vmscan: convert direct reclaim tracepoint to DEFINE_TRACE
[sfrench/cifs-2.6.git] / tools / perf / builtin-sched.c
1 #include "builtin.h"
2 #include "perf.h"
3
4 #include "util/util.h"
5 #include "util/cache.h"
6 #include "util/symbol.h"
7 #include "util/thread.h"
8 #include "util/header.h"
9 #include "util/session.h"
10
11 #include "util/parse-options.h"
12 #include "util/trace-event.h"
13
14 #include "util/debug.h"
15
16 #include <sys/prctl.h>
17
18 #include <semaphore.h>
19 #include <pthread.h>
20 #include <math.h>
21
22 static char                     const *input_name = "perf.data";
23
24 static char                     default_sort_order[] = "avg, max, switch, runtime";
25 static const char               *sort_order = default_sort_order;
26
27 static int                      profile_cpu = -1;
28
29 #define PR_SET_NAME             15               /* Set process name */
30 #define MAX_CPUS                4096
31
32 static u64                      run_measurement_overhead;
33 static u64                      sleep_measurement_overhead;
34
35 #define COMM_LEN                20
36 #define SYM_LEN                 129
37
38 #define MAX_PID                 65536
39
40 static unsigned long            nr_tasks;
41
42 struct sched_atom;
43
44 struct task_desc {
45         unsigned long           nr;
46         unsigned long           pid;
47         char                    comm[COMM_LEN];
48
49         unsigned long           nr_events;
50         unsigned long           curr_event;
51         struct sched_atom       **atoms;
52
53         pthread_t               thread;
54         sem_t                   sleep_sem;
55
56         sem_t                   ready_for_work;
57         sem_t                   work_done_sem;
58
59         u64                     cpu_usage;
60 };
61
62 enum sched_event_type {
63         SCHED_EVENT_RUN,
64         SCHED_EVENT_SLEEP,
65         SCHED_EVENT_WAKEUP,
66         SCHED_EVENT_MIGRATION,
67 };
68
69 struct sched_atom {
70         enum sched_event_type   type;
71         int                     specific_wait;
72         u64                     timestamp;
73         u64                     duration;
74         unsigned long           nr;
75         sem_t                   *wait_sem;
76         struct task_desc        *wakee;
77 };
78
79 static struct task_desc         *pid_to_task[MAX_PID];
80
81 static struct task_desc         **tasks;
82
83 static pthread_mutex_t          start_work_mutex = PTHREAD_MUTEX_INITIALIZER;
84 static u64                      start_time;
85
86 static pthread_mutex_t          work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
87
88 static unsigned long            nr_run_events;
89 static unsigned long            nr_sleep_events;
90 static unsigned long            nr_wakeup_events;
91
92 static unsigned long            nr_sleep_corrections;
93 static unsigned long            nr_run_events_optimized;
94
95 static unsigned long            targetless_wakeups;
96 static unsigned long            multitarget_wakeups;
97
98 static u64                      cpu_usage;
99 static u64                      runavg_cpu_usage;
100 static u64                      parent_cpu_usage;
101 static u64                      runavg_parent_cpu_usage;
102
103 static unsigned long            nr_runs;
104 static u64                      sum_runtime;
105 static u64                      sum_fluct;
106 static u64                      run_avg;
107
108 static unsigned int             replay_repeat = 10;
109 static unsigned long            nr_timestamps;
110 static unsigned long            nr_unordered_timestamps;
111 static unsigned long            nr_state_machine_bugs;
112 static unsigned long            nr_context_switch_bugs;
113 static unsigned long            nr_events;
114 static unsigned long            nr_lost_chunks;
115 static unsigned long            nr_lost_events;
116
117 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
118
119 enum thread_state {
120         THREAD_SLEEPING = 0,
121         THREAD_WAIT_CPU,
122         THREAD_SCHED_IN,
123         THREAD_IGNORE
124 };
125
126 struct work_atom {
127         struct list_head        list;
128         enum thread_state       state;
129         u64                     sched_out_time;
130         u64                     wake_up_time;
131         u64                     sched_in_time;
132         u64                     runtime;
133 };
134
135 struct work_atoms {
136         struct list_head        work_list;
137         struct thread           *thread;
138         struct rb_node          node;
139         u64                     max_lat;
140         u64                     max_lat_at;
141         u64                     total_lat;
142         u64                     nb_atoms;
143         u64                     total_runtime;
144 };
145
146 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
147
148 static struct rb_root           atom_root, sorted_atom_root;
149
150 static u64                      all_runtime;
151 static u64                      all_count;
152
153
154 static u64 get_nsecs(void)
155 {
156         struct timespec ts;
157
158         clock_gettime(CLOCK_MONOTONIC, &ts);
159
160         return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
161 }
162
163 static void burn_nsecs(u64 nsecs)
164 {
165         u64 T0 = get_nsecs(), T1;
166
167         do {
168                 T1 = get_nsecs();
169         } while (T1 + run_measurement_overhead < T0 + nsecs);
170 }
171
172 static void sleep_nsecs(u64 nsecs)
173 {
174         struct timespec ts;
175
176         ts.tv_nsec = nsecs % 999999999;
177         ts.tv_sec = nsecs / 999999999;
178
179         nanosleep(&ts, NULL);
180 }
181
182 static void calibrate_run_measurement_overhead(void)
183 {
184         u64 T0, T1, delta, min_delta = 1000000000ULL;
185         int i;
186
187         for (i = 0; i < 10; i++) {
188                 T0 = get_nsecs();
189                 burn_nsecs(0);
190                 T1 = get_nsecs();
191                 delta = T1-T0;
192                 min_delta = min(min_delta, delta);
193         }
194         run_measurement_overhead = min_delta;
195
196         printf("run measurement overhead: %Ld nsecs\n", min_delta);
197 }
198
199 static void calibrate_sleep_measurement_overhead(void)
200 {
201         u64 T0, T1, delta, min_delta = 1000000000ULL;
202         int i;
203
204         for (i = 0; i < 10; i++) {
205                 T0 = get_nsecs();
206                 sleep_nsecs(10000);
207                 T1 = get_nsecs();
208                 delta = T1-T0;
209                 min_delta = min(min_delta, delta);
210         }
211         min_delta -= 10000;
212         sleep_measurement_overhead = min_delta;
213
214         printf("sleep measurement overhead: %Ld nsecs\n", min_delta);
215 }
216
217 static struct sched_atom *
218 get_new_event(struct task_desc *task, u64 timestamp)
219 {
220         struct sched_atom *event = zalloc(sizeof(*event));
221         unsigned long idx = task->nr_events;
222         size_t size;
223
224         event->timestamp = timestamp;
225         event->nr = idx;
226
227         task->nr_events++;
228         size = sizeof(struct sched_atom *) * task->nr_events;
229         task->atoms = realloc(task->atoms, size);
230         BUG_ON(!task->atoms);
231
232         task->atoms[idx] = event;
233
234         return event;
235 }
236
237 static struct sched_atom *last_event(struct task_desc *task)
238 {
239         if (!task->nr_events)
240                 return NULL;
241
242         return task->atoms[task->nr_events - 1];
243 }
244
245 static void
246 add_sched_event_run(struct task_desc *task, u64 timestamp, u64 duration)
247 {
248         struct sched_atom *event, *curr_event = last_event(task);
249
250         /*
251          * optimize an existing RUN event by merging this one
252          * to it:
253          */
254         if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
255                 nr_run_events_optimized++;
256                 curr_event->duration += duration;
257                 return;
258         }
259
260         event = get_new_event(task, timestamp);
261
262         event->type = SCHED_EVENT_RUN;
263         event->duration = duration;
264
