ASoC: wcd9335: add CLASS-H Controller support
[sfrench/cifs-2.6.git] / sound / soc / intel / skylake / skl-messages.c
1 /*
2  *  skl-message.c - HDA DSP interface for FW registration, Pipe and Module
3  *  configurations
4  *
5  *  Copyright (C) 2015 Intel Corp
6  *  Author:Rafal Redzimski <rafal.f.redzimski@intel.com>
7  *         Jeeja KP <jeeja.kp@intel.com>
8  *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as version 2, as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  */
19
20 #include <linux/slab.h>
21 #include <linux/pci.h>
22 #include <sound/core.h>
23 #include <sound/pcm.h>
24 #include <uapi/sound/skl-tplg-interface.h>
25 #include "skl-sst-dsp.h"
26 #include "cnl-sst-dsp.h"
27 #include "skl-sst-ipc.h"
28 #include "skl.h"
29 #include "../common/sst-dsp.h"
30 #include "../common/sst-dsp-priv.h"
31 #include "skl-topology.h"
32
33 static int skl_alloc_dma_buf(struct device *dev,
34                 struct snd_dma_buffer *dmab, size_t size)
35 {
36         struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
37         struct hdac_bus *bus = ebus_to_hbus(ebus);
38
39         if (!bus)
40                 return -ENODEV;
41
42         return  bus->io_ops->dma_alloc_pages(bus, SNDRV_DMA_TYPE_DEV, size, dmab);
43 }
44
45 static int skl_free_dma_buf(struct device *dev, struct snd_dma_buffer *dmab)
46 {
47         struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
48         struct hdac_bus *bus = ebus_to_hbus(ebus);
49
50         if (!bus)
51                 return -ENODEV;
52
53         bus->io_ops->dma_free_pages(bus, dmab);
54
55         return 0;
56 }
57
58 #define SKL_ASTATE_PARAM_ID     4
59
60 void skl_dsp_set_astate_cfg(struct skl_sst *ctx, u32 cnt, void *data)
61 {
62         struct skl_ipc_large_config_msg msg = {0};
63
64         msg.large_param_id = SKL_ASTATE_PARAM_ID;
65         msg.param_data_size = (cnt * sizeof(struct skl_astate_param) +
66                                 sizeof(cnt));
67
68         skl_ipc_set_large_config(&ctx->ipc, &msg, data);
69 }
70
71 #define NOTIFICATION_PARAM_ID 3
72 #define NOTIFICATION_MASK 0xf
73
74 /* disable notfication for underruns/overruns from firmware module */
75 void skl_dsp_enable_notification(struct skl_sst *ctx, bool enable)
76 {
77         struct notification_mask mask;
78         struct skl_ipc_large_config_msg msg = {0};
79
80         mask.notify = NOTIFICATION_MASK;
81         mask.enable = enable;
82
83         msg.large_param_id = NOTIFICATION_PARAM_ID;
84         msg.param_data_size = sizeof(mask);
85
86         skl_ipc_set_large_config(&ctx->ipc, &msg, (u32 *)&mask);
87 }
88
89 static int skl_dsp_setup_spib(struct device *dev, unsigned int size,
90                                 int stream_tag, int enable)
91 {
92         struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
93         struct hdac_bus *bus = ebus_to_hbus(ebus);
94         struct hdac_stream *stream = snd_hdac_get_stream(bus,
95                         SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
96         struct hdac_ext_stream *estream;
97
98         if (!stream)
99                 return -EINVAL;
100
101         estream = stream_to_hdac_ext_stream(stream);
102         /* enable/disable SPIB for this hdac stream */
103         snd_hdac_ext_stream_spbcap_enable(ebus, enable, stream->index);
104
105         /* set the spib value */
106         snd_hdac_ext_stream_set_spib(ebus, estream, size);
107
108         return 0;
109 }
110
111 static int skl_dsp_prepare(struct device *dev, unsigned int format,
112                         unsigned int size, struct snd_dma_buffer *dmab)
113 {
114         struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
115         struct hdac_bus *bus = ebus_to_hbus(ebus);
116         struct hdac_ext_stream *estream;
117         struct hdac_stream *stream;
118         struct snd_pcm_substream substream;
119         int ret;
120
121         if (!bus)
122                 return -ENODEV;
123
124         memset(&substream, 0, sizeof(substream));
125         substream.stream = SNDRV_PCM_STREAM_PLAYBACK;
126
127         estream = snd_hdac_ext_stream_assign(ebus, &substream,
128                                         HDAC_EXT_STREAM_TYPE_HOST);
129         if (!estream)
130                 return -ENODEV;
131
132         stream = hdac_stream(estream);
133
134         /* assign decouple host dma channel */
135         ret = snd_hdac_dsp_prepare(stream, format, size, dmab);
136         if (ret < 0)
137                 return ret;
138
139         skl_dsp_setup_spib(dev, size, stream->stream_tag, true);
140
141         return stream->stream_tag;
142 }
143
144 static int skl_dsp_trigger(struct device *dev, bool start, int stream_tag)
145 {
146         struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
147         struct hdac_stream *stream;
148         struct hdac_bus *bus = ebus_to_hbus(ebus);
149
150         if (!bus)
151                 return -ENODEV;
152
153         stream = snd_hdac_get_stream(bus,
154                 SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
155         if (!stream)
156                 return -EINVAL;
157
158         snd_hdac_dsp_trigger(stream, start);
159
160         return 0;
161 }
162
163 static int skl_dsp_cleanup(struct device *dev,
164                 struct snd_dma_buffer *dmab, int stream_tag)
165 {
166         struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
167         struct hdac_stream *stream;
168         struct hdac_ext_stream *estream;
169         struct hdac_bus *bus = ebus_to_hbus(ebus);
170
171         if (!bus)
172                 return -ENODEV;
173
174         stream = snd_hdac_get_stream(bus,
175                 SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
176         if (!stream)
177                 return -EINVAL;
178
179         estream = stream_to_hdac_ext_stream(stream);
180         skl_dsp_setup_spib(dev, 0, stream_tag, false);
