Merge drm-upstream/drm-next into drm-misc-next
[sfrench/cifs-2.6.git] / tools / perf / util / header.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "util.h"
5 #include "string2.h"
6 #include <sys/param.h>
7 #include <sys/types.h>
8 #include <byteswap.h>
9 #include <unistd.h>
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <linux/compiler.h>
13 #include <linux/list.h>
14 #include <linux/kernel.h>
15 #include <linux/bitops.h>
16 #include <linux/stringify.h>
17 #include <sys/stat.h>
18 #include <sys/utsname.h>
19 #include <linux/time64.h>
20 #include <dirent.h>
21
22 #include "evlist.h"
23 #include "evsel.h"
24 #include "header.h"
25 #include "memswap.h"
26 #include "../perf.h"
27 #include "trace-event.h"
28 #include "session.h"
29 #include "symbol.h"
30 #include "debug.h"
31 #include "cpumap.h"
32 #include "pmu.h"
33 #include "vdso.h"
34 #include "strbuf.h"
35 #include "build-id.h"
36 #include "data.h"
37 #include <api/fs/fs.h>
38 #include "asm/bug.h"
39 #include "tool.h"
40 #include "time-utils.h"
41 #include "units.h"
42
43 #include "sane_ctype.h"
44
45 /*
46  * magic2 = "PERFILE2"
47  * must be a numerical value to let the endianness
48  * determine the memory layout. That way we are able
49  * to detect endianness when reading the perf.data file
50  * back.
51  *
52  * we check for legacy (PERFFILE) format.
53  */
54 static const char *__perf_magic1 = "PERFFILE";
55 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
56 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
57
58 #define PERF_MAGIC      __perf_magic2
59
60 const char perf_version_string[] = PERF_VERSION;
61
62 struct perf_file_attr {
63         struct perf_event_attr  attr;
64         struct perf_file_section        ids;
65 };
66
67 struct feat_fd {
68         struct perf_header      *ph;
69         int                     fd;
70         void                    *buf;   /* Either buf != NULL or fd >= 0 */
71         ssize_t                 offset;
72         size_t                  size;
73         struct perf_evsel       *events;
74 };
75
76 void perf_header__set_feat(struct perf_header *header, int feat)
77 {
78         set_bit(feat, header->adds_features);
79 }
80
81 void perf_header__clear_feat(struct perf_header *header, int feat)
82 {
83         clear_bit(feat, header->adds_features);
84 }
85
86 bool perf_header__has_feat(const struct perf_header *header, int feat)
87 {
88         return test_bit(feat, header->adds_features);
89 }
90
91 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
92 {
93         ssize_t ret = writen(ff->fd, buf, size);
94
95         if (ret != (ssize_t)size)
96                 return ret < 0 ? (int)ret : -1;
97         return 0;
98 }
99
100 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
101 {
102         /* struct perf_event_header::size is u16 */
103         const size_t max_size = 0xffff - sizeof(struct perf_event_header);
104         size_t new_size = ff->size;
105         void *addr;
106
107         if (size + ff->offset > max_size)
108                 return -E2BIG;
109
110         while (size > (new_size - ff->offset))
111                 new_size <<= 1;
112         new_size = min(max_size, new_size);
113
114         if (ff->size < new_size) {
115                 addr = realloc(ff->buf, new_size);
116                 if (!addr)
117                         return -ENOMEM;
118                 ff->buf = addr;
119                 ff->size = new_size;
120         }
121
122         memcpy(ff->buf + ff->offset, buf, size);
123         ff->offset += size;
124
125         return 0;
126 }
127
128 /* Return: 0 if succeded, -ERR if failed. */
129 int do_write(struct feat_fd *ff, const void *buf, size_t size)
130 {
131         if (!ff->buf)
132                 return __do_write_fd(ff, buf, size);
133         return __do_write_buf(ff, buf, size);
134 }
135
136 /* Return: 0 if succeded, -ERR if failed. */
137 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
138 {
139         u64 *p = (u64 *) set;
140         int i, ret;
141
142         ret = do_write(ff, &size, sizeof(size));
143         if (ret < 0)
144                 return ret;
145
146         for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
147                 ret = do_write(ff, p + i, sizeof(*p));
148                 if (ret < 0)
149                         return ret;
150         }
151
152         return 0;
153 }
154
155 /* Return: 0 if succeded, -ERR if failed. */
156 int write_padded(struct feat_fd *ff, const void *bf,
157                  size_t count, size_t count_aligned)
158 {
159         static const char zero_buf[NAME_ALIGN];
160         int err = do_write(ff, bf, count);
161
162         if (!err)
163                 err = do_write(ff, zero_buf, count_aligned - count);
164
165         return err;
166 }
167
168 #define string_size(str)                                                \
169         (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
170
171 /* Return: 0 if succeded, -ERR if failed. */
172 static int do_write_string(struct feat_fd *ff, const char *str)
173 {
174         u32 len, olen;
175         int ret;
176
177         olen = strlen(str) + 1;
178         len = PERF_ALIGN(olen, NAME_ALIGN);
179
180         /* write len, incl. \0 */
181         ret = do_write(ff, &len, sizeof(len));
182         if (ret < 0)
183                 return ret;
184
185         return write_padded(ff, str, olen, len);
186 }
187
188 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
189 {
190         ssize_t ret = readn(ff->fd, addr, size);
191
192         if (ret != size)
193                 return ret < 0 ? (int)ret : -1;
194         return 0;
195 }
196
197 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
198 {
199         if (size > (ssize_t)ff->size - ff->offset)
200                 return -1;
201
202         memcpy(addr, ff->buf + ff->offset, size);
203         ff->offset += size;
204
205         return 0;
206
207 }
208
209 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
210 {
211         if (!ff->buf)
212                 return __do_read_fd(ff, addr, size);
213         return __do_read_buf(ff, addr, size);
214 }
215
216 static int do_read_u32(struct feat_fd *ff, u32 *addr)
217 {
218         int ret;
219
220         ret = __do_read(ff, addr, sizeof(*addr));
221         if (ret)
222                 return ret;
223
224         if (ff->ph->needs_swap)
225                 *addr = bswap_32(*addr);
226         return 0;
227 }
228
229 static int do_read_u64(struct feat_fd *ff, u64 *addr)
230 {
231         int ret;
232
233         ret = __do_read(ff, addr, sizeof(*addr));
234         if (ret)
235                 return ret;
236
237         if (ff->ph->needs_swap)
238                 *addr = bswap_64(*addr);
239         return 0;
240 }
241
242 static char *do_read_string(struct feat_fd *ff)
243 {
244         u32 len;
245         char *buf;
246
247         if (do_read_u32(ff, &len))
248                 return NULL;
249
250         buf = malloc(len);
251         if (!buf)
252                 return NULL;
253
254         if (!__do_read(ff, buf, len)) {
255                 /*
256                  * strings are padded by zeroes
257                  * thus the actual strlen of buf
258                  * may be less than len
259                  */
260                 return buf;
261         }
262
263         free(buf);
264         return NULL;
265 }
266
267 /* Return: 0 if succeded, -ERR if failed. */
268 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
269 {
270         unsigned long *set;
271         u64 size, *p;
272         int i, ret;
273
274         ret = do_read_u64(ff, &size);
275         if (ret)
276                 return ret;
277
278         set = bitmap_alloc(size);
279         if (!set)
280                 return -ENOMEM;
281
282         bitmap_zero(set, size);
283
284         p = (u64 *) set;
285
286         for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
287                 ret = do_read_u64(ff, p + i);
288                 if (ret < 0) {
289                         free(set);
290                         return ret;
291                 }
292         }
293
294         *pset  = set;
295         *psize = size;
296         return 0;
297 }
298
299 static int write_tracing_data(struct feat_fd *ff,
300                               struct perf_evlist *evlist)
301 {
302         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
303                 return -1;
304
305         return read_tracing_data(ff->fd, &evlist->entries);
306 }
307
308 static int write_build_id(struct feat_fd *ff,
309                           struct perf_evlist *evlist __maybe_unused)
310 {
311         struct perf_session *session;
312         int err;
313
314         session = container_of(ff->ph, struct perf_session, header);
315
316         if (!perf_session__read_build_ids(session, true))
317                 return -1;
318
319         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
320                 return -1;
321
322         err = perf_session__write_buildid_table(session, ff);
323         if (err < 0) {
324                 pr_debug("failed to write buildid table\n");
325                 return err;
326         }
327         perf_session__cache_build_ids(session);
328
329         return 0;
330 }
331
332 static int write_hostname(struct feat_fd *ff,
333                           struct perf_evlist *evlist __maybe_unused)
334 {
335         struct utsname uts;
336         int ret;
337
338         ret = uname(&uts);
339         if (ret < 0)
340                 return -1;
341
342         return do_write_string(ff, uts.nodename);
343 }
344
345 static int write_osrelease(struct feat_fd *ff,
346                            struct perf_evlist *evlist __maybe_unused)
347 {
348         struct utsname uts;
349         int ret;
350
351         ret = uname(&uts);
352         if (ret < 0)
353                 return -1;
354
355         return do_write_string(ff, uts.release);
356 }
357
358 static int write_arch(struct feat_fd *ff,
359                       struct perf_evlist *evlist __maybe_unused)
360 {
361         struct utsname uts;
362         int ret;
363
364         ret = uname(&uts);
365         if (ret < 0)
366                 return -1;
367
368         return do_write_string(ff, uts.machine);
369 }
370
371 static int write_version(struct feat_fd *ff,
372                          struct perf_evlist *evlist __maybe_unused)
373 {
374         return do_write_string(ff, perf_version_string);
375 }
376
377 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
378 {
379         FILE *file;
380         char *buf = NULL;
381         char *s, *p;
382         const char *search = cpuinfo_proc;
383         size_t len = 0;
384         int ret = -1;
385
386         if (!search)
387                 return -1;
388
389         file = fopen("/proc/cpuinfo", "r");
390         if (!file)
391                 return -1;
392
393         while (getline(&buf, &len, file) > 0) {
394                 ret = strncmp(buf, search, strlen(search));
395                 if (!ret)
396                         break;
397         }
398
399         if (ret) {
400                 ret = -1;
401                 goto done;
402         }
403
404         s = buf;
405
406         p = strchr(buf, ':');
407         if (p && *(p+1) == ' ' && *(p+2))
408                 s = p + 2;
409         p = strchr(s, '\n');
410         if (p)
411                 *p = '\0';
412
413         /* squash extra space characters (branding string) */
414         p = s;
415         while (*p) {
416                 if (isspace(*p)) {
417                         char *r = p + 1;
418                         char *q = r;
419                         *p = ' ';
420                         while (*q && isspace(*q))
421                                 q++;
422                         if (q != (p+1))
423                                 while ((*r++ = *q++));
424                 }
425                 p++;
426         }
427         ret = do_write_string(ff, s);
428 done:
429         free(buf);
430         fclose(file);
431         return ret;
432 }
433
434 static int write_cpudesc(struct feat_fd *ff,
435                        struct perf_evlist *evlist __maybe_unused)
436 {
437         const char *cpuinfo_procs[] = CPUINFO_PROC;
438         unsigned int i;
439
440         for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
441                 int ret;
442                 ret = __write_cpudesc(ff, cpuinfo_procs[i]);
443                 if (ret >= 0)
444                         return ret;
445         }
446         return -1;
447 }
448
449
450 static int write_nrcpus(struct feat_fd *ff,
451                         struct perf_evlist *evlist __maybe_unused)
452 {
453         long nr;
454         u32 nrc, nra;
455         int ret;
456
457         nrc = cpu__max_present_cpu();
458
459         nr = sysconf(_SC_NPROCESSORS_ONLN);
460         if (nr < 0)
461                 return -1;
462
463         nra = (u32)(nr & UINT_MAX);
464
465         ret = do_write(ff, &nrc, sizeof(nrc));
466         if (ret < 0)
467                 return ret;
468
469         return do_write(ff, &nra, sizeof(nra));
470 }
471
472 static int write_event_desc(struct feat_fd *ff,
473                             struct perf_evlist *evlist)
474 {
475         struct perf_evsel *evsel;
476         u32 nre, nri, sz;
477         int ret;
478
479         nre = evlist->nr_entries;
480
481         /*
482          * write number of events
483          */
484         ret = do_write(ff, &nre, sizeof(nre));
485         if (ret < 0)
486                 return ret;
487
488         /*
489          * size of perf_event_attr struct
490          */
491         sz = (u32)sizeof(evsel->attr);
492         ret = do_write(ff, &sz, sizeof(sz));
493         if (ret < 0)
494                 return ret;
495
496         evlist__for_each_entry(evlist, evsel) {
497                 ret = do_write(ff, &evsel->attr, sz);
498                 if (ret < 0)
499                         return ret;
500                 /*
501                  * write number of unique id per event
502                  * there is one id per instance of an event
503                  *
504                  * copy into an nri to be independent of the
505                  * type of ids,
506                  */
507                 nri = evsel->ids;
508                 ret = do_write(ff, &nri, sizeof(nri));
509                 if (ret < 0)
510                         return ret;
511
512                 /*
513                  * write event string as passed on cmdline
514                  */
515                 ret = do_write_string(ff, perf_evsel__name(evsel));
516                 if (ret < 0)
517                         return ret;
518                 /*
519                  * write unique ids for this event
520                  */
521                 ret = do_write(ff, evsel->id, evsel->ids * sizeof(u64));
522                 if (ret < 0)
523                         return ret;
524         }
525         return 0;
526 }
527
528 static int write_cmdline(struct feat_fd *ff,
529                          struct perf_evlist *evlist __maybe_unused)
530 {
531         char buf[MAXPATHLEN];
532         u32 n;
533         int i, ret;
534
535         /* actual path to perf binary */
536         ret = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
537         if (ret <= 0)
538                 return -1;
539
540         /* readlink() does not add null termination */
541         buf[ret] = '\0';
542
543         /* account for binary path */
544         n = perf_env.nr_cmdline + 1;
545
546         ret = do_write(ff, &n, sizeof(n));
547         if (ret < 0)
548                 return ret;
549