265         nr_run_events++;
266 }
267
268 static void
269 add_sched_event_wakeup(struct task_desc *task, u64 timestamp,
270                        struct task_desc *wakee)
271 {
272         struct sched_atom *event, *wakee_event;
273
274         event = get_new_event(task, timestamp);
275         event->type = SCHED_EVENT_WAKEUP;
276         event->wakee = wakee;
277
278         wakee_event = last_event(wakee);
279         if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
280                 targetless_wakeups++;
281                 return;
282         }
283         if (wakee_event->wait_sem) {
284                 multitarget_wakeups++;
285                 return;
286         }
287
288         wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
289         sem_init(wakee_event->wait_sem, 0, 0);
290         wakee_event->specific_wait = 1;
291         event->wait_sem = wakee_event->wait_sem;
292
293         nr_wakeup_events++;
294 }
295
296 static void
297 add_sched_event_sleep(struct task_desc *task, u64 timestamp,
298                       u64 task_state __used)
299 {
300         struct sched_atom *event = get_new_event(task, timestamp);
301
302         event->type = SCHED_EVENT_SLEEP;
303
304         nr_sleep_events++;
305 }
306
307 static struct task_desc *register_pid(unsigned long pid, const char *comm)
308 {
309         struct task_desc *task;
310
311         BUG_ON(pid >= MAX_PID);
312
313         task = pid_to_task[pid];
314
315         if (task)
316                 return task;
317
318         task = zalloc(sizeof(*task));
319         task->pid = pid;
320         task->nr = nr_tasks;
321         strcpy(task->comm, comm);
322         /*
323          * every task starts in sleeping state - this gets ignored
324          * if there's no wakeup pointing to this sleep state:
325          */
326         add_sched_event_sleep(task, 0, 0);
327
328         pid_to_task[pid] = task;
329         nr_tasks++;
330         tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *));
331         BUG_ON(!tasks);
332         tasks[task->nr] = task;
333
334         if (verbose)
335                 printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm);
336
337         return task;
338 }
339
340
341 static void print_task_traces(void)
342 {
343         struct task_desc *task;
344         unsigned long i;
345
346         for (i = 0; i < nr_tasks; i++) {
347                 task = tasks[i];
348                 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
349                         task->nr, task->comm, task->pid, task->nr_events);
350         }
351 }
352
353 static void add_cross_task_wakeups(void)
354 {
355         struct task_desc *task1, *task2;
356         unsigned long i, j;
357
358         for (i = 0; i < nr_tasks; i++) {
359                 task1 = tasks[i];
360                 j = i + 1;
361                 if (j == nr_tasks)
362                         j = 0;
363                 task2 = tasks[j];
364                 add_sched_event_wakeup(task1, 0, task2);
365         }
366 }
367
368 static void
369 process_sched_event(struct task_desc *this_task __used, struct sched_atom *atom)
370 {
371         int ret = 0;
372         u64 now;
373         long long delta;
374
375         now = get_nsecs();
376         delta = start_time + atom->timestamp - now;
377
378         switch (atom->type) {
379                 case SCHED_EVENT_RUN:
380                         burn_nsecs(atom->duration);
381                         break;
382                 case SCHED_EVENT_SLEEP:
383                         if (atom->wait_sem)
384                                 ret = sem_wait(atom->wait_sem);
385                         BUG_ON(ret);
386                         break;
387                 case SCHED_EVENT_WAKEUP:
388                         if (atom->wait_sem)
389                                 ret = sem_post(atom->wait_sem);
390                         BUG_ON(ret);
391                         break;
392                 case SCHED_EVENT_MIGRATION:
393                         break;
394                 default:
395                         BUG_ON(1);
396         }
397 }
398
399 static u64 get_cpu_usage_nsec_parent(void)
400 {
401         struct rusage ru;
402         u64 sum;
403         int err;
404
405         err = getrusage(RUSAGE_SELF, &ru);
406         BUG_ON(err);
407
408         sum =  ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
409         sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
410
411         return sum;
412 }
413
414 static int self_open_counters(void)
415 {
416         struct perf_event_attr attr;
417         int fd;
418
419         memset(&attr, 0, sizeof(attr));
420
421         attr.type = PERF_TYPE_SOFTWARE;
422         attr.config = PERF_COUNT_SW_TASK_CLOCK;
423
424         fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
425
426         if (fd < 0)
427                 die("Error: sys_perf_event_open() syscall returned"
428                     "with %d (%s)\n", fd, strerror(errno));
429         return fd;
430 }
431
432 static u64 get_cpu_usage_nsec_self(int fd)
433 {
434         u64 runtime;
435         int ret;
436
437         ret = read(fd, &runtime, sizeof(runtime));
438         BUG_ON(ret != sizeof(runtime));
439
440         return runtime;
441 }
442
443 static void *thread_func(void *ctx)
444 {
445         struct task_desc *this_task = ctx;
446         u64 cpu_usage_0, cpu_usage_1;
447         unsigned long i, ret;
448         char comm2[22];
449         int fd;
450
451         sprintf(comm2, ":%s", this_task->comm);
452         prctl(PR_SET_NAME, comm2);
453         fd = self_open_counters();
454
455 again:
456         ret = sem_post(&this_task->ready_for_work);
457         BUG_ON(ret);
458         ret = pthread_mutex_lock(&start_work_mutex);
459         BUG_ON(ret);
460         ret = pthread_mutex_unlock(&start_work_mutex);
461         BUG_ON(ret);
462
463         cpu_usage_0 = get_cpu_usage_nsec_self(fd);
464
465         for (i = 0; i < this_task->nr_events; i++) {
466                 this_task->curr_event = i;
467                 process_sched_event(this_task, this_task->atoms[i]);
468         }
469
470         cpu_usage_1 = get_cpu_usage_nsec_self(fd);
471         this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
472         ret = sem_post(&this_task->work_done_sem);
473         BUG_ON(ret);
474
475         ret = pthread_mutex_lock(&work_done_wait_mutex);
476         BUG_ON(ret);
477         ret = pthread_mutex_unlock(&work_done_wait_mutex);
478         BUG_ON(ret);
479
480         goto again;
481 }
482
483 static void create_tasks(void)
484 {
485         struct task_desc *task;
486         pthread_attr_t attr;
487         unsigned long i;
488         int err;
489
490         err = pthread_attr_init(&attr);
491         BUG_ON(err);
492         err = pthread_attr_setstacksize(&attr, (size_t)(16*1024));
493         BUG_ON(err);
494         err = pthread_mutex_lock(&start_work_mutex);
495         BUG_ON(err);
496         err = pthread_mutex_lock(&work_done_wait_mutex);
497         BUG_ON(err);
498         for (i = 0; i < nr_tasks; i++) {
499                 task = tasks[i];
500                 sem_init(&task->sleep_sem, 0, 0);
501                 sem_init(&task->ready_for_work, 0, 0);
502                 sem_init(&task->work_done_sem, 0, 0);
503                 task->curr_event = 0;
504                 err = pthread_create(&task->thread, &attr, thread_func, task);
505                 BUG_ON(err);
506         }
507 }
508
509 static void wait_for_tasks(void)
510 {
511         u64 cpu_usage_0, cpu_usage_1;
512         struct task_desc *task;
513         unsigned long i, ret;
514
515         start_time = get_nsecs();
516         cpu_usage = 0;
517         pthread_mutex_unlock(&work_done_wait_mutex);
518
519         for (i = 0; i < nr_tasks; i++) {
520                 task = tasks[i];
521                 ret = sem_wait(&task->ready_for_work);
522                 BUG_ON(ret);
523                 sem_init(&task->ready_for_work, 0, 0);
524         }
525         ret = pthread_mutex_lock(&work_done_wait_mutex);
526         BUG_ON(ret);
527
528         cpu_usage_0 = get_cpu_usage_nsec_parent();
529
530         pthread_mutex_unlock(&start_work_mutex);