181         snd_hdac_ext_stream_release(estream, HDAC_EXT_STREAM_TYPE_HOST);
182
183         snd_hdac_dsp_cleanup(stream, dmab);
184
185         return 0;
186 }
187
188 static struct skl_dsp_loader_ops skl_get_loader_ops(void)
189 {
190         struct skl_dsp_loader_ops loader_ops;
191
192         memset(&loader_ops, 0, sizeof(struct skl_dsp_loader_ops));
193
194         loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
195         loader_ops.free_dma_buf = skl_free_dma_buf;
196
197         return loader_ops;
198 };
199
200 static struct skl_dsp_loader_ops bxt_get_loader_ops(void)
201 {
202         struct skl_dsp_loader_ops loader_ops;
203
204         memset(&loader_ops, 0, sizeof(loader_ops));
205
206         loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
207         loader_ops.free_dma_buf = skl_free_dma_buf;
208         loader_ops.prepare = skl_dsp_prepare;
209         loader_ops.trigger = skl_dsp_trigger;
210         loader_ops.cleanup = skl_dsp_cleanup;
211
212         return loader_ops;
213 };
214
215 static const struct skl_dsp_ops dsp_ops[] = {
216         {
217                 .id = 0x9d70,
218                 .num_cores = 2,
219                 .loader_ops = skl_get_loader_ops,
220                 .init = skl_sst_dsp_init,
221                 .init_fw = skl_sst_init_fw,
222                 .cleanup = skl_sst_dsp_cleanup
223         },
224         {
225                 .id = 0x9d71,
226                 .num_cores = 2,
227                 .loader_ops = skl_get_loader_ops,
228                 .init = skl_sst_dsp_init,
229                 .init_fw = skl_sst_init_fw,
230                 .cleanup = skl_sst_dsp_cleanup
231         },
232         {
233                 .id = 0x5a98,
234                 .num_cores = 2,
235                 .loader_ops = bxt_get_loader_ops,
236                 .init = bxt_sst_dsp_init,
237                 .init_fw = bxt_sst_init_fw,
238                 .cleanup = bxt_sst_dsp_cleanup
239         },
240         {
241                 .id = 0x3198,
242                 .num_cores = 2,
243                 .loader_ops = bxt_get_loader_ops,
244                 .init = bxt_sst_dsp_init,
245                 .init_fw = bxt_sst_init_fw,
246                 .cleanup = bxt_sst_dsp_cleanup
247         },
248         {
249                 .id = 0x9dc8,
250                 .num_cores = 4,
251                 .loader_ops = bxt_get_loader_ops,
252                 .init = cnl_sst_dsp_init,
253                 .init_fw = cnl_sst_init_fw,
254                 .cleanup = cnl_sst_dsp_cleanup
255         },
256 };
257
258 const struct skl_dsp_ops *skl_get_dsp_ops(int pci_id)
259 {
260         int i;
261
262         for (i = 0; i < ARRAY_SIZE(dsp_ops); i++) {
263                 if (dsp_ops[i].id == pci_id)
264                         return &dsp_ops[i];
265         }
266
267         return NULL;
268 }
269
270 int skl_init_dsp(struct skl *skl)
271 {
272         void __iomem *mmio_base;
273         struct hdac_ext_bus *ebus = &skl->ebus;
274         struct hdac_bus *bus = ebus_to_hbus(ebus);
275         struct skl_dsp_loader_ops loader_ops;
276         int irq = bus->irq;
277         const struct skl_dsp_ops *ops;
278         struct skl_dsp_cores *cores;
279         int ret;
280
281         /* enable ppcap interrupt */
282         snd_hdac_ext_bus_ppcap_enable(&skl->ebus, true);
283         snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, true);
284
285         /* read the BAR of the ADSP MMIO */
286         mmio_base = pci_ioremap_bar(skl->pci, 4);
287         if (mmio_base == NULL) {
288                 dev_err(bus->dev, "ioremap error\n");
289                 return -ENXIO;
290         }
291
292         ops = skl_get_dsp_ops(skl->pci->device);
293         if (!ops) {
294                 ret = -EIO;
295                 goto unmap_mmio;
296         }
297
298         loader_ops = ops->loader_ops();
299         ret = ops->init(bus->dev, mmio_base, irq,
300                                 skl->fw_name, loader_ops,
301                                 &skl->skl_sst);
302
303         if (ret < 0)
304                 goto unmap_mmio;
305
306         skl->skl_sst->dsp_ops = ops;
307         cores = &skl->skl_sst->cores;
308         cores->count = ops->num_cores;
309
310         cores->state = kcalloc(cores->count, sizeof(*cores->state), GFP_KERNEL);
311         if (!cores->state) {
312                 ret = -ENOMEM;
313                 goto unmap_mmio;
314         }
315
316         cores->usage_count = kcalloc(cores->count, sizeof(*cores->usage_count),
317                                      GFP_KERNEL);
318         if (!cores->usage_count) {
319                 ret = -ENOMEM;
320                 goto free_core_state;
321         }
322
323         dev_dbg(bus->dev, "dsp registration status=%d\n", ret);
324
325         return 0;
326
327 free_core_state:
328         kfree(cores->state);
329
330 unmap_mmio:
331         iounmap(mmio_base);
332
333         return ret;
334 }
335
336 int skl_free_dsp(struct skl *skl)
337 {
338         struct hdac_ext_bus *ebus = &skl->ebus;
339         struct hdac_bus *bus = ebus_to_hbus(ebus);
340         struct skl_sst *ctx = skl->skl_sst;
341
342         /* disable  ppcap interrupt */
343         snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, false);
344
345         ctx->dsp_ops->cleanup(bus->dev, ctx);
346
347         kfree(ctx->cores.state);
348         kfree(ctx->cores.usage_count);
349
350         if (ctx->dsp->addr.lpe)
351                 iounmap(ctx->dsp->addr.lpe);
352
353         return 0;
354 }
355
356 /*
357  * In the case of "suspend_active" i.e, the Audio IP being active
358  * during system suspend, immediately excecute any pending D0i3 work
359  * before suspending. This is needed for the IP to work in low power
360  * mode during system suspend. In the case of normal suspend, cancel
361  * any pending D0i3 work.