550         ret = do_write_string(ff, buf);
551         if (ret < 0)
552                 return ret;
553
554         for (i = 0 ; i < perf_env.nr_cmdline; i++) {
555                 ret = do_write_string(ff, perf_env.cmdline_argv[i]);
556                 if (ret < 0)
557                         return ret;
558         }
559         return 0;
560 }
561
562 #define CORE_SIB_FMT \
563         "/sys/devices/system/cpu/cpu%d/topology/core_siblings_list"
564 #define THRD_SIB_FMT \
565         "/sys/devices/system/cpu/cpu%d/topology/thread_siblings_list"
566
567 struct cpu_topo {
568         u32 cpu_nr;
569         u32 core_sib;
570         u32 thread_sib;
571         char **core_siblings;
572         char **thread_siblings;
573 };
574
575 static int build_cpu_topo(struct cpu_topo *tp, int cpu)
576 {
577         FILE *fp;
578         char filename[MAXPATHLEN];
579         char *buf = NULL, *p;
580         size_t len = 0;
581         ssize_t sret;
582         u32 i = 0;
583         int ret = -1;
584
585         sprintf(filename, CORE_SIB_FMT, cpu);
586         fp = fopen(filename, "r");
587         if (!fp)
588                 goto try_threads;
589
590         sret = getline(&buf, &len, fp);
591         fclose(fp);
592         if (sret <= 0)
593                 goto try_threads;
594
595         p = strchr(buf, '\n');
596         if (p)
597                 *p = '\0';
598
599         for (i = 0; i < tp->core_sib; i++) {
600                 if (!strcmp(buf, tp->core_siblings[i]))
601                         break;
602         }
603         if (i == tp->core_sib) {
604                 tp->core_siblings[i] = buf;
605                 tp->core_sib++;
606                 buf = NULL;
607                 len = 0;
608         }
609         ret = 0;
610
611 try_threads:
612         sprintf(filename, THRD_SIB_FMT, cpu);
613         fp = fopen(filename, "r");
614         if (!fp)
615                 goto done;
616
617         if (getline(&buf, &len, fp) <= 0)
618                 goto done;
619
620         p = strchr(buf, '\n');
621         if (p)
622                 *p = '\0';
623
624         for (i = 0; i < tp->thread_sib; i++) {
625                 if (!strcmp(buf, tp->thread_siblings[i]))
626                         break;
627         }
628         if (i == tp->thread_sib) {
629                 tp->thread_siblings[i] = buf;
630                 tp->thread_sib++;
631                 buf = NULL;
632         }
633         ret = 0;
634 done:
635         if(fp)
636                 fclose(fp);
637         free(buf);
638         return ret;
639 }
640
641 static void free_cpu_topo(struct cpu_topo *tp)
642 {
643         u32 i;
644
645         if (!tp)
646                 return;
647
648         for (i = 0 ; i < tp->core_sib; i++)
649                 zfree(&tp->core_siblings[i]);
650
651         for (i = 0 ; i < tp->thread_sib; i++)
652                 zfree(&tp->thread_siblings[i]);
653
654         free(tp);
655 }
656
657 static struct cpu_topo *build_cpu_topology(void)
658 {
659         struct cpu_topo *tp = NULL;
660         void *addr;
661         u32 nr, i;
662         size_t sz;
663         long ncpus;
664         int ret = -1;
665         struct cpu_map *map;
666
667         ncpus = cpu__max_present_cpu();
668
669         /* build online CPU map */
670         map = cpu_map__new(NULL);
671         if (map == NULL) {
672                 pr_debug("failed to get system cpumap\n");
673                 return NULL;
674         }
675
676         nr = (u32)(ncpus & UINT_MAX);
677
678         sz = nr * sizeof(char *);
679         addr = calloc(1, sizeof(*tp) + 2 * sz);
680         if (!addr)
681                 goto out_free;
682
683         tp = addr;
684         tp->cpu_nr = nr;
685         addr += sizeof(*tp);
686         tp->core_siblings = addr;
687         addr += sz;
688         tp->thread_siblings = addr;
689
690         for (i = 0; i < nr; i++) {
691                 if (!cpu_map__has(map, i))
692                         continue;
693
694                 ret = build_cpu_topo(tp, i);
695                 if (ret < 0)
696                         break;
697         }
698
699 out_free:
700         cpu_map__put(map);
701         if (ret) {
702                 free_cpu_topo(tp);
703                 tp = NULL;
704         }
705         return tp;
706 }
707
708 static int write_cpu_topology(struct feat_fd *ff,
709                               struct perf_evlist *evlist __maybe_unused)
710 {
711         struct cpu_topo *tp;
712         u32 i;
713         int ret, j;
714
715         tp = build_cpu_topology();
716         if (!tp)
717                 return -1;
718
719         ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
720         if (ret < 0)
721                 goto done;
722
723         for (i = 0; i < tp->core_sib; i++) {
724                 ret = do_write_string(ff, tp->core_siblings[i]);
725                 if (ret < 0)
726                         goto done;
727         }
728         ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
729         if (ret < 0)
730                 goto done;
731
732         for (i = 0; i < tp->thread_sib; i++) {
733                 ret = do_write_string(ff, tp->thread_siblings[i]);
734                 if (ret < 0)
735                         break;
736         }
737
738         ret = perf_env__read_cpu_topology_map(&perf_env);
739         if (ret < 0)
740                 goto done;
741
742         for (j = 0; j < perf_env.nr_cpus_avail; j++) {
743                 ret = do_write(ff, &perf_env.cpu[j].core_id,
744                                sizeof(perf_env.cpu[j].core_id));
745                 if (ret < 0)
746                         return ret;
747                 ret = do_write(ff, &perf_env.cpu[j].socket_id,
748                                sizeof(perf_env.cpu[j].socket_id));
749                 if (ret < 0)
750                         return ret;
751         }
752 done:
753         free_cpu_topo(tp);
754         return ret;
755 }
756
757
758
759 static int write_total_mem(struct feat_fd *ff,
760                            struct perf_evlist *evlist __maybe_unused)
761 {
762         char *buf = NULL;
763         FILE *fp;
764         size_t len = 0;
765         int ret = -1, n;
766         uint64_t mem;
767
768         fp = fopen("/proc/meminfo", "r");
769         if (!fp)
770                 return -1;
771
772         while (getline(&buf, &len, fp) > 0) {
773                 ret = strncmp(buf, "MemTotal:", 9);
774                 if (!ret)
775                         break;
776         }
777         if (!ret) {
778                 n = sscanf(buf, "%*s %"PRIu64, &mem);
779                 if (n == 1)
780                         ret = do_write(ff, &mem, sizeof(mem));
781         } else
782                 ret = -1;
783         free(buf);
784         fclose(fp);
785         return ret;
786 }
787
788 static int write_topo_node(struct feat_fd *ff, int node)
789 {
790         char str[MAXPATHLEN];
791         char field[32];
792         char *buf = NULL, *p;
793         size_t len = 0;
794         FILE *fp;
795         u64 mem_total, mem_free, mem;
796         int ret = -1;
797
798         sprintf(str, "/sys/devices/system/node/node%d/meminfo", node);
799         fp = fopen(str, "r");
800         if (!fp)
801                 return -1;
802
803         while (getline(&buf, &len, fp) > 0) {
804                 /* skip over invalid lines */
805                 if (!strchr(buf, ':'))
806                         continue;
807                 if (sscanf(buf, "%*s %*d %31s %"PRIu64, field, &mem) != 2)
808                         goto done;
809                 if (!strcmp(field, "MemTotal:"))
810                         mem_total = mem;
811                 if (!strcmp(field, "MemFree:"))
812                         mem_free = mem;
813         }
814
815         fclose(fp);
816         fp = NULL;
817
818         ret = do_write(ff, &mem_total, sizeof(u64));
819         if (ret)
820                 goto done;
821
822         ret = do_write(ff, &mem_free, sizeof(u64));
823         if (ret)
824                 goto done;
825
826         ret = -1;
827         sprintf(str, "/sys/devices/system/node/node%d/cpulist", node);
828
829         fp = fopen(str, "r");
830         if (!fp)
831                 goto done;
832
833         if (getline(&buf, &len, fp) <= 0)
834                 goto done;
835
836         p = strchr(buf, '\n');
837         if (p)
838                 *p = '\0';
839
840         ret = do_write_string(ff, buf);
841 done:
842         free(buf);
843         if (fp)
844                 fclose(fp);
845         return ret;
846 }
847
848 static int write_numa_topology(struct feat_fd *ff,
849                                struct perf_evlist *evlist __maybe_unused)
850 {
851         char *buf = NULL;
852         size_t len = 0;
853         FILE *fp;
854         struct cpu_map *node_map = NULL;
855         char *c;
856         u32 nr, i, j;
857         int ret = -1;
858
859         fp = fopen("/sys/devices/system/node/online", "r");
860         if (!fp)
861                 return -1;
862
863         if (getline(&buf, &len, fp) <= 0)
864                 goto done;
865
866         c = strchr(buf, '\n');
867         if (c)
868                 *c = '\0';
869
870         node_map = cpu_map__new(buf);
871         if (!node_map)
872                 goto done;
873
874         nr = (u32)node_map->nr;
875
876         ret = do_write(ff, &nr, sizeof(nr));
877         if (ret < 0)
878                 goto done;
879
880         for (i = 0; i < nr; i++) {
881                 j = (u32)node_map->map[i];
882                 ret = do_write(ff, &j, sizeof(j));
883                 if (ret < 0)
884                         break;
885
886                 ret = write_topo_node(ff, i);
887                 if (ret < 0)
888                         break;
889         }
890 done:
891         free(buf);
892         fclose(fp);
893         cpu_map__put(node_map);
894         return ret;
895 }
896
897 /*
898  * File format:
899  *
900  * struct pmu_mappings {
901  *      u32     pmu_num;
902  *      struct pmu_map {
903  *              u32     type;
904  *              char    name[];
905  *      }[pmu_num];
906  * };
907  */
908
909 static int write_pmu_mappings(struct feat_fd *ff,
910                               struct perf_evlist *evlist __maybe_unused)
911 {
912         struct perf_pmu *pmu = NULL;
913         u32 pmu_num = 0;
914         int ret;
915
916         /*
917          * Do a first pass to count number of pmu to avoid lseek so this
918          * works in pipe mode as well.
919          */
920         while ((pmu = perf_pmu__scan(pmu))) {
921                 if (!pmu->name)
922                         continue;
923                 pmu_num++;
924         }
925
926         ret = do_write(ff, &pmu_num, sizeof(pmu_num));
927         if (ret < 0)
928                 return ret;
929
930         while ((pmu = perf_pmu__scan(pmu))) {
931                 if (!pmu->name)
932                         continue;
933
934                 ret = do_write(ff, &pmu->type, sizeof(pmu->type));
935                 if (ret < 0)
936                         return ret;
937
938                 ret = do_write_string(ff, pmu->name);
939                 if (ret < 0)
940                         return ret;
941         }
942
943         return 0;
944 }
945
946 /*
947  * File format:
948  *
949  * struct group_descs {
950  *      u32     nr_groups;
951  *      struct group_desc {
952  *              char    name[];
953  *              u32     leader_idx;
954  *              u32     nr_members;
955  *      }[nr_groups];
956  * };
957  */
958 static int write_group_desc(struct feat_fd *ff,
959                             struct perf_evlist *evlist)
960 {
961         u32 nr_groups = evlist->nr_groups;
962         struct perf_evsel *evsel;
963         int ret;
964
965         ret = do_write(ff, &nr_groups, sizeof(nr_groups));
966         if (ret < 0)
967                 return ret;
968
969         evlist__for_each_entry(evlist, evsel) {
970                 if (perf_evsel__is_group_leader(evsel) &&
971                     evsel->nr_members > 1) {
972                         const char *name = evsel->group_name ?: "{anon_group}";
973                         u32 leader_idx = evsel->idx;
974                         u32 nr_members = evsel->nr_members;
975
976                         ret = do_write_string(ff, name);
977                         if (ret < 0)
978                                 return ret;
979
980                         ret = do_write(ff, &leader_idx, sizeof(leader_idx));
981                         if (ret < 0)
982                                 return ret;
983
984                         ret = do_write(ff, &nr_members, sizeof(nr_members));
985                         if (ret < 0)
986                                 return ret;
987                 }
988         }
989         return 0;
990 }
991
992 /*
993  * default get_cpuid(): nothing gets recorded
994  * actual implementation must be in arch/$(SRCARCH)/util/header.c
995  */
996 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
997 {
998         return -1;
999 }
1000
1001 static int write_cpuid(struct feat_fd *ff,
1002                        struct perf_evlist *evlist __maybe_unused)
1003 {
1004         char buffer[64];
1005         int ret;
1006
1007         ret = get_cpuid(buffer, sizeof(buffer));
1008         if (!ret)
1009                 goto write_it;
1010
1011         return -1;
1012 write_it:
1013         return do_write_string(ff, buffer);
1014 }
1015
1016 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
1017                               struct perf_evlist *evlist __maybe_unused)
1018 {
1019         return 0;
1020 }
1021
1022 static int write_auxtrace(struct feat_fd *ff,
1023                           struct perf_evlist *evlist __maybe_unused)
1024 {
1025         struct perf_session *session;
1026         int err;
1027
1028         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
1029                 return -1;
1030
1031         session = container_of(ff->ph, struct perf_session, header);
1032
1033         err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
1034         if (err < 0)
1035                 pr_err("Failed to write auxtrace index\n");
1036         return err;
1037 }
1038
1039 static int cpu_cache_level__sort(const void *a, const void *b)
1040 {
1041         struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1042         struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1043
1044         return cache_a->level - cache_b->level;
1045 }
1046
1047 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1048 {
1049         if (a->level != b->level)
1050                 return false;
1051
1052         if (a->line_size != b->line_size)
1053                 return false;
1054
1055         if (a->sets != b->sets)
1056                 return false;
1057
1058         if (a->ways != b->ways)
1059                 return false;
1060
1061         if (strcmp(a->type, b->type))
1062                 return false;
1063
1064         if (strcmp(a->size, b->size))
1065                 return false;
1066
1067         if (strcmp(a->map, b->map))
1068                 return false;
1069
1070         return true;
1071 }
1072
1073 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1074 {
1075         char path[PATH_MAX], file[PATH_MAX];
1076         struct stat st;
1077         size_t len;
1078
1079         scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1080         scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1081
1082         if (stat(file, &st))
1083                 return 1;
1084
1085         scnprintf(file, PATH_MAX, "%s/level", path);