531
532         for (i = 0; i < nr_tasks; i++) {
533                 task = tasks[i];
534                 ret = sem_wait(&task->work_done_sem);
535                 BUG_ON(ret);
536                 sem_init(&task->work_done_sem, 0, 0);
537                 cpu_usage += task->cpu_usage;
538                 task->cpu_usage = 0;
539         }
540
541         cpu_usage_1 = get_cpu_usage_nsec_parent();
542         if (!runavg_cpu_usage)
543                 runavg_cpu_usage = cpu_usage;
544         runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10;
545
546         parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
547         if (!runavg_parent_cpu_usage)
548                 runavg_parent_cpu_usage = parent_cpu_usage;
549         runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 +
550                                    parent_cpu_usage)/10;
551
552         ret = pthread_mutex_lock(&start_work_mutex);
553         BUG_ON(ret);
554
555         for (i = 0; i < nr_tasks; i++) {
556                 task = tasks[i];
557                 sem_init(&task->sleep_sem, 0, 0);
558                 task->curr_event = 0;
559         }
560 }
561
562 static void run_one_test(void)
563 {
564         u64 T0, T1, delta, avg_delta, fluct, std_dev;
565
566         T0 = get_nsecs();
567         wait_for_tasks();
568         T1 = get_nsecs();
569
570         delta = T1 - T0;
571         sum_runtime += delta;
572         nr_runs++;
573
574         avg_delta = sum_runtime / nr_runs;
575         if (delta < avg_delta)
576                 fluct = avg_delta - delta;
577         else
578                 fluct = delta - avg_delta;
579         sum_fluct += fluct;
580         std_dev = sum_fluct / nr_runs / sqrt(nr_runs);
581         if (!run_avg)
582                 run_avg = delta;
583         run_avg = (run_avg*9 + delta)/10;
584
585         printf("#%-3ld: %0.3f, ",
586                 nr_runs, (double)delta/1000000.0);
587
588         printf("ravg: %0.2f, ",
589                 (double)run_avg/1e6);
590
591         printf("cpu: %0.2f / %0.2f",
592                 (double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6);
593
594 #if 0
595         /*
596          * rusage statistics done by the parent, these are less
597          * accurate than the sum_exec_runtime based statistics:
598          */
599         printf(" [%0.2f / %0.2f]",
600                 (double)parent_cpu_usage/1e6,
601                 (double)runavg_parent_cpu_usage/1e6);
602 #endif
603
604         printf("\n");
605
606         if (nr_sleep_corrections)
607                 printf(" (%ld sleep corrections)\n", nr_sleep_corrections);
608         nr_sleep_corrections = 0;
609 }
610
611 static void test_calibrations(void)
612 {
613         u64 T0, T1;
614
615         T0 = get_nsecs();
616         burn_nsecs(1e6);
617         T1 = get_nsecs();
618
619         printf("the run test took %Ld nsecs\n", T1-T0);
620
621         T0 = get_nsecs();
622         sleep_nsecs(1e6);
623         T1 = get_nsecs();
624
625         printf("the sleep test took %Ld nsecs\n", T1-T0);
626 }
627
628 #define FILL_FIELD(ptr, field, event, data)     \
629         ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data)
630
631 #define FILL_ARRAY(ptr, array, event, data)                     \
632 do {                                                            \
633         void *__array = raw_field_ptr(event, #array, data);     \
634         memcpy(ptr.array, __array, sizeof(ptr.array));  \
635 } while(0)
636
637 #define FILL_COMMON_FIELDS(ptr, event, data)                    \
638 do {                                                            \
639         FILL_FIELD(ptr, common_type, event, data);              \
640         FILL_FIELD(ptr, common_flags, event, data);             \
641         FILL_FIELD(ptr, common_preempt_count, event, data);     \
642         FILL_FIELD(ptr, common_pid, event, data);               \
643         FILL_FIELD(ptr, common_tgid, event, data);              \
644 } while (0)
645
646
647
648 struct trace_switch_event {
649         u32 size;
650
651         u16 common_type;
652         u8 common_flags;
653         u8 common_preempt_count;
654         u32 common_pid;
655         u32 common_tgid;
656
657         char prev_comm[16];
658         u32 prev_pid;
659         u32 prev_prio;
660         u64 prev_state;
661         char next_comm[16];
662         u32 next_pid;
663         u32 next_prio;
664 };
665
666 struct trace_runtime_event {
667         u32 size;
668
669         u16 common_type;
670         u8 common_flags;
671         u8 common_preempt_count;
672         u32 common_pid;
673         u32 common_tgid;
674
675         char comm[16];
676         u32 pid;
677         u64 runtime;
678         u64 vruntime;
679 };
680
681 struct trace_wakeup_event {
682         u32 size;
683
684         u16 common_type;
685         u8 common_flags;
686         u8 common_preempt_count;
687         u32 common_pid;
688         u32 common_tgid;
689
690         char comm[16];
691         u32 pid;
692
693         u32 prio;
694         u32 success;
695         u32 cpu;
696 };
697
698 struct trace_fork_event {
699         u32 size;
700
701         u16 common_type;
702         u8 common_flags;
703         u8 common_preempt_count;
704         u32 common_pid;
705         u32 common_tgid;
706
707         char parent_comm[16];
708         u32 parent_pid;
709         char child_comm[16];
710         u32 child_pid;
711 };
712
713 struct trace_migrate_task_event {
714         u32 size;
715
716         u16 common_type;
717         u8 common_flags;
718         u8 common_preempt_count;
719         u32 common_pid;
720         u32 common_tgid;
721
722         char comm[16];
723         u32 pid;
724
725         u32 prio;
726         u32 cpu;
727 };
728
729 struct trace_sched_handler {
730         void (*switch_event)(struct trace_switch_event *,
731                              struct perf_session *,
732                              struct event *,
733                              int cpu,
734                              u64 timestamp,
735                              struct thread *thread);
736
737         void (*runtime_event)(struct trace_runtime_event *,
738                               struct perf_session *,
739                               struct event *,
740                               int cpu,
741                               u64 timestamp,
742                               struct thread *thread);
743
744         void (*wakeup_event)(struct trace_wakeup_event *,
745                              struct perf_session *,
746                              struct event *,
747                              int cpu,
748                              u64 timestamp,
749                              struct thread *thread);
750
751         void (*fork_event)(struct trace_fork_event *,
752                            struct event *,
753                            int cpu,
754                            u64 timestamp,
755                            struct thread *thread);
756
757         void (*migrate_task_event)(struct trace_migrate_task_event *,
758                            struct perf_session *session,
759                            struct event *,
760                            int cpu,
761                            u64 timestamp,
762                            struct thread *thread);
763 };
764
765
766 static void
767 replay_wakeup_event(struct trace_wakeup_event *wakeup_event,
768                     struct perf_session *session __used,
769                     struct event *event,
770                     int cpu __used,
771                     u64 timestamp __used,
772                     struct thread *thread __used)
773 {
774         struct task_desc *waker, *wakee;
775
776         if (verbose) {
777                 printf("sched_wakeup event %p\n", event);
778
779                 printf(" ... pid %d woke up %s/%d\n",
780                         wakeup_event->common_pid,
781                         wakeup_event->comm,
782                         wakeup_event->pid);
783         }
784
785         waker = register_pid(wakeup_event->common_pid, "<unknown>");
786         wakee = register_pid(wakeup_event->pid, wakeup_event->comm);
787
