /*
466  * Caller must eventually drop thread->refcnt returned with a successful
467  * lookup/new thread inserted.
468  */
469 static struct thread *____machine__findnew_thread(struct machine *machine,
470                                                   struct threads *threads,
471                                                   pid_t pid, pid_t tid,
472                                                   bool create)
473 {
474         struct rb_node **p = &threads->entries.rb_root.rb_node;
475         struct rb_node *parent = NULL;
476         struct thread *th;
477         bool leftmost = true;
478
479         th = threads__get_last_match(threads, machine, pid, tid);
480         if (th)
481                 return th;
482
483         while (*p != NULL) {
484                 parent = *p;
485                 th = rb_entry(parent, struct thread, rb_node);
486
487                 if (th->tid == tid) {
488                         threads__set_last_match(threads, th);
489                         machine__update_thread_pid(machine, th, pid);
490                         return thread__get(th);
491                 }
492
493                 if (tid < th->tid)
494                         p = &(*p)->rb_left;
495                 else {
496                         p = &(*p)->rb_right;
497                         leftmost = false;
498                 }
499         }
500
501         if (!create)
502                 return NULL;
503
504         th = thread__new(pid, tid);
505         if (th != NULL) {
506                 rb_link_node(&th->rb_node, parent, p);
507                 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
508
509                 /*
510                  * We have to initialize map_groups separately
511                  * after rb tree is updated.
512                  *
513                  * The reason is that we call machine__findnew_thread
514                  * within thread__init_map_groups to find the thread
515                  * leader and that would screwed the rb tree.
516                  */
517                 if (thread__init_map_groups(th, machine)) {
518                         rb_erase_cached(&th->rb_node, &threads->entries);
519                         RB_CLEAR_NODE(&th->rb_node);
520                         thread__put(th);
521                         return NULL;
522                 }
523                 /*
524                  * It is now in the rbtree, get a ref
525                  */
526                 thread__get(th);
527                 threads__set_last_match(threads, th);
528                 ++threads->nr;
529         }
530
531         return th;
532 }
533
534 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
535 {
536         return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
537 }
538
539 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
540                                        pid_t tid)
541 {
542         struct threads *threads = machine__threads(machine, tid);
543         struct thread *th;
544
545         down_write(&threads->lock);
546         th = __machine__findnew_thread(machine, pid, tid);
547         up_write(&threads->lock);
548         return th;
549 }
550
551 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
552                                     pid_t tid)
553 {
554         struct threads *threads = machine__threads(machine, tid);
555         struct thread *th;
556
557         down_read(&threads->lock);
558         th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
559         up_read(&threads->lock);
560         return th;
561 }
562
563 struct comm *machine__thread_exec_comm(struct machine *machine,
564                                        struct thread *thread)
565 {
566         if (machine->comm_exec)
567                 return thread__exec_comm(thread);
568         else
569                 return thread__comm(thread);
570 }
571
572 int machine__process_comm_event(struct machine *machine, union perf_event *event,
573                                 struct perf_sample *sample)
574 {
575         struct thread *thread = machine__findnew_thread(machine,
576                                                         event->comm.pid,
577                                                         event->comm.tid);
578         bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
579         int err = 0;
580
581         if (exec)
582                 machine->comm_exec = true;
583
584         if (dump_trace)
585                 perf_event__fprintf_comm(event, stdout);
586
587         if (thread == NULL ||
588             __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
589                 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
590                 err = -1;
591         }
592
593         thread__put(thread);
594
595         return err;
596 }
597
598 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
599                                       union perf_event *event,
600                                       struct perf_sample *sample __maybe_unused)
601 {
602         struct thread *thread = machine__findnew_thread(machine,
603                                                         event->namespaces.pid,
604                                                         event->namespaces.tid);
605         int err = 0;
606
607         WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
608                   "\nWARNING: kernel seems to support more namespaces than perf"
609                   " tool.\nTry updating the perf tool..\n\n");
610
611         WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
612                   "\nWARNING: perf tool seems to support more namespaces than"
613                   " the kernel.\nTry updating the kernel..\n\n");
614
615         if (dump_trace)
616                 perf_event__fprintf_namespaces(event, stdout);
617
618         if (thread == NULL ||
619             thread__set_namespaces(thread, sample->time, &event->namespaces)) {
620                 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
621                 err = -1;
622         }
623
624         thread__put(thread);
625
626         return err;
627 }
628
629 int machine__process_lost_event(struct machine *machine __maybe_unused,
630                                 union perf_event *event, struct perf_sample *sample __maybe_unused)
631 {
632         dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
633                     event->lost.id, event->lost.lost);
634         return 0;
635 }
636
637 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
638                                         union perf_event *event, struct perf_sample *sample)
639 {
640         dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
641                     sample->id, event->lost_samples.lost);
642         return 0;
643 }
644
645 static struct dso *machine__findnew_module_dso(struct machine *machine,
646                                                struct kmod_path *m,
647                                                const char *filename)
648 {
649         struct dso *dso;
650
651         down_write(&machine->dsos.lock);
652
653         dso = __dsos__find(&machine->dsos, m->name, true);
654         if (!dso) {
655                 dso = __dsos__addnew(&machine->dsos, m->name);
656                 if (dso == NULL)
657                         goto out_unlock;
658
659                 dso__set_module_info(dso, m, machine);
660                 dso__set_long_name(dso, strdup(filename), true);
661         }
662
663         dso__get(dso);
664 out_unlock:
665         up_write(&machine->dsos.lock);
666         return dso;
667 }
668
669 int machine__process_aux_event(struct machine *machine __maybe_unused,
670                                union perf_event *event)
671 {
672         if (dump_trace)
673                 perf_event__fprintf_aux(event, stdout);
674         return 0;
675 }
676
677 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
678                                         union perf_event *event)
679 {
680         if (dump_trace)
681                 perf_event__fprintf_itrace_start(event, stdout);
682         return 0;
683 }
684
685 int machine__process_switch_event(struct machine *machine __maybe_unused,
686                                   union perf_event *event)
687 {
688         if (dump_trace)
689                 perf_event__fprintf_switch(event, stdout);
690         return 0;
691 }
692
693 static int machine__process_ksymbol_register(struct machine *machine,
694                                              union perf_event *event,
695                                              struct perf_sample *sample __maybe_unused)
696 {
697         struct symbol *sym;
698         struct map *map;
699
700         map = map_groups__find(&machine->kmaps, event->ksymbol_event.addr);
701         if (!map) {
702                 map = dso__new_map(event->ksymbol_event.name);
703                 if (!map)
704                         return -ENOMEM;
705
706                 map->start = event->ksymbol_event.addr;
707                 map->pgoff = map->start;
708                 map->end = map->start + event->ksymbol_event.len;
709                 map_groups__insert(&machine->kmaps, map);
710         }
711
712         sym = symbol__new(event->ksymbol_event.addr, event->ksymbol_event.len,
713                           0, 0, event->ksymbol_event.name);
714         if (!sym)
715                 return -ENOMEM;
716         dso__insert_symbol(map->dso, sym);
717         return 0;
718 }
719
720 static int machine__process_ksymbol_unregister(struct machine *machine,
721                                                union perf_event *event,
722                                                struct perf_sample *sample __maybe_unused)
723 {
724         struct map *map;
725
726         map = map_groups__find(&machine->kmaps, event->ksymbol_event.addr);
727         if (map)
728                 map_groups__remove(&machine->kmaps, map);
729
730         return 0;
731 }
732
733 int machine__process_ksymbol(struct machine *machine __maybe_unused,
734                              union perf_event *event,
735                              struct perf_sample *sample)
736 {
737         if (dump_trace)
738                 perf_event__fprintf_ksymbol(event, stdout);
739
740         if (event->ksymbol_event.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
741                 return machine__process_ksymbol_unregister(machine, event,
742                                                            sample);
743         return machine__process_ksymbol_register(machine, event, sample);
744 }
745
746 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
747 {
748         const char *dup_filename;
749
750         if (!filename || !dso || !dso->long_name)
751                 return;
752         if (dso->long_name[0] != '[')
753                 return;
754         if (!strchr(filename, '/'))
755                 return;
756
757         dup_filename = strdup(filename);
758         if (!dup_filename)
759                 return;
760
761         dso__set_long_name(dso, dup_filename, true);
762 }
763
764 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
765                                         const char *filename)
766 {
767         struct map *map = NULL;
768         struct dso *dso = NULL;
769         struct kmod_path m;
770
771         if (kmod_path__parse_name(&m, filename))
772                 return NULL;
773
774         map = map_groups__find_by_name(&machine->kmaps, m.name);
775         if (map) {
776                 /*
777                  * If the map's dso is an offline module, give dso__load()
778                  * a chance to find the file path of that module by fixing
779                  * long_name.