1086         if (sysfs__read_int(file, (int *) &cache->level))
1087                 return -1;
1088
1089         scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1090         if (sysfs__read_int(file, (int *) &cache->line_size))
1091                 return -1;
1092
1093         scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1094         if (sysfs__read_int(file, (int *) &cache->sets))
1095                 return -1;
1096
1097         scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1098         if (sysfs__read_int(file, (int *) &cache->ways))
1099                 return -1;
1100
1101         scnprintf(file, PATH_MAX, "%s/type", path);
1102         if (sysfs__read_str(file, &cache->type, &len))
1103                 return -1;
1104
1105         cache->type[len] = 0;
1106         cache->type = rtrim(cache->type);
1107
1108         scnprintf(file, PATH_MAX, "%s/size", path);
1109         if (sysfs__read_str(file, &cache->size, &len)) {
1110                 free(cache->type);
1111                 return -1;
1112         }
1113
1114         cache->size[len] = 0;
1115         cache->size = rtrim(cache->size);
1116
1117         scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1118         if (sysfs__read_str(file, &cache->map, &len)) {
1119                 free(cache->map);
1120                 free(cache->type);
1121                 return -1;
1122         }
1123
1124         cache->map[len] = 0;
1125         cache->map = rtrim(cache->map);
1126         return 0;
1127 }
1128
1129 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1130 {
1131         fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1132 }
1133
1134 static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
1135 {
1136         u32 i, cnt = 0;
1137         long ncpus;
1138         u32 nr, cpu;
1139         u16 level;
1140
1141         ncpus = sysconf(_SC_NPROCESSORS_CONF);
1142         if (ncpus < 0)
1143                 return -1;
1144
1145         nr = (u32)(ncpus & UINT_MAX);
1146
1147         for (cpu = 0; cpu < nr; cpu++) {
1148                 for (level = 0; level < 10; level++) {
1149                         struct cpu_cache_level c;
1150                         int err;
1151
1152                         err = cpu_cache_level__read(&c, cpu, level);
1153                         if (err < 0)
1154                                 return err;
1155
1156                         if (err == 1)
1157                                 break;
1158
1159                         for (i = 0; i < cnt; i++) {
1160                                 if (cpu_cache_level__cmp(&c, &caches[i]))
1161                                         break;
1162                         }
1163
1164                         if (i == cnt)
1165                                 caches[cnt++] = c;
1166                         else
1167                                 cpu_cache_level__free(&c);
1168
1169                         if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
1170                                 goto out;
1171                 }
1172         }
1173  out:
1174         *cntp = cnt;
1175         return 0;
1176 }
1177
1178 #define MAX_CACHES 2000
1179
1180 static int write_cache(struct feat_fd *ff,
1181                        struct perf_evlist *evlist __maybe_unused)
1182 {
1183         struct cpu_cache_level caches[MAX_CACHES];
1184         u32 cnt = 0, i, version = 1;
1185         int ret;
1186
1187         ret = build_caches(caches, MAX_CACHES, &cnt);
1188         if (ret)
1189                 goto out;
1190
1191         qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1192
1193         ret = do_write(ff, &version, sizeof(u32));
1194         if (ret < 0)
1195                 goto out;
1196
1197         ret = do_write(ff, &cnt, sizeof(u32));
1198         if (ret < 0)
1199                 goto out;
1200
1201         for (i = 0; i < cnt; i++) {
1202                 struct cpu_cache_level *c = &caches[i];
1203
1204                 #define _W(v)                                   \
1205                         ret = do_write(ff, &c->v, sizeof(u32)); \
1206                         if (ret < 0)                            \
1207                                 goto out;
1208
1209                 _W(level)
1210                 _W(line_size)
1211                 _W(sets)
1212                 _W(ways)
1213                 #undef _W
1214
1215                 #define _W(v)                                           \
1216                         ret = do_write_string(ff, (const char *) c->v); \
1217                         if (ret < 0)                                    \
1218                                 goto out;
1219
1220                 _W(type)
1221                 _W(size)
1222                 _W(map)
1223                 #undef _W
1224         }
1225
1226 out:
1227         for (i = 0; i < cnt; i++)
1228                 cpu_cache_level__free(&caches[i]);
1229         return ret;
1230 }
1231
1232 static int write_stat(struct feat_fd *ff __maybe_unused,
1233                       struct perf_evlist *evlist __maybe_unused)
1234 {
1235         return 0;
1236 }
1237
1238 static int write_sample_time(struct feat_fd *ff,
1239                              struct perf_evlist *evlist)
1240 {
1241         int ret;
1242
1243         ret = do_write(ff, &evlist->first_sample_time,
1244                        sizeof(evlist->first_sample_time));
1245         if (ret < 0)
1246                 return ret;
1247
1248         return do_write(ff, &evlist->last_sample_time,
1249                         sizeof(evlist->last_sample_time));
1250 }
1251
1252
1253 static int memory_node__read(struct memory_node *n, unsigned long idx)
1254 {
1255         unsigned int phys, size = 0;
1256         char path[PATH_MAX];
1257         struct dirent *ent;
1258         DIR *dir;
1259
1260 #define for_each_memory(mem, dir)                                       \
1261         while ((ent = readdir(dir)))                                    \
1262                 if (strcmp(ent->d_name, ".") &&                         \
1263                     strcmp(ent->d_name, "..") &&                        \
1264                     sscanf(ent->d_name, "memory%u", &mem) == 1)
1265
1266         scnprintf(path, PATH_MAX,
1267                   "%s/devices/system/node/node%lu",
1268                   sysfs__mountpoint(), idx);
1269
1270         dir = opendir(path);
1271         if (!dir) {
1272                 pr_warning("failed: cant' open memory sysfs data\n");
1273                 return -1;
1274         }
1275
1276         for_each_memory(phys, dir) {
1277                 size = max(phys, size);
1278         }
1279
1280         size++;
1281
1282         n->set = bitmap_alloc(size);
1283         if (!n->set) {
1284                 closedir(dir);
1285                 return -ENOMEM;
1286         }
1287
1288         bitmap_zero(n->set, size);
1289         n->node = idx;
1290         n->size = size;
1291
1292         rewinddir(dir);
1293
1294         for_each_memory(phys, dir) {
1295                 set_bit(phys, n->set);
1296         }
1297
1298         closedir(dir);
1299         return 0;
1300 }
1301
1302 static int memory_node__sort(const void *a, const void *b)
1303 {
1304         const struct memory_node *na = a;
1305         const struct memory_node *nb = b;
1306
1307         return na->node - nb->node;
1308 }
1309
1310 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1311 {
1312         char path[PATH_MAX];
1313         struct dirent *ent;
1314         DIR *dir;
1315         u64 cnt = 0;
1316         int ret = 0;
1317
1318         scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1319                   sysfs__mountpoint());
1320
1321         dir = opendir(path);
1322         if (!dir) {
1323                 pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1324                           __func__, path);
1325                 return -1;
1326         }
1327
1328         while (!ret && (ent = readdir(dir))) {
1329                 unsigned int idx;
1330                 int r;
1331
1332                 if (!strcmp(ent->d_name, ".") ||
1333                     !strcmp(ent->d_name, ".."))
1334                         continue;
1335
1336                 r = sscanf(ent->d_name, "node%u", &idx);
1337                 if (r != 1)
1338                         continue;
1339
1340                 if (WARN_ONCE(cnt >= size,
1341                               "failed to write MEM_TOPOLOGY, way too many nodes\n"))
1342                         return -1;
1343
1344                 ret = memory_node__read(&nodes[cnt++], idx);
1345         }
1346
1347         *cntp = cnt;
1348         closedir(dir);
1349
1350         if (!ret)
1351                 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1352
1353         return ret;
1354 }
1355
1356 #define MAX_MEMORY_NODES 2000
1357
1358 /*
1359  * The MEM_TOPOLOGY holds physical memory map for every
1360  * node in system. The format of data is as follows:
1361  *
1362  *  0 - version          | for future changes
1363  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1364  * 16 - count            | number of nodes
1365  *
1366  * For each node we store map of physical indexes for
1367  * each node:
1368  *
1369  * 32 - node id          | node index
1370  * 40 - size             | size of bitmap
1371  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1372  */
1373 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1374                               struct perf_evlist *evlist __maybe_unused)
1375 {
1376         static struct memory_node nodes[MAX_MEMORY_NODES];
1377         u64 bsize, version = 1, i, nr;
1378         int ret;
1379
1380         ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1381                               (unsigned long long *) &bsize);
1382         if (ret)
1383                 return ret;
1384
1385         ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1386         if (ret)
1387                 return ret;
1388
1389         ret = do_write(ff, &version, sizeof(version));
1390         if (ret < 0)
1391                 goto out;
1392
1393         ret = do_write(ff, &bsize, sizeof(bsize));
1394         if (ret < 0)
1395                 goto out;
1396
1397         ret = do_write(ff, &nr, sizeof(nr));
1398         if (ret < 0)
1399                 goto out;
1400
1401         for (i = 0; i < nr; i++) {
1402                 struct memory_node *n = &nodes[i];
1403
1404                 #define _W(v)                                           \
1405                         ret = do_write(ff, &n->v, sizeof(n->v));        \
1406                         if (ret < 0)                                    \
1407                                 goto out;
1408
1409                 _W(node)
1410                 _W(size)
1411
1412                 #undef _W
1413
1414                 ret = do_write_bitmap(ff, n->set, n->size);
1415                 if (ret < 0)
1416                         goto out;
1417         }
1418
1419 out:
1420         return ret;
1421 }
1422
1423 static void print_hostname(struct feat_fd *ff, FILE *fp)
1424 {
1425         fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1426 }
1427
1428 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1429 {
1430         fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1431 }
1432
1433 static void print_arch(struct feat_fd *ff, FILE *fp)
1434 {
1435         fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1436 }
1437
1438 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1439 {
1440         fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1441 }
1442
1443 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1444 {
1445         fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1446         fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1447 }
1448
1449 static void print_version(struct feat_fd *ff, FILE *fp)
1450 {
1451         fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1452 }
1453
1454 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1455 {
1456         int nr, i;
1457
1458         nr = ff->ph->env.nr_cmdline;
1459
1460         fprintf(fp, "# cmdline : ");
1461
1462         for (i = 0; i < nr; i++) {
1463                 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1464                 if (!argv_i) {
1465                         fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1466                 } else {
1467                         char *mem = argv_i;
1468                         do {
1469                                 char *quote = strchr(argv_i, '\'');
1470                                 if (!quote)
1471                                         break;
1472                                 *quote++ = '\0';
1473                                 fprintf(fp, "%s\\\'", argv_i);
1474                                 argv_i = quote;
1475                         } while (1);
1476                         fprintf(fp, "%s ", argv_i);
1477                         free(mem);
1478                 }
1479         }
1480         fputc('\n', fp);
1481 }
1482
1483 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1484 {
1485         struct perf_header *ph = ff->ph;
1486         int cpu_nr = ph->env.nr_cpus_avail;
1487         int nr, i;
1488         char *str;
1489
1490         nr = ph->env.nr_sibling_cores;
1491         str = ph->env.sibling_cores;
1492
1493         for (i = 0; i < nr; i++) {
1494                 fprintf(fp, "# sibling cores   : %s\n", str);
1495                 str += strlen(str) + 1;
1496         }
1497
1498         nr = ph->env.nr_sibling_threads;
1499         str = ph->env.sibling_threads;
1500
1501         for (i = 0; i < nr; i++) {
1502                 fprintf(fp, "# sibling threads : %s\n", str);
1503                 str += strlen(str) + 1;
1504         }
1505
1506         if (ph->env.cpu != NULL) {
1507                 for (i = 0; i < cpu_nr; i++)
1508                         fprintf(fp, "# CPU %d: Core ID %d, Socket ID %d\n", i,
1509                                 ph->env.cpu[i].core_id, ph->env.cpu[i].socket_id);
1510         } else
1511                 fprintf(fp, "# Core ID and Socket ID information is not available\n");
1512 }
1513
1514 static void free_event_desc(struct perf_evsel *events)
1515 {
1516         struct perf_evsel *evsel;
1517
1518         if (!events)
1519                 return;
1520
1521         for (evsel = events; evsel->attr.size; evsel++) {
1522                 zfree(&evsel->name);
1523                 zfree(&evsel->id);
1524         }
1525
1526         free(events);
1527 }
1528
1529 static struct perf_evsel *read_event_desc(struct feat_fd *ff)
1530 {
1531         struct perf_evsel *evsel, *events = NULL;
1532         u64 *id;
1533         void *buf = NULL;
1534         u32 nre, sz, nr, i, j;
1535         size_t msz;
1536
1537         /* number of events */
1538         if (do_read_u32(ff, &nre))
1539                 goto error;
1540
1541         if (do_read_u32(ff, &sz))
1542                 goto error;
1543
1544         /* buffer to hold on file attr struct */
1545         buf = malloc(sz);
1546         if (!buf)
1547                 goto error;
1548
1549         /* the last event terminates with evsel->attr.size == 0: */
1550         events = calloc(nre + 1, sizeof(*events));
1551         if (!events)
1552                 goto error;
1553
1554         msz = sizeof(evsel->attr);
1555         if (sz < msz)
1556                 msz = sz;
1557
1558         for (i = 0, evsel = events; i < nre; evsel++, i++) {
1559                 evsel->idx = i;
1560
1561                 /*
1562                  * must read entire on-file attr struct to
1563                  * sync up with layout.