788         add_sched_event_wakeup(waker, timestamp, wakee);
789 }
790
791 static u64 cpu_last_switched[MAX_CPUS];
792
793 static void
794 replay_switch_event(struct trace_switch_event *switch_event,
795                     struct perf_session *session __used,
796                     struct event *event,
797                     int cpu,
798                     u64 timestamp,
799                     struct thread *thread __used)
800 {
801         struct task_desc *prev, *next;
802         u64 timestamp0;
803         s64 delta;
804
805         if (verbose)
806                 printf("sched_switch event %p\n", event);
807
808         if (cpu >= MAX_CPUS || cpu < 0)
809                 return;
810
811         timestamp0 = cpu_last_switched[cpu];
812         if (timestamp0)
813                 delta = timestamp - timestamp0;
814         else
815                 delta = 0;
816
817         if (delta < 0)
818                 die("hm, delta: %Ld < 0 ?\n", delta);
819
820         if (verbose) {
821                 printf(" ... switch from %s/%d to %s/%d [ran %Ld nsecs]\n",
822                         switch_event->prev_comm, switch_event->prev_pid,
823                         switch_event->next_comm, switch_event->next_pid,
824                         delta);
825         }
826
827         prev = register_pid(switch_event->prev_pid, switch_event->prev_comm);
828         next = register_pid(switch_event->next_pid, switch_event->next_comm);
829
830         cpu_last_switched[cpu] = timestamp;
831
832         add_sched_event_run(prev, timestamp, delta);
833         add_sched_event_sleep(prev, timestamp, switch_event->prev_state);
834 }
835
836
837 static void
838 replay_fork_event(struct trace_fork_event *fork_event,
839                   struct event *event,
840                   int cpu __used,
841                   u64 timestamp __used,
842                   struct thread *thread __used)
843 {
844         if (verbose) {
845                 printf("sched_fork event %p\n", event);
846                 printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid);
847                 printf("...  child: %s/%d\n", fork_event->child_comm, fork_event->child_pid);
848         }
849         register_pid(fork_event->parent_pid, fork_event->parent_comm);
850         register_pid(fork_event->child_pid, fork_event->child_comm);
851 }
852
853 static struct trace_sched_handler replay_ops  = {
854         .wakeup_event           = replay_wakeup_event,
855         .switch_event           = replay_switch_event,
856         .fork_event             = replay_fork_event,
857 };
858
859 struct sort_dimension {
860         const char              *name;
861         sort_fn_t               cmp;
862         struct list_head        list;
863 };
864
865 static LIST_HEAD(cmp_pid);
866
867 static int
868 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
869 {
870         struct sort_dimension *sort;
871         int ret = 0;
872
873         BUG_ON(list_empty(list));
874
875         list_for_each_entry(sort, list, list) {
876                 ret = sort->cmp(l, r);
877                 if (ret)
878                         return ret;
879         }
880
881         return ret;
882 }
883
884 static struct work_atoms *
885 thread_atoms_search(struct rb_root *root, struct thread *thread,
886                          struct list_head *sort_list)
887 {
888         struct rb_node *node = root->rb_node;
889         struct work_atoms key = { .thread = thread };
890
891         while (node) {
892                 struct work_atoms *atoms;
893                 int cmp;
894
895                 atoms = container_of(node, struct work_atoms, node);
896
897                 cmp = thread_lat_cmp(sort_list, &key, atoms);
898                 if (cmp > 0)
899                         node = node->rb_left;
900                 else if (cmp < 0)
901                         node = node->rb_right;
902                 else {
903                         BUG_ON(thread != atoms->thread);
904                         return atoms;
905                 }
906         }
907         return NULL;
908 }
909
910 static void
911 __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
912                          struct list_head *sort_list)
913 {
914         struct rb_node **new = &(root->rb_node), *parent = NULL;
915
916         while (*new) {
917                 struct work_atoms *this;
918                 int cmp;
919
920                 this = container_of(*new, struct work_atoms, node);
921                 parent = *new;
922
923                 cmp = thread_lat_cmp(sort_list, data, this);
924
925                 if (cmp > 0)
926                         new = &((*new)->rb_left);
927                 else
928                         new = &((*new)->rb_right);
929         }
930
931         rb_link_node(&data->node, parent, new);
932         rb_insert_color(&data->node, root);
933 }
934
935 static void thread_atoms_insert(struct thread *thread)
936 {
937         struct work_atoms *atoms = zalloc(sizeof(*atoms));
938         if (!atoms)
939                 die("No memory");
940
941         atoms->thread = thread;
942         INIT_LIST_HEAD(&atoms->work_list);
943         __thread_latency_insert(&atom_root, atoms, &cmp_pid);
944 }
945
946 static void
947 latency_fork_event(struct trace_fork_event *fork_event __used,
948                    struct event *event __used,
949                    int cpu __used,
950                    u64 timestamp __used,
951                    struct thread *thread __used)
952 {
953         /* should insert the newcomer */
954 }
955
956 __used
957 static char sched_out_state(struct trace_switch_event *switch_event)
958 {
959         const char *str = TASK_STATE_TO_CHAR_STR;
960
961         return str[switch_event->prev_state];
962 }
963
964 static void
965 add_sched_out_event(struct work_atoms *atoms,
966                     char run_state,
967                     u64 timestamp)
968 {
969         struct work_atom *atom = zalloc(sizeof(*atom));
970         if (!atom)
971                 die("Non memory");
972
973         atom->sched_out_time = timestamp;
974
975         if (run_state == 'R') {
976                 atom->state = THREAD_WAIT_CPU;
977                 atom->wake_up_time = atom->sched_out_time;
978         }
979
980         list_add_tail(&atom->list, &atoms->work_list);
981 }
982
983 static void
984 add_runtime_event(struct work_atoms *atoms, u64 delta, u64 timestamp __used)
985 {
986         struct work_atom *atom;
987
988         BUG_ON(list_empty(&atoms->work_list));
989
990         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
991
992         atom->runtime += delta;
993         atoms->total_runtime += delta;
994 }
995
996 static void
997 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
998 {
999         struct work_atom *atom;
1000         u64 delta;
1001
1002         if (list_empty(&atoms->work_list))
1003                 return;
1004
1005         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1006
1007         if (atom->state != THREAD_WAIT_CPU)
1008                 return;
1009
1010         if (timestamp < atom->wake_up_time) {
1011                 atom->state = THREAD_IGNORE;
1012                 return;
1013         }
1014
1015         atom->state = THREAD_SCHED_IN;
1016         atom->sched_in_time = timestamp;
1017
1018         delta = atom->sched_in_time - atom->wake_up_time;
1019         atoms->total_lat += delta;
1020         if (delta > atoms->max_lat) {
1021                 atoms->max_lat = delta;
1022                 atoms->max_lat_at = timestamp;
1023         }
1024         atoms->nb_atoms++;
1025 }
1026
1027 static void
1028 latency_switch_event(struct trace_switch_event *switch_event,
1029                      struct perf_session *session,
1030                      struct event *event __used,
1031                      int cpu,
1032                      u64 timestamp,
1033                      struct thread *thread __used)
1034 {
1035         struct work_atoms *out_events, *in_events;
1036         struct thread *sched_out, *sched_in;
1037         u64 timestamp0;
1038         s64 delta;
1039
1040         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1041
1042         timestamp0 = cpu_last_switched[cpu];