362  */
363 int skl_suspend_late_dsp(struct skl *skl)
364 {
365         struct skl_sst *ctx = skl->skl_sst;
366         struct delayed_work *dwork;
367
368         if (!ctx)
369                 return 0;
370
371         dwork = &ctx->d0i3.work;
372
373         if (dwork->work.func) {
374                 if (skl->supend_active)
375                         flush_delayed_work(dwork);
376                 else
377                         cancel_delayed_work_sync(dwork);
378         }
379
380         return 0;
381 }
382
383 int skl_suspend_dsp(struct skl *skl)
384 {
385         struct skl_sst *ctx = skl->skl_sst;
386         int ret;
387
388         /* if ppcap is not supported return 0 */
389         if (!skl->ebus.bus.ppcap)
390                 return 0;
391
392         ret = skl_dsp_sleep(ctx->dsp);
393         if (ret < 0)
394                 return ret;
395
396         /* disable ppcap interrupt */
397         snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, false);
398         snd_hdac_ext_bus_ppcap_enable(&skl->ebus, false);
399
400         return 0;
401 }
402
403 int skl_resume_dsp(struct skl *skl)
404 {
405         struct skl_sst *ctx = skl->skl_sst;
406         int ret;
407
408         /* if ppcap is not supported return 0 */
409         if (!skl->ebus.bus.ppcap)
410                 return 0;
411
412         /* enable ppcap interrupt */
413         snd_hdac_ext_bus_ppcap_enable(&skl->ebus, true);
414         snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, true);
415
416         /* check if DSP 1st boot is done */
417         if (skl->skl_sst->is_first_boot == true)
418                 return 0;
419
420         /*
421          * Disable dynamic clock and power gating during firmware
422          * and library download
423          */
424         ctx->enable_miscbdcge(ctx->dev, false);
425         ctx->clock_power_gating(ctx->dev, false);
426
427         ret = skl_dsp_wake(ctx->dsp);
428         ctx->enable_miscbdcge(ctx->dev, true);
429         ctx->clock_power_gating(ctx->dev, true);
430         if (ret < 0)
431                 return ret;
432
433         skl_dsp_enable_notification(skl->skl_sst, false);
434
435         if (skl->cfg.astate_cfg != NULL) {
436                 skl_dsp_set_astate_cfg(skl->skl_sst, skl->cfg.astate_cfg->count,
437                                         skl->cfg.astate_cfg);
438         }
439         return ret;
440 }
441
442 enum skl_bitdepth skl_get_bit_depth(int params)
443 {
444         switch (params) {
445         case 8:
446                 return SKL_DEPTH_8BIT;
447
448         case 16:
449                 return SKL_DEPTH_16BIT;
450
451         case 24:
452                 return SKL_DEPTH_24BIT;
453
454         case 32:
455                 return SKL_DEPTH_32BIT;
456
457         default:
458                 return SKL_DEPTH_INVALID;
459
460         }
461 }
462
463 /*
464  * Each module in DSP expects a base module configuration, which consists of
465  * PCM format information, which we calculate in driver and resource values
466  * which are read from widget information passed through topology binary
467  * This is send when we create a module with INIT_INSTANCE IPC msg
468  */
469 static void skl_set_base_module_format(struct skl_sst *ctx,
470                         struct skl_module_cfg *mconfig,
471                         struct skl_base_cfg *base_cfg)
472 {
473         struct skl_module *module = mconfig->module;
474         struct skl_module_res *res = &module->resources[mconfig->res_idx];
475         struct skl_module_iface *fmt = &module->formats[mconfig->fmt_idx];
476         struct skl_module_fmt *format = &fmt->inputs[0].fmt;
477
478         base_cfg->audio_fmt.number_of_channels = format->channels;
479
480         base_cfg->audio_fmt.s_freq = format->s_freq;
481         base_cfg->audio_fmt.bit_depth = format->bit_depth;
482         base_cfg->audio_fmt.valid_bit_depth = format->valid_bit_depth;
483         base_cfg->audio_fmt.ch_cfg = format->ch_cfg;
484
485         dev_dbg(ctx->dev, "bit_depth=%x valid_bd=%x ch_config=%x\n",
486                         format->bit_depth, format->valid_bit_depth,
487                         format->ch_cfg);
488
489         base_cfg->audio_fmt.channel_map = format->ch_map;
490
491         base_cfg->audio_fmt.interleaving = format->interleaving_style;
492
493         base_cfg->cps = res->cps;
494         base_cfg->ibs = res->ibs;
495         base_cfg->obs = res->obs;
496         base_cfg->is_pages = res->is_pages;
497 }
498
499 /*
500  * Copies copier capabilities into copier module and updates copier module
501  * config size.
502  */
503 static void skl_copy_copier_caps(struct skl_module_cfg *mconfig,
504                                 struct skl_cpr_cfg *cpr_mconfig)
505 {
506         if (mconfig->formats_config.caps_size == 0)
507                 return;
508
509         memcpy(cpr_mconfig->gtw_cfg.config_data,
510                         mconfig->formats_config.caps,
511                         mconfig->formats_config.caps_size);
512
513         cpr_mconfig->gtw_cfg.config_length =
514                         (mconfig->formats_config.caps_size) / 4;
515 }
516
517 #define SKL_NON_GATEWAY_CPR_NODE_ID 0xFFFFFFFF
518 /*
519  * Calculate the gatewat settings required for copier module, type of
520  * gateway and index of gateway to use
521  */
522 static u32 skl_get_node_id(struct skl_sst *ctx,
523                         struct skl_module_cfg *mconfig)
524 {
525         union skl_connector_node_id node_id = {0};
526         union skl_ssp_dma_node ssp_node  = {0};
527         struct skl_pipe_params *params = mconfig->pipe->p_params;
528
529         switch (mconfig->dev_type) {
530         case SKL_DEVICE_BT:
531                 node_id.node.dma_type =
532                         (SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
533                         SKL_DMA_I2S_LINK_OUTPUT_CLASS :
534                         SKL_DMA_I2S_LINK_INPUT_CLASS;
535                 node_id.node.vindex = params->host_dma_id +
536                                         (mconfig->vbus_id << 3);
537                 break;
538
539         case SKL_DEVICE_I2S:
540                 node_id.node.dma_type =
541                         (SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
542                         SKL_DMA_I2S_LINK_OUTPUT_CLASS :
543                         SKL_DMA_I2S_LINK_INPUT_CLASS;
544                 ssp_node.dma_node.time_slot_index = mconfig->time_slot;
545                 ssp_node.dma_node.i2s_instance = mconfig->vbus_id;
546                 node_id.node.vindex = ssp_node.val;
547                 break;
548
549         case SKL_DEVICE_DMIC:
550                 node_id.node.dma_type = SKL_DMA_DMIC_LINK_INPUT_CLASS;
551                 node_id.node.vindex = mconfig->vbus_id +
552                                          (mconfig->time_slot);