1564                  */
1565                 if (__do_read(ff, buf, sz))
1566                         goto error;
1567
1568                 if (ff->ph->needs_swap)
1569                         perf_event__attr_swap(buf);
1570
1571                 memcpy(&evsel->attr, buf, msz);
1572
1573                 if (do_read_u32(ff, &nr))
1574                         goto error;
1575
1576                 if (ff->ph->needs_swap)
1577                         evsel->needs_swap = true;
1578
1579                 evsel->name = do_read_string(ff);
1580                 if (!evsel->name)
1581                         goto error;
1582
1583                 if (!nr)
1584                         continue;
1585
1586                 id = calloc(nr, sizeof(*id));
1587                 if (!id)
1588                         goto error;
1589                 evsel->ids = nr;
1590                 evsel->id = id;
1591
1592                 for (j = 0 ; j < nr; j++) {
1593                         if (do_read_u64(ff, id))
1594                                 goto error;
1595                         id++;
1596                 }
1597         }
1598 out:
1599         free(buf);
1600         return events;
1601 error:
1602         free_event_desc(events);
1603         events = NULL;
1604         goto out;
1605 }
1606
1607 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1608                                 void *priv __maybe_unused)
1609 {
1610         return fprintf(fp, ", %s = %s", name, val);
1611 }
1612
1613 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1614 {
1615         struct perf_evsel *evsel, *events;
1616         u32 j;
1617         u64 *id;
1618
1619         if (ff->events)
1620                 events = ff->events;
1621         else
1622                 events = read_event_desc(ff);
1623
1624         if (!events) {
1625                 fprintf(fp, "# event desc: not available or unable to read\n");
1626                 return;
1627         }
1628
1629         for (evsel = events; evsel->attr.size; evsel++) {
1630                 fprintf(fp, "# event : name = %s, ", evsel->name);
1631
1632                 if (evsel->ids) {
1633                         fprintf(fp, ", id = {");
1634                         for (j = 0, id = evsel->id; j < evsel->ids; j++, id++) {
1635                                 if (j)
1636                                         fputc(',', fp);
1637                                 fprintf(fp, " %"PRIu64, *id);
1638                         }
1639                         fprintf(fp, " }");
1640                 }
1641
1642                 perf_event_attr__fprintf(fp, &evsel->attr, __desc_attr__fprintf, NULL);
1643
1644                 fputc('\n', fp);
1645         }
1646
1647         free_event_desc(events);
1648         ff->events = NULL;
1649 }
1650
1651 static void print_total_mem(struct feat_fd *ff, FILE *fp)
1652 {
1653         fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1654 }
1655
1656 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1657 {
1658         int i;
1659         struct numa_node *n;
1660
1661         for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1662                 n = &ff->ph->env.numa_nodes[i];
1663
1664                 fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1665                             " free = %"PRIu64" kB\n",
1666                         n->node, n->mem_total, n->mem_free);
1667
1668                 fprintf(fp, "# node%u cpu list : ", n->node);
1669                 cpu_map__fprintf(n->map, fp);
1670         }
1671 }
1672
1673 static void print_cpuid(struct feat_fd *ff, FILE *fp)
1674 {
1675         fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1676 }
1677
1678 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1679 {
1680         fprintf(fp, "# contains samples with branch stack\n");
1681 }
1682
1683 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1684 {
1685         fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1686 }
1687
1688 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1689 {
1690         fprintf(fp, "# contains stat data\n");
1691 }
1692
1693 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1694 {
1695         int i;
1696
1697         fprintf(fp, "# CPU cache info:\n");
1698         for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1699                 fprintf(fp, "#  ");
1700                 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1701         }
1702 }
1703
1704 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1705 {
1706         const char *delimiter = "# pmu mappings: ";
1707         char *str, *tmp;
1708         u32 pmu_num;
1709         u32 type;
1710
1711         pmu_num = ff->ph->env.nr_pmu_mappings;
1712         if (!pmu_num) {
1713                 fprintf(fp, "# pmu mappings: not available\n");
1714                 return;
1715         }
1716
1717         str = ff->ph->env.pmu_mappings;
1718
1719         while (pmu_num) {
1720                 type = strtoul(str, &tmp, 0);
1721                 if (*tmp != ':')
1722                         goto error;
1723
1724                 str = tmp + 1;
1725                 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1726
1727                 delimiter = ", ";
1728                 str += strlen(str) + 1;
1729                 pmu_num--;
1730         }
1731
1732         fprintf(fp, "\n");
1733
1734         if (!pmu_num)
1735                 return;
1736 error:
1737         fprintf(fp, "# pmu mappings: unable to read\n");
1738 }
1739
1740 static void print_group_desc(struct feat_fd *ff, FILE *fp)
1741 {
1742         struct perf_session *session;
1743         struct perf_evsel *evsel;
1744         u32 nr = 0;
1745
1746         session = container_of(ff->ph, struct perf_session, header);
1747
1748         evlist__for_each_entry(session->evlist, evsel) {
1749                 if (perf_evsel__is_group_leader(evsel) &&
1750                     evsel->nr_members > 1) {
1751                         fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
1752                                 perf_evsel__name(evsel));
1753
1754                         nr = evsel->nr_members - 1;
1755                 } else if (nr) {
1756                         fprintf(fp, ",%s", perf_evsel__name(evsel));
1757
1758                         if (--nr == 0)
1759                                 fprintf(fp, "}\n");
1760                 }
1761         }
1762 }
1763
1764 static void print_sample_time(struct feat_fd *ff, FILE *fp)
1765 {
1766         struct perf_session *session;
1767         char time_buf[32];
1768         double d;
1769
1770         session = container_of(ff->ph, struct perf_session, header);
1771
1772         timestamp__scnprintf_usec(session->evlist->first_sample_time,
1773                                   time_buf, sizeof(time_buf));
1774         fprintf(fp, "# time of first sample : %s\n", time_buf);
1775
1776         timestamp__scnprintf_usec(session->evlist->last_sample_time,
1777                                   time_buf, sizeof(time_buf));
1778         fprintf(fp, "# time of last sample : %s\n", time_buf);
1779
1780         d = (double)(session->evlist->last_sample_time -
1781                 session->evlist->first_sample_time) / NSEC_PER_MSEC;
1782
1783         fprintf(fp, "# sample duration : %10.3f ms\n", d);
1784 }
1785
1786 static void memory_node__fprintf(struct memory_node *n,
1787                                  unsigned long long bsize, FILE *fp)
1788 {
1789         char buf_map[100], buf_size[50];
1790         unsigned long long size;
1791
1792         size = bsize * bitmap_weight(n->set, n->size);
1793         unit_number__scnprintf(buf_size, 50, size);
1794
1795         bitmap_scnprintf(n->set, n->size, buf_map, 100);
1796         fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
1797 }
1798
1799 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
1800 {
1801         struct memory_node *nodes;
1802         int i, nr;
1803
1804         nodes = ff->ph->env.memory_nodes;
1805         nr    = ff->ph->env.nr_memory_nodes;
1806
1807         fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
1808                 nr, ff->ph->env.memory_bsize);
1809
1810         for (i = 0; i < nr; i++) {
1811                 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
1812         }
1813 }
1814
1815 static int __event_process_build_id(struct build_id_event *bev,
1816                                     char *filename,
1817                                     struct perf_session *session)
1818 {
1819         int err = -1;
1820         struct machine *machine;
1821         u16 cpumode;
1822         struct dso *dso;
1823         enum dso_kernel_type dso_type;
1824
1825         machine = perf_session__findnew_machine(session, bev->pid);
1826         if (!machine)
1827                 goto out;
1828
1829         cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1830
1831         switch (cpumode) {
1832         case PERF_RECORD_MISC_KERNEL:
1833                 dso_type = DSO_TYPE_KERNEL;
1834                 break;
1835         case PERF_RECORD_MISC_GUEST_KERNEL:
1836                 dso_type = DSO_TYPE_GUEST_KERNEL;
1837                 break;
1838         case PERF_RECORD_MISC_USER:
1839         case PERF_RECORD_MISC_GUEST_USER:
1840                 dso_type = DSO_TYPE_USER;
1841                 break;
1842         default:
1843                 goto out;
1844         }
1845
1846         dso = machine__findnew_dso(machine, filename);
1847         if (dso != NULL) {
1848                 char sbuild_id[SBUILD_ID_SIZE];
1849
1850                 dso__set_build_id(dso, &bev->build_id);
1851
1852                 if (dso_type != DSO_TYPE_USER) {
1853                         struct kmod_path m = { .name = NULL, };
1854
1855                         if (!kmod_path__parse_name(&m, filename) && m.kmod)
1856                                 dso__set_module_info(dso, &m, machine);
1857                         else
1858                                 dso->kernel = dso_type;
1859
1860                         free(m.name);
1861                 }
1862
1863                 build_id__sprintf(dso->build_id, sizeof(dso->build_id),
1864                                   sbuild_id);
1865                 pr_debug("build id event received for %s: %s\n",
1866                          dso->long_name, sbuild_id);
1867                 dso__put(dso);
1868         }
1869
1870         err = 0;
1871 out:
1872         return err;
1873 }
1874
1875 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
1876                                                  int input, u64 offset, u64 size)
1877 {
1878         struct perf_session *session = container_of(header, struct perf_session, header);
1879         struct {
1880                 struct perf_event_header   header;
1881                 u8                         build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1882                 char                       filename[0];
1883         } old_bev;
1884         struct build_id_event bev;
1885         char filename[PATH_MAX];
1886         u64 limit = offset + size;
1887
1888         while (offset < limit) {
1889                 ssize_t len;
1890
1891                 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1892                         return -1;
1893
1894                 if (header->needs_swap)
1895                         perf_event_header__bswap(&old_bev.header);
1896
1897                 len = old_bev.header.size - sizeof(old_bev);
1898                 if (readn(input, filename, len) != len)
1899                         return -1;
1900
1901                 bev.header = old_bev.header;
1902
1903                 /*
1904                  * As the pid is the missing value, we need to fill
1905                  * it properly. The header.misc value give us nice hint.
1906                  */
1907                 bev.pid = HOST_KERNEL_ID;
1908                 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
1909                     bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
1910                         bev.pid = DEFAULT_GUEST_KERNEL_ID;
1911
1912                 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
1913                 __event_process_build_id(&bev, filename, session);
1914
1915                 offset += bev.header.size;
1916         }
1917
1918         return 0;
1919 }
1920
1921 static int perf_header__read_build_ids(struct perf_header *header,
1922                                        int input, u64 offset, u64 size)
1923 {
1924         struct perf_session *session = container_of(header, struct perf_session, header);
1925         struct build_id_event bev;
1926         char filename[PATH_MAX];
1927         u64 limit = offset + size, orig_offset = offset;
1928         int err = -1;
1929
1930         while (offset < limit) {
1931                 ssize_t len;
1932
1933                 if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
1934                         goto out;
1935
1936                 if (header->needs_swap)
1937                         perf_event_header__bswap(&bev.header);
1938
1939                 len = bev.header.size - sizeof(bev);
1940                 if (readn(input, filename, len) != len)
1941                         goto out;
1942                 /*
1943                  * The a1645ce1 changeset:
1944                  *
1945                  * "perf: 'perf kvm' tool for monitoring guest performance from host"
1946                  *
1947                  * Added a field to struct build_id_event that broke the file
1948                  * format.
1949                  *
1950                  * Since the kernel build-id is the first entry, process the
1951                  * table using the old format if the well known
1952                  * '[kernel.kallsyms]' string for the kernel build-id has the
1953                  * first 4 characters chopped off (where the pid_t sits).
1954                  */
1955                 if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
1956                         if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
1957                                 return -1;
1958                         return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
1959                 }
1960
1961                 __event_process_build_id(&bev, filename, session);
1962
1963                 offset += bev.header.size;
1964         }
1965         err = 0;
1966 out:
1967         return err;
1968 }
1969
1970 /* Macro for features that simply need to read and store a string. */
1971 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
1972 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
1973 {\
1974         ff->ph->env.__feat_env = do_read_string(ff); \
1975         return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
1976 }
1977
1978 FEAT_PROCESS_STR_FUN(hostname, hostname);
1979 FEAT_PROCESS_STR_FUN(osrelease, os_release);
1980 FEAT_PROCESS_STR_FUN(version, version);
1981 FEAT_PROCESS_STR_FUN(arch, arch);
1982 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
1983 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
1984
1985 static int process_tracing_data(struct feat_fd *ff, void *data)
1986 {
1987         ssize_t ret = trace_report(ff->fd, data, false);
1988
1989         return ret < 0 ? -1 : 0;
1990 }
1991
1992 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
1993 {
1994         if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
1995                 pr_debug("Failed to read buildids, continuing...\n");
1996         return 0;
1997 }
1998
1999 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2000 {
2001         int ret;
2002         u32 nr_cpus_avail, nr_cpus_online;
2003
2004         ret = do_read_u32(ff, &nr_cpus_avail);
2005         if (ret)
2006                 return ret;
2007
2008         ret = do_read_u32(ff, &nr_cpus_online);
2009         if (ret)
2010                 return ret;
2011         ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2012         ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2013         return 0;
2014 }
2015
2016 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2017 {
2018         u64 total_mem;
2019         int ret;
2020
2021         ret = do_read_u64(ff, &total_mem);
2022         if (ret)
2023                 return -1;
2024         ff->ph->env.total_mem = (unsigned long long)total_mem;
2025         return 0;
2026 }
2027
2028 static struct perf_evsel *
2029 perf_evlist__find_by_index(struct perf_evlist *evlist, int idx)
2030 {
2031         struct perf_evsel *evsel;
2032
2033         evlist__for_each_entry(evlist, evsel) {
2034                 if (evsel->idx == idx)
2035                         return evsel;
2036         }
2037
2038         return NULL;
2039 }
2040
2041 static void
2042 perf_evlist__set_event_name(struct perf_evlist *evlist,
2043                             struct perf_evsel *event)
2044 {
2045         struct perf_evsel *evsel;
2046
2047         if (!event->name)
2048                 return;
2049
2050         evsel = perf_evlist__find_by_index(evlist, event->idx);
2051         if (!evsel)
2052                 return;
2053
2054         if (evsel->name)
2055                 return;
2056
2057         evsel->name = strdup(event->name);
2058 }
2059
2060 static int
2061 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2062 {
2063         struct perf_session *session;
2064         struct perf_evsel *evsel, *events = read_event_desc(ff);
2065
2066         if (!events)
2067                 return 0;
2068
2069         session = container_of(ff->ph, struct perf_session, header);
2070
2071         if (session->data->is_pipe) {
2072                 /* Save events for reading later by print_event_desc,
2073                  * since they can't be read again in pipe mode. */
2074                 ff->events = events;
2075         }
2076
2077         for (evsel = events; evsel->attr.size; evsel++)
2078                 perf_evlist__set_event_name(session->evlist, evsel);
2079
2080         if (!session->data->is_pipe)
2081                 free_event_desc(events);
2082
2083         return 0;
2084 }
2085
2086 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2087 {
2088         char *str, *cmdline = NULL, **argv = NULL;
2089         u32 nr, i, len = 0;
2090
2091         if (do_read_u32(ff, &nr))
2092                 return -1;
2093
2094         ff->ph->env.nr_cmdline = nr;
2095
2096         cmdline = zalloc(ff->size + nr + 1);
2097         if (!cmdline)
2098                 return -1;
2099
2100         argv = zalloc(sizeof(char *) * (nr + 1));
2101         if (!argv)
2102                 goto error;
2103
2104         for (i = 0; i < nr; i++) {
2105                 str = do_read_string(ff);
2106                 if (!str)
2107                         goto error;
2108
2109                 argv[i] = cmdline + len;
2110                 memcpy(argv[i], str, strlen(str) + 1);
2111                 len += strlen(str) + 1;
2112                 free(str);
2113         }
2114         ff->ph->env.cmdline = cmdline;
2115         ff->ph->env.cmdline_argv = (const char **) argv;
2116         return 0;
2117
2118 error:
2119         free(argv);
2120         free(cmdline);
2121         return -1;
2122 }
2123
2124 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2125 {
2126         u32 nr, i;
2127         char *str;
2128         struct strbuf sb;
2129         int cpu_nr = ff->ph->env.nr_cpus_avail;
2130         u64 size = 0;
2131         struct perf_header *ph = ff->ph;
2132         bool do_core_id_test = true;
2133
2134         ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2135         if (!ph->env.cpu)
2136                 return -1;
2137
2138         if (do_read_u32(ff, &nr))
2139                 goto free_cpu;
2140
2141         ph->env.nr_sibling_cores = nr;
2142         size += sizeof(u32);
2143         if (strbuf_init(&sb, 128) < 0)
2144                 goto free_cpu;
2145
2146         for (i = 0; i < nr; i++) {
2147                 str = do_read_string(ff);
2148                 if (!str)
2149                         goto error;
2150
2151                 /* include a NULL character at the end */
2152                 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2153                         goto error;
2154                 size += string_size(str);
2155                 free(str);
2156         }
2157         ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2158
2159         if (do_read_u32(ff, &nr))
2160                 return -1;
2161
2162         ph->env.nr_sibling_threads = nr;
2163         size += sizeof(u32);
2164
2165         for (i = 0; i < nr; i++) {
2166                 str = do_read_string(ff);
2167                 if (!str)
2168                         goto error;
2169
2170                 /* include a NULL character at the end */
2171                 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2172                         goto error;
2173                 size += string_size(str);
2174                 free(str);
2175         }
2176         ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2177
2178         /*
2179          * The header may be from old perf,
2180          * which doesn't include core id and socket id information.
