[ALSA] Clean up with common snd_ctl_boolean_*_info callbacks
[sfrench/cifs-2.6.git] / sound / pci / ymfpci / ymfpci_main.c
1 /*
2  *  Copyright (c) by Jaroslav Kysela <perex@suse.cz>
3  *  Routines for control of YMF724/740/744/754 chips
4  *
5  *   This program is free software; you can redistribute it and/or modify
6  *   it under the terms of the GNU General Public License as published by
7  *   the Free Software Foundation; either version 2 of the License, or
8  *   (at your option) any later version.
9  *
10  *   This program is distributed in the hope that it will be useful,
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  *   GNU General Public License for more details.
14  *
15  *   You should have received a copy of the GNU General Public License
16  *   along with this program; if not, write to the Free Software
17  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18  *
19  */
20
21 #include <sound/driver.h>
22 #include <linux/delay.h>
23 #include <linux/firmware.h>
24 #include <linux/init.h>
25 #include <linux/interrupt.h>
26 #include <linux/pci.h>
27 #include <linux/sched.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30
31 #include <sound/core.h>
32 #include <sound/control.h>
33 #include <sound/info.h>
34 #include <sound/tlv.h>
35 #include <sound/ymfpci.h>
36 #include <sound/asoundef.h>
37 #include <sound/mpu401.h>
38
39 #include <asm/io.h>
40 #include <asm/byteorder.h>
41
42 /*
43  *  common I/O routines
44  */
45
46 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip);
47
48 static inline u8 snd_ymfpci_readb(struct snd_ymfpci *chip, u32 offset)
49 {
50         return readb(chip->reg_area_virt + offset);
51 }
52
53 static inline void snd_ymfpci_writeb(struct snd_ymfpci *chip, u32 offset, u8 val)
54 {
55         writeb(val, chip->reg_area_virt + offset);
56 }
57
58 static inline u16 snd_ymfpci_readw(struct snd_ymfpci *chip, u32 offset)
59 {
60         return readw(chip->reg_area_virt + offset);
61 }
62
63 static inline void snd_ymfpci_writew(struct snd_ymfpci *chip, u32 offset, u16 val)
64 {
65         writew(val, chip->reg_area_virt + offset);
66 }
67
68 static inline u32 snd_ymfpci_readl(struct snd_ymfpci *chip, u32 offset)
69 {
70         return readl(chip->reg_area_virt + offset);
71 }
72
73 static inline void snd_ymfpci_writel(struct snd_ymfpci *chip, u32 offset, u32 val)
74 {
75         writel(val, chip->reg_area_virt + offset);
76 }
77
78 static int snd_ymfpci_codec_ready(struct snd_ymfpci *chip, int secondary)
79 {
80         unsigned long end_time;
81         u32 reg = secondary ? YDSXGR_SECSTATUSADR : YDSXGR_PRISTATUSADR;
82         
83         end_time = jiffies + msecs_to_jiffies(750);
84         do {
85                 if ((snd_ymfpci_readw(chip, reg) & 0x8000) == 0)
86                         return 0;
87                 set_current_state(TASK_UNINTERRUPTIBLE);
88                 schedule_timeout_uninterruptible(1);
89         } while (time_before(jiffies, end_time));
90         snd_printk(KERN_ERR "codec_ready: codec %i is not ready [0x%x]\n", secondary, snd_ymfpci_readw(chip, reg));
91         return -EBUSY;
92 }
93
94 static void snd_ymfpci_codec_write(struct snd_ac97 *ac97, u16 reg, u16 val)
95 {
96         struct snd_ymfpci *chip = ac97->private_data;
97         u32 cmd;
98         
99         snd_ymfpci_codec_ready(chip, 0);
100         cmd = ((YDSXG_AC97WRITECMD | reg) << 16) | val;
101         snd_ymfpci_writel(chip, YDSXGR_AC97CMDDATA, cmd);
102 }
103
104 static u16 snd_ymfpci_codec_read(struct snd_ac97 *ac97, u16 reg)
105 {
106         struct snd_ymfpci *chip = ac97->private_data;
107
108         if (snd_ymfpci_codec_ready(chip, 0))
109                 return ~0;
110         snd_ymfpci_writew(chip, YDSXGR_AC97CMDADR, YDSXG_AC97READCMD | reg);
111         if (snd_ymfpci_codec_ready(chip, 0))
112                 return ~0;
113         if (chip->device_id == PCI_DEVICE_ID_YAMAHA_744 && chip->rev < 2) {
114                 int i;
115                 for (i = 0; i < 600; i++)
116                         snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
117         }
118         return snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
119 }
120
121 /*
122  *  Misc routines
123  */
124
125 static u32 snd_ymfpci_calc_delta(u32 rate)
126 {
127         switch (rate) {
128         case 8000:      return 0x02aaab00;
129         case 11025:     return 0x03accd00;
130         case 16000:     return 0x05555500;
131         case 22050:     return 0x07599a00;
132         case 32000:     return 0x0aaaab00;
133         case 44100:     return 0x0eb33300;
134         default:        return ((rate << 16) / 375) << 5;
135         }
136 }
137
138 static u32 def_rate[8] = {