780                  */
781                 dso__adjust_kmod_long_name(map->dso, filename);
782                 goto out;
783         }
784
785         dso = machine__findnew_module_dso(machine, &m, filename);
786         if (dso == NULL)
787                 goto out;
788
789         map = map__new2(start, dso);
790         if (map == NULL)
791                 goto out;
792
793         map_groups__insert(&machine->kmaps, map);
794
795         /* Put the map here because map_groups__insert alread got it */
796         map__put(map);
797 out:
798         /* put the dso here, corresponding to  machine__findnew_module_dso */
799         dso__put(dso);
800         free(m.name);
801         return map;
802 }
803
804 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
805 {
806         struct rb_node *nd;
807         size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
808
809         for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
810                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
811                 ret += __dsos__fprintf(&pos->dsos.head, fp);
812         }
813
814         return ret;
815 }
816
817 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
818                                      bool (skip)(struct dso *dso, int parm), int parm)
819 {
820         return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
821 }
822
823 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
824                                      bool (skip)(struct dso *dso, int parm), int parm)
825 {
826         struct rb_node *nd;
827         size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
828
829         for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
830                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
831                 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
832         }
833         return ret;
834 }
835
836 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
837 {
838         int i;
839         size_t printed = 0;
840         struct dso *kdso = machine__kernel_map(machine)->dso;
841
842         if (kdso->has_build_id) {
843                 char filename[PATH_MAX];
844                 if (dso__build_id_filename(kdso, filename, sizeof(filename),
845                                            false))
846                         printed += fprintf(fp, "[0] %s\n", filename);
847         }
848
849         for (i = 0; i < vmlinux_path__nr_entries; ++i)
850                 printed += fprintf(fp, "[%d] %s\n",
851                                    i + kdso->has_build_id, vmlinux_path[i]);
852
853         return printed;
854 }
855
856 size_t machine__fprintf(struct machine *machine, FILE *fp)
857 {
858         struct rb_node *nd;
859         size_t ret;
860         int i;
861
862         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
863                 struct threads *threads = &machine->threads[i];
864
865                 down_read(&threads->lock);
866
867                 ret = fprintf(fp, "Threads: %u\n", threads->nr);
868
869                 for (nd = rb_first_cached(&threads->entries); nd;
870                      nd = rb_next(nd)) {
871                         struct thread *pos = rb_entry(nd, struct thread, rb_node);
872
873                         ret += thread__fprintf(pos, fp);
874                 }
875
876                 up_read(&threads->lock);
877         }
878         return ret;
879 }
880
881 static struct dso *machine__get_kernel(struct machine *machine)
882 {
883         const char *vmlinux_name = machine->mmap_name;
884         struct dso *kernel;
885
886         if (machine__is_host(machine)) {
887                 if (symbol_conf.vmlinux_name)
888                         vmlinux_name = symbol_conf.vmlinux_name;
889
890                 kernel = machine__findnew_kernel(machine, vmlinux_name,
891                                                  "[kernel]", DSO_TYPE_KERNEL);
892         } else {
893                 if (symbol_conf.default_guest_vmlinux_name)
894                         vmlinux_name = symbol_conf.default_guest_vmlinux_name;
895
896                 kernel = machine__findnew_kernel(machine, vmlinux_name,
897                                                  "[guest.kernel]",
898                                                  DSO_TYPE_GUEST_KERNEL);
899         }
900
901         if (kernel != NULL && (!kernel->has_build_id))
902                 dso__read_running_kernel_build_id(kernel, machine);
903
904         return kernel;
905 }
906
907 struct process_args {
908         u64 start;
909 };
910
911 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
912                                     size_t bufsz)
913 {
914         if (machine__is_default_guest(machine))
915                 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
916         else
917                 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
918 }
919
920 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
921
922 /* Figure out the start address of kernel map from /proc/kallsyms.
923  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
924  * symbol_name if it's not that important.
925  */
926 static int machine__get_running_kernel_start(struct machine *machine,
927                                              const char **symbol_name, u64 *start)
928 {
929         char filename[PATH_MAX];
930         int i, err = -1;
931         const char *name;
932         u64 addr = 0;
933
934         machine__get_kallsyms_filename(machine, filename, PATH_MAX);
935
936         if (symbol__restricted_filename(filename, "/proc/kallsyms"))
937                 return 0;
938
939         for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
940                 err = kallsyms__get_function_start(filename, name, &addr);
941                 if (!err)
942                         break;
943         }
944
945         if (err)
946                 return -1;
947
948         if (symbol_name)
949                 *symbol_name = name;
950
951         *start = addr;
952         return 0;
953 }
954
955 int machine__create_extra_kernel_map(struct machine *machine,
956                                      struct dso *kernel,
957                                      struct extra_kernel_map *xm)
958 {
959         struct kmap *kmap;
960         struct map *map;
961
962         map = map__new2(xm->start, kernel);
963         if (!map)
964                 return -1;
965
966         map->end   = xm->end;
967         map->pgoff = xm->pgoff;
968
969         kmap = map__kmap(map);
970
971         kmap->kmaps = &machine->kmaps;
972         strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
973
974         map_groups__insert(&machine->kmaps, map);
975
976         pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
977                   kmap->name, map->start, map->end);
978
979         map__put(map);
980
981         return 0;
982 }
983
984 static u64 find_entry_trampoline(struct dso *dso)
985 {
986         /* Duplicates are removed so lookup all aliases */
987         const char *syms[] = {
988                 "_entry_trampoline",
989                 "__entry_trampoline_start",
990                 "entry_SYSCALL_64_trampoline",
991         };
992         struct symbol *sym = dso__first_symbol(dso);
993         unsigned int i;
994
995         for (; sym; sym = dso__next_symbol(sym)) {
996                 if (sym->binding != STB_GLOBAL)
997                         continue;
998                 for (i = 0; i < ARRAY_SIZE(syms); i++) {
999                         if (!strcmp(sym->name, syms[i]))
1000                                 return sym->start;
1001                 }
1002         }
1003
1004         return 0;
1005 }
1006
1007 /*
1008  * These values can be used for kernels that do not have symbols for the entry
1009  * trampolines in kallsyms.
1010  */
1011 #define X86_64_CPU_ENTRY_AREA_PER_CPU   0xfffffe0000000000ULL
1012 #define X86_64_CPU_ENTRY_AREA_SIZE      0x2c000
1013 #define X86_64_ENTRY_TRAMPOLINE         0x6000
1014
1015 /* Map x86_64 PTI entry trampolines */
1016 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1017                                           struct dso *kernel)
1018 {
1019         struct map_groups *kmaps = &machine->kmaps;
1020         struct maps *maps = &kmaps->maps;
1021         int nr_cpus_avail, cpu;
1022         bool found = false;
1023         struct map *map;
1024         u64 pgoff;
1025
1026         /*
1027          * In the vmlinux case, pgoff is a virtual address which must now be
1028          * mapped to a vmlinux offset.