2181          */
2182         if (ff->size <= size) {
2183                 zfree(&ph->env.cpu);
2184                 return 0;
2185         }
2186
2187         /* On s390 the socket_id number is not related to the numbers of cpus.
2188          * The socket_id number might be higher than the numbers of cpus.
2189          * This depends on the configuration.
2190          */
2191         if (ph->env.arch && !strncmp(ph->env.arch, "s390", 4))
2192                 do_core_id_test = false;
2193
2194         for (i = 0; i < (u32)cpu_nr; i++) {
2195                 if (do_read_u32(ff, &nr))
2196                         goto free_cpu;
2197
2198                 ph->env.cpu[i].core_id = nr;
2199
2200                 if (do_read_u32(ff, &nr))
2201                         goto free_cpu;
2202
2203                 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2204                         pr_debug("socket_id number is too big."
2205                                  "You may need to upgrade the perf tool.\n");
2206                         goto free_cpu;
2207                 }
2208
2209                 ph->env.cpu[i].socket_id = nr;
2210         }
2211
2212         return 0;
2213
2214 error:
2215         strbuf_release(&sb);
2216 free_cpu:
2217         zfree(&ph->env.cpu);
2218         return -1;
2219 }
2220
2221 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2222 {
2223         struct numa_node *nodes, *n;
2224         u32 nr, i;
2225         char *str;
2226
2227         /* nr nodes */
2228         if (do_read_u32(ff, &nr))
2229                 return -1;
2230
2231         nodes = zalloc(sizeof(*nodes) * nr);
2232         if (!nodes)
2233                 return -ENOMEM;
2234
2235         for (i = 0; i < nr; i++) {
2236                 n = &nodes[i];
2237
2238                 /* node number */
2239                 if (do_read_u32(ff, &n->node))
2240                         goto error;
2241
2242                 if (do_read_u64(ff, &n->mem_total))
2243                         goto error;
2244
2245                 if (do_read_u64(ff, &n->mem_free))
2246                         goto error;
2247
2248                 str = do_read_string(ff);
2249                 if (!str)
2250                         goto error;
2251
2252                 n->map = cpu_map__new(str);
2253                 if (!n->map)
2254                         goto error;
2255
2256                 free(str);
2257         }
2258         ff->ph->env.nr_numa_nodes = nr;
2259         ff->ph->env.numa_nodes = nodes;
2260         return 0;
2261
2262 error:
2263         free(nodes);
2264         return -1;
2265 }
2266
2267 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2268 {
2269         char *name;
2270         u32 pmu_num;
2271         u32 type;
2272         struct strbuf sb;
2273
2274         if (do_read_u32(ff, &pmu_num))
2275                 return -1;
2276
2277         if (!pmu_num) {
2278                 pr_debug("pmu mappings not available\n");
2279                 return 0;
2280         }
2281
2282         ff->ph->env.nr_pmu_mappings = pmu_num;
2283         if (strbuf_init(&sb, 128) < 0)
2284                 return -1;
2285
2286         while (pmu_num) {
2287                 if (do_read_u32(ff, &type))
2288                         goto error;
2289
2290                 name = do_read_string(ff);
2291                 if (!name)
2292                         goto error;
2293
2294                 if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2295                         goto error;
2296                 /* include a NULL character at the end */
2297                 if (strbuf_add(&sb, "", 1) < 0)
2298                         goto error;
2299
2300                 if (!strcmp(name, "msr"))
2301                         ff->ph->env.msr_pmu_type = type;
2302
2303                 free(name);
2304                 pmu_num--;
2305         }
2306         ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2307         return 0;
2308
2309 error:
2310         strbuf_release(&sb);
2311         return -1;
2312 }
2313
2314 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2315 {
2316         size_t ret = -1;
2317         u32 i, nr, nr_groups;
2318         struct perf_session *session;
2319         struct perf_evsel *evsel, *leader = NULL;
2320         struct group_desc {
2321                 char *name;
2322                 u32 leader_idx;
2323                 u32 nr_members;
2324         } *desc;
2325
2326         if (do_read_u32(ff, &nr_groups))
2327                 return -1;
2328
2329         ff->ph->env.nr_groups = nr_groups;
2330         if (!nr_groups) {
2331                 pr_debug("group desc not available\n");
2332                 return 0;
2333         }
2334
2335         desc = calloc(nr_groups, sizeof(*desc));
2336         if (!desc)
2337                 return -1;
2338
2339         for (i = 0; i < nr_groups; i++) {
2340                 desc[i].name = do_read_string(ff);
2341                 if (!desc[i].name)
2342                         goto out_free;
2343
2344                 if (do_read_u32(ff, &desc[i].leader_idx))
2345                         goto out_free;
2346
2347                 if (do_read_u32(ff, &desc[i].nr_members))
2348                         goto out_free;
2349         }
2350
2351         /*
2352          * Rebuild group relationship based on the group_desc
2353          */
2354         session = container_of(ff->ph, struct perf_session, header);
2355         session->evlist->nr_groups = nr_groups;
2356
2357         i = nr = 0;
2358         evlist__for_each_entry(session->evlist, evsel) {
2359                 if (evsel->idx == (int) desc[i].leader_idx) {
2360                         evsel->leader = evsel;
2361                         /* {anon_group} is a dummy name */
2362                         if (strcmp(desc[i].name, "{anon_group}")) {
2363                                 evsel->group_name = desc[i].name;
2364                                 desc[i].name = NULL;
2365                         }
2366                         evsel->nr_members = desc[i].nr_members;
2367
2368                         if (i >= nr_groups || nr > 0) {
2369                                 pr_debug("invalid group desc\n");
2370                                 goto out_free;
2371                         }
2372
2373                         leader = evsel;
2374                         nr = evsel->nr_members - 1;
2375                         i++;
2376                 } else if (nr) {
2377                         /* This is a group member */
2378                         evsel->leader = leader;
2379
2380                         nr--;
2381                 }
2382         }
2383
2384         if (i != nr_groups || nr != 0) {
2385                 pr_debug("invalid group desc\n");
2386                 goto out_free;
2387         }
2388
2389         ret = 0;
2390 out_free:
2391         for (i = 0; i < nr_groups; i++)
2392                 zfree(&desc[i].name);
2393         free(desc);
2394
2395         return ret;
2396 }
2397
2398 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2399 {
2400         struct perf_session *session;
2401         int err;
2402
2403         session = container_of(ff->ph, struct perf_session, header);
2404
2405         err = auxtrace_index__process(ff->fd, ff->size, session,
2406                                       ff->ph->needs_swap);
2407         if (err < 0)
2408                 pr_err("Failed to process auxtrace index\n");
2409         return err;
2410 }
2411
2412 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2413 {
2414         struct cpu_cache_level *caches;
2415         u32 cnt, i, version;
2416
2417         if (do_read_u32(ff, &version))
2418                 return -1;
2419
2420         if (version != 1)
2421                 return -1;
2422
2423         if (do_read_u32(ff, &cnt))
2424                 return -1;
2425
2426         caches = zalloc(sizeof(*caches) * cnt);
2427         if (!caches)
2428                 return -1;
2429
2430         for (i = 0; i < cnt; i++) {
2431                 struct cpu_cache_level c;
2432
2433                 #define _R(v)                                           \
2434                         if (do_read_u32(ff, &c.v))\
2435                                 goto out_free_caches;                   \
2436
2437                 _R(level)
2438                 _R(line_size)
2439                 _R(sets)
2440                 _R(ways)
2441                 #undef _R
2442
2443                 #define _R(v)                                   \
2444                         c.v = do_read_string(ff);               \
2445                         if (!c.v)                               \
2446                                 goto out_free_caches;
2447
2448                 _R(type)
2449                 _R(size)
2450                 _R(map)
2451                 #undef _R
2452
2453                 caches[i] = c;
2454         }
2455
2456         ff->ph->env.caches = caches;
2457         ff->ph->env.caches_cnt = cnt;
2458         return 0;
2459 out_free_caches:
2460         free(caches);
2461         return -1;
2462 }
2463
2464 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2465 {
2466         struct perf_session *session;
2467         u64 first_sample_time, last_sample_time;
2468         int ret;
2469
2470         session = container_of(ff->ph, struct perf_session, header);
2471
2472         ret = do_read_u64(ff, &first_sample_time);
2473         if (ret)
2474                 return -1;
2475
2476         ret = do_read_u64(ff, &last_sample_time);
2477         if (ret)
2478                 return -1;
2479
2480         session->evlist->first_sample_time = first_sample_time;
2481         session->evlist->last_sample_time = last_sample_time;
2482         return 0;
2483 }
2484
2485 static int process_mem_topology(struct feat_fd *ff,
2486                                 void *data __maybe_unused)
2487 {
2488         struct memory_node *nodes;
2489         u64 version, i, nr, bsize;
2490         int ret = -1;
2491
2492         if (do_read_u64(ff, &version))
2493                 return -1;
2494
2495         if (version != 1)
2496                 return -1;
2497
2498         if (do_read_u64(ff, &bsize))
2499                 return -1;
2500
2501         if (do_read_u64(ff, &nr))
2502                 return -1;
2503
2504         nodes = zalloc(sizeof(*nodes) * nr);
2505         if (!nodes)
2506                 return -1;
2507
2508         for (i = 0; i < nr; i++) {
2509                 struct memory_node n;
2510
2511                 #define _R(v)                           \
2512                         if (do_read_u64(ff, &n.v))      \
2513                                 goto out;               \
2514
2515                 _R(node)
2516                 _R(size)
2517
2518                 #undef _R
2519
2520                 if (do_read_bitmap(ff, &n.set, &n.size))
2521                         goto out;
2522
2523                 nodes[i] = n;
2524         }
2525
2526         ff->ph->env.memory_bsize    = bsize;
2527         ff->ph->env.memory_nodes    = nodes;
2528         ff->ph->env.nr_memory_nodes = nr;
2529         ret = 0;
2530
2531 out:
2532         if (ret)
2533                 free(nodes);
2534         return ret;
2535 }
2536
2537 struct feature_ops {
2538         int (*write)(struct feat_fd *ff, struct perf_evlist *evlist);
2539         void (*print)(struct feat_fd *ff, FILE *fp);
2540         int (*process)(struct feat_fd *ff, void *data);
2541         const char *name;
2542         bool full_only;
2543         bool synthesize;
2544 };
2545
2546 #define FEAT_OPR(n, func, __full_only) \
2547         [HEADER_##n] = {                                        \
2548                 .name       = __stringify(n),                   \
2549                 .write      = write_##func,                     \
2550                 .print      = print_##func,                     \
2551                 .full_only  = __full_only,                      \
2552                 .process    = process_##func,                   \
2553                 .synthesize = true                              \
2554         }
2555
2556 #define FEAT_OPN(n, func, __full_only) \
2557         [HEADER_##n] = {                                        \
2558                 .name       = __stringify(n),                   \
2559                 .write      = write_##func,                     \
2560                 .print      = print_##func,                     \
2561                 .full_only  = __full_only,                      \
2562                 .process    = process_##func                    \
2563         }
2564
2565 /* feature_ops not implemented: */
2566 #define print_tracing_data      NULL
2567 #define print_build_id          NULL
2568
2569 #define process_branch_stack    NULL
2570 #define process_stat            NULL
2571
2572
2573 static const struct feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2574         FEAT_OPN(TRACING_DATA,  tracing_data,   false),
2575         FEAT_OPN(BUILD_ID,      build_id,       false),
2576         FEAT_OPR(HOSTNAME,      hostname,       false),
2577         FEAT_OPR(OSRELEASE,     osrelease,      false),
2578         FEAT_OPR(VERSION,       version,        false),
2579         FEAT_OPR(ARCH,          arch,           false),
2580         FEAT_OPR(NRCPUS,        nrcpus,         false),
2581         FEAT_OPR(CPUDESC,       cpudesc,        false),
2582         FEAT_OPR(CPUID,         cpuid,          false),
2583         FEAT_OPR(TOTAL_MEM,     total_mem,      false),
2584         FEAT_OPR(EVENT_DESC,    event_desc,     false),
2585         FEAT_OPR(CMDLINE,       cmdline,        false),
2586         FEAT_OPR(CPU_TOPOLOGY,  cpu_topology,   true),
2587         FEAT_OPR(NUMA_TOPOLOGY, numa_topology,  true),
2588         FEAT_OPN(BRANCH_STACK,  branch_stack,   false),
2589         FEAT_OPR(PMU_MAPPINGS,  pmu_mappings,   false),
2590         FEAT_OPN(GROUP_DESC,    group_desc,     false),
2591         FEAT_OPN(AUXTRACE,      auxtrace,       false),
2592         FEAT_OPN(STAT,          stat,           false),
2593         FEAT_OPN(CACHE,         cache,          true),
2594         FEAT_OPR(SAMPLE_TIME,   sample_time,    false),
2595         FEAT_OPR(MEM_TOPOLOGY,  mem_topology,   true),
2596 };
2597
2598 struct header_print_data {
2599         FILE *fp;
2600         bool full; /* extended list of headers */
2601 };
2602
2603 static int perf_file_section__fprintf_info(struct perf_file_section *section,
2604                                            struct perf_header *ph,
2605                                            int feat, int fd, void *data)
2606 {
2607         struct header_print_data *hd = data;
2608         struct feat_fd ff;
2609
2610         if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
2611                 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
2612                                 "%d, continuing...\n", section->offset, feat);
2613                 return 0;
2614         }
2615         if (feat >= HEADER_LAST_FEATURE) {
2616                 pr_warning("unknown feature %d\n", feat);
2617                 return 0;
2618         }
2619         if (!feat_ops[feat].print)
2620                 return 0;
2621
2622         ff = (struct  feat_fd) {
2623                 .fd = fd,
2624                 .ph = ph,
2625         };
2626
2627         if (!feat_ops[feat].full_only || hd->full)
2628                 feat_ops[feat].print(&ff, hd->fp);
2629         else
2630                 fprintf(hd->fp, "# %s info available, use -I to display\n",
2631                         feat_ops[feat].name);
2632
2633         return 0;
2634 }
2635
2636 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
2637 {
2638         struct header_print_data hd;