553                 break;
554
555         case SKL_DEVICE_HDALINK:
556                 node_id.node.dma_type =
557                         (SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
558                         SKL_DMA_HDA_LINK_OUTPUT_CLASS :
559                         SKL_DMA_HDA_LINK_INPUT_CLASS;
560                 node_id.node.vindex = params->link_dma_id;
561                 break;
562
563         case SKL_DEVICE_HDAHOST:
564                 node_id.node.dma_type =
565                         (SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
566                         SKL_DMA_HDA_HOST_OUTPUT_CLASS :
567                         SKL_DMA_HDA_HOST_INPUT_CLASS;
568                 node_id.node.vindex = params->host_dma_id;
569                 break;
570
571         default:
572                 node_id.val = 0xFFFFFFFF;
573                 break;
574         }
575
576         return node_id.val;
577 }
578
579 static void skl_setup_cpr_gateway_cfg(struct skl_sst *ctx,
580                         struct skl_module_cfg *mconfig,
581                         struct skl_cpr_cfg *cpr_mconfig)
582 {
583         u32 dma_io_buf;
584         struct skl_module_res *res;
585         int res_idx = mconfig->res_idx;
586         struct skl *skl = get_skl_ctx(ctx->dev);
587
588         cpr_mconfig->gtw_cfg.node_id = skl_get_node_id(ctx, mconfig);
589
590         if (cpr_mconfig->gtw_cfg.node_id == SKL_NON_GATEWAY_CPR_NODE_ID) {
591                 cpr_mconfig->cpr_feature_mask = 0;
592                 return;
593         }
594
595         if (skl->nr_modules) {
596                 res = &mconfig->module->resources[mconfig->res_idx];
597                 cpr_mconfig->gtw_cfg.dma_buffer_size = res->dma_buffer_size;
598                 goto skip_buf_size_calc;
599         } else {
600                 res = &mconfig->module->resources[res_idx];
601         }
602
603         switch (mconfig->hw_conn_type) {
604         case SKL_CONN_SOURCE:
605                 if (mconfig->dev_type == SKL_DEVICE_HDAHOST)
606                         dma_io_buf =  res->ibs;
607                 else
608                         dma_io_buf =  res->obs;
609                 break;
610
611         case SKL_CONN_SINK:
612                 if (mconfig->dev_type == SKL_DEVICE_HDAHOST)
613                         dma_io_buf =  res->obs;
614                 else
615                         dma_io_buf =  res->ibs;
616                 break;
617
618         default:
619                 dev_warn(ctx->dev, "wrong connection type: %d\n",
620                                 mconfig->hw_conn_type);
621                 return;
622         }
623
624         cpr_mconfig->gtw_cfg.dma_buffer_size =
625                                 mconfig->dma_buffer_size * dma_io_buf;
626
627         /* fallback to 2ms default value */
628         if (!cpr_mconfig->gtw_cfg.dma_buffer_size) {
629                 if (mconfig->hw_conn_type == SKL_CONN_SOURCE)
630                         cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * res->obs;
631                 else
632                         cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * res->ibs;
633         }
634
635 skip_buf_size_calc:
636         cpr_mconfig->cpr_feature_mask = 0;
637         cpr_mconfig->gtw_cfg.config_length  = 0;
638
639         skl_copy_copier_caps(mconfig, cpr_mconfig);
640 }
641
642 #define DMA_CONTROL_ID 5
643 #define DMA_I2S_BLOB_SIZE 21
644
645 int skl_dsp_set_dma_control(struct skl_sst *ctx, u32 *caps,
646                                 u32 caps_size, u32 node_id)
647 {
648         struct skl_dma_control *dma_ctrl;
649         struct skl_ipc_large_config_msg msg = {0};
650         int err = 0;
651
652
653         /*
654          * if blob size zero, then return
655          */
656         if (caps_size == 0)
657                 return 0;
658
659         msg.large_param_id = DMA_CONTROL_ID;
660         msg.param_data_size = sizeof(struct skl_dma_control) + caps_size;
661
662         dma_ctrl = kzalloc(msg.param_data_size, GFP_KERNEL);
663         if (dma_ctrl == NULL)
664                 return -ENOMEM;
665
666         dma_ctrl->node_id = node_id;
667
668         /*
669          * NHLT blob may contain additional configs along with i2s blob.
670          * firmware expects only the i2s blob size as the config_length.
671          * So fix to i2s blob size.
672          * size in dwords.
673          */
674         dma_ctrl->config_length = DMA_I2S_BLOB_SIZE;
675
676         memcpy(dma_ctrl->config_data, caps, caps_size);
677
678         err = skl_ipc_set_large_config(&ctx->ipc, &msg, (u32 *)dma_ctrl);
679
680         kfree(dma_ctrl);
681         return err;
682 }
683 EXPORT_SYMBOL_GPL(skl_dsp_set_dma_control);
684
685 static void skl_setup_out_format(struct skl_sst *ctx,
686                         struct skl_module_cfg *mconfig,
687                         struct skl_audio_data_format *out_fmt)
688 {
689         struct skl_module *module = mconfig->module;
690         struct skl_module_iface *fmt = &module->formats[mconfig->fmt_idx];
691         struct skl_module_fmt *format = &fmt->outputs[0].fmt;
692
693         out_fmt->number_of_channels = (u8)format->channels;
694         out_fmt->s_freq = format->s_freq;
695         out_fmt->bit_depth = format->bit_depth;
696         out_fmt->valid_bit_depth = format->valid_bit_depth;
697         out_fmt->ch_cfg = format->ch_cfg;
698
699         out_fmt->channel_map = format->ch_map;
700         out_fmt->interleaving = format->interleaving_style;
701         out_fmt->sample_type = format->sample_type;
702
703         dev_dbg(ctx->dev, "copier out format chan=%d fre=%d bitdepth=%d\n",
704                 out_fmt->number_of_channels, format->s_freq, format->bit_depth);
705 }
706
707 /*
708  * DSP needs SRC module for frequency conversion, SRC takes base module
709  * configuration and the target frequency as extra parameter passed as src
710  * config
711  */
712 static void skl_set_src_format(struct skl_sst *ctx,
713                         struct skl_module_cfg *mconfig,
714                         struct skl_src_module_cfg *src_mconfig)
715 {
716         struct skl_module *module = mconfig->module;
717         struct skl_module_iface *iface = &module->formats[mconfig->fmt_idx];
718         struct skl_module_fmt *fmt = &iface->outputs[0].fmt;
719
720         skl_set_base_module_format(ctx, mconfig,
721                 (struct skl_base_cfg *)src_mconfig);
722
723         src_mconfig->src_cfg = fmt->s_freq;
724 }
725
726 /*
727  * DSP needs updown module to do channel conversion. updown module take base
728  * module configuration and channel configuration
729  * It also take coefficients and now we have defaults applied here
730  */
731 static void skl_set_updown_mixer_format(struct skl_sst *ctx,
732                         struct skl_module_cfg *mconfig,