139         100, 2000, 8000, 11025, 16000, 22050, 32000, 48000
140 };
141
142 static u32 snd_ymfpci_calc_lpfK(u32 rate)
143 {
144         u32 i;
145         static u32 val[8] = {
146                 0x00570000, 0x06AA0000, 0x18B20000, 0x20930000,
147                 0x2B9A0000, 0x35A10000, 0x3EAA0000, 0x40000000
148         };
149         
150         if (rate == 44100)
151                 return 0x40000000;      /* FIXME: What's the right value? */
152         for (i = 0; i < 8; i++)
153                 if (rate <= def_rate[i])
154                         return val[i];
155         return val[0];
156 }
157
158 static u32 snd_ymfpci_calc_lpfQ(u32 rate)
159 {
160         u32 i;
161         static u32 val[8] = {
162                 0x35280000, 0x34A70000, 0x32020000, 0x31770000,
163                 0x31390000, 0x31C90000, 0x33D00000, 0x40000000
164         };
165         
166         if (rate == 44100)
167                 return 0x370A0000;
168         for (i = 0; i < 8; i++)
169                 if (rate <= def_rate[i])
170                         return val[i];
171         return val[0];
172 }
173
174 static void snd_ymfpci_pcm_441_volume_set(struct snd_ymfpci_pcm *ypcm)
175 {
176         unsigned int value;
177         struct snd_ymfpci_pcm_mixer *mixer;
178         
179         mixer = &ypcm->chip->pcm_mixer[ypcm->substream->number];
180         value = min_t(unsigned int, mixer->left, 0x7fff) >> 1;
181         value |= (min_t(unsigned int, mixer->right, 0x7fff) >> 1) << 16;
182         snd_ymfpci_writel(ypcm->chip, YDSXGR_BUF441OUTVOL, value);
183 }
184
185 /*
186  *  Hardware start management
187  */
188
189 static void snd_ymfpci_hw_start(struct snd_ymfpci *chip)
190 {
191         unsigned long flags;
192
193         spin_lock_irqsave(&chip->reg_lock, flags);
194         if (chip->start_count++ > 0)
195                 goto __end;
196         snd_ymfpci_writel(chip, YDSXGR_MODE,
197                           snd_ymfpci_readl(chip, YDSXGR_MODE) | 3);
198         chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
199       __end:
200         spin_unlock_irqrestore(&chip->reg_lock, flags);
201 }
202
203 static void snd_ymfpci_hw_stop(struct snd_ymfpci *chip)
204 {
205         unsigned long flags;
206         long timeout = 1000;
207
208         spin_lock_irqsave(&chip->reg_lock, flags);
209         if (--chip->start_count > 0)
210                 goto __end;
211         snd_ymfpci_writel(chip, YDSXGR_MODE,
212                           snd_ymfpci_readl(chip, YDSXGR_MODE) & ~3);
213         while (timeout-- > 0) {
214                 if ((snd_ymfpci_readl(chip, YDSXGR_STATUS) & 2) == 0)
215                         break;
216         }
217         if (atomic_read(&chip->interrupt_sleep_count)) {
218                 atomic_set(&chip->interrupt_sleep_count, 0);
219                 wake_up(&chip->interrupt_sleep);
220         }
221       __end:
222         spin_unlock_irqrestore(&chip->reg_lock, flags);
223 }
224
225 /*
226  *  Playback voice management
227  */
228
229 static int voice_alloc(struct snd_ymfpci *chip,
230                        enum snd_ymfpci_voice_type type, int pair,
231                        struct snd_ymfpci_voice **rvoice)
232 {
233         struct snd_ymfpci_voice *voice, *voice2;
234         int idx;
235         
236         *rvoice = NULL;
237         for (idx = 0; idx < YDSXG_PLAYBACK_VOICES; idx += pair ? 2 : 1) {
238                 voice = &chip->voices[idx];
239                 voice2 = pair ? &chip->voices[idx+1] : NULL;
240                 if (voice->use || (voice2 && voice2->use))
241                         continue;
242                 voice->use = 1;
243                 if (voice2)
244                         voice2->use = 1;
245                 switch (type) {
246                 case YMFPCI_PCM:
247                         voice->pcm = 1;
248                         if (voice2)
249                                 voice2->pcm = 1;
250                         break;
251                 case YMFPCI_SYNTH:
252                         voice->synth = 1;
253                         break;
254                 case YMFPCI_MIDI:
255                         voice->midi = 1;
256                         break;
257                 }
258                 snd_ymfpci_hw_start(chip);
259                 if (voice2)
260                         snd_ymfpci_hw_start(chip);
261                 *rvoice = voice;
262                 return 0;
263         }
264         return -ENOMEM;
265 }
266
267 static int snd_ymfpci_voice_alloc(struct snd_ymfpci *chip,
268                                   enum snd_ymfpci_voice_type type, int pair,
269                                   struct snd_ymfpci_voice **rvoice)
270 {
271         unsigned long flags;