1043         cpu_last_switched[cpu] = timestamp;
1044         if (timestamp0)
1045                 delta = timestamp - timestamp0;
1046         else
1047                 delta = 0;
1048
1049         if (delta < 0)
1050                 die("hm, delta: %Ld < 0 ?\n", delta);
1051
1052
1053         sched_out = perf_session__findnew(session, switch_event->prev_pid);
1054         sched_in = perf_session__findnew(session, switch_event->next_pid);
1055
1056         out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1057         if (!out_events) {
1058                 thread_atoms_insert(sched_out);
1059                 out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1060                 if (!out_events)
1061                         die("out-event: Internal tree error");
1062         }
1063         add_sched_out_event(out_events, sched_out_state(switch_event), timestamp);
1064
1065         in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1066         if (!in_events) {
1067                 thread_atoms_insert(sched_in);
1068                 in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1069                 if (!in_events)
1070                         die("in-event: Internal tree error");
1071                 /*
1072                  * Take came in we have not heard about yet,
1073                  * add in an initial atom in runnable state:
1074                  */
1075                 add_sched_out_event(in_events, 'R', timestamp);
1076         }
1077         add_sched_in_event(in_events, timestamp);
1078 }
1079
1080 static void
1081 latency_runtime_event(struct trace_runtime_event *runtime_event,
1082                      struct perf_session *session,
1083                      struct event *event __used,
1084                      int cpu,
1085                      u64 timestamp,
1086                      struct thread *this_thread __used)
1087 {
1088         struct thread *thread = perf_session__findnew(session, runtime_event->pid);
1089         struct work_atoms *atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1090
1091         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1092         if (!atoms) {
1093                 thread_atoms_insert(thread);
1094                 atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1095                 if (!atoms)
1096                         die("in-event: Internal tree error");
1097                 add_sched_out_event(atoms, 'R', timestamp);
1098         }
1099
1100         add_runtime_event(atoms, runtime_event->runtime, timestamp);
1101 }
1102
1103 static void
1104 latency_wakeup_event(struct trace_wakeup_event *wakeup_event,
1105                      struct perf_session *session,
1106                      struct event *__event __used,
1107                      int cpu __used,
1108                      u64 timestamp,
1109                      struct thread *thread __used)
1110 {
1111         struct work_atoms *atoms;
1112         struct work_atom *atom;
1113         struct thread *wakee;
1114
1115         /* Note for later, it may be interesting to observe the failing cases */
1116         if (!wakeup_event->success)
1117                 return;
1118
1119         wakee = perf_session__findnew(session, wakeup_event->pid);
1120         atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1121         if (!atoms) {
1122                 thread_atoms_insert(wakee);
1123                 atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1124                 if (!atoms)
1125                         die("wakeup-event: Internal tree error");
1126                 add_sched_out_event(atoms, 'S', timestamp);
1127         }
1128
1129         BUG_ON(list_empty(&atoms->work_list));
1130
1131         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1132
1133         /*
1134          * You WILL be missing events if you've recorded only
1135          * one CPU, or are only looking at only one, so don't
1136          * make useless noise.
1137          */
1138         if (profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1139                 nr_state_machine_bugs++;
1140
1141         nr_timestamps++;
1142         if (atom->sched_out_time > timestamp) {
1143                 nr_unordered_timestamps++;
1144                 return;
1145         }
1146
1147         atom->state = THREAD_WAIT_CPU;
1148         atom->wake_up_time = timestamp;
1149 }
1150
1151 static void
1152 latency_migrate_task_event(struct trace_migrate_task_event *migrate_task_event,
1153                      struct perf_session *session,
1154                      struct event *__event __used,
1155                      int cpu __used,
1156                      u64 timestamp,
1157                      struct thread *thread __used)
1158 {
1159         struct work_atoms *atoms;
1160         struct work_atom *atom;
1161         struct thread *migrant;
1162
1163         /*
1164          * Only need to worry about migration when profiling one CPU.
1165          */
1166         if (profile_cpu == -1)
1167                 return;
1168
1169         migrant = perf_session__findnew(session, migrate_task_event->pid);
1170         atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1171         if (!atoms) {
1172                 thread_atoms_insert(migrant);
1173                 register_pid(migrant->pid, migrant->comm);
1174                 atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1175                 if (!atoms)
1176                         die("migration-event: Internal tree error");
1177                 add_sched_out_event(atoms, 'R', timestamp);
1178         }
1179
1180         BUG_ON(list_empty(&atoms->work_list));
1181
1182         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1183         atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1184
1185         nr_timestamps++;
1186
1187         if (atom->sched_out_time > timestamp)
1188                 nr_unordered_timestamps++;
1189 }
1190
1191 static struct trace_sched_handler lat_ops  = {
1192         .wakeup_event           = latency_wakeup_event,
1193         .switch_event           = latency_switch_event,
1194         .runtime_event          = latency_runtime_event,
1195         .fork_event             = latency_fork_event,
1196         .migrate_task_event     = latency_migrate_task_event,
1197 };
1198
1199 static void output_lat_thread(struct work_atoms *work_list)
1200 {
1201         int i;
1202         int ret;
1203         u64 avg;
1204
1205         if (!work_list->nb_atoms)
1206                 return;
1207         /*
1208          * Ignore idle threads:
1209          */
1210         if (!strcmp(work_list->thread->comm, "swapper"))
1211                 return;
1212
1213         all_runtime += work_list->total_runtime;
1214         all_count += work_list->nb_atoms;
1215
1216         ret = printf("  %s:%d ", work_list->thread->comm, work_list->thread->pid);
1217
1218         for (i = 0; i < 24 - ret; i++)
1219                 printf(" ");
1220
1221         avg = work_list->total_lat / work_list->nb_atoms;
1222
1223         printf("|%11.3f ms |%9llu | avg:%9.3f ms | max:%9.3f ms | max at: %9.6f s\n",
1224               (double)work_list->total_runtime / 1e6,
1225                  work_list->nb_atoms, (double)avg / 1e6,
1226                  (double)work_list->max_lat / 1e6,
1227                  (double)work_list->max_lat_at / 1e9);
1228 }
1229
1230 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1231 {
1232         if (l->thread->pid < r->thread->pid)
1233                 return -1;
1234         if (l->thread->pid > r->thread->pid)
1235                 return 1;
1236
1237         return 0;
1238 }
1239
1240 static struct sort_dimension pid_sort_dimension = {
1241         .name                   = "pid",
1242         .cmp                    = pid_cmp,
1243 };
1244
1245 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1246 {
1247         u64 avgl, avgr;
1248
1249         if (!l->nb_atoms)
1250                 return -1;
1251
1252         if (!r->nb_atoms)
1253                 return 1;
1254
1255         avgl = l->total_lat / l->nb_atoms;
1256         avgr = r->total_lat / r->nb_atoms;
1257
1258         if (avgl < avgr)
1259                 return -1;