733                         struct skl_up_down_mixer_cfg *mixer_mconfig)
734 {
735         struct skl_module *module = mconfig->module;
736         struct skl_module_iface *iface = &module->formats[mconfig->fmt_idx];
737         struct skl_module_fmt *fmt = &iface->outputs[0].fmt;
738
739         skl_set_base_module_format(ctx, mconfig,
740                 (struct skl_base_cfg *)mixer_mconfig);
741         mixer_mconfig->out_ch_cfg = fmt->ch_cfg;
742         mixer_mconfig->ch_map = fmt->ch_map;
743 }
744
745 /*
746  * 'copier' is DSP internal module which copies data from Host DMA (HDA host
747  * dma) or link (hda link, SSP, PDM)
748  * Here we calculate the copier module parameters, like PCM format, output
749  * format, gateway settings
750  * copier_module_config is sent as input buffer with INIT_INSTANCE IPC msg
751  */
752 static void skl_set_copier_format(struct skl_sst *ctx,
753                         struct skl_module_cfg *mconfig,
754                         struct skl_cpr_cfg *cpr_mconfig)
755 {
756         struct skl_audio_data_format *out_fmt = &cpr_mconfig->out_fmt;
757         struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)cpr_mconfig;
758
759         skl_set_base_module_format(ctx, mconfig, base_cfg);
760
761         skl_setup_out_format(ctx, mconfig, out_fmt);
762         skl_setup_cpr_gateway_cfg(ctx, mconfig, cpr_mconfig);
763 }
764
765 /*
766  * Algo module are DSP pre processing modules. Algo module take base module
767  * configuration and params
768  */
769
770 static void skl_set_algo_format(struct skl_sst *ctx,
771                         struct skl_module_cfg *mconfig,
772                         struct skl_algo_cfg *algo_mcfg)
773 {
774         struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)algo_mcfg;
775
776         skl_set_base_module_format(ctx, mconfig, base_cfg);
777
778         if (mconfig->formats_config.caps_size == 0)
779                 return;
780
781         memcpy(algo_mcfg->params,
782                         mconfig->formats_config.caps,
783                         mconfig->formats_config.caps_size);
784
785 }
786
787 /*
788  * Mic select module allows selecting one or many input channels, thus
789  * acting as a demux.
790  *
791  * Mic select module take base module configuration and out-format
792  * configuration
793  */
794 static void skl_set_base_outfmt_format(struct skl_sst *ctx,
795                         struct skl_module_cfg *mconfig,
796                         struct skl_base_outfmt_cfg *base_outfmt_mcfg)
797 {
798         struct skl_audio_data_format *out_fmt = &base_outfmt_mcfg->out_fmt;
799         struct skl_base_cfg *base_cfg =
800                                 (struct skl_base_cfg *)base_outfmt_mcfg;
801
802         skl_set_base_module_format(ctx, mconfig, base_cfg);
803         skl_setup_out_format(ctx, mconfig, out_fmt);
804 }
805
806 static u16 skl_get_module_param_size(struct skl_sst *ctx,
807                         struct skl_module_cfg *mconfig)
808 {
809         u16 param_size;
810
811         switch (mconfig->m_type) {
812         case SKL_MODULE_TYPE_COPIER:
813                 param_size = sizeof(struct skl_cpr_cfg);
814                 param_size += mconfig->formats_config.caps_size;
815                 return param_size;
816
817         case SKL_MODULE_TYPE_SRCINT:
818                 return sizeof(struct skl_src_module_cfg);
819
820         case SKL_MODULE_TYPE_UPDWMIX:
821                 return sizeof(struct skl_up_down_mixer_cfg);
822
823         case SKL_MODULE_TYPE_ALGO:
824                 param_size = sizeof(struct skl_base_cfg);
825                 param_size += mconfig->formats_config.caps_size;
826                 return param_size;
827
828         case SKL_MODULE_TYPE_BASE_OUTFMT:
829         case SKL_MODULE_TYPE_MIC_SELECT:
830         case SKL_MODULE_TYPE_KPB:
831                 return sizeof(struct skl_base_outfmt_cfg);
832
833         default:
834                 /*
835                  * return only base cfg when no specific module type is
836                  * specified
837                  */
838                 return sizeof(struct skl_base_cfg);
839         }
840
841         return 0;
842 }
843
844 /*
845  * DSP firmware supports various modules like copier, SRC, updown etc.
846  * These modules required various parameters to be calculated and sent for
847  * the module initialization to DSP. By default a generic module needs only
848  * base module format configuration
849  */
850
851 static int skl_set_module_format(struct skl_sst *ctx,
852                         struct skl_module_cfg *module_config,
853                         u16 *module_config_size,
854                         void **param_data)
855 {
856         u16 param_size;
857
858         param_size  = skl_get_module_param_size(ctx, module_config);
859
860         *param_data = kzalloc(param_size, GFP_KERNEL);
861         if (NULL == *param_data)
862                 return -ENOMEM;
863
864         *module_config_size = param_size;
865
866         switch (module_config->m_type) {
867         case SKL_MODULE_TYPE_COPIER:
868                 skl_set_copier_format(ctx, module_config, *param_data);
869                 break;
870
871         case SKL_MODULE_TYPE_SRCINT:
872                 skl_set_src_format(ctx, module_config, *param_data);
873                 break;
874
875         case SKL_MODULE_TYPE_UPDWMIX:
876                 skl_set_updown_mixer_format(ctx, module_config, *param_data);
877                 break;
878
879         case SKL_MODULE_TYPE_ALGO:
880                 skl_set_algo_format(ctx, module_config, *param_data);
881                 break;
882
883         case SKL_MODULE_TYPE_BASE_OUTFMT:
884         case SKL_MODULE_TYPE_MIC_SELECT:
885         case SKL_MODULE_TYPE_KPB:
886                 skl_set_base_outfmt_format(ctx, module_config, *param_data);
887                 break;
888
889         default:
890                 skl_set_base_module_format(ctx, module_config, *param_data);
891                 break;
892
893         }
894
895         dev_dbg(ctx->dev, "Module type=%d config size: %d bytes\n",
896                         module_config->id.module_id, param_size);
897         print_hex_dump_debug("Module params:", DUMP_PREFIX_OFFSET, 8, 4,
898                         *param_data, param_size, false);
899         return 0;
900 }
901
902 static int skl_get_queue_index(struct skl_module_pin *mpin,
903                                 struct skl_module_inst_id id, int max)
904 {
905         int i;
906
907         for (i = 0; i < max; i++)  {
908                 if (mpin[i].id.module_id == id.module_id &&
909                         mpin[i].id.instance_id == id.instance_id)
910                         return i;
911         }
912
913         return -EINVAL;
914 }
915
916 /*
917  * Allocates queue for each module.