272         int result;
273         
274         snd_assert(rvoice != NULL, return -EINVAL);
275         snd_assert(!pair || type == YMFPCI_PCM, return -EINVAL);
276         
277         spin_lock_irqsave(&chip->voice_lock, flags);
278         for (;;) {
279                 result = voice_alloc(chip, type, pair, rvoice);
280                 if (result == 0 || type != YMFPCI_PCM)
281                         break;
282                 /* TODO: synth/midi voice deallocation */
283                 break;
284         }
285         spin_unlock_irqrestore(&chip->voice_lock, flags);       
286         return result;          
287 }
288
289 static int snd_ymfpci_voice_free(struct snd_ymfpci *chip, struct snd_ymfpci_voice *pvoice)
290 {
291         unsigned long flags;
292         
293         snd_assert(pvoice != NULL, return -EINVAL);
294         snd_ymfpci_hw_stop(chip);
295         spin_lock_irqsave(&chip->voice_lock, flags);
296         if (pvoice->number == chip->src441_used) {
297                 chip->src441_used = -1;
298                 pvoice->ypcm->use_441_slot = 0;
299         }
300         pvoice->use = pvoice->pcm = pvoice->synth = pvoice->midi = 0;
301         pvoice->ypcm = NULL;
302         pvoice->interrupt = NULL;
303         spin_unlock_irqrestore(&chip->voice_lock, flags);
304         return 0;
305 }
306
307 /*
308  *  PCM part
309  */
310
311 static void snd_ymfpci_pcm_interrupt(struct snd_ymfpci *chip, struct snd_ymfpci_voice *voice)
312 {
313         struct snd_ymfpci_pcm *ypcm;
314         u32 pos, delta;
315         
316         if ((ypcm = voice->ypcm) == NULL)
317                 return;
318         if (ypcm->substream == NULL)
319                 return;
320         spin_lock(&chip->reg_lock);
321         if (ypcm->running) {
322                 pos = le32_to_cpu(voice->bank[chip->active_bank].start);
323                 if (pos < ypcm->last_pos)
324                         delta = pos + (ypcm->buffer_size - ypcm->last_pos);
325                 else
326                         delta = pos - ypcm->last_pos;
327                 ypcm->period_pos += delta;
328                 ypcm->last_pos = pos;
329                 if (ypcm->period_pos >= ypcm->period_size) {
330                         // printk("done - active_bank = 0x%x, start = 0x%x\n", chip->active_bank, voice->bank[chip->active_bank].start);
331                         ypcm->period_pos %= ypcm->period_size;
332                         spin_unlock(&chip->reg_lock);
333                         snd_pcm_period_elapsed(ypcm->substream);
334                         spin_lock(&chip->reg_lock);
335                 }
336
337                 if (unlikely(ypcm->update_pcm_vol)) {
338                         unsigned int subs = ypcm->substream->number;
339                         unsigned int next_bank = 1 - chip->active_bank;
340                         struct snd_ymfpci_playback_bank *bank;
341                         u32 volume;
342                         
343                         bank = &voice->bank[next_bank];
344                         volume = cpu_to_le32(chip->pcm_mixer[subs].left << 15);
345                         bank->left_gain_end = volume;
346                         if (ypcm->output_rear)
347                                 bank->eff2_gain_end = volume;
348                         if (ypcm->voices[1])
349                                 bank = &ypcm->voices[1]->bank[next_bank];
350                         volume = cpu_to_le32(chip->pcm_mixer[subs].right << 15);
351                         bank->right_gain_end = volume;
352                         if (ypcm->output_rear)
353                                 bank->eff3_gain_end = volume;
354                         ypcm->update_pcm_vol--;
355                 }
356         }
357         spin_unlock(&chip->reg_lock);
358 }
359
360 static void snd_ymfpci_pcm_capture_interrupt(struct snd_pcm_substream *substream)
361 {
362         struct snd_pcm_runtime *runtime = substream->runtime;
363         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
364         struct snd_ymfpci *chip = ypcm->chip;
365         u32 pos, delta;
366         
367         spin_lock(&chip->reg_lock);
368         if (ypcm->running) {
369                 pos = le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
370                 if (pos < ypcm->last_pos)
371                         delta = pos + (ypcm->buffer_size - ypcm->last_pos);
372                 else
373                         delta = pos - ypcm->last_pos;
374                 ypcm->period_pos += delta;
375                 ypcm->last_pos = pos;
376                 if (ypcm->period_pos >= ypcm->period_size) {
377                         ypcm->period_pos %= ypcm->period_size;