1029          */
1030         for (map = maps__first(maps); map; map = map__next(map)) {
1031                 struct kmap *kmap = __map__kmap(map);
1032                 struct map *dest_map;
1033
1034                 if (!kmap || !is_entry_trampoline(kmap->name))
1035                         continue;
1036
1037                 dest_map = map_groups__find(kmaps, map->pgoff);
1038                 if (dest_map != map)
1039                         map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1040                 found = true;
1041         }
1042         if (found || machine->trampolines_mapped)
1043                 return 0;
1044
1045         pgoff = find_entry_trampoline(kernel);
1046         if (!pgoff)
1047                 return 0;
1048
1049         nr_cpus_avail = machine__nr_cpus_avail(machine);
1050
1051         /* Add a 1 page map for each CPU's entry trampoline */
1052         for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1053                 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1054                          cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1055                          X86_64_ENTRY_TRAMPOLINE;
1056                 struct extra_kernel_map xm = {
1057                         .start = va,
1058                         .end   = va + page_size,
1059                         .pgoff = pgoff,
1060                 };
1061
1062                 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1063
1064                 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1065                         return -1;
1066         }
1067
1068         machine->trampolines_mapped = nr_cpus_avail;
1069
1070         return 0;
1071 }
1072
1073 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1074                                              struct dso *kernel __maybe_unused)
1075 {
1076         return 0;
1077 }
1078
1079 static int
1080 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1081 {
1082         struct kmap *kmap;
1083         struct map *map;
1084
1085         /* In case of renewal the kernel map, destroy previous one */
1086         machine__destroy_kernel_maps(machine);
1087
1088         machine->vmlinux_map = map__new2(0, kernel);
1089         if (machine->vmlinux_map == NULL)
1090                 return -1;
1091
1092         machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1093         map = machine__kernel_map(machine);
1094         kmap = map__kmap(map);
1095         if (!kmap)
1096                 return -1;
1097
1098         kmap->kmaps = &machine->kmaps;
1099         map_groups__insert(&machine->kmaps, map);
1100
1101         return 0;
1102 }
1103
1104 void machine__destroy_kernel_maps(struct machine *machine)
1105 {
1106         struct kmap *kmap;
1107         struct map *map = machine__kernel_map(machine);
1108
1109         if (map == NULL)
1110                 return;
1111
1112         kmap = map__kmap(map);
1113         map_groups__remove(&machine->kmaps, map);
1114         if (kmap && kmap->ref_reloc_sym) {
1115                 zfree((char **)&kmap->ref_reloc_sym->name);
1116                 zfree(&kmap->ref_reloc_sym);
1117         }
1118
1119         map__zput(machine->vmlinux_map);
1120 }
1121
1122 int machines__create_guest_kernel_maps(struct machines *machines)
1123 {
1124         int ret = 0;
1125         struct dirent **namelist = NULL;
1126         int i, items = 0;
1127         char path[PATH_MAX];
1128         pid_t pid;
1129         char *endp;
1130
1131         if (symbol_conf.default_guest_vmlinux_name ||
1132             symbol_conf.default_guest_modules ||
1133             symbol_conf.default_guest_kallsyms) {
1134                 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1135         }
1136
1137         if (symbol_conf.guestmount) {
1138                 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1139                 if (items <= 0)
1140                         return -ENOENT;
1141                 for (i = 0; i < items; i++) {
1142                         if (!isdigit(namelist[i]->d_name[0])) {
1143                                 /* Filter out . and .. */
1144                                 continue;
1145                         }
1146                         pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1147                         if ((*endp != '\0') ||
1148                             (endp == namelist[i]->d_name) ||
1149                             (errno == ERANGE)) {
1150                                 pr_debug("invalid directory (%s). Skipping.\n",
1151                                          namelist[i]->d_name);
1152                                 continue;
1153                         }
1154                         sprintf(path, "%s/%s/proc/kallsyms",
1155                                 symbol_conf.guestmount,
1156                                 namelist[i]->d_name);
1157                         ret = access(path, R_OK);
1158                         if (ret) {
1159                                 pr_debug("Can't access file %s\n", path);
1160                                 goto failure;
1161                         }
1162                         machines__create_kernel_maps(machines, pid);
1163                 }
1164 failure:
1165                 free(namelist);
1166         }
1167
1168         return ret;
1169 }
1170
1171 void machines__destroy_kernel_maps(struct machines *machines)
1172 {
1173         struct rb_node *next = rb_first_cached(&machines->guests);
1174
1175         machine__destroy_kernel_maps(&machines->host);
1176
1177         while (next) {
1178                 struct machine *pos = rb_entry(next, struct machine, rb_node);
1179
1180                 next = rb_next(&pos->rb_node);
1181                 rb_erase_cached(&pos->rb_node, &machines->guests);
1182                 machine__delete(pos);
1183         }
1184 }
1185
1186 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1187 {
1188         struct machine *machine = machines__findnew(machines, pid);
1189
1190         if (machine == NULL)
1191                 return -1;
1192
1193         return machine__create_kernel_maps(machine);
1194 }
1195
1196 int machine__load_kallsyms(struct machine *machine, const char *filename)
1197 {
1198         struct map *map = machine__kernel_map(machine);
1199         int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1200
1201         if (ret > 0) {
1202                 dso__set_loaded(map->dso);
1203                 /*
1204                  * Since /proc/kallsyms will have multiple sessions for the
1205                  * kernel, with modules between them, fixup the end of all
1206                  * sections.
1207                  */
1208                 map_groups__fixup_end(&machine->kmaps);
1209         }
1210
1211         return ret;
1212 }
1213
1214 int machine__load_vmlinux_path(struct machine *machine)
1215 {
1216         struct map *map = machine__kernel_map(machine);
1217         int ret = dso__load_vmlinux_path(map->dso, map);
1218
1219         if (ret > 0)
1220                 dso__set_loaded(map->dso);
1221
1222         return ret;
1223 }
1224
1225 static char *get_kernel_version(const char *root_dir)
1226 {
1227         char version[PATH_MAX];
1228         FILE *file;
1229         char *name, *tmp;
1230         const char *prefix = "Linux version ";
1231
1232         sprintf(version, "%s/proc/version", root_dir);
1233         file = fopen(version, "r");
1234         if (!file)
1235                 return NULL;
1236
1237         version[0] = '\0';
1238         tmp = fgets(version, sizeof(version), file);
1239         fclose(file);
1240
1241         name = strstr(version, prefix);
1242         if (!name)
1243                 return NULL;
1244         name += strlen(prefix);
1245         tmp = strchr(name, ' ');
1246         if (tmp)
1247                 *tmp = '\0';
1248
1249         return strdup(name);
1250 }
1251
1252 static bool is_kmod_dso(struct dso *dso)
1253 {
1254         return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1255                dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1256 }
1257
1258 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1259                                        struct kmod_path *m)
1260 {
1261         char *long_name;
1262         struct map *map = map_groups__find_by_name(mg, m->name);
1263
1264         if (map == NULL)
1265                 return 0;
1266
1267         long_name = strdup(path);
1268         if (long_name == NULL)
1269                 return -ENOMEM;
1270
1271         dso__set_long_name(map->dso, long_name, true);
1272         dso__kernel_module_get_build_id(map->dso, "");
1273
1274         /*
1275          * Full name could reveal us kmod compression, so
1276          * we need to update the symtab_type if needed.
1277          */
1278         if (m->comp && is_kmod_dso(map->dso)) {
1279                 map->dso->symtab_type++;
1280                 map->dso->comp = m->comp;
1281         }
1282
1283         return 0;
1284 }
1285
1286 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1287                                 const char *dir_name, int depth)
1288 {
1289         struct dirent *dent;
1290         DIR *dir = opendir(dir_name);
1291         int ret = 0;
1292
1293         if (!dir) {
1294                 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1295                 return -1;
1296         }
1297
1298         while ((dent = readdir(dir)) != NULL) {
1299                 char path[PATH_MAX];
1300                 struct stat st;
1301
1302                 /*sshfs might return bad dent->d_type, so we have to stat*/
1303                 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1304                 if (stat(path, &st))
1305                         continue;
1306
1307                 if (S_ISDIR(st.st_mode)) {
1308                         if (!strcmp(dent->d_name, ".") ||
1309                             !strcmp(dent->d_name, ".."))
1310                                 continue;
1311
1312                         /* Do not follow top-level source and build symlinks */
1313                         if (depth == 0) {
1314                                 if (!strcmp(dent->d_name, "source") ||
1315                                     !strcmp(dent->d_name, "build"))
1316                                         continue;
1317                         }
1318
1319                         ret = map_groups__set_modules_path_dir(mg, path,
1320                                                                depth + 1);
1321                         if (ret < 0)
1322                                 goto out;
1323                 } else {
1324                         struct kmod_path m;
1325
1326                         ret = kmod_path__parse_name(&m, dent->d_name);
1327                         if (ret)
1328                                 goto out;
1329
1330                         if (m.kmod)
1331                                 ret = map_groups__set_module_path(mg, path, &m);
1332
1333                         free(m.name);
1334
1335                         if (ret)
1336                                 goto out;
1337                 }
1338         }
1339
1340 out:
1341         closedir(dir);
1342         return ret;
1343 }
1344
1345 static int machine__set_modules_path(struct machine *machine)
1346 {
1347         char *version;
1348         char modules_path[PATH_MAX];
1349
1350         version = get_kernel_version(machine->root_dir);
1351         if (!version)
1352                 return -1;
1353
1354         snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1355                  machine->root_dir, version);
1356         free(version);
1357
1358         return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1359 }
1360 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1361                                 const char *name __maybe_unused)
1362 {
1363         return 0;
1364 }
1365
1366 static int machine__create_module(void *arg, const char *name, u64 start,
1367                                   u64 size)
1368 {
1369         struct machine *machine = arg;
1370         struct map *map;
1371
1372         if (arch__fix_module_text_start(&start, name) < 0)
1373                 return -1;
1374
1375         map = machine__findnew_module_map(machine, start, name);
1376         if (map == NULL)
1377                 return -1;
1378         map->end = start + size;
1379
1380         dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1381
1382         return 0;
1383 }
1384
1385 static int machine__create_modules(struct machine *machine)
1386 {
1387         const char *modules;
1388         char path[PATH_MAX];
1389
1390         if (machine__is_default_guest(machine)) {
1391                 modules = symbol_conf.default_guest_modules;
1392         } else {
1393                 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1394                 modules = path;
1395         }
1396
1397         if (symbol__restricted_filename(modules, "/proc/modules"))
1398                 return -1;
1399
1400         if (modules__parse(modules, machine, machine__create_module))
1401                 return -1;
1402
1403         if (!machine__set_modules_path(machine))
1404                 return 0;
1405
1406         pr_debug("Problems setting modules path maps, continuing anyway...\n");
1407
1408         return 0;
1409 }
1410
1411 static void machine__set_kernel_mmap(struct machine *machine,
1412                                      u64 start, u64 end)
1413 {
1414         machine->vmlinux_map->start = start;
1415         machine->vmlinux_map->end   = end;
1416         /*
1417          * Be a bit paranoid here, some perf.data file came with
1418          * a zero sized synthesized MMAP event for the kernel.