918  * if dynamic, the pin_index is allocated 0 to max_pin.
919  * In static, the pin_index is fixed based on module_id and instance id
920  */
921 static int skl_alloc_queue(struct skl_module_pin *mpin,
922                         struct skl_module_cfg *tgt_cfg, int max)
923 {
924         int i;
925         struct skl_module_inst_id id = tgt_cfg->id;
926         /*
927          * if pin in dynamic, find first free pin
928          * otherwise find match module and instance id pin as topology will
929          * ensure a unique pin is assigned to this so no need to
930          * allocate/free
931          */
932         for (i = 0; i < max; i++)  {
933                 if (mpin[i].is_dynamic) {
934                         if (!mpin[i].in_use &&
935                                 mpin[i].pin_state == SKL_PIN_UNBIND) {
936
937                                 mpin[i].in_use = true;
938                                 mpin[i].id.module_id = id.module_id;
939                                 mpin[i].id.instance_id = id.instance_id;
940                                 mpin[i].id.pvt_id = id.pvt_id;
941                                 mpin[i].tgt_mcfg = tgt_cfg;
942                                 return i;
943                         }
944                 } else {
945                         if (mpin[i].id.module_id == id.module_id &&
946                                 mpin[i].id.instance_id == id.instance_id &&
947                                 mpin[i].pin_state == SKL_PIN_UNBIND) {
948
949                                 mpin[i].tgt_mcfg = tgt_cfg;
950                                 return i;
951                         }
952                 }
953         }
954
955         return -EINVAL;
956 }
957
958 static void skl_free_queue(struct skl_module_pin *mpin, int q_index)
959 {
960         if (mpin[q_index].is_dynamic) {
961                 mpin[q_index].in_use = false;
962                 mpin[q_index].id.module_id = 0;
963                 mpin[q_index].id.instance_id = 0;
964                 mpin[q_index].id.pvt_id = 0;
965         }
966         mpin[q_index].pin_state = SKL_PIN_UNBIND;
967         mpin[q_index].tgt_mcfg = NULL;
968 }
969
970 /* Module state will be set to unint, if all the out pin state is UNBIND */
971
972 static void skl_clear_module_state(struct skl_module_pin *mpin, int max,
973                                                 struct skl_module_cfg *mcfg)
974 {
975         int i;
976         bool found = false;
977
978         for (i = 0; i < max; i++)  {
979                 if (mpin[i].pin_state == SKL_PIN_UNBIND)
980                         continue;
981                 found = true;
982                 break;
983         }
984
985         if (!found)
986                 mcfg->m_state = SKL_MODULE_INIT_DONE;
987         return;
988 }
989
990 /*
991  * A module needs to be instanataited in DSP. A mdoule is present in a
992  * collection of module referred as a PIPE.
993  * We first calculate the module format, based on module type and then
994  * invoke the DSP by sending IPC INIT_INSTANCE using ipc helper
995  */
996 int skl_init_module(struct skl_sst *ctx,
997                         struct skl_module_cfg *mconfig)
998 {
999         u16 module_config_size = 0;
1000         void *param_data = NULL;
1001         int ret;
1002         struct skl_ipc_init_instance_msg msg;
1003
1004         dev_dbg(ctx->dev, "%s: module_id = %d instance=%d\n", __func__,
1005                  mconfig->id.module_id, mconfig->id.pvt_id);
1006
1007         if (mconfig->pipe->state != SKL_PIPE_CREATED) {
1008                 dev_err(ctx->dev, "Pipe not created state= %d pipe_id= %d\n",
1009                                  mconfig->pipe->state, mconfig->pipe->ppl_id);
1010                 return -EIO;
1011         }
1012
1013         ret = skl_set_module_format(ctx, mconfig,
1014                         &module_config_size, &param_data);
1015         if (ret < 0) {
1016                 dev_err(ctx->dev, "Failed to set module format ret=%d\n", ret);
1017                 return ret;
1018         }
1019
1020         msg.module_id = mconfig->id.module_id;
1021         msg.instance_id = mconfig->id.pvt_id;
1022         msg.ppl_instance_id = mconfig->pipe->ppl_id;
1023         msg.param_data_size = module_config_size;
1024         msg.core_id = mconfig->core_id;
1025         msg.domain = mconfig->domain;
1026
1027         ret = skl_ipc_init_instance(&ctx->ipc, &msg, param_data);
1028         if (ret < 0) {
1029                 dev_err(ctx->dev, "Failed to init instance ret=%d\n", ret);
1030                 kfree(param_data);
1031                 return ret;
1032         }
1033         mconfig->m_state = SKL_MODULE_INIT_DONE;
1034         kfree(param_data);
1035         return ret;
1036 }
1037
1038 static void skl_dump_bind_info(struct skl_sst *ctx, struct skl_module_cfg
1039         *src_module, struct skl_module_cfg *dst_module)
1040 {
1041         dev_dbg(ctx->dev, "%s: src module_id = %d  src_instance=%d\n",
1042                 __func__, src_module->id.module_id, src_module->id.pvt_id);
1043         dev_dbg(ctx->dev, "%s: dst_module=%d dst_instance=%d\n", __func__,
1044                  dst_module->id.module_id, dst_module->id.pvt_id);
1045
1046         dev_dbg(ctx->dev, "src_module state = %d dst module state = %d\n",
1047                 src_module->m_state, dst_module->m_state);
1048 }
1049
1050 /*
1051  * On module freeup, we need to unbind the module with modules
1052  * it is already bind.