1260         if (avgl > avgr)
1261                 return 1;
1262
1263         return 0;
1264 }
1265
1266 static struct sort_dimension avg_sort_dimension = {
1267         .name                   = "avg",
1268         .cmp                    = avg_cmp,
1269 };
1270
1271 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1272 {
1273         if (l->max_lat < r->max_lat)
1274                 return -1;
1275         if (l->max_lat > r->max_lat)
1276                 return 1;
1277
1278         return 0;
1279 }
1280
1281 static struct sort_dimension max_sort_dimension = {
1282         .name                   = "max",
1283         .cmp                    = max_cmp,
1284 };
1285
1286 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1287 {
1288         if (l->nb_atoms < r->nb_atoms)
1289                 return -1;
1290         if (l->nb_atoms > r->nb_atoms)
1291                 return 1;
1292
1293         return 0;
1294 }
1295
1296 static struct sort_dimension switch_sort_dimension = {
1297         .name                   = "switch",
1298         .cmp                    = switch_cmp,
1299 };
1300
1301 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1302 {
1303         if (l->total_runtime < r->total_runtime)
1304                 return -1;
1305         if (l->total_runtime > r->total_runtime)
1306                 return 1;
1307
1308         return 0;
1309 }
1310
1311 static struct sort_dimension runtime_sort_dimension = {
1312         .name                   = "runtime",
1313         .cmp                    = runtime_cmp,
1314 };
1315
1316 static struct sort_dimension *available_sorts[] = {
1317         &pid_sort_dimension,
1318         &avg_sort_dimension,
1319         &max_sort_dimension,
1320         &switch_sort_dimension,
1321         &runtime_sort_dimension,
1322 };
1323
1324 #define NB_AVAILABLE_SORTS      (int)(sizeof(available_sorts) / sizeof(struct sort_dimension *))
1325
1326 static LIST_HEAD(sort_list);
1327
1328 static int sort_dimension__add(const char *tok, struct list_head *list)
1329 {
1330         int i;
1331
1332         for (i = 0; i < NB_AVAILABLE_SORTS; i++) {
1333                 if (!strcmp(available_sorts[i]->name, tok)) {
1334                         list_add_tail(&available_sorts[i]->list, list);
1335
1336                         return 0;
1337                 }
1338         }
1339
1340         return -1;
1341 }
1342
1343 static void setup_sorting(void);
1344
1345 static void sort_lat(void)
1346 {
1347         struct rb_node *node;
1348
1349         for (;;) {
1350                 struct work_atoms *data;
1351                 node = rb_first(&atom_root);
1352                 if (!node)
1353                         break;
1354
1355                 rb_erase(node, &atom_root);
1356                 data = rb_entry(node, struct work_atoms, node);
1357                 __thread_latency_insert(&sorted_atom_root, data, &sort_list);
1358         }
1359 }
1360
1361 static struct trace_sched_handler *trace_handler;
1362
1363 static void
1364 process_sched_wakeup_event(void *data, struct perf_session *session,
1365                            struct event *event,
1366                            int cpu __used,
1367                            u64 timestamp __used,
1368                            struct thread *thread __used)
1369 {
1370         struct trace_wakeup_event wakeup_event;
1371
1372         FILL_COMMON_FIELDS(wakeup_event, event, data);
1373
1374         FILL_ARRAY(wakeup_event, comm, event, data);
1375         FILL_FIELD(wakeup_event, pid, event, data);
1376         FILL_FIELD(wakeup_event, prio, event, data);
1377         FILL_FIELD(wakeup_event, success, event, data);
1378         FILL_FIELD(wakeup_event, cpu, event, data);
1379
1380         if (trace_handler->wakeup_event)
1381                 trace_handler->wakeup_event(&wakeup_event, session, event,
1382                                             cpu, timestamp, thread);
1383 }
1384
1385 /*
1386  * Track the current task - that way we can know whether there's any
1387  * weird events, such as a task being switched away that is not current.
1388  */
1389 static int max_cpu;
1390
1391 static u32 curr_pid[MAX_CPUS] = { [0 ... MAX_CPUS-1] = -1 };
1392
1393 static struct thread *curr_thread[MAX_CPUS];
1394
1395 static char next_shortname1 = 'A';
1396 static char next_shortname2 = '0';
1397
1398 static void
1399 map_switch_event(struct trace_switch_event *switch_event,
1400                  struct perf_session *session,
1401                  struct event *event __used,
1402                  int this_cpu,
1403                  u64 timestamp,
1404                  struct thread *thread __used)
1405 {
1406         struct thread *sched_out, *sched_in;
1407         int new_shortname;
1408         u64 timestamp0;
1409         s64 delta;
1410         int cpu;
1411
1412         BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1413
1414         if (this_cpu > max_cpu)
1415                 max_cpu = this_cpu;
1416
1417         timestamp0 = cpu_last_switched[this_cpu];
1418         cpu_last_switched[this_cpu] = timestamp;
1419         if (timestamp0)
1420                 delta = timestamp - timestamp0;
1421         else
1422                 delta = 0;
1423
1424         if (delta < 0)
1425                 die("hm, delta: %Ld < 0 ?\n", delta);
1426
1427
1428         sched_out = perf_session__findnew(session, switch_event->prev_pid);
1429         sched_in = perf_session__findnew(session, switch_event->next_pid);
1430
1431         curr_thread[this_cpu] = sched_in;
1432
1433         printf("  ");
1434
1435         new_shortname = 0;
1436         if (!sched_in->shortname[0]) {
1437                 sched_in->shortname[0] = next_shortname1;
1438                 sched_in->shortname[1] = next_shortname2;
1439
1440                 if (next_shortname1 < 'Z') {
1441                         next_shortname1++;
1442                 } else {
1443                         next_shortname1='A';
1444                         if (next_shortname2 < '9') {
1445                                 next_shortname2++;
1446                         } else {
1447                                 next_shortname2='0';
1448                         }
1449                 }
1450                 new_shortname = 1;
1451         }
1452
1453         for (cpu = 0; cpu <= max_cpu; cpu++) {
1454                 if (cpu != this_cpu)
1455                         printf(" ");
1456                 else
1457                         printf("*");
1458
1459                 if (curr_thread[cpu]) {
1460                         if (curr_thread[cpu]->pid)
1461                                 printf("%2s ", curr_thread[cpu]->shortname);
1462                         else
1463                                 printf(".  ");
1464                 } else
1465                         printf("   ");
1466         }
1467
1468         printf("  %12.6f secs ", (double)timestamp/1e9);
1469         if (new_shortname) {
1470                 printf("%s => %s:%d\n",
1471                         sched_in->shortname, sched_in->comm, sched_in->pid);
1472         } else {
1473                 printf("\n");
1474         }
1475 }
1476
1477
1478 static void
1479 process_sched_switch_event(void *data, struct perf_session *session,
1480                            struct event *event,
1481                            int this_cpu,
1482                            u64 timestamp __used,
1483                            struct thread *thread __used)
1484 {
1485         struct trace_switch_event switch_event;
1486
1487         FILL_COMMON_FIELDS(switch_event, event, data);
1488
1489         FILL_ARRAY(switch_event, prev_comm, event, data);
1490         FILL_FIELD(switch_event, prev_pid, event, data);
1491         FILL_FIELD(switch_event, prev_prio, event, data);
1492         FILL_FIELD(switch_event, prev_state, event, data);
1493         FILL_ARRAY(switch_event, next_comm, event, data);
1494         FILL_FIELD(switch_event, next_pid, event, data);
1495         FILL_FIELD(switch_event, next_prio, event, data);
1496
1497         if (curr_pid[this_cpu] != (u32)-1) {
1498                 /*
1499                  * Are we trying to switch away a PID that is
1500                  * not current?