1419          */
1420         if (start == 0 && end == 0)
1421                 machine->vmlinux_map->end = ~0ULL;
1422 }
1423
1424 int machine__create_kernel_maps(struct machine *machine)
1425 {
1426         struct dso *kernel = machine__get_kernel(machine);
1427         const char *name = NULL;
1428         struct map *map;
1429         u64 addr = 0;
1430         int ret;
1431
1432         if (kernel == NULL)
1433                 return -1;
1434
1435         ret = __machine__create_kernel_maps(machine, kernel);
1436         if (ret < 0)
1437                 goto out_put;
1438
1439         if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1440                 if (machine__is_host(machine))
1441                         pr_debug("Problems creating module maps, "
1442                                  "continuing anyway...\n");
1443                 else
1444                         pr_debug("Problems creating module maps for guest %d, "
1445                                  "continuing anyway...\n", machine->pid);
1446         }
1447
1448         if (!machine__get_running_kernel_start(machine, &name, &addr)) {
1449                 if (name &&
1450                     map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, addr)) {
1451                         machine__destroy_kernel_maps(machine);
1452                         ret = -1;
1453                         goto out_put;
1454                 }
1455
1456                 /* we have a real start address now, so re-order the kmaps */
1457                 map = machine__kernel_map(machine);
1458
1459                 map__get(map);
1460                 map_groups__remove(&machine->kmaps, map);
1461
1462                 /* assume it's the last in the kmaps */
1463                 machine__set_kernel_mmap(machine, addr, ~0ULL);
1464
1465                 map_groups__insert(&machine->kmaps, map);
1466                 map__put(map);
1467         }
1468
1469         if (machine__create_extra_kernel_maps(machine, kernel))
1470                 pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1471
1472         /* update end address of the kernel map using adjacent module address */
1473         map = map__next(machine__kernel_map(machine));
1474         if (map)
1475                 machine__set_kernel_mmap(machine, addr, map->start);
1476 out_put:
1477         dso__put(kernel);
1478         return ret;
1479 }
1480
1481 static bool machine__uses_kcore(struct machine *machine)
1482 {
1483         struct dso *dso;
1484
1485         list_for_each_entry(dso, &machine->dsos.head, node) {
1486                 if (dso__is_kcore(dso))
1487                         return true;
1488         }
1489
1490         return false;
1491 }
1492
1493 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1494                                              union perf_event *event)
1495 {
1496         return machine__is(machine, "x86_64") &&
1497                is_entry_trampoline(event->mmap.filename);
1498 }
1499
1500 static int machine__process_extra_kernel_map(struct machine *machine,
1501                                              union perf_event *event)
1502 {
1503         struct map *kernel_map = machine__kernel_map(machine);
1504         struct dso *kernel = kernel_map ? kernel_map->dso : NULL;
1505         struct extra_kernel_map xm = {
1506                 .start = event->mmap.start,
1507                 .end   = event->mmap.start + event->mmap.len,
1508                 .pgoff = event->mmap.pgoff,
1509         };
1510
1511         if (kernel == NULL)
1512                 return -1;
1513
1514         strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1515
1516         return machine__create_extra_kernel_map(machine, kernel, &xm);
1517 }
1518
1519 static int machine__process_kernel_mmap_event(struct machine *machine,
1520                                               union perf_event *event)
1521 {
1522         struct map *map;
1523         enum dso_kernel_type kernel_type;
1524         bool is_kernel_mmap;
1525
1526         /* If we have maps from kcore then we do not need or want any others */
1527         if (machine__uses_kcore(machine))
1528                 return 0;
1529
1530         if (machine__is_host(machine))
1531                 kernel_type = DSO_TYPE_KERNEL;
1532         else
1533                 kernel_type = DSO_TYPE_GUEST_KERNEL;
1534
1535         is_kernel_mmap = memcmp(event->mmap.filename,
1536                                 machine->mmap_name,
1537                                 strlen(machine->mmap_name) - 1) == 0;
1538         if (event->mmap.filename[0] == '/' ||
1539             (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1540                 map = machine__findnew_module_map(machine, event->mmap.start,
1541                                                   event->mmap.filename);
1542                 if (map == NULL)
1543                         goto out_problem;
1544
1545                 map->end = map->start + event->mmap.len;
1546         } else if (is_kernel_mmap) {
1547                 const char *symbol_name = (event->mmap.filename +
1548                                 strlen(machine->mmap_name));
1549                 /*
1550                  * Should be there already, from the build-id table in
1551                  * the header.
1552                  */
1553                 struct dso *kernel = NULL;
1554                 struct dso *dso;
1555
1556                 down_read(&machine->dsos.lock);
1557
1558                 list_for_each_entry(dso, &machine->dsos.head, node) {
1559
1560                         /*
1561                          * The cpumode passed to is_kernel_module is not the
1562                          * cpumode of *this* event. If we insist on passing
1563                          * correct cpumode to is_kernel_module, we should
1564                          * record the cpumode when we adding this dso to the
1565                          * linked list.
1566                          *
1567                          * However we don't really need passing correct
1568                          * cpumode.  We know the correct cpumode must be kernel
1569                          * mode (if not, we should not link it onto kernel_dsos
1570                          * list).
1571                          *
1572                          * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1573                          * is_kernel_module() treats it as a kernel cpumode.
1574                          */
1575
1576                         if (!dso->kernel ||
1577                             is_kernel_module(dso->long_name,
1578                                              PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1579                                 continue;
1580
1581
1582                         kernel = dso;
1583                         break;
1584                 }
1585
1586                 up_read(&machine->dsos.lock);
1587
1588                 if (kernel == NULL)
1589                         kernel = machine__findnew_dso(machine, machine->mmap_name);
1590                 if (kernel == NULL)
1591                         goto out_problem;
1592
1593                 kernel->kernel = kernel_type;
1594                 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1595                         dso__put(kernel);
1596                         goto out_problem;
1597                 }
1598
1599                 if (strstr(kernel->long_name, "vmlinux"))
1600                         dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1601
1602                 machine__set_kernel_mmap(machine, event->mmap.start,
1603                                          event->mmap.start + event->mmap.len);
1604
1605                 /*
1606                  * Avoid using a zero address (kptr_restrict) for the ref reloc
1607                  * symbol. Effectively having zero here means that at record
1608                  * time /proc/sys/kernel/kptr_restrict was non zero.