1053  * Find the pin allocated and unbind then using bind_unbind IPC
1054  */
1055 int skl_unbind_modules(struct skl_sst *ctx,
1056                         struct skl_module_cfg *src_mcfg,
1057                         struct skl_module_cfg *dst_mcfg)
1058 {
1059         int ret;
1060         struct skl_ipc_bind_unbind_msg msg;
1061         struct skl_module_inst_id src_id = src_mcfg->id;
1062         struct skl_module_inst_id dst_id = dst_mcfg->id;
1063         int in_max = dst_mcfg->module->max_input_pins;
1064         int out_max = src_mcfg->module->max_output_pins;
1065         int src_index, dst_index, src_pin_state, dst_pin_state;
1066
1067         skl_dump_bind_info(ctx, src_mcfg, dst_mcfg);
1068
1069         /* get src queue index */
1070         src_index = skl_get_queue_index(src_mcfg->m_out_pin, dst_id, out_max);
1071         if (src_index < 0)
1072                 return 0;
1073
1074         msg.src_queue = src_index;
1075
1076         /* get dst queue index */
1077         dst_index  = skl_get_queue_index(dst_mcfg->m_in_pin, src_id, in_max);
1078         if (dst_index < 0)
1079                 return 0;
1080
1081         msg.dst_queue = dst_index;
1082
1083         src_pin_state = src_mcfg->m_out_pin[src_index].pin_state;
1084         dst_pin_state = dst_mcfg->m_in_pin[dst_index].pin_state;
1085
1086         if (src_pin_state != SKL_PIN_BIND_DONE ||
1087                 dst_pin_state != SKL_PIN_BIND_DONE)
1088                 return 0;
1089
1090         msg.module_id = src_mcfg->id.module_id;
1091         msg.instance_id = src_mcfg->id.pvt_id;
1092         msg.dst_module_id = dst_mcfg->id.module_id;
1093         msg.dst_instance_id = dst_mcfg->id.pvt_id;
1094         msg.bind = false;
1095
1096         ret = skl_ipc_bind_unbind(&ctx->ipc, &msg);
1097         if (!ret) {
1098                 /* free queue only if unbind is success */
1099                 skl_free_queue(src_mcfg->m_out_pin, src_index);
1100                 skl_free_queue(dst_mcfg->m_in_pin, dst_index);
1101
1102                 /*
1103                  * check only if src module bind state, bind is
1104                  * always from src -> sink
1105                  */
1106                 skl_clear_module_state(src_mcfg->m_out_pin, out_max, src_mcfg);
1107         }
1108
1109         return ret;
1110 }
1111
1112 static void fill_pin_params(struct skl_audio_data_format *pin_fmt,
1113                                 struct skl_module_fmt *format)
1114 {
1115         pin_fmt->number_of_channels = format->channels;
1116         pin_fmt->s_freq = format->s_freq;
1117         pin_fmt->bit_depth = format->bit_depth;
1118         pin_fmt->valid_bit_depth = format->valid_bit_depth;
1119         pin_fmt->ch_cfg = format->ch_cfg;
1120         pin_fmt->sample_type = format->sample_type;
1121         pin_fmt->channel_map = format->ch_map;
1122         pin_fmt->interleaving = format->interleaving_style;
1123 }
1124
1125 #define CPR_SINK_FMT_PARAM_ID 2
1126
1127 /*
1128  * Once a module is instantiated it need to be 'bind' with other modules in
1129  * the pipeline. For binding we need to find the module pins which are bind
1130  * together
1131  * This function finds the pins and then sends bund_unbind IPC message to
1132  * DSP using IPC helper
1133  */
1134 int skl_bind_modules(struct skl_sst *ctx,
1135                         struct skl_module_cfg *src_mcfg,
1136                         struct skl_module_cfg *dst_mcfg)
1137 {
1138         int ret = 0;
1139         struct skl_ipc_bind_unbind_msg msg;
1140         int in_max = dst_mcfg->module->max_input_pins;
1141         int out_max = src_mcfg->module->max_output_pins;
1142         int src_index, dst_index;
1143         struct skl_module_fmt *format;
1144         struct skl_cpr_pin_fmt pin_fmt;
1145         struct skl_module *module;
1146         struct skl_module_iface *fmt;
1147
1148         skl_dump_bind_info(ctx, src_mcfg, dst_mcfg);
1149
1150         if (src_mcfg->m_state < SKL_MODULE_INIT_DONE ||
1151                 dst_mcfg->m_state < SKL_MODULE_INIT_DONE)
1152                 return 0;
1153
1154         src_index = skl_alloc_queue(src_mcfg->m_out_pin, dst_mcfg, out_max);
1155         if (src_index < 0)
1156                 return -EINVAL;
1157
1158         msg.src_queue = src_index;
1159         dst_index = skl_alloc_queue(dst_mcfg->m_in_pin, src_mcfg, in_max);
1160         if (dst_index < 0) {
1161                 skl_free_queue(src_mcfg->m_out_pin, src_index);
1162                 return -EINVAL;
1163         }
1164
1165         /*
1166          * Copier module requires the separate large_config_set_ipc to
1167          * configure the pins other than 0
1168          */
1169         if (src_mcfg->m_type == SKL_MODULE_TYPE_COPIER && src_index > 0) {
1170                 pin_fmt.sink_id = src_index;
1171                 module = src_mcfg->module;
1172                 fmt = &module->formats[src_mcfg->fmt_idx];
1173
1174                 /* Input fmt is same as that of src module input cfg */
1175                 format = &fmt->inputs[0].fmt;
1176                 fill_pin_params(&(pin_fmt.src_fmt), format);
1177
1178                 format = &fmt->outputs[src_index].fmt;
1179                 fill_pin_params(&(pin_fmt.dst_fmt), format);
1180                 ret = skl_set_module_params(ctx, (void *)&pin_fmt,
1181                                         sizeof(struct skl_cpr_pin_fmt),
1182                                         CPR_SINK_FMT_PARAM_ID, src_mcfg);
1183
1184                 if (ret < 0)
1185                         goto out;
1186         }
1187
1188         msg.dst_queue = dst_index;
1189
1190         dev_dbg(ctx->dev, "src queue = %d dst queue =%d\n",
1191                          msg.src_queue, msg.dst_queue);
1192
1193         msg.module_id = src_mcfg->id.module_id;
1194         msg.instance_id = src_mcfg->id.pvt_id;
1195         msg.dst_module_id = dst_mcfg->id.module_id;
1196         msg.dst_instance_id = dst_mcfg->id.pvt_id;
1197         msg.bind = true;
1198
1199         ret = skl_ipc_bind_unbind(&ctx->ipc, &msg);
1200
1201         if (!ret) {
1202                 src_mcfg->m_state = SKL_MODULE_BIND_DONE;
1203                 src_mcfg->m_out_pin[src_index].pin_state = SKL_PIN_BIND_DONE;
1204                 dst_mcfg->m_in_pin[dst_index].pin_state = SKL_PIN_BIND_DONE;
1205                 return ret;
1206         }
1207 out:
1208         /* error case , if IPC fails, clear the queue index */
1209         skl_free_queue(src_mcfg->m_out_pin, src_index);
1210         skl_free_queue(dst_mcfg->m_in_pin, dst_index);
1211
1212         return ret;
1213 }
1214
1215 static int skl_set_pipe_state(struct skl_sst *ctx, struct skl_pipe *pipe,
1216         enum skl_ipc_pipeline_state state)
1217 {
1218         dev_dbg(ctx->dev, "%s: pipe_state = %d\n", __func__, state);
1219
1220         return skl_ipc_set_pipeline_state(&ctx->ipc, pipe->ppl_id, state);
1221 }
1222
1223 /*
1224  * A pipeline is a collection of modules. Before a module in instantiated a
1225  * pipeline needs to be created for it.