378                         // printk("done - active_bank = 0x%x, start = 0x%x\n", chip->active_bank, voice->bank[chip->active_bank].start);
379                         spin_unlock(&chip->reg_lock);
380                         snd_pcm_period_elapsed(substream);
381                         spin_lock(&chip->reg_lock);
382                 }
383         }
384         spin_unlock(&chip->reg_lock);
385 }
386
387 static int snd_ymfpci_playback_trigger(struct snd_pcm_substream *substream,
388                                        int cmd)
389 {
390         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
391         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
392         int result = 0;
393
394         spin_lock(&chip->reg_lock);
395         if (ypcm->voices[0] == NULL) {
396                 result = -EINVAL;
397                 goto __unlock;
398         }
399         switch (cmd) {
400         case SNDRV_PCM_TRIGGER_START:
401         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
402         case SNDRV_PCM_TRIGGER_RESUME:
403                 chip->ctrl_playback[ypcm->voices[0]->number + 1] = cpu_to_le32(ypcm->voices[0]->bank_addr);
404                 if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
405                         chip->ctrl_playback[ypcm->voices[1]->number + 1] = cpu_to_le32(ypcm->voices[1]->bank_addr);
406                 ypcm->running = 1;
407                 break;
408         case SNDRV_PCM_TRIGGER_STOP:
409         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
410         case SNDRV_PCM_TRIGGER_SUSPEND:
411                 chip->ctrl_playback[ypcm->voices[0]->number + 1] = 0;
412                 if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
413                         chip->ctrl_playback[ypcm->voices[1]->number + 1] = 0;
414                 ypcm->running = 0;
415                 break;
416         default:
417                 result = -EINVAL;
418                 break;
419         }
420       __unlock:
421         spin_unlock(&chip->reg_lock);
422         return result;
423 }
424 static int snd_ymfpci_capture_trigger(struct snd_pcm_substream *substream,
425                                       int cmd)
426 {
427         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
428         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
429         int result = 0;
430         u32 tmp;
431
432         spin_lock(&chip->reg_lock);
433         switch (cmd) {
434         case SNDRV_PCM_TRIGGER_START:
435         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
436         case SNDRV_PCM_TRIGGER_RESUME:
437                 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) | (1 << ypcm->capture_bank_number);
438                 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
439                 ypcm->running = 1;
440                 break;
441         case SNDRV_PCM_TRIGGER_STOP:
442         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
443         case SNDRV_PCM_TRIGGER_SUSPEND:
444                 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) & ~(1 << ypcm->capture_bank_number);
445                 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
446                 ypcm->running = 0;
447                 break;
448         default:
449                 result = -EINVAL;
450                 break;
451         }
452         spin_unlock(&chip->reg_lock);
453         return result;
454 }
455
456 static int snd_ymfpci_pcm_voice_alloc(struct snd_ymfpci_pcm *ypcm, int voices)
457 {
458         int err;
459
460         if (ypcm->voices[1] != NULL && voices < 2) {
461                 snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[1]);
462                 ypcm->voices[1] = NULL;
463         }
464         if (voices == 1 && ypcm->voices[0] != NULL)
465                 return 0;               /* already allocated */
466         if (voices == 2 && ypcm->voices[0] != NULL && ypcm->voices[1] != NULL)
467                 return 0;               /* already allocated */
468         if (voices > 1) {
469                 if (ypcm->voices[0] != NULL && ypcm->voices[1] == NULL) {
470                         snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[0]);
471                         ypcm->voices[0] = NULL;
472                 }               
473         }
474         err = snd_ymfpci_voice_alloc(ypcm->chip, YMFPCI_PCM, voices > 1, &ypcm->voices[0]);
475         if (err < 0)
476                 return err;
477         ypcm->voices[0]->ypcm = ypcm;
478         ypcm->voices[0]->interrupt = snd_ymfpci_pcm_interrupt;
479         if (voices > 1) {
480                 ypcm->voices[1] = &ypcm->chip->voices[ypcm->voices[0]->number + 1];