2639         struct perf_header *header = &session->header;
2640         int fd = perf_data__fd(session->data);
2641         struct stat st;
2642         int ret, bit;
2643
2644         hd.fp = fp;
2645         hd.full = full;
2646
2647         ret = fstat(fd, &st);
2648         if (ret == -1)
2649                 return -1;
2650
2651         fprintf(fp, "# captured on    : %s", ctime(&st.st_ctime));
2652
2653         fprintf(fp, "# header version : %u\n", header->version);
2654         fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
2655         fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
2656         fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
2657
2658         perf_header__process_sections(header, fd, &hd,
2659                                       perf_file_section__fprintf_info);
2660
2661         if (session->data->is_pipe)
2662                 return 0;
2663
2664         fprintf(fp, "# missing features: ");
2665         for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
2666                 if (bit)
2667                         fprintf(fp, "%s ", feat_ops[bit].name);
2668         }
2669
2670         fprintf(fp, "\n");
2671         return 0;
2672 }
2673
2674 static int do_write_feat(struct feat_fd *ff, int type,
2675                          struct perf_file_section **p,
2676                          struct perf_evlist *evlist)
2677 {
2678         int err;
2679         int ret = 0;
2680
2681         if (perf_header__has_feat(ff->ph, type)) {
2682                 if (!feat_ops[type].write)
2683                         return -1;
2684
2685                 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
2686                         return -1;
2687
2688                 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2689
2690                 err = feat_ops[type].write(ff, evlist);
2691                 if (err < 0) {
2692                         pr_debug("failed to write feature %s\n", feat_ops[type].name);
2693
2694                         /* undo anything written */
2695                         lseek(ff->fd, (*p)->offset, SEEK_SET);
2696
2697                         return -1;
2698                 }
2699                 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2700                 (*p)++;
2701         }
2702         return ret;
2703 }
2704
2705 static int perf_header__adds_write(struct perf_header *header,
2706                                    struct perf_evlist *evlist, int fd)
2707 {
2708         int nr_sections;
2709         struct feat_fd ff;
2710         struct perf_file_section *feat_sec, *p;
2711         int sec_size;
2712         u64 sec_start;
2713         int feat;
2714         int err;
2715
2716         ff = (struct feat_fd){
2717                 .fd  = fd,
2718                 .ph = header,
2719         };
2720
2721         nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2722         if (!nr_sections)
2723                 return 0;
2724
2725         feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
2726         if (feat_sec == NULL)
2727                 return -ENOMEM;
2728
2729         sec_size = sizeof(*feat_sec) * nr_sections;
2730
2731         sec_start = header->feat_offset;
2732         lseek(fd, sec_start + sec_size, SEEK_SET);
2733
2734         for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
2735                 if (do_write_feat(&ff, feat, &p, evlist))
2736                         perf_header__clear_feat(header, feat);
2737         }
2738
2739         lseek(fd, sec_start, SEEK_SET);
2740         /*
2741          * may write more than needed due to dropped feature, but
2742          * this is okay, reader will skip the mising entries
2743          */
2744         err = do_write(&ff, feat_sec, sec_size);
2745         if (err < 0)
2746                 pr_debug("failed to write feature section\n");
2747         free(feat_sec);
2748         return err;
2749 }
2750
2751 int perf_header__write_pipe(int fd)
2752 {
2753         struct perf_pipe_file_header f_header;
2754         struct feat_fd ff;
2755         int err;
2756
2757         ff = (struct feat_fd){ .fd = fd };
2758
2759         f_header = (struct perf_pipe_file_header){
2760                 .magic     = PERF_MAGIC,
2761                 .size      = sizeof(f_header),
2762         };
2763
2764         err = do_write(&ff, &f_header, sizeof(f_header));
2765         if (err < 0) {
2766                 pr_debug("failed to write perf pipe header\n");
2767                 return err;
2768         }
2769
2770         return 0;
2771 }
2772
2773 int perf_session__write_header(struct perf_session *session,
2774                                struct perf_evlist *evlist,
2775                                int fd, bool at_exit)
2776 {
2777         struct perf_file_header f_header;
2778         struct perf_file_attr   f_attr;
2779         struct perf_header *header = &session->header;
2780         struct perf_evsel *evsel;
2781         struct feat_fd ff;
2782         u64 attr_offset;
2783         int err;
2784
2785         ff = (struct feat_fd){ .fd = fd};
2786         lseek(fd, sizeof(f_header), SEEK_SET);
2787
2788         evlist__for_each_entry(session->evlist, evsel) {
2789                 evsel->id_offset = lseek(fd, 0, SEEK_CUR);
2790                 err = do_write(&ff, evsel->id, evsel->ids * sizeof(u64));
2791                 if (err < 0) {
2792                         pr_debug("failed to write perf header\n");
2793                         return err;
2794                 }
2795         }
2796
2797         attr_offset = lseek(ff.fd, 0, SEEK_CUR);
2798
2799         evlist__for_each_entry(evlist, evsel) {
2800                 f_attr = (struct perf_file_attr){
2801                         .attr = evsel->attr,
2802                         .ids  = {
2803                                 .offset = evsel->id_offset,
2804                                 .size   = evsel->ids * sizeof(u64),
2805                         }
2806                 };
2807                 err = do_write(&ff, &f_attr, sizeof(f_attr));
2808                 if (err < 0) {
2809                         pr_debug("failed to write perf header attribute\n");
2810                         return err;
2811                 }
2812         }
2813
2814         if (!header->data_offset)
2815                 header->data_offset = lseek(fd, 0, SEEK_CUR);
2816         header->feat_offset = header->data_offset + header->data_size;
2817
2818         if (at_exit) {
2819                 err = perf_header__adds_write(header, evlist, fd);
2820                 if (err < 0)
2821                         return err;
2822         }
2823
2824         f_header = (struct perf_file_header){
2825                 .magic     = PERF_MAGIC,
2826                 .size      = sizeof(f_header),
2827                 .attr_size = sizeof(f_attr),
2828                 .attrs = {
2829                         .offset = attr_offset,
2830                         .size   = evlist->nr_entries * sizeof(f_attr),
2831                 },
2832                 .data = {
2833                         .offset = header->data_offset,
2834                         .size   = header->data_size,
2835                 },
2836                 /* event_types is ignored, store zeros */
2837         };
2838
2839         memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
2840
2841         lseek(fd, 0, SEEK_SET);
2842         err = do_write(&ff, &f_header, sizeof(f_header));
2843         if (err < 0) {
2844                 pr_debug("failed to write perf header\n");
2845                 return err;
2846         }
2847         lseek(fd, header->data_offset + header->data_size, SEEK_SET);
2848
2849         return 0;
2850 }
2851
2852 static int perf_header__getbuffer64(struct perf_header *header,
2853                                     int fd, void *buf, size_t size)
2854 {
2855         if (readn(fd, buf, size) <= 0)
2856                 return -1;
2857
2858         if (header->needs_swap)
2859                 mem_bswap_64(buf, size);
2860
2861         return 0;
2862 }
2863
2864 int perf_header__process_sections(struct perf_header *header, int fd,
2865                                   void *data,
2866                                   int (*process)(struct perf_file_section *section,
2867                                                  struct perf_header *ph,
2868                                                  int feat, int fd, void *data))
2869 {
2870         struct perf_file_section *feat_sec, *sec;
2871         int nr_sections;
2872         int sec_size;
2873         int feat;
2874         int err;
2875
2876         nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2877         if (!nr_sections)
2878                 return 0;
2879
2880         feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
2881         if (!feat_sec)
2882                 return -1;
2883
2884         sec_size = sizeof(*feat_sec) * nr_sections;
2885
2886         lseek(fd, header->feat_offset, SEEK_SET);
2887
2888         err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
2889         if (err < 0)
2890                 goto out_free;
2891
2892         for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
2893                 err = process(sec++, header, feat, fd, data);
2894                 if (err < 0)
2895                         goto out_free;
2896         }
2897         err = 0;
2898 out_free:
2899         free(feat_sec);
2900         return err;
2901 }
2902
2903 static const int attr_file_abi_sizes[] = {
2904         [0] = PERF_ATTR_SIZE_VER0,
2905         [1] = PERF_ATTR_SIZE_VER1,
2906         [2] = PERF_ATTR_SIZE_VER2,
2907         [3] = PERF_ATTR_SIZE_VER3,
2908         [4] = PERF_ATTR_SIZE_VER4,
2909         0,
2910 };
2911
2912 /*
2913  * In the legacy file format, the magic number is not used to encode endianness.
2914  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
2915  * on ABI revisions, we need to try all combinations for all endianness to
2916  * detect the endianness.
2917  */
2918 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
2919 {
2920         uint64_t ref_size, attr_size;
2921         int i;
2922
2923         for (i = 0 ; attr_file_abi_sizes[i]; i++) {
2924                 ref_size = attr_file_abi_sizes[i]
2925                          + sizeof(struct perf_file_section);
2926                 if (hdr_sz != ref_size) {
2927                         attr_size = bswap_64(hdr_sz);
2928                         if (attr_size != ref_size)
2929                                 continue;
2930
2931                         ph->needs_swap = true;
2932                 }
2933                 pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
2934                          i,
2935                          ph->needs_swap);
2936                 return 0;
2937         }
2938         /* could not determine endianness */
2939         return -1;
2940 }
2941
2942 #define PERF_PIPE_HDR_VER0      16
2943
2944 static const size_t attr_pipe_abi_sizes[] = {
2945         [0] = PERF_PIPE_HDR_VER0,
2946         0,
2947 };
2948
2949 /*
2950  * In the legacy pipe format, there is an implicit assumption that endiannesss
2951  * between host recording the samples, and host parsing the samples is the
2952  * same. This is not always the case given that the pipe output may always be
2953  * redirected into a file and analyzed on a different machine with possibly a
2954  * different endianness and perf_event ABI revsions in the perf tool itself.
2955  */
2956 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
2957 {
2958         u64 attr_size;
2959         int i;
2960
2961         for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
2962                 if (hdr_sz != attr_pipe_abi_sizes[i]) {
2963                         attr_size = bswap_64(hdr_sz);
2964                         if (attr_size != hdr_sz)
2965                                 continue;
2966
2967                         ph->needs_swap = true;
2968                 }
2969                 pr_debug("Pipe ABI%d perf.data file detected\n", i);
2970                 return 0;
2971         }
2972         return -1;
2973 }
2974
2975 bool is_perf_magic(u64 magic)
2976 {
2977         if (!memcmp(&magic, __perf_magic1, sizeof(magic))
2978                 || magic == __perf_magic2
2979                 || magic == __perf_magic2_sw)
2980                 return true;
2981
2982         return false;
2983 }
2984
2985 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
2986                               bool is_pipe, struct perf_header *ph)
2987 {
2988         int ret;
2989
2990         /* check for legacy format */
2991         ret = memcmp(&magic, __perf_magic1, sizeof(magic));
2992         if (ret == 0) {
2993                 ph->version = PERF_HEADER_VERSION_1;
2994                 pr_debug("legacy perf.data format\n");
2995                 if (is_pipe)
2996                         return try_all_pipe_abis(hdr_sz, ph);
2997
2998                 return try_all_file_abis(hdr_sz, ph);
2999         }
3000         /*
3001          * the new magic number serves two purposes:
3002          * - unique number to identify actual perf.data files
3003          * - encode endianness of file
3004          */
3005         ph->version = PERF_HEADER_VERSION_2;
3006
3007         /* check magic number with one endianness */
3008         if (magic == __perf_magic2)
3009                 return 0;
3010
3011         /* check magic number with opposite endianness */
3012         if (magic != __perf_magic2_sw)
3013                 return -1;
3014
3015         ph->needs_swap = true;
3016
3017         return 0;
3018 }
3019
3020 int perf_file_header__read(struct perf_file_header *header,
3021                            struct perf_header *ph, int fd)
3022 {
3023         ssize_t ret;
3024
3025         lseek(fd, 0, SEEK_SET);
3026
3027         ret = readn(fd, header, sizeof(*header));
3028         if (ret <= 0)
3029                 return -1;
3030
3031         if (check_magic_endian(header->magic,
3032                                header->attr_size, false, ph) < 0) {
3033                 pr_debug("magic/endian check failed\n");
3034                 return -1;
3035         }
3036
3037         if (ph->needs_swap) {
3038                 mem_bswap_64(header, offsetof(struct perf_file_header,
3039                              adds_features));
3040         }
3041
3042         if (header->size != sizeof(*header)) {
3043                 /* Support the previous format */
3044                 if (header->size == offsetof(typeof(*header), adds_features))
3045                         bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3046                 else
3047                         return -1;
3048         } else if (ph->needs_swap) {
3049                 /*
3050                  * feature bitmap is declared as an array of unsigned longs --
3051                  * not good since its size can differ between the host that
3052                  * generated the data file and the host analyzing the file.
3053                  *
3054                  * We need to handle endianness, but we don't know the size of
3055                  * the unsigned long where the file was generated. Take a best
3056                  * guess at determining it: try 64-bit swap first (ie., file
3057                  * created on a 64-bit host), and check if the hostname feature
3058                  * bit is set (this feature bit is forced on as of fbe96f2).
3059                  * If the bit is not, undo the 64-bit swap and try a 32-bit
3060                  * swap. If the hostname bit is still not set (e.g., older data
3061                  * file), punt and fallback to the original behavior --
3062                  * clearing all feature bits and setting buildid.