1226  * This function creates pipeline, by sending create pipeline IPC messages
1227  * to FW
1228  */
1229 int skl_create_pipeline(struct skl_sst *ctx, struct skl_pipe *pipe)
1230 {
1231         int ret;
1232
1233         dev_dbg(ctx->dev, "%s: pipe_id = %d\n", __func__, pipe->ppl_id);
1234
1235         ret = skl_ipc_create_pipeline(&ctx->ipc, pipe->memory_pages,
1236                                 pipe->pipe_priority, pipe->ppl_id,
1237                                 pipe->lp_mode);
1238         if (ret < 0) {
1239                 dev_err(ctx->dev, "Failed to create pipeline\n");
1240                 return ret;
1241         }
1242
1243         pipe->state = SKL_PIPE_CREATED;
1244
1245         return 0;
1246 }
1247
1248 /*
1249  * A pipeline needs to be deleted on cleanup. If a pipeline is running, then
1250  * pause the pipeline first and then delete it
1251  * The pipe delete is done by sending delete pipeline IPC. DSP will stop the
1252  * DMA engines and releases resources
1253  */
1254 int skl_delete_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1255 {
1256         int ret;
1257
1258         dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
1259
1260         /* If pipe is started, do stop the pipe in FW. */
1261         if (pipe->state >= SKL_PIPE_STARTED) {
1262                 ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1263                 if (ret < 0) {
1264                         dev_err(ctx->dev, "Failed to stop pipeline\n");
1265                         return ret;
1266                 }
1267
1268                 pipe->state = SKL_PIPE_PAUSED;
1269         }
1270
1271         /* If pipe was not created in FW, do not try to delete it */
1272         if (pipe->state < SKL_PIPE_CREATED)
1273                 return 0;
1274
1275         ret = skl_ipc_delete_pipeline(&ctx->ipc, pipe->ppl_id);
1276         if (ret < 0) {
1277                 dev_err(ctx->dev, "Failed to delete pipeline\n");
1278                 return ret;
1279         }
1280
1281         pipe->state = SKL_PIPE_INVALID;
1282
1283         return ret;
1284 }
1285
1286 /*
1287  * A pipeline is also a scheduling entity in DSP which can be run, stopped
1288  * For processing data the pipe need to be run by sending IPC set pipe state
1289  * to DSP
1290  */
1291 int skl_run_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1292 {
1293         int ret;
1294
1295         dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
1296
1297         /* If pipe was not created in FW, do not try to pause or delete */
1298         if (pipe->state < SKL_PIPE_CREATED)
1299                 return 0;
1300
1301         /* Pipe has to be paused before it is started */
1302         ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1303         if (ret < 0) {
1304                 dev_err(ctx->dev, "Failed to pause pipe\n");
1305                 return ret;
1306         }
1307
1308         pipe->state = SKL_PIPE_PAUSED;
1309
1310         ret = skl_set_pipe_state(ctx, pipe, PPL_RUNNING);
1311         if (ret < 0) {
1312                 dev_err(ctx->dev, "Failed to start pipe\n");
1313                 return ret;
1314         }
1315
1316         pipe->state = SKL_PIPE_STARTED;
1317
1318         return 0;
1319 }
1320
1321 /*
1322  * Stop the pipeline by sending set pipe state IPC
1323  * DSP doesnt implement stop so we always send pause message
1324  */
1325 int skl_stop_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1326 {
1327         int ret;
1328
1329         dev_dbg(ctx->dev, "In %s pipe=%d\n", __func__, pipe->ppl_id);
1330
1331         /* If pipe was not created in FW, do not try to pause or delete */
1332         if (pipe->state < SKL_PIPE_PAUSED)
1333                 return 0;
1334
1335         ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
1336         if (ret < 0) {
1337                 dev_dbg(ctx->dev, "Failed to stop pipe\n");
1338                 return ret;
1339         }
1340
1341         pipe->state = SKL_PIPE_PAUSED;
1342
1343         return 0;
1344 }
1345
1346 /*
1347  * Reset the pipeline by sending set pipe state IPC this will reset the DMA
1348  * from the DSP side
1349  */
1350 int skl_reset_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
1351 {
1352         int ret;
1353
1354         /* If pipe was not created in FW, do not try to pause or delete */
1355         if (pipe->state < SKL_PIPE_PAUSED)
1356                 return 0;
1357
1358         ret = skl_set_pipe_state(ctx, pipe, PPL_RESET);
1359         if (ret < 0) {
1360                 dev_dbg(ctx->dev, "Failed to reset pipe ret=%d\n", ret);
1361                 return ret;
1362         }
1363
1364         pipe->state = SKL_PIPE_RESET;
1365
1366         return 0;
1367 }
1368
1369 /* Algo parameter set helper function */
1370 int skl_set_module_params(struct skl_sst *ctx, u32 *params, int size,
1371                                 u32 param_id, struct skl_module_cfg *mcfg)
1372 {
1373         struct skl_ipc_large_config_msg msg;
1374
1375         msg.module_id = mcfg->id.module_id;
1376         msg.instance_id = mcfg->id.pvt_id;
1377         msg.param_data_size = size;
1378         msg.large_param_id = param_id;
1379
1380         return skl_ipc_set_large_config(&ctx->ipc, &msg, params);
1381 }
1382
1383 int skl_get_module_params(struct skl_sst *ctx, u32 *params, int size,
1384                           u32 param_id, struct skl_module_cfg *mcfg)
1385 {
1386         struct skl_ipc_large_config_msg msg;
1387
1388         msg.module_id = mcfg->id.module_id;
1389         msg.instance_id = mcfg->id.pvt_id;
1390         msg.param_data_size = size;
1391         msg.large_param_id = param_id;
1392
1393         return skl_ipc_get_large_config(&ctx->ipc, &msg, params);
1394 }