481                 ypcm->voices[1]->ypcm = ypcm;
482         }
483         return 0;
484 }
485
486 static void snd_ymfpci_pcm_init_voice(struct snd_ymfpci_pcm *ypcm, unsigned int voiceidx,
487                                       struct snd_pcm_runtime *runtime,
488                                       int has_pcm_volume)
489 {
490         struct snd_ymfpci_voice *voice = ypcm->voices[voiceidx];
491         u32 format;
492         u32 delta = snd_ymfpci_calc_delta(runtime->rate);
493         u32 lpfQ = snd_ymfpci_calc_lpfQ(runtime->rate);
494         u32 lpfK = snd_ymfpci_calc_lpfK(runtime->rate);
495         struct snd_ymfpci_playback_bank *bank;
496         unsigned int nbank;
497         u32 vol_left, vol_right;
498         u8 use_left, use_right;
499         unsigned long flags;
500
501         snd_assert(voice != NULL, return);
502         if (runtime->channels == 1) {
503                 use_left = 1;
504                 use_right = 1;
505         } else {
506                 use_left = (voiceidx & 1) == 0;
507                 use_right = !use_left;
508         }
509         if (has_pcm_volume) {
510                 vol_left = cpu_to_le32(ypcm->chip->pcm_mixer
511                                        [ypcm->substream->number].left << 15);
512                 vol_right = cpu_to_le32(ypcm->chip->pcm_mixer
513                                         [ypcm->substream->number].right << 15);
514         } else {
515                 vol_left = cpu_to_le32(0x40000000);
516                 vol_right = cpu_to_le32(0x40000000);
517         }
518         spin_lock_irqsave(&ypcm->chip->voice_lock, flags);
519         format = runtime->channels == 2 ? 0x00010000 : 0;
520         if (snd_pcm_format_width(runtime->format) == 8)
521                 format |= 0x80000000;
522         else if (ypcm->chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
523                  runtime->rate == 44100 && runtime->channels == 2 &&
524                  voiceidx == 0 && (ypcm->chip->src441_used == -1 ||
525                                    ypcm->chip->src441_used == voice->number)) {
526                 ypcm->chip->src441_used = voice->number;
527                 ypcm->use_441_slot = 1;
528                 format |= 0x10000000;
529                 snd_ymfpci_pcm_441_volume_set(ypcm);
530         }
531         if (ypcm->chip->src441_used == voice->number &&
532             (format & 0x10000000) == 0) {
533                 ypcm->chip->src441_used = -1;
534                 ypcm->use_441_slot = 0;
535         }
536         if (runtime->channels == 2 && (voiceidx & 1) != 0)
537                 format |= 1;
538         spin_unlock_irqrestore(&ypcm->chip->voice_lock, flags);
539         for (nbank = 0; nbank < 2; nbank++) {
540                 bank = &voice->bank[nbank];
541                 memset(bank, 0, sizeof(*bank));
542                 bank->format = cpu_to_le32(format);
543                 bank->base = cpu_to_le32(runtime->dma_addr);
544                 bank->loop_end = cpu_to_le32(ypcm->buffer_size);
545                 bank->lpfQ = cpu_to_le32(lpfQ);
546                 bank->delta =
547                 bank->delta_end = cpu_to_le32(delta);
548                 bank->lpfK =
549                 bank->lpfK_end = cpu_to_le32(lpfK);
550                 bank->eg_gain =
551                 bank->eg_gain_end = cpu_to_le32(0x40000000);
552
553                 if (ypcm->output_front) {
554                         if (use_left) {
555                                 bank->left_gain =
556                                 bank->left_gain_end = vol_left;
557                         }
558                         if (use_right) {
559                                 bank->right_gain =
560                                 bank->right_gain_end = vol_right;
561                         }
562                 }
563                 if (ypcm->output_rear) {
564                         if (!ypcm->swap_rear) {
565                                 if (use_left) {
566                                         bank->eff2_gain =
567                                         bank->eff2_gain_end = vol_left;
568                                 }
569                                 if (use_right) {
570                                         bank->eff3_gain =
571                                         bank->eff3_gain_end = vol_right;
572                                 }
573                         } else {
574                                 /* The SPDIF out channels seem to be swapped, so we have
575                                  * to swap them here, too.  The rear analog out channels
576                                  * will be wrong, but otherwise AC3 would not work.