1609                  */
1610                 if (event->mmap.pgoff != 0) {
1611                         map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1612                                                         symbol_name,
1613                                                         event->mmap.pgoff);
1614                 }
1615
1616                 if (machine__is_default_guest(machine)) {
1617                         /*
1618                          * preload dso of guest kernel and modules
1619                          */
1620                         dso__load(kernel, machine__kernel_map(machine));
1621                 }
1622         } else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1623                 return machine__process_extra_kernel_map(machine, event);
1624         }
1625         return 0;
1626 out_problem:
1627         return -1;
1628 }
1629
1630 int machine__process_mmap2_event(struct machine *machine,
1631                                  union perf_event *event,
1632                                  struct perf_sample *sample)
1633 {
1634         struct thread *thread;
1635         struct map *map;
1636         int ret = 0;
1637
1638         if (dump_trace)
1639                 perf_event__fprintf_mmap2(event, stdout);
1640
1641         if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1642             sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1643                 ret = machine__process_kernel_mmap_event(machine, event);
1644                 if (ret < 0)
1645                         goto out_problem;
1646                 return 0;
1647         }
1648
1649         thread = machine__findnew_thread(machine, event->mmap2.pid,
1650                                         event->mmap2.tid);
1651         if (thread == NULL)
1652                 goto out_problem;
1653
1654         map = map__new(machine, event->mmap2.start,
1655                         event->mmap2.len, event->mmap2.pgoff,
1656                         event->mmap2.maj,
1657                         event->mmap2.min, event->mmap2.ino,
1658                         event->mmap2.ino_generation,
1659                         event->mmap2.prot,
1660                         event->mmap2.flags,
1661                         event->mmap2.filename, thread);
1662
1663         if (map == NULL)
1664                 goto out_problem_map;
1665
1666         ret = thread__insert_map(thread, map);
1667         if (ret)
1668                 goto out_problem_insert;
1669
1670         thread__put(thread);
1671         map__put(map);
1672         return 0;
1673
1674 out_problem_insert:
1675         map__put(map);
1676 out_problem_map:
1677         thread__put(thread);
1678 out_problem:
1679         dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1680         return 0;
1681 }
1682
1683 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1684                                 struct perf_sample *sample)
1685 {
1686         struct thread *thread;
1687         struct map *map;
1688         u32 prot = 0;
1689         int ret = 0;
1690
1691         if (dump_trace)
1692                 perf_event__fprintf_mmap(event, stdout);
1693
1694         if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1695             sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1696                 ret = machine__process_kernel_mmap_event(machine, event);
1697                 if (ret < 0)
1698                         goto out_problem;
1699                 return 0;
1700         }
1701
1702         thread = machine__findnew_thread(machine, event->mmap.pid,
1703                                          event->mmap.tid);
1704         if (thread == NULL)
1705                 goto out_problem;
1706
1707         if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1708                 prot = PROT_EXEC;
1709
1710         map = map__new(machine, event->mmap.start,
1711                         event->mmap.len, event->mmap.pgoff,
1712                         0, 0, 0, 0, prot, 0,
1713                         event->mmap.filename,
1714                         thread);
1715
1716         if (map == NULL)
1717                 goto out_problem_map;
1718
1719         ret = thread__insert_map(thread, map);
1720         if (ret)
1721                 goto out_problem_insert;
1722
1723         thread__put(thread);
1724         map__put(map);
1725         return 0;
1726
1727 out_problem_insert:
1728         map__put(map);
1729 out_problem_map:
1730         thread__put(thread);
1731 out_problem:
1732         dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1733         return 0;
1734 }
1735
1736 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1737 {
1738         struct threads *threads = machine__threads(machine, th->tid);
1739
1740         if (threads->last_match == th)
1741                 threads__set_last_match(threads, NULL);
1742
1743         BUG_ON(refcount_read(&th->refcnt) == 0);
1744         if (lock)
1745                 down_write(&threads->lock);
1746         rb_erase_cached(&th->rb_node, &threads->entries);
1747         RB_CLEAR_NODE(&th->rb_node);
1748         --threads->nr;
1749         /*
1750          * Move it first to the dead_threads list, then drop the reference,
1751          * if this is the last reference, then the thread__delete destructor
1752          * will be called and we will remove it from the dead_threads list.
1753          */
1754         list_add_tail(&th->node, &threads->dead);
1755         if (lock)
1756                 up_write(&threads->lock);
1757         thread__put(th);
1758 }
1759
1760 void machine__remove_thread(struct machine *machine, struct thread *th)
1761 {
1762         return __machine__remove_thread(machine, th, true);
1763 }
1764
1765 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1766                                 struct perf_sample *sample)
1767 {
1768         struct thread *thread = machine__find_thread(machine,
1769                                                      event->fork.pid,
1770                                                      event->fork.tid);
1771         struct thread *parent = machine__findnew_thread(machine,
1772                                                         event->fork.ppid,
1773                                                         event->fork.ptid);
1774         bool do_maps_clone = true;
1775         int err = 0;
1776
1777         if (dump_trace)
1778                 perf_event__fprintf_task(event, stdout);
1779
1780         /*
1781          * There may be an existing thread that is not actually the parent,
1782          * either because we are processing events out of order, or because the
1783          * (fork) event that would have removed the thread was lost. Assume the
1784          * latter case and continue on as best we can.
1785          */
1786         if (parent->pid_ != (pid_t)event->fork.ppid) {
1787                 dump_printf("removing erroneous parent thread %d/%d\n",
1788                             parent->pid_, parent->tid);
1789                 machine__remove_thread(machine, parent);
1790                 thread__put(parent);
1791                 parent = machine__findnew_thread(machine, event->fork.ppid,
1792                                                  event->fork.ptid);
1793         }
1794
1795         /* if a thread currently exists for the thread id remove it */
1796         if (thread != NULL) {
1797                 machine__remove_thread(machine, thread);
1798                 thread__put(thread);
1799         }
1800
1801         thread = machine__findnew_thread(machine, event->fork.pid,
1802                                          event->fork.tid);
1803         /*
1804          * When synthesizing FORK events, we are trying to create thread
1805          * objects for the already running tasks on the machine.
1806          *
1807          * Normally, for a kernel FORK event, we want to clone the parent's
1808          * maps because that is what the kernel just did.
1809          *
1810          * But when synthesizing, this should not be done.  If we do, we end up
1811          * with overlapping maps as we process the sythesized MMAP2 events that
1812          * get delivered shortly thereafter.
1813          *
1814          * Use the FORK event misc flags in an internal way to signal this
1815          * situation, so we can elide the map clone when appropriate.
1816          */
1817         if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1818                 do_maps_clone = false;
1819
1820         if (thread == NULL || parent == NULL ||
1821             thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1822                 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1823                 err = -1;
1824         }
1825         thread__put(thread);
1826         thread__put(parent);
1827
1828         return err;
1829 }
1830
1831 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1832                                 struct perf_sample *sample __maybe_unused)
1833 {
1834         struct thread *thread = machine__find_thread(machine,
1835                                                      event->fork.pid,
1836                                                      event->fork.tid);
1837
1838         if (dump_trace)
1839                 perf_event__fprintf_task(event, stdout);
1840
1841         if (thread != NULL) {
1842                 thread__exited(thread);
1843                 thread__put(thread);
1844         }
1845
1846         return 0;
1847 }
1848
1849 int machine__process_event(struct machine *machine, union perf_event *event,
1850                            struct perf_sample *sample)
1851 {
1852         int ret;
1853
1854         switch (event->header.type) {
1855         case PERF_RECORD_COMM:
1856                 ret = machine__process_comm_event(machine, event, sample); break;
1857         case PERF_RECORD_MMAP:
1858                 ret = machine__process_mmap_event(machine, event, sample); break;
1859         case PERF_RECORD_NAMESPACES:
1860                 ret = machine__process_namespaces_event(machine, event, sample); break;
1861         case PERF_RECORD_MMAP2:
1862                 ret = machine__process_mmap2_event(machine, event, sample); break;
1863         case PERF_RECORD_FORK:
1864                 ret = machine__process_fork_event(machine, event, sample); break;
1865         case PERF_RECORD_EXIT:
1866                 ret = machine__process_exit_event(machine, event, sample); break;
1867         case PERF_RECORD_LOST:
1868                 ret = machine__process_lost_event(machine, event, sample); break;
1869         case PERF_RECORD_AUX:
1870                 ret = machine__process_aux_event(machine, event); break;
1871         case PERF_RECORD_ITRACE_START:
1872                 ret = machine__process_itrace_start_event(machine, event); break;
1873         case PERF_RECORD_LOST_SAMPLES:
1874                 ret = machine__process_lost_samples_event(machine, event, sample); break;
1875         case PERF_RECORD_SWITCH:
1876         case PERF_RECORD_SWITCH_CPU_WIDE:
1877                 ret = machine__process_switch_event(machine, event); break;
1878         case PERF_RECORD_KSYMBOL:
1879                 ret = machine__process_ksymbol(machine, event, sample); break;
1880         case PERF_RECORD_BPF_EVENT:
1881                 ret = machine__process_bpf_event(machine, event, sample); break;
1882         default:
1883                 ret = -1;
1884                 break;
1885         }
1886
1887         return ret;
1888 }
1889
1890 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1891 {
1892         if (!regexec(regex, sym->name, 0, NULL, 0))
1893                 return 1;
1894         return 0;
1895 }
1896
1897 static void ip__resolve_ams(struct thread *thread,
1898                             struct addr_map_symbol *ams,
1899                             u64 ip)
1900 {
1901         struct addr_location al;
1902
1903         memset(&al, 0, sizeof(al));
1904         /*
1905          * We cannot use the header.misc hint to determine whether a
1906          * branch stack address is user, kernel, guest, hypervisor.