1501                  */
1502                 if (curr_pid[this_cpu] != switch_event.prev_pid)
1503                         nr_context_switch_bugs++;
1504         }
1505         if (trace_handler->switch_event)
1506                 trace_handler->switch_event(&switch_event, session, event,
1507                                             this_cpu, timestamp, thread);
1508
1509         curr_pid[this_cpu] = switch_event.next_pid;
1510 }
1511
1512 static void
1513 process_sched_runtime_event(void *data, struct perf_session *session,
1514                            struct event *event,
1515                            int cpu __used,
1516                            u64 timestamp __used,
1517                            struct thread *thread __used)
1518 {
1519         struct trace_runtime_event runtime_event;
1520
1521         FILL_ARRAY(runtime_event, comm, event, data);
1522         FILL_FIELD(runtime_event, pid, event, data);
1523         FILL_FIELD(runtime_event, runtime, event, data);
1524         FILL_FIELD(runtime_event, vruntime, event, data);
1525
1526         if (trace_handler->runtime_event)
1527                 trace_handler->runtime_event(&runtime_event, session, event, cpu, timestamp, thread);
1528 }
1529
1530 static void
1531 process_sched_fork_event(void *data,
1532                          struct event *event,
1533                          int cpu __used,
1534                          u64 timestamp __used,
1535                          struct thread *thread __used)
1536 {
1537         struct trace_fork_event fork_event;
1538
1539         FILL_COMMON_FIELDS(fork_event, event, data);
1540
1541         FILL_ARRAY(fork_event, parent_comm, event, data);
1542         FILL_FIELD(fork_event, parent_pid, event, data);
1543         FILL_ARRAY(fork_event, child_comm, event, data);
1544         FILL_FIELD(fork_event, child_pid, event, data);
1545
1546         if (trace_handler->fork_event)
1547                 trace_handler->fork_event(&fork_event, event,
1548                                           cpu, timestamp, thread);
1549 }
1550
1551 static void
1552 process_sched_exit_event(struct event *event,
1553                          int cpu __used,
1554                          u64 timestamp __used,
1555                          struct thread *thread __used)
1556 {
1557         if (verbose)
1558                 printf("sched_exit event %p\n", event);
1559 }
1560
1561 static void
1562 process_sched_migrate_task_event(void *data, struct perf_session *session,
1563                            struct event *event,
1564                            int cpu __used,
1565                            u64 timestamp __used,
1566                            struct thread *thread __used)
1567 {
1568         struct trace_migrate_task_event migrate_task_event;
1569
1570         FILL_COMMON_FIELDS(migrate_task_event, event, data);
1571
1572         FILL_ARRAY(migrate_task_event, comm, event, data);
1573         FILL_FIELD(migrate_task_event, pid, event, data);
1574         FILL_FIELD(migrate_task_event, prio, event, data);
1575         FILL_FIELD(migrate_task_event, cpu, event, data);
1576
1577         if (trace_handler->migrate_task_event)
1578                 trace_handler->migrate_task_event(&migrate_task_event, session,
1579                                                  event, cpu, timestamp, thread);
1580 }
1581
1582 static void
1583 process_raw_event(event_t *raw_event __used, struct perf_session *session,
1584                   void *data, int cpu, u64 timestamp, struct thread *thread)
1585 {
1586         struct event *event;
1587         int type;
1588
1589
1590         type = trace_parse_common_type(data);
1591         event = trace_find_event(type);
1592
1593         if (!strcmp(event->name, "sched_switch"))
1594                 process_sched_switch_event(data, session, event, cpu, timestamp, thread);
1595         if (!strcmp(event->name, "sched_stat_runtime"))
1596                 process_sched_runtime_event(data, session, event, cpu, timestamp, thread);
1597         if (!strcmp(event->name, "sched_wakeup"))
1598                 process_sched_wakeup_event(data, session, event, cpu, timestamp, thread);
1599         if (!strcmp(event->name, "sched_wakeup_new"))
1600                 process_sched_wakeup_event(data, session, event, cpu, timestamp, thread);
1601         if (!strcmp(event->name, "sched_process_fork"))
1602                 process_sched_fork_event(data, event, cpu, timestamp, thread);
1603         if (!strcmp(event->name, "sched_process_exit"))
1604                 process_sched_exit_event(event, cpu, timestamp, thread);
1605         if (!strcmp(event->name, "sched_migrate_task"))
1606                 process_sched_migrate_task_event(data, session, event, cpu, timestamp, thread);
1607 }
1608
1609 static int process_sample_event(event_t *event, struct perf_session *session)
1610 {
1611         struct sample_data data;
1612         struct thread *thread;
1613
1614         if (!(session->sample_type & PERF_SAMPLE_RAW))
1615                 return 0;
1616
1617         memset(&data, 0, sizeof(data));
1618         data.time = -1;
1619         data.cpu = -1;
1620         data.period = -1;
1621
1622         event__parse_sample(event, session->sample_type, &data);
1623
1624         dump_printf("(IP, %d): %d/%d: %#Lx period: %Ld\n", event->header.misc,
1625                     data.pid, data.tid, data.ip, data.period);
1626
1627         thread = perf_session__findnew(session, data.pid);
1628         if (thread == NULL) {
1629                 pr_debug("problem processing %d event, skipping it.\n",
1630                          event->header.type);
1631                 return -1;
1632         }
1633
1634         dump_printf(" ... thread: %s:%d\n", thread->comm, thread->pid);
1635
1636         if (profile_cpu != -1 && profile_cpu != (int)data.cpu)
1637                 return 0;
1638
1639         process_raw_event(event, session, data.raw_data, data.cpu, data.time, thread);
1640
1641         return 0;
1642 }
1643
1644 static struct perf_event_ops event_ops = {
1645         .sample                 = process_sample_event,
1646         .comm                   = event__process_comm,
1647         .lost                   = event__process_lost,
1648         .fork                   = event__process_task,
1649         .ordered_samples        = true,
1650 };
1651
1652 static int read_events(void)
1653 {
1654         int err = -EINVAL;
1655         struct perf_session *session = perf_session__new(input_name, O_RDONLY, 0, false);
1656         if (session == NULL)
1657                 return -ENOMEM;
1658
1659         if (perf_session__has_traces(session, "record -R")) {
1660                 err = perf_session__process_events(session, &event_ops);
1661                 nr_events      = session->hists.stats.nr_events[0];
1662                 nr_lost_events = session->hists.stats.total_lost;
1663                 nr_lost_chunks = session->hists.stats.nr_events[PERF_RECORD_LOST];
1664         }
1665
1666         perf_session__delete(session);
1667         return err;
1668 }
1669
1670 static void print_bad_events(void)
1671 {
1672         if (nr_unordered_timestamps && nr_timestamps) {
1673                 printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1674                         (double)nr_unordered_timestamps/(double)nr_timestamps*100.0,
1675                         nr_unordered_timestamps, nr_timestamps);
1676         }
1677         if (nr_lost_events && nr_events) {
1678                 printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1679                         (double)nr_lost_events/(double)nr_events*100.0,
1680                         nr_lost_events, nr_events, nr_lost_chunks);
1681         }
1682         if (nr_state_machine_bugs && nr_timestamps) {
1683                 printf("  INFO: %.3f%% state machine bugs (%ld out of %ld)",
1684                         (double)nr_state_machine_bugs/(double)nr_timestamps*100.0,
1685                         nr_state_machine_bugs, nr_timestamps);
1686                 if (nr_lost_events)
1687                         printf(" (due to lost events?)");
1688                 printf("\n");
1689         }
1690         if (nr_context_switch_bugs && nr_timestamps) {
1691                 printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
1692                         (double)nr_context_switch_bugs/(double)nr_timestamps*100.0,
1693                         nr_context_switch_bugs, nr_timestamps);
1694                 if (nr_lost_events)