3063                  */
3064                 mem_bswap_64(&header->adds_features,
3065                             BITS_TO_U64(HEADER_FEAT_BITS));
3066
3067                 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3068                         /* unswap as u64 */
3069                         mem_bswap_64(&header->adds_features,
3070                                     BITS_TO_U64(HEADER_FEAT_BITS));
3071
3072                         /* unswap as u32 */
3073                         mem_bswap_32(&header->adds_features,
3074                                     BITS_TO_U32(HEADER_FEAT_BITS));
3075                 }
3076
3077                 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3078                         bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3079                         set_bit(HEADER_BUILD_ID, header->adds_features);
3080                 }
3081         }
3082
3083         memcpy(&ph->adds_features, &header->adds_features,
3084                sizeof(ph->adds_features));
3085
3086         ph->data_offset  = header->data.offset;
3087         ph->data_size    = header->data.size;
3088         ph->feat_offset  = header->data.offset + header->data.size;
3089         return 0;
3090 }
3091
3092 static int perf_file_section__process(struct perf_file_section *section,
3093                                       struct perf_header *ph,
3094                                       int feat, int fd, void *data)
3095 {
3096         struct feat_fd fdd = {
3097                 .fd     = fd,
3098                 .ph     = ph,
3099                 .size   = section->size,
3100                 .offset = section->offset,
3101         };
3102
3103         if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3104                 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3105                           "%d, continuing...\n", section->offset, feat);
3106                 return 0;
3107         }
3108
3109         if (feat >= HEADER_LAST_FEATURE) {
3110                 pr_debug("unknown feature %d, continuing...\n", feat);
3111                 return 0;
3112         }
3113
3114         if (!feat_ops[feat].process)
3115                 return 0;
3116
3117         return feat_ops[feat].process(&fdd, data);
3118 }
3119
3120 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3121                                        struct perf_header *ph, int fd,
3122                                        bool repipe)
3123 {
3124         struct feat_fd ff = {
3125                 .fd = STDOUT_FILENO,
3126                 .ph = ph,
3127         };
3128         ssize_t ret;
3129
3130         ret = readn(fd, header, sizeof(*header));
3131         if (ret <= 0)
3132                 return -1;
3133
3134         if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3135                 pr_debug("endian/magic failed\n");
3136                 return -1;
3137         }
3138
3139         if (ph->needs_swap)
3140                 header->size = bswap_64(header->size);
3141
3142         if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3143                 return -1;
3144
3145         return 0;
3146 }
3147
3148 static int perf_header__read_pipe(struct perf_session *session)
3149 {
3150         struct perf_header *header = &session->header;
3151         struct perf_pipe_file_header f_header;
3152
3153         if (perf_file_header__read_pipe(&f_header, header,
3154                                         perf_data__fd(session->data),
3155                                         session->repipe) < 0) {
3156                 pr_debug("incompatible file format\n");
3157                 return -EINVAL;
3158         }
3159
3160         return 0;
3161 }
3162
3163 static int read_attr(int fd, struct perf_header *ph,
3164                      struct perf_file_attr *f_attr)
3165 {
3166         struct perf_event_attr *attr = &f_attr->attr;
3167         size_t sz, left;
3168         size_t our_sz = sizeof(f_attr->attr);
3169         ssize_t ret;
3170
3171         memset(f_attr, 0, sizeof(*f_attr));
3172
3173         /* read minimal guaranteed structure */
3174         ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3175         if (ret <= 0) {
3176                 pr_debug("cannot read %d bytes of header attr\n",
3177                          PERF_ATTR_SIZE_VER0);
3178                 return -1;
3179         }
3180
3181         /* on file perf_event_attr size */
3182         sz = attr->size;
3183
3184         if (ph->needs_swap)
3185                 sz = bswap_32(sz);
3186
3187         if (sz == 0) {
3188                 /* assume ABI0 */
3189                 sz =  PERF_ATTR_SIZE_VER0;
3190         } else if (sz > our_sz) {
3191                 pr_debug("file uses a more recent and unsupported ABI"
3192                          " (%zu bytes extra)\n", sz - our_sz);
3193                 return -1;
3194         }
3195         /* what we have not yet read and that we know about */
3196         left = sz - PERF_ATTR_SIZE_VER0;
3197         if (left) {
3198                 void *ptr = attr;
3199                 ptr += PERF_ATTR_SIZE_VER0;
3200
3201                 ret = readn(fd, ptr, left);
3202         }
3203         /* read perf_file_section, ids are read in caller */
3204         ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3205
3206         return ret <= 0 ? -1 : 0;
3207 }
3208
3209 static int perf_evsel__prepare_tracepoint_event(struct perf_evsel *evsel,
3210                                                 struct pevent *pevent)
3211 {
3212         struct event_format *event;
3213         char bf[128];
3214
3215         /* already prepared */
3216         if (evsel->tp_format)
3217                 return 0;
3218
3219         if (pevent == NULL) {
3220                 pr_debug("broken or missing trace data\n");
3221                 return -1;
3222         }
3223
3224         event = pevent_find_event(pevent, evsel->attr.config);
3225         if (event == NULL) {
3226                 pr_debug("cannot find event format for %d\n", (int)evsel->attr.config);
3227                 return -1;
3228         }
3229
3230         if (!evsel->name) {
3231                 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3232                 evsel->name = strdup(bf);
3233                 if (evsel->name == NULL)
3234                         return -1;
3235         }
3236
3237         evsel->tp_format = event;
3238         return 0;
3239 }
3240
3241 static int perf_evlist__prepare_tracepoint_events(struct perf_evlist *evlist,
3242                                                   struct pevent *pevent)
3243 {
3244         struct perf_evsel *pos;
3245
3246         evlist__for_each_entry(evlist, pos) {
3247                 if (pos->attr.type == PERF_TYPE_TRACEPOINT &&
3248                     perf_evsel__prepare_tracepoint_event(pos, pevent))
3249                         return -1;
3250         }
3251
3252         return 0;
3253 }
3254
3255 int perf_session__read_header(struct perf_session *session)
3256 {
3257         struct perf_data *data = session->data;
3258         struct perf_header *header = &session->header;
3259         struct perf_file_header f_header;
3260         struct perf_file_attr   f_attr;
3261         u64                     f_id;
3262         int nr_attrs, nr_ids, i, j;
3263         int fd = perf_data__fd(data);
3264
3265         session->evlist = perf_evlist__new();
3266         if (session->evlist == NULL)
3267                 return -ENOMEM;
3268
3269         session->evlist->env = &header->env;
3270         session->machines.host.env = &header->env;
3271         if (perf_data__is_pipe(data))
3272                 return perf_header__read_pipe(session);
3273
3274         if (perf_file_header__read(&f_header, header, fd) < 0)
3275                 return -EINVAL;
3276
3277         /*
3278          * Sanity check that perf.data was written cleanly; data size is
3279          * initialized to 0 and updated only if the on_exit function is run.
3280          * If data size is still 0 then the file contains only partial
3281          * information.  Just warn user and process it as much as it can.
3282          */
3283         if (f_header.data.size == 0) {
3284                 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3285                            "Was the 'perf record' command properly terminated?\n",
3286                            data->file.path);
3287         }
3288
3289         nr_attrs = f_header.attrs.size / f_header.attr_size;
3290         lseek(fd, f_header.attrs.offset, SEEK_SET);
3291
3292         for (i = 0; i < nr_attrs; i++) {
3293                 struct perf_evsel *evsel;
3294                 off_t tmp;
3295
3296                 if (read_attr(fd, header, &f_attr) < 0)
3297                         goto out_errno;
3298
3299                 if (header->needs_swap) {
3300                         f_attr.ids.size   = bswap_64(f_attr.ids.size);
3301                         f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3302                         perf_event__attr_swap(&f_attr.attr);
3303                 }
3304
3305                 tmp = lseek(fd, 0, SEEK_CUR);
3306                 evsel = perf_evsel__new(&f_attr.attr);
3307
3308                 if (evsel == NULL)
3309                         goto out_delete_evlist;
3310
3311                 evsel->needs_swap = header->needs_swap;
3312                 /*
3313                  * Do it before so that if perf_evsel__alloc_id fails, this
3314                  * entry gets purged too at perf_evlist__delete().
3315                  */
3316                 perf_evlist__add(session->evlist, evsel);
3317
3318                 nr_ids = f_attr.ids.size / sizeof(u64);
3319                 /*
3320                  * We don't have the cpu and thread maps on the header, so
3321                  * for allocating the perf_sample_id table we fake 1 cpu and
3322                  * hattr->ids threads.
3323                  */
3324                 if (perf_evsel__alloc_id(evsel, 1, nr_ids))
3325                         goto out_delete_evlist;
3326
3327                 lseek(fd, f_attr.ids.offset, SEEK_SET);
3328
3329                 for (j = 0; j < nr_ids; j++) {
3330                         if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3331                                 goto out_errno;
3332
3333                         perf_evlist__id_add(session->evlist, evsel, 0, j, f_id);
3334                 }
3335
3336                 lseek(fd, tmp, SEEK_SET);
3337         }
3338
3339         perf_header__process_sections(header, fd, &session->tevent,
3340                                       perf_file_section__process);
3341
3342         if (perf_evlist__prepare_tracepoint_events(session->evlist,
3343                                                    session->tevent.pevent))
3344                 goto out_delete_evlist;
3345
3346         return 0;
3347 out_errno:
3348         return -errno;
3349
3350 out_delete_evlist:
3351         perf_evlist__delete(session->evlist);
3352         session->evlist = NULL;
3353         return -ENOMEM;
3354 }
3355
3356 int perf_event__synthesize_attr(struct perf_tool *tool,
3357                                 struct perf_event_attr *attr, u32 ids, u64 *id,
3358                                 perf_event__handler_t process)
3359 {
3360         union perf_event *ev;
3361         size_t size;
3362         int err;
3363
3364         size = sizeof(struct perf_event_attr);
3365         size = PERF_ALIGN(size, sizeof(u64));
3366         size += sizeof(struct perf_event_header);
3367         size += ids * sizeof(u64);
3368
3369         ev = malloc(size);
3370
3371         if (ev == NULL)
3372                 return -ENOMEM;
3373
3374         ev->attr.attr = *attr;
3375         memcpy(ev->attr.id, id, ids * sizeof(u64));
3376
3377         ev->attr.header.type = PERF_RECORD_HEADER_ATTR;
3378         ev->attr.header.size = (u16)size;
3379
3380         if (ev->attr.header.size == size)
3381                 err = process(tool, ev, NULL, NULL);
3382         else
3383                 err = -E2BIG;
3384
3385         free(ev);
3386
3387         return err;
3388 }
3389
3390 int perf_event__synthesize_features(struct perf_tool *tool,
3391                                     struct perf_session *session,
3392                                     struct perf_evlist *evlist,
3393                                     perf_event__handler_t process)
3394 {
3395         struct perf_header *header = &session->header;
3396         struct feat_fd ff;
3397         struct feature_event *fe;
3398         size_t sz, sz_hdr;
3399         int feat, ret;
3400
3401         sz_hdr = sizeof(fe->header);
3402         sz = sizeof(union perf_event);
3403         /* get a nice alignment */
3404         sz = PERF_ALIGN(sz, page_size);
3405
3406         memset(&ff, 0, sizeof(ff));
3407
3408         ff.buf = malloc(sz);
3409         if (!ff.buf)
3410                 return -ENOMEM;
3411
3412         ff.size = sz - sz_hdr;
3413
3414         for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3415                 if (!feat_ops[feat].synthesize) {
3416                         pr_debug("No record header feature for header :%d\n", feat);
3417                         continue;
3418                 }
3419
3420                 ff.offset = sizeof(*fe);
3421
3422                 ret = feat_ops[feat].write(&ff, evlist);
3423                 if (ret || ff.offset <= (ssize_t)sizeof(*fe)) {
3424                         pr_debug("Error writing feature\n");
3425                         continue;
3426                 }
3427                 /* ff.buf may have changed due to realloc in do_write() */
3428                 fe = ff.buf;
3429                 memset(fe, 0, sizeof(*fe));
3430
3431                 fe->feat_id = feat;
3432                 fe->header.type = PERF_RECORD_HEADER_FEATURE;
3433                 fe->header.size = ff.offset;
3434
3435                 ret = process(tool, ff.buf, NULL, NULL);
3436                 if (ret) {
3437                         free(ff.buf);
3438                         return ret;
3439                 }
3440         }
3441
3442         /* Send HEADER_LAST_FEATURE mark. */
3443         fe = ff.buf;
3444         fe->feat_id     = HEADER_LAST_FEATURE;
3445         fe->header.type = PERF_RECORD_HEADER_FEATURE;
3446         fe->header.size = sizeof(*fe);
3447
3448         ret = process(tool, ff.buf, NULL, NULL);
3449
3450         free(ff.buf);
3451         return ret;
3452 }
3453
3454 int perf_event__process_feature(struct perf_tool *tool,
3455                                 union perf_event *event,
3456                                 struct perf_session *session __maybe_unused)
3457 {
3458         struct feat_fd ff = { .fd = 0 };
3459         struct feature_event *fe = (struct feature_event *)event;
3460         int type = fe->header.type;
3461         u64 feat = fe->feat_id;
3462
3463         if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3464                 pr_warning("invalid record type %d in pipe-mode\n", type);
3465                 return 0;
3466         }
3467         if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3468                 pr_warning("invalid record type %d in pipe-mode\n", type);
3469                 return -1;
3470         }
3471
3472         if (!feat_ops[feat].process)
3473                 return 0;
3474
3475         ff.buf  = (void *)fe->data;
3476         ff.size = event->header.size - sizeof(event->header);
3477         ff.ph = &session->header;
3478
3479         if (feat_ops[feat].process(&ff, NULL))
3480                 return -1;
3481
3482         if (!feat_ops[feat].print || !tool->show_feat_hdr)
3483                 return 0;
3484
3485         if (!feat_ops[feat].full_only ||
3486             tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3487                 feat_ops[feat].print(&ff, stdout);
3488         } else {
3489                 fprintf(stdout, "# %s info available, use -I to display\n",
3490                         feat_ops[feat].name);
3491         }
3492
3493         return 0;
3494 }
3495
3496 static struct event_update_event *
3497 event_update_event__new(size_t size, u64 type, u64 id)
3498 {
3499         struct event_update_event *ev;
3500
3501         size += sizeof(*ev);
3502         size  = PERF_ALIGN(size, sizeof(u64));
3503
3504         ev = zalloc(size);
3505         if (ev) {
3506                 ev->header.type = PERF_RECORD_EVENT_UPDATE;