1907          * Branches may straddle the kernel/user/hypervisor boundaries.
1908          * Thus, we have to try consecutively until we find a match
1909          * or else, the symbol is unknown
1910          */
1911         thread__find_cpumode_addr_location(thread, ip, &al);
1912
1913         ams->addr = ip;
1914         ams->al_addr = al.addr;
1915         ams->sym = al.sym;
1916         ams->map = al.map;
1917         ams->phys_addr = 0;
1918 }
1919
1920 static void ip__resolve_data(struct thread *thread,
1921                              u8 m, struct addr_map_symbol *ams,
1922                              u64 addr, u64 phys_addr)
1923 {
1924         struct addr_location al;
1925
1926         memset(&al, 0, sizeof(al));
1927
1928         thread__find_symbol(thread, m, addr, &al);
1929
1930         ams->addr = addr;
1931         ams->al_addr = al.addr;
1932         ams->sym = al.sym;
1933         ams->map = al.map;
1934         ams->phys_addr = phys_addr;
1935 }
1936
1937 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1938                                      struct addr_location *al)
1939 {
1940         struct mem_info *mi = mem_info__new();
1941
1942         if (!mi)
1943                 return NULL;
1944
1945         ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1946         ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1947                          sample->addr, sample->phys_addr);
1948         mi->data_src.val = sample->data_src;
1949
1950         return mi;
1951 }
1952
1953 static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
1954 {
1955         char *srcline = NULL;
1956
1957         if (!map || callchain_param.key == CCKEY_FUNCTION)
1958                 return srcline;
1959
1960         srcline = srcline__tree_find(&map->dso->srclines, ip);
1961         if (!srcline) {
1962                 bool show_sym = false;
1963                 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
1964
1965                 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1966                                       sym, show_sym, show_addr, ip);
1967                 srcline__tree_insert(&map->dso->srclines, ip, srcline);
1968         }
1969
1970         return srcline;
1971 }
1972
1973 struct iterations {
1974         int nr_loop_iter;
1975         u64 cycles;
1976 };
1977
1978 static int add_callchain_ip(struct thread *thread,
1979                             struct callchain_cursor *cursor,
1980                             struct symbol **parent,
1981                             struct addr_location *root_al,
1982                             u8 *cpumode,
1983                             u64 ip,
1984                             bool branch,
1985                             struct branch_flags *flags,
1986                             struct iterations *iter,
1987                             u64 branch_from)
1988 {
1989         struct addr_location al;
1990         int nr_loop_iter = 0;
1991         u64 iter_cycles = 0;
1992         const char *srcline = NULL;
1993
1994         al.filtered = 0;
1995         al.sym = NULL;
1996         if (!cpumode) {
1997                 thread__find_cpumode_addr_location(thread, ip, &al);
1998         } else {
1999                 if (ip >= PERF_CONTEXT_MAX) {
2000                         switch (ip) {
2001                         case PERF_CONTEXT_HV:
2002                                 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2003                                 break;
2004                         case PERF_CONTEXT_KERNEL:
2005                                 *cpumode = PERF_RECORD_MISC_KERNEL;
2006                                 break;
2007                         case PERF_CONTEXT_USER:
2008                                 *cpumode = PERF_RECORD_MISC_USER;
2009                                 break;
2010                         default:
2011                                 pr_debug("invalid callchain context: "
2012                                          "%"PRId64"\n", (s64) ip);
2013                                 /*
2014                                  * It seems the callchain is corrupted.
2015                                  * Discard all.
2016                                  */
2017                                 callchain_cursor_reset(cursor);
2018                                 return 1;
2019                         }
2020                         return 0;
2021                 }
2022                 thread__find_symbol(thread, *cpumode, ip, &al);
2023         }
2024
2025         if (al.sym != NULL) {
2026                 if (perf_hpp_list.parent && !*parent &&
2027                     symbol__match_regex(al.sym, &parent_regex))
2028                         *parent = al.sym;
2029                 else if (have_ignore_callees && root_al &&
2030                   symbol__match_regex(al.sym, &ignore_callees_regex)) {
2031                         /* Treat this symbol as the root,
2032                            forgetting its callees. */
2033                         *root_al = al;
2034                         callchain_cursor_reset(cursor);
2035                 }
2036         }
2037
2038         if (symbol_conf.hide_unresolved && al.sym == NULL)
2039                 return 0;
2040
2041         if (iter) {
2042                 nr_loop_iter = iter->nr_loop_iter;
2043                 iter_cycles = iter->cycles;
2044         }
2045
2046         srcline = callchain_srcline(al.map, al.sym, al.addr);
2047         return callchain_cursor_append(cursor, ip, al.map, al.sym,
2048                                        branch, flags, nr_loop_iter,
2049                                        iter_cycles, branch_from, srcline);
2050 }
2051
2052 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2053                                            struct addr_location *al)
2054 {
2055         unsigned int i;
2056         const struct branch_stack *bs = sample->branch_stack;
2057         struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2058
2059         if (!bi)
2060                 return NULL;
2061
2062         for (i = 0; i < bs->nr; i++) {
2063                 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
2064                 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
2065                 bi[i].flags = bs->entries[i].flags;
2066         }
2067         return bi;
2068 }
2069
2070 static void save_iterations(struct iterations *iter,
2071                             struct branch_entry *be, int nr)
2072 {
2073         int i;
2074
2075         iter->nr_loop_iter++;
2076         iter->cycles = 0;
2077
2078         for (i = 0; i < nr; i++)
2079                 iter->cycles += be[i].flags.cycles;
2080 }
2081
2082 #define CHASHSZ 127
2083 #define CHASHBITS 7
2084 #define NO_ENTRY 0xff
2085
2086 #define PERF_MAX_BRANCH_DEPTH 127
2087
2088 /* Remove loops. */
2089 static int remove_loops(struct branch_entry *l, int nr,
2090                         struct iterations *iter)
2091 {
2092         int i, j, off;
2093         unsigned char chash[CHASHSZ];
2094
2095         memset(chash, NO_ENTRY, sizeof(chash));
2096
2097         BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2098
2099         for (i = 0; i < nr; i++) {
2100                 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2101
2102                 /* no collision handling for now */
2103                 if (chash[h] == NO_ENTRY) {
2104                         chash[h] = i;
2105                 } else if (l[chash[h]].from == l[i].from) {
2106                         bool is_loop = true;
2107                         /* check if it is a real loop */
2108                         off = 0;
2109                         for (j = chash[h]; j < i && i + off < nr; j++, off++)
2110                                 if (l[j].from != l[i + off].from) {
2111                                         is_loop = false;
2112                                         break;
2113                                 }
2114                         if (is_loop) {
2115                                 j = nr - (i + off);
2116                                 if (j > 0) {
2117                                         save_iterations(iter + i + off,
2118                                                 l + i, off);
2119
2120                                         memmove(iter + i, iter + i + off,
2121                                                 j * sizeof(*iter));
2122
2123                                         memmove(l + i, l + i + off,
2124                                                 j * sizeof(*l));
2125                                 }
2126
2127                                 nr -= off;
2128                         }
2129                 }
2130         }
2131         return nr;
2132 }
2133
2134 /*
2135  * Recolve LBR callstack chain sample
2136  * Return:
2137  * 1 on success get LBR callchain information
2138  * 0 no available LBR callchain information, should try fp
2139  * negative error code on other errors.
2140  */
2141 static int resolve_lbr_callchain_sample(struct thread *thread,
2142                                         struct callchain_cursor *cursor,
2143                                         struct perf_sample *sample,
2144                                         struct symbol **parent,
2145                                         struct addr_location *root_al,
2146                                         int max_stack)
2147 {
2148         struct ip_callchain *chain = sample->callchain;
2149         int chain_nr = min(max_stack, (int)chain->nr), i;
2150         u8 cpumode = PERF_RECORD_MISC_USER;
2151         u64 ip, branch_from = 0;
2152
2153         for (i = 0; i < chain_nr; i++) {
2154                 if (chain->ips[i] == PERF_CONTEXT_USER)
2155                         break;
2156         }
2157
2158         /* LBR only affects the user callchain */
2159         if (i != chain_nr) {
2160                 struct branch_stack *lbr_stack = sample->branch_stack;
2161                 int lbr_nr = lbr_stack->nr, j, k;
2162                 bool branch;
2163                 struct branch_flags *flags;
2164                 /*
2165                  * LBR callstack can only get user call chain.
2166                  * The mix_chain_nr is kernel call chain
2167                  * number plus LBR user call chain number.
2168                  * i is kernel call chain number,
2169                  * 1 is PERF_CONTEXT_USER,
2170                  * lbr_nr + 1 is the user call chain number.