1695                         printf(" (due to lost events?)");
1696                 printf("\n");
1697         }
1698 }
1699
1700 static void __cmd_lat(void)
1701 {
1702         struct rb_node *next;
1703
1704         setup_pager();
1705         read_events();
1706         sort_lat();
1707
1708         printf("\n ---------------------------------------------------------------------------------------------------------------\n");
1709         printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at     |\n");
1710         printf(" ---------------------------------------------------------------------------------------------------------------\n");
1711
1712         next = rb_first(&sorted_atom_root);
1713
1714         while (next) {
1715                 struct work_atoms *work_list;
1716
1717                 work_list = rb_entry(next, struct work_atoms, node);
1718                 output_lat_thread(work_list);
1719                 next = rb_next(next);
1720         }
1721
1722         printf(" -----------------------------------------------------------------------------------------\n");
1723         printf("  TOTAL:                |%11.3f ms |%9Ld |\n",
1724                 (double)all_runtime/1e6, all_count);
1725
1726         printf(" ---------------------------------------------------\n");
1727
1728         print_bad_events();
1729         printf("\n");
1730
1731 }
1732
1733 static struct trace_sched_handler map_ops  = {
1734         .wakeup_event           = NULL,
1735         .switch_event           = map_switch_event,
1736         .runtime_event          = NULL,
1737         .fork_event             = NULL,
1738 };
1739
1740 static void __cmd_map(void)
1741 {
1742         max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1743
1744         setup_pager();
1745         read_events();
1746         print_bad_events();
1747 }
1748
1749 static void __cmd_replay(void)
1750 {
1751         unsigned long i;
1752
1753         calibrate_run_measurement_overhead();
1754         calibrate_sleep_measurement_overhead();
1755
1756         test_calibrations();
1757
1758         read_events();
1759
1760         printf("nr_run_events:        %ld\n", nr_run_events);
1761         printf("nr_sleep_events:      %ld\n", nr_sleep_events);
1762         printf("nr_wakeup_events:     %ld\n", nr_wakeup_events);
1763
1764         if (targetless_wakeups)
1765                 printf("target-less wakeups:  %ld\n", targetless_wakeups);
1766         if (multitarget_wakeups)
1767                 printf("multi-target wakeups: %ld\n", multitarget_wakeups);
1768         if (nr_run_events_optimized)
1769                 printf("run atoms optimized: %ld\n",
1770                         nr_run_events_optimized);
1771
1772         print_task_traces();
1773         add_cross_task_wakeups();
1774
1775         create_tasks();
1776         printf("------------------------------------------------------------\n");
1777         for (i = 0; i < replay_repeat; i++)
1778                 run_one_test();
1779 }
1780
1781
1782 static const char * const sched_usage[] = {
1783         "perf sched [<options>] {record|latency|map|replay|trace}",
1784         NULL
1785 };
1786
1787 static const struct option sched_options[] = {
1788         OPT_STRING('i', "input", &input_name, "file",
1789                     "input file name"),
1790         OPT_INCR('v', "verbose", &verbose,
1791                     "be more verbose (show symbol address, etc)"),
1792         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1793                     "dump raw trace in ASCII"),
1794         OPT_END()
1795 };
1796
1797 static const char * const latency_usage[] = {
1798         "perf sched latency [<options>]",
1799         NULL
1800 };
1801
1802 static const struct option latency_options[] = {
1803         OPT_STRING('s', "sort", &sort_order, "key[,key2...]",
1804                    "sort by key(s): runtime, switch, avg, max"),
1805         OPT_INCR('v', "verbose", &verbose,
1806                     "be more verbose (show symbol address, etc)"),
1807         OPT_INTEGER('C', "CPU", &profile_cpu,
1808                     "CPU to profile on"),
1809         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1810                     "dump raw trace in ASCII"),
1811         OPT_END()
1812 };
1813
1814 static const char * const replay_usage[] = {
1815         "perf sched replay [<options>]",
1816         NULL
1817 };
1818
1819 static const struct option replay_options[] = {
1820         OPT_UINTEGER('r', "repeat", &replay_repeat,
1821                      "repeat the workload replay N times (-1: infinite)"),
1822         OPT_INCR('v', "verbose", &verbose,
1823                     "be more verbose (show symbol address, etc)"),
1824         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1825                     "dump raw trace in ASCII"),
1826         OPT_END()
1827 };
1828
1829 static void setup_sorting(void)
1830 {
1831         char *tmp, *tok, *str = strdup(sort_order);
1832
1833         for (tok = strtok_r(str, ", ", &tmp);
1834                         tok; tok = strtok_r(NULL, ", ", &tmp)) {
1835                 if (sort_dimension__add(tok, &sort_list) < 0) {
1836                         error("Unknown --sort key: `%s'", tok);
1837                         usage_with_options(latency_usage, latency_options);
1838                 }
1839         }
1840
1841         free(str);
1842
1843         sort_dimension__add("pid", &cmp_pid);
1844 }
1845
1846 static const char *record_args[] = {
1847         "record",
1848         "-a",
1849         "-R",
1850         "-f",
1851         "-m", "1024",
1852         "-c", "1",
1853         "-e", "sched:sched_switch:r",
1854         "-e", "sched:sched_stat_wait:r",
1855         "-e", "sched:sched_stat_sleep:r",
1856         "-e", "sched:sched_stat_iowait:r",
1857         "-e", "sched:sched_stat_runtime:r",
1858         "-e", "sched:sched_process_exit:r",
1859         "-e", "sched:sched_process_fork:r",
1860         "-e", "sched:sched_wakeup:r",
1861         "-e", "sched:sched_migrate_task:r",
1862 };
1863
1864 static int __cmd_record(int argc, const char **argv)
1865 {
1866         unsigned int rec_argc, i, j;
1867         const char **rec_argv;
1868
1869         rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1870         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1871
1872         for (i = 0; i < ARRAY_SIZE(record_args); i++)
1873                 rec_argv[i] = strdup(record_args[i]);
1874
1875         for (j = 1; j < (unsigned int)argc; j++, i++)
1876                 rec_argv[i] = argv[j];
1877
1878         BUG_ON(i != rec_argc);
1879
1880         return cmd_record(i, rec_argv, NULL);
1881 }
1882
1883 int cmd_sched(int argc, const char **argv, const char *prefix __used)
1884 {
1885         argc = parse_options(argc, argv, sched_options, sched_usage,
1886                              PARSE_OPT_STOP_AT_NON_OPTION);
1887         if (!argc)
1888                 usage_with_options(sched_usage, sched_options);
1889
1890         /*
1891          * Aliased to 'perf trace' for now:
1892          */
1893         if (!strcmp(argv[0], "trace"))
1894                 return cmd_trace(argc, argv, prefix);
1895
1896         symbol__init();
1897         if (!strncmp(argv[0], "rec", 3)) {
1898                 return __cmd_record(argc, argv);
1899         } else if (!strncmp(argv[0], "lat", 3)) {
1900                 trace_handler = &lat_ops;
1901                 if (argc > 1) {
1902                         argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1903                         if (argc)
1904                                 usage_with_options(latency_usage, latency_options);
1905                 }
1906                 setup_sorting();
1907                 __cmd_lat();
1908         } else if (!strcmp(argv[0], "map")) {
1909                 trace_handler = &map_ops;
1910                 setup_sorting();
1911                 __cmd_map();
1912         } else if (!strncmp(argv[0], "rep", 3)) {
1913                 trace_handler = &replay_ops;
1914                 if (argc) {
1915                         argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1916                         if (argc)
1917                                 usage_with_options(replay_usage, replay_options);
1918                 }
1919                 __cmd_replay();
1920         } else {
1921                 usage_with_options(sched_usage, sched_options);
1922         }
1923
1924         return 0;
1925 }