3507                 ev->header.size = (u16)size;
3508                 ev->type = type;
3509                 ev->id = id;
3510         }
3511         return ev;
3512 }
3513
3514 int
3515 perf_event__synthesize_event_update_unit(struct perf_tool *tool,
3516                                          struct perf_evsel *evsel,
3517                                          perf_event__handler_t process)
3518 {
3519         struct event_update_event *ev;
3520         size_t size = strlen(evsel->unit);
3521         int err;
3522
3523         ev = event_update_event__new(size + 1, PERF_EVENT_UPDATE__UNIT, evsel->id[0]);
3524         if (ev == NULL)
3525                 return -ENOMEM;
3526
3527         strncpy(ev->data, evsel->unit, size);
3528         err = process(tool, (union perf_event *)ev, NULL, NULL);
3529         free(ev);
3530         return err;
3531 }
3532
3533 int
3534 perf_event__synthesize_event_update_scale(struct perf_tool *tool,
3535                                           struct perf_evsel *evsel,
3536                                           perf_event__handler_t process)
3537 {
3538         struct event_update_event *ev;
3539         struct event_update_event_scale *ev_data;
3540         int err;
3541
3542         ev = event_update_event__new(sizeof(*ev_data), PERF_EVENT_UPDATE__SCALE, evsel->id[0]);
3543         if (ev == NULL)
3544                 return -ENOMEM;
3545
3546         ev_data = (struct event_update_event_scale *) ev->data;
3547         ev_data->scale = evsel->scale;
3548         err = process(tool, (union perf_event*) ev, NULL, NULL);
3549         free(ev);
3550         return err;
3551 }
3552
3553 int
3554 perf_event__synthesize_event_update_name(struct perf_tool *tool,
3555                                          struct perf_evsel *evsel,
3556                                          perf_event__handler_t process)
3557 {
3558         struct event_update_event *ev;
3559         size_t len = strlen(evsel->name);
3560         int err;
3561
3562         ev = event_update_event__new(len + 1, PERF_EVENT_UPDATE__NAME, evsel->id[0]);
3563         if (ev == NULL)
3564                 return -ENOMEM;
3565
3566         strncpy(ev->data, evsel->name, len);
3567         err = process(tool, (union perf_event*) ev, NULL, NULL);
3568         free(ev);
3569         return err;
3570 }
3571
3572 int
3573 perf_event__synthesize_event_update_cpus(struct perf_tool *tool,
3574                                         struct perf_evsel *evsel,
3575                                         perf_event__handler_t process)
3576 {
3577         size_t size = sizeof(struct event_update_event);
3578         struct event_update_event *ev;
3579         int max, err;
3580         u16 type;
3581
3582         if (!evsel->own_cpus)
3583                 return 0;
3584
3585         ev = cpu_map_data__alloc(evsel->own_cpus, &size, &type, &max);
3586         if (!ev)
3587                 return -ENOMEM;
3588
3589         ev->header.type = PERF_RECORD_EVENT_UPDATE;
3590         ev->header.size = (u16)size;
3591         ev->type = PERF_EVENT_UPDATE__CPUS;
3592         ev->id   = evsel->id[0];
3593
3594         cpu_map_data__synthesize((struct cpu_map_data *) ev->data,
3595                                  evsel->own_cpus,
3596                                  type, max);
3597
3598         err = process(tool, (union perf_event*) ev, NULL, NULL);
3599         free(ev);
3600         return err;
3601 }
3602
3603 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3604 {
3605         struct event_update_event *ev = &event->event_update;
3606         struct event_update_event_scale *ev_scale;
3607         struct event_update_event_cpus *ev_cpus;
3608         struct cpu_map *map;
3609         size_t ret;
3610
3611         ret = fprintf(fp, "\n... id:    %" PRIu64 "\n", ev->id);
3612
3613         switch (ev->type) {
3614         case PERF_EVENT_UPDATE__SCALE:
3615                 ev_scale = (struct event_update_event_scale *) ev->data;
3616                 ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3617                 break;
3618         case PERF_EVENT_UPDATE__UNIT:
3619                 ret += fprintf(fp, "... unit:  %s\n", ev->data);
3620                 break;
3621         case PERF_EVENT_UPDATE__NAME:
3622                 ret += fprintf(fp, "... name:  %s\n", ev->data);
3623                 break;
3624         case PERF_EVENT_UPDATE__CPUS:
3625                 ev_cpus = (struct event_update_event_cpus *) ev->data;
3626                 ret += fprintf(fp, "... ");
3627
3628                 map = cpu_map__new_data(&ev_cpus->cpus);
3629                 if (map)
3630                         ret += cpu_map__fprintf(map, fp);
3631                 else
3632                         ret += fprintf(fp, "failed to get cpus\n");
3633                 break;
3634         default:
3635                 ret += fprintf(fp, "... unknown type\n");
3636                 break;
3637         }
3638
3639         return ret;
3640 }
3641
3642 int perf_event__synthesize_attrs(struct perf_tool *tool,
3643                                    struct perf_session *session,
3644                                    perf_event__handler_t process)
3645 {
3646         struct perf_evsel *evsel;
3647         int err = 0;
3648
3649         evlist__for_each_entry(session->evlist, evsel) {
3650                 err = perf_event__synthesize_attr(tool, &evsel->attr, evsel->ids,
3651                                                   evsel->id, process);
3652                 if (err) {
3653                         pr_debug("failed to create perf header attribute\n");
3654                         return err;
3655                 }
3656         }
3657
3658         return err;
3659 }
3660
3661 static bool has_unit(struct perf_evsel *counter)
3662 {
3663         return counter->unit && *counter->unit;
3664 }
3665
3666 static bool has_scale(struct perf_evsel *counter)
3667 {
3668         return counter->scale != 1;
3669 }
3670
3671 int perf_event__synthesize_extra_attr(struct perf_tool *tool,
3672                                       struct perf_evlist *evsel_list,
3673                                       perf_event__handler_t process,
3674                                       bool is_pipe)
3675 {
3676         struct perf_evsel *counter;
3677         int err;
3678
3679         /*
3680          * Synthesize other events stuff not carried within
3681          * attr event - unit, scale, name
3682          */
3683         evlist__for_each_entry(evsel_list, counter) {
3684                 if (!counter->supported)
3685                         continue;
3686
3687                 /*
3688                  * Synthesize unit and scale only if it's defined.
3689                  */
3690                 if (has_unit(counter)) {
3691                         err = perf_event__synthesize_event_update_unit(tool, counter, process);
3692                         if (err < 0) {
3693                                 pr_err("Couldn't synthesize evsel unit.\n");
3694                                 return err;
3695                         }
3696                 }
3697
3698                 if (has_scale(counter)) {
3699                         err = perf_event__synthesize_event_update_scale(tool, counter, process);
3700                         if (err < 0) {
3701                                 pr_err("Couldn't synthesize evsel counter.\n");
3702                                 return err;
3703                         }
3704                 }
3705
3706                 if (counter->own_cpus) {
3707                         err = perf_event__synthesize_event_update_cpus(tool, counter, process);
3708                         if (err < 0) {
3709                                 pr_err("Couldn't synthesize evsel cpus.\n");
3710                                 return err;
3711                         }
3712                 }
3713
3714                 /*
3715                  * Name is needed only for pipe output,
3716                  * perf.data carries event names.
3717                  */
3718                 if (is_pipe) {
3719                         err = perf_event__synthesize_event_update_name(tool, counter, process);
3720                         if (err < 0) {
3721                                 pr_err("Couldn't synthesize evsel name.\n");
3722                                 return err;
3723                         }
3724                 }
3725         }
3726         return 0;
3727 }
3728
3729 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3730                              union perf_event *event,
3731                              struct perf_evlist **pevlist)
3732 {
3733         u32 i, ids, n_ids;
3734         struct perf_evsel *evsel;
3735         struct perf_evlist *evlist = *pevlist;
3736
3737         if (evlist == NULL) {
3738                 *pevlist = evlist = perf_evlist__new();
3739                 if (evlist == NULL)
3740                         return -ENOMEM;
3741         }
3742
3743         evsel = perf_evsel__new(&event->attr.attr);
3744         if (evsel == NULL)
3745                 return -ENOMEM;
3746
3747         perf_evlist__add(evlist, evsel);
3748
3749         ids = event->header.size;
3750         ids -= (void *)&event->attr.id - (void *)event;
3751         n_ids = ids / sizeof(u64);
3752         /*
3753          * We don't have the cpu and thread maps on the header, so
3754          * for allocating the perf_sample_id table we fake 1 cpu and
3755          * hattr->ids threads.
3756          */
3757         if (perf_evsel__alloc_id(evsel, 1, n_ids))
3758                 return -ENOMEM;
3759
3760         for (i = 0; i < n_ids; i++) {
3761                 perf_evlist__id_add(evlist, evsel, 0, i, event->attr.id[i]);
3762         }
3763
3764         return 0;
3765 }
3766
3767 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
3768                                      union perf_event *event,
3769                                      struct perf_evlist **pevlist)
3770 {
3771         struct event_update_event *ev = &event->event_update;
3772         struct event_update_event_scale *ev_scale;
3773         struct event_update_event_cpus *ev_cpus;
3774         struct perf_evlist *evlist;
3775         struct perf_evsel *evsel;
3776         struct cpu_map *map;
3777
3778         if (!pevlist || *pevlist == NULL)
3779                 return -EINVAL;
3780
3781         evlist = *pevlist;
3782
3783         evsel = perf_evlist__id2evsel(evlist, ev->id);
3784         if (evsel == NULL)
3785                 return -EINVAL;
3786
3787         switch (ev->type) {
3788         case PERF_EVENT_UPDATE__UNIT:
3789                 evsel->unit = strdup(ev->data);
3790                 break;
3791         case PERF_EVENT_UPDATE__NAME:
3792                 evsel->name = strdup(ev->data);
3793                 break;
3794         case PERF_EVENT_UPDATE__SCALE:
3795                 ev_scale = (struct event_update_event_scale *) ev->data;
3796                 evsel->scale = ev_scale->scale;
3797                 break;
3798         case PERF_EVENT_UPDATE__CPUS:
3799                 ev_cpus = (struct event_update_event_cpus *) ev->data;
3800
3801                 map = cpu_map__new_data(&ev_cpus->cpus);
3802                 if (map)
3803                         evsel->own_cpus = map;
3804                 else
3805                         pr_err("failed to get event_update cpus\n");
3806         default:
3807                 break;
3808         }
3809
3810         return 0;
3811 }
3812
3813 int perf_event__synthesize_tracing_data(struct perf_tool *tool, int fd,
3814                                         struct perf_evlist *evlist,
3815                                         perf_event__handler_t process)
3816 {
3817         union perf_event ev;
3818         struct tracing_data *tdata;
3819         ssize_t size = 0, aligned_size = 0, padding;
3820         struct feat_fd ff;
3821         int err __maybe_unused = 0;
3822
3823         /*
3824          * We are going to store the size of the data followed
3825          * by the data contents. Since the fd descriptor is a pipe,
3826          * we cannot seek back to store the size of the data once
3827          * we know it. Instead we:
3828          *
3829          * - write the tracing data to the temp file
3830          * - get/write the data size to pipe
3831          * - write the tracing data from the temp file
3832          *   to the pipe
3833          */
3834         tdata = tracing_data_get(&evlist->entries, fd, true);
3835         if (!tdata)
3836                 return -1;
3837
3838         memset(&ev, 0, sizeof(ev));
3839
3840         ev.tracing_data.header.type = PERF_RECORD_HEADER_TRACING_DATA;
3841         size = tdata->size;
3842         aligned_size = PERF_ALIGN(size, sizeof(u64));
3843         padding = aligned_size - size;
3844         ev.tracing_data.header.size = sizeof(ev.tracing_data);
3845         ev.tracing_data.size = aligned_size;
3846
3847         process(tool, &ev, NULL, NULL);
3848
3849         /*
3850          * The put function will copy all the tracing data
3851          * stored in temp file to the pipe.
3852          */
3853         tracing_data_put(tdata);
3854
3855         ff = (struct feat_fd){ .fd = fd };
3856         if (write_padded(&ff, NULL, 0, padding))
3857                 return -1;
3858
3859         return aligned_size;
3860 }
3861
3862 int perf_event__process_tracing_data(struct perf_tool *tool __maybe_unused,
3863                                      union perf_event *event,
3864                                      struct perf_session *session)
3865 {
3866         ssize_t size_read, padding, size = event->tracing_data.size;
3867         int fd = perf_data__fd(session->data);
3868         off_t offset = lseek(fd, 0, SEEK_CUR);
3869         char buf[BUFSIZ];
3870
3871         /* setup for reading amidst mmap */
3872         lseek(fd, offset + sizeof(struct tracing_data_event),
3873               SEEK_SET);
3874
3875         size_read = trace_report(fd, &session->tevent,
3876                                  session->repipe);
3877         padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
3878
3879         if (readn(fd, buf, padding) < 0) {
3880                 pr_err("%s: reading input file", __func__);
3881                 return -1;
3882         }
3883         if (session->repipe) {
3884                 int retw = write(STDOUT_FILENO, buf, padding);
3885                 if (retw <= 0 || retw != padding) {
3886                         pr_err("%s: repiping tracing data padding", __func__);
3887                         return -1;
3888                 }
3889         }
3890
3891         if (size_read + padding != size) {
3892                 pr_err("%s: tracing data size mismatch", __func__);
3893                 return -1;
3894         }
3895
3896         perf_evlist__prepare_tracepoint_events(session->evlist,
3897                                                session->tevent.pevent);
3898
3899         return size_read + padding;
3900 }
3901
3902 int perf_event__synthesize_build_id(struct perf_tool *tool,
3903                                     struct dso *pos, u16 misc,
3904                                     perf_event__handler_t process,
3905                                     struct machine *machine)
3906 {
3907         union perf_event ev;
3908         size_t len;
3909         int err = 0;
3910
3911         if (!pos->hit)
3912                 return err;
3913
3914         memset(&ev, 0, sizeof(ev));
3915
3916         len = pos->long_name_len + 1;
3917         len = PERF_ALIGN(len, NAME_ALIGN);
3918         memcpy(&ev.build_id.build_id, pos->build_id, sizeof(pos->build_id));
3919         ev.build_id.header.type = PERF_RECORD_HEADER_BUILD_ID;
3920         ev.build_id.header.misc = misc;
3921         ev.build_id.pid = machine->pid;
3922         ev.build_id.header.size = sizeof(ev.build_id) + len;
3923         memcpy(&ev.build_id.filename, pos->long_name, pos->long_name_len);
3924
3925         err = process(tool, &ev, NULL, machine);
3926
3927         return err;
3928 }
3929
3930 int perf_event__process_build_id(struct perf_tool *tool __maybe_unused,
3931                                  union perf_event *event,
3932                                  struct perf_session *session)
3933 {
3934         __event_process_build_id(&event->build_id,
3935                                  event->build_id.filename,
3936                                  session);
3937         return 0;
3938 }