2171                  * For details, please refer to the comments
2172                  * in callchain__printf
2173                  */
2174                 int mix_chain_nr = i + 1 + lbr_nr + 1;
2175
2176                 for (j = 0; j < mix_chain_nr; j++) {
2177                         int err;
2178                         branch = false;
2179                         flags = NULL;
2180
2181                         if (callchain_param.order == ORDER_CALLEE) {
2182                                 if (j < i + 1)
2183                                         ip = chain->ips[j];
2184                                 else if (j > i + 1) {
2185                                         k = j - i - 2;
2186                                         ip = lbr_stack->entries[k].from;
2187                                         branch = true;
2188                                         flags = &lbr_stack->entries[k].flags;
2189                                 } else {
2190                                         ip = lbr_stack->entries[0].to;
2191                                         branch = true;
2192                                         flags = &lbr_stack->entries[0].flags;
2193                                         branch_from =
2194                                                 lbr_stack->entries[0].from;
2195                                 }
2196                         } else {
2197                                 if (j < lbr_nr) {
2198                                         k = lbr_nr - j - 1;
2199                                         ip = lbr_stack->entries[k].from;
2200                                         branch = true;
2201                                         flags = &lbr_stack->entries[k].flags;
2202                                 }
2203                                 else if (j > lbr_nr)
2204                                         ip = chain->ips[i + 1 - (j - lbr_nr)];
2205                                 else {
2206                                         ip = lbr_stack->entries[0].to;
2207                                         branch = true;
2208                                         flags = &lbr_stack->entries[0].flags;
2209                                         branch_from =
2210                                                 lbr_stack->entries[0].from;
2211                                 }
2212                         }
2213
2214                         err = add_callchain_ip(thread, cursor, parent,
2215                                                root_al, &cpumode, ip,
2216                                                branch, flags, NULL,
2217                                                branch_from);
2218                         if (err)
2219                                 return (err < 0) ? err : 0;
2220                 }
2221                 return 1;
2222         }
2223
2224         return 0;
2225 }
2226
2227 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2228                              struct callchain_cursor *cursor,
2229                              struct symbol **parent,
2230                              struct addr_location *root_al,
2231                              u8 *cpumode, int ent)
2232 {
2233         int err = 0;
2234
2235         while (--ent >= 0) {
2236                 u64 ip = chain->ips[ent];
2237
2238                 if (ip >= PERF_CONTEXT_MAX) {
2239                         err = add_callchain_ip(thread, cursor, parent,
2240                                                root_al, cpumode, ip,
2241                                                false, NULL, NULL, 0);
2242                         break;
2243                 }
2244         }
2245         return err;
2246 }
2247
2248 static int thread__resolve_callchain_sample(struct thread *thread,
2249                                             struct callchain_cursor *cursor,
2250                                             struct perf_evsel *evsel,
2251                                             struct perf_sample *sample,
2252                                             struct symbol **parent,
2253                                             struct addr_location *root_al,
2254                                             int max_stack)
2255 {
2256         struct branch_stack *branch = sample->branch_stack;
2257         struct ip_callchain *chain = sample->callchain;
2258         int chain_nr = 0;
2259         u8 cpumode = PERF_RECORD_MISC_USER;
2260         int i, j, err, nr_entries;
2261         int skip_idx = -1;
2262         int first_call = 0;
2263
2264         if (chain)
2265                 chain_nr = chain->nr;
2266
2267         if (perf_evsel__has_branch_callstack(evsel)) {
2268                 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2269                                                    root_al, max_stack);
2270                 if (err)
2271                         return (err < 0) ? err : 0;
2272         }
2273
2274         /*
2275          * Based on DWARF debug information, some architectures skip
2276          * a callchain entry saved by the kernel.
2277          */
2278         skip_idx = arch_skip_callchain_idx(thread, chain);
2279
2280         /*
2281          * Add branches to call stack for easier browsing. This gives
2282          * more context for a sample than just the callers.
2283          *
2284          * This uses individual histograms of paths compared to the
2285          * aggregated histograms the normal LBR mode uses.
2286          *
2287          * Limitations for now:
2288          * - No extra filters
2289          * - No annotations (should annotate somehow)
2290          */
2291
2292         if (branch && callchain_param.branch_callstack) {
2293                 int nr = min(max_stack, (int)branch->nr);
2294                 struct branch_entry be[nr];
2295                 struct iterations iter[nr];
2296
2297                 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2298                         pr_warning("corrupted branch chain. skipping...\n");
2299                         goto check_calls;
2300                 }
2301
2302                 for (i = 0; i < nr; i++) {
2303                         if (callchain_param.order == ORDER_CALLEE) {
2304                                 be[i] = branch->entries[i];
2305
2306                                 if (chain == NULL)
2307                                         continue;
2308
2309                                 /*
2310                                  * Check for overlap into the callchain.
2311                                  * The return address is one off compared to
2312                                  * the branch entry. To adjust for this
2313                                  * assume the calling instruction is not longer
2314                                  * than 8 bytes.
2315                                  */
2316                                 if (i == skip_idx ||
2317                                     chain->ips[first_call] >= PERF_CONTEXT_MAX)
2318                                         first_call++;
2319                                 else if (be[i].from < chain->ips[first_call] &&
2320                                     be[i].from >= chain->ips[first_call] - 8)
2321                                         first_call++;
2322                         } else
2323                                 be[i] = branch->entries[branch->nr - i - 1];
2324                 }
2325
2326                 memset(iter, 0, sizeof(struct iterations) * nr);
2327                 nr = remove_loops(be, nr, iter);
2328
2329                 for (i = 0; i < nr; i++) {
2330                         err = add_callchain_ip(thread, cursor, parent,
2331                                                root_al,
2332                                                NULL, be[i].to,
2333                                                true, &be[i].flags,
2334                                                NULL, be[i].from);
2335
2336                         if (!err)
2337                                 err = add_callchain_ip(thread, cursor, parent, root_al,
2338                                                        NULL, be[i].from,
2339                                                        true, &be[i].flags,
2340                                                        &iter[i], 0);
2341                         if (err == -EINVAL)
2342                                 break;
2343                         if (err)
2344                                 return err;
2345                 }
2346
2347                 if (chain_nr == 0)
2348                         return 0;
2349
2350                 chain_nr -= nr;
2351         }
2352
2353 check_calls:
2354         if (callchain_param.order != ORDER_CALLEE) {
2355                 err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2356                                         &cpumode, chain->nr - first_call);
2357                 if (err)
2358                         return (err < 0) ? err : 0;
2359         }
2360         for (i = first_call, nr_entries = 0;
2361              i < chain_nr && nr_entries < max_stack; i++) {
2362                 u64 ip;
2363
2364                 if (callchain_param.order == ORDER_CALLEE)
2365                         j = i;
2366                 else
2367                         j = chain->nr - i - 1;
2368
2369 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2370                 if (j == skip_idx)
2371                         continue;
2372 #endif
2373                 ip = chain->ips[j];
2374                 if (ip < PERF_CONTEXT_MAX)
2375                        ++nr_entries;
2376                 else if (callchain_param.order != ORDER_CALLEE) {
2377                         err = find_prev_cpumode(chain, thread, cursor, parent,
2378                                                 root_al, &cpumode, j);
2379                         if (err)
2380                                 return (err < 0) ? err : 0;
2381                         continue;
2382                 }
2383
2384                 err = add_callchain_ip(thread, cursor, parent,
2385                                        root_al, &cpumode, ip,
2386                                        false, NULL, NULL, 0);
2387
2388                 if (err)
2389                         return (err < 0) ? err : 0;
2390         }
2391
2392         return 0;
2393 }
2394
2395 static int append_inlines(struct callchain_cursor *cursor,
2396                           struct map *map, struct symbol *sym, u64 ip)
2397 {
2398         struct inline_node *inline_node;
2399         struct inline_list *ilist;
2400         u64 addr;
2401         int ret = 1;
2402
2403         if (!symbol_conf.inline_name || !map || !sym)
2404                 return ret;
2405
2406         addr = map__map_ip(map, ip);
2407         addr = map__rip_2objdump(map, addr);
2408
2409         inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2410         if (!inline_node) {
2411                 inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2412                 if (!inline_node)
2413                         return ret;
2414                 inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2415         }
2416
2417         list_for_each_entry(ilist, &inline_node->val, list) {
2418                 ret = callchain_cursor_append(cursor, ip, map,
2419                                               ilist->symbol, false,
2420                                               NULL, 0, 0, 0, ilist->srcline);
2421
2422                 if (ret != 0)
2423                         return ret;
2424         }
2425
2426         return ret;
2427 }
2428
2429 static int unwind_entry(struct unwind_entry *entry, void *arg)
2430 {
2431         struct callchain_cursor *cursor = arg;
2432         const char *srcline = NULL;
2433         u64 addr = entry->ip;
2434
2435         if (symbol_conf.hide_unresolved && entry->sym == NULL)
2436                 return 0;
2437
2438         if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
2439                 return 0;
2440
2441         /*
2442          * Convert entry->ip from a virtual address to an offset in
2443          * its corresponding binary.
2444          */
2445         if (entry->map)
2446                 addr = map__map_ip(entry->map, entry->ip);
2447
2448         srcline = callchain_srcline(entry->map, entry->sym, addr);
2449         return callchain_cursor_append(cursor, entry->ip,
2450                                        entry->map, entry->sym,
2451                                        false, NULL, 0, 0, 0, srcline);
2452 }
2453
2454 static int thread__resolve_callchain_unwind(struct thread *thread,
2455                                             struct callchain_cursor *cursor,
2456                                             struct perf_evsel *evsel,
2457                                             struct perf_sample *sample,
2458                                             int max_stack)
2459 {
2460         /* Can we do dwarf post unwind? */
2461         if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2462               (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
2463                 return 0;
2464
2465         /* Bail out if nothing was captured. */
2466         if ((!sample->user_regs.regs) ||
2467             (!sample->user_stack.size))
2468                 return 0;
2469
2470         return unwind__get_entries(unwind_entry, cursor,
2471                                    thread, sample, max_stack);
2472 }
2473
2474 int thread__resolve_callchain(struct thread *thread,
2475                               struct callchain_cursor *cursor,
2476                               struct perf_evsel *evsel,
2477                               struct perf_sample *sample,
2478                               struct symbol **parent,
2479                               struct addr_location *root_al,
2480                               int max_stack)
2481 {
2482         int ret = 0;
2483
2484         callchain_cursor_reset(cursor);
2485
2486         if (callchain_param.order == ORDER_CALLEE) {
2487                 ret = thread__resolve_callchain_sample(thread, cursor,
2488                                                        evsel, sample,
2489                                                        parent, root_al,
2490                                                        max_stack);
2491                 if (ret)
2492                         return ret;
2493                 ret = thread__resolve_callchain_unwind(thread, cursor,
2494                                                        evsel, sample,
2495                                                        max_stack);
2496         } else {
2497                 ret = thread__resolve_callchain_unwind(thread, cursor,
2498                                                        evsel, sample,
2499                                                        max_stack);
2500                 if (ret)
2501                         return ret;
2502                 ret = thread__resolve_callchain_sample(thread, cursor,
2503                                                        evsel, sample,
2504                                                        parent, root_al,
2505                                                        max_stack);
2506         }
2507
2508         return ret;
2509 }
2510
2511 int machine__for_each_thread(struct machine *machine,
2512                              int (*fn)(struct thread *thread, void *p),
2513                              void *priv)
2514 {
2515         struct threads *threads;
2516         struct rb_node *nd;
2517         struct thread *thread;
2518         int rc = 0;
2519         int i;
2520
2521         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2522                 threads = &machine->threads[i];
2523                 for (nd = rb_first_cached(&threads->entries); nd;
2524                      nd = rb_next(nd)) {
2525                         thread = rb_entry(nd, struct thread, rb_node);
2526                         rc = fn(thread, priv);
2527                         if (rc != 0)
2528                                 return rc;
2529                 }
2530
2531                 list_for_each_entry(thread, &threads->dead, node) {
2532                         rc = fn(thread, priv);
2533                         if (rc != 0)
2534                                 return rc;
2535                 }
2536         }
2537         return rc;
2538 }
2539
2540 int machines__for_each_thread(struct machines *machines,
2541                               int (*fn)(struct thread *thread, void *p),
2542                               void *priv)
2543 {
2544         struct rb_node *nd;
2545         int rc = 0;
2546
2547         rc = machine__for_each_thread(&machines->host, fn, priv);
2548         if (rc != 0)
2549                 return rc;
2550
2551         for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2552                 struct machine *machine = rb_entry(nd, struct machine, rb_node);
2553
2554                 rc = machine__for_each_thread(machine, fn, priv);
2555                 if (rc != 0)
2556                         return rc;
2557         }
2558         return rc;
2559 }
2560
2561 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2562                                   struct target *target, struct thread_map *threads,
2563                                   perf_event__handler_t process, bool data_mmap,
2564                                   unsigned int nr_threads_synthesize)
2565 {
2566         if (target__has_task(target))
2567                 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap);
2568         else if (target__has_cpu(target))
2569                 return perf_event__synthesize_threads(tool, process,
2570                                                       machine, data_mmap,
2571                                                       nr_threads_synthesize);
2572         /* command specified */
2573         return 0;
2574 }
2575
2576 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2577 {
2578         if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2579                 return -1;
2580
2581         return machine->current_tid[cpu];
2582 }
2583
2584 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2585                              pid_t tid)
2586 {
2587         struct thread *thread;
2588
2589         if (cpu < 0)
2590                 return -EINVAL;
2591
2592         if (!machine->current_tid) {
2593                 int i;
2594
2595                 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2596                 if (!machine->current_tid)
2597                         return -ENOMEM;
2598                 for (i = 0; i < MAX_NR_CPUS; i++)
2599                         machine->current_tid[i] = -1;
2600         }
2601
2602         if (cpu >= MAX_NR_CPUS) {
2603                 pr_err("Requested CPU %d too large. ", cpu);
2604                 pr_err("Consider raising MAX_NR_CPUS\n");
2605                 return -EINVAL;
2606         }
2607
2608         machine->current_tid[cpu] = tid;
2609
2610         thread = machine__findnew_thread(machine, pid, tid);
2611         if (!thread)
2612                 return -ENOMEM;
2613
2614         thread->cpu = cpu;
2615         thread__put(thread);
2616
2617         return 0;
2618 }
2619
2620 /*
2621  * Compares the raw arch string. N.B. see instead perf_env__arch() if a
2622  * normalized arch is needed.
2623  */
2624 bool machine__is(struct machine *machine, const char *arch)
2625 {
2626         return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
2627 }
2628
2629 int machine__nr_cpus_avail(struct machine *machine)
2630 {
2631         return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
2632 }
2633
2634 int machine__get_kernel_start(struct machine *machine)
2635 {
2636         struct map *map = machine__kernel_map(machine);
2637         int err = 0;
2638
2639         /*
2640          * The only addresses above 2^63 are kernel addresses of a 64-bit
2641          * kernel.  Note that addresses are unsigned so that on a 32-bit system
2642          * all addresses including kernel addresses are less than 2^32.  In
2643          * that case (32-bit system), if the kernel mapping is unknown, all
2644          * addresses will be assumed to be in user space - see
2645          * machine__kernel_ip().
2646          */
2647         machine->kernel_start = 1ULL << 63;
2648         if (map) {
2649                 err = map__load(map);
2650                 /*
2651                  * On x86_64, PTI entry trampolines are less than the
2652                  * start of kernel text, but still above 2^63. So leave
2653                  * kernel_start = 1ULL << 63 for x86_64.
2654                  */
2655                 if (!err && !machine__is(machine, "x86_64"))
2656                         machine->kernel_start = map->start;
2657         }
2658         return err;
2659 }
2660
2661 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
2662 {
2663         u8 addr_cpumode = cpumode;
2664         bool kernel_ip;
2665
2666         if (!machine->single_address_space)
2667                 goto out;
2668
2669         kernel_ip = machine__kernel_ip(machine, addr);
2670         switch (cpumode) {
2671         case PERF_RECORD_MISC_KERNEL:
2672         case PERF_RECORD_MISC_USER:
2673                 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
2674                                            PERF_RECORD_MISC_USER;
2675                 break;
2676         case PERF_RECORD_MISC_GUEST_KERNEL:
2677         case PERF_RECORD_MISC_GUEST_USER:
2678                 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
2679                                            PERF_RECORD_MISC_GUEST_USER;
2680                 break;
2681         default:
2682                 break;
2683         }
2684 out:
2685         return addr_cpumode;
2686 }
2687
2688 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2689 {
2690         return dsos__findnew(&machine->dsos, filename);
2691 }
2692
2693 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2694 {
2695         struct machine *machine = vmachine;
2696         struct map *map;
2697         struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2698
2699         if (sym == NULL)
2700                 return NULL;
2701
2702         *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2703         *addrp = map->unmap_ip(map, sym->start);
2704         return sym->name;
2705 }