577                                  */
578                                 if (use_left) {
579                                         bank->eff3_gain =
580                                         bank->eff3_gain_end = vol_left;
581                                 }
582                                 if (use_right) {
583                                         bank->eff2_gain =
584                                         bank->eff2_gain_end = vol_right;
585                                 }
586                         }
587                 }
588         }
589 }
590
591 static int __devinit snd_ymfpci_ac3_init(struct snd_ymfpci *chip)
592 {
593         if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
594                                 4096, &chip->ac3_tmp_base) < 0)
595                 return -ENOMEM;
596
597         chip->bank_effect[3][0]->base =
598         chip->bank_effect[3][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr);
599         chip->bank_effect[3][0]->loop_end =
600         chip->bank_effect[3][1]->loop_end = cpu_to_le32(1024);
601         chip->bank_effect[4][0]->base =
602         chip->bank_effect[4][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr + 2048);
603         chip->bank_effect[4][0]->loop_end =
604         chip->bank_effect[4][1]->loop_end = cpu_to_le32(1024);
605
606         spin_lock_irq(&chip->reg_lock);
607         snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
608                           snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) | 3 << 3);
609         spin_unlock_irq(&chip->reg_lock);
610         return 0;
611 }
612
613 static int snd_ymfpci_ac3_done(struct snd_ymfpci *chip)
614 {
615         spin_lock_irq(&chip->reg_lock);
616         snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
617                           snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) & ~(3 << 3));
618         spin_unlock_irq(&chip->reg_lock);
619         // snd_ymfpci_irq_wait(chip);
620         if (chip->ac3_tmp_base.area) {
621                 snd_dma_free_pages(&chip->ac3_tmp_base);
622                 chip->ac3_tmp_base.area = NULL;
623         }
624         return 0;
625 }
626
627 static int snd_ymfpci_playback_hw_params(struct snd_pcm_substream *substream,
628                                          struct snd_pcm_hw_params *hw_params)
629 {
630         struct snd_pcm_runtime *runtime = substream->runtime;
631         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
632         int err;
633
634         if ((err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params))) < 0)
635                 return err;
636         if ((err = snd_ymfpci_pcm_voice_alloc(ypcm, params_channels(hw_params))) < 0)
637                 return err;
638         return 0;
639 }
640
641 static int snd_ymfpci_playback_hw_free(struct snd_pcm_substream *substream)
642 {
643         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
644         struct snd_pcm_runtime *runtime = substream->runtime;
645         struct snd_ymfpci_pcm *ypcm;
646         
647         if (runtime->private_data == NULL)
648                 return 0;
649         ypcm = runtime->private_data;
650
651         /* wait, until the PCI operations are not finished */
652         snd_ymfpci_irq_wait(chip);
653         snd_pcm_lib_free_pages(substream);
654         if (ypcm->voices[1]) {
655                 snd_ymfpci_voice_free(chip, ypcm->voices[1]);
656                 ypcm->voices[1] = NULL;
657         }
658         if (ypcm->voices[0]) {
659                 snd_ymfpci_voice_free(chip, ypcm->voices[0]);
660                 ypcm->voices[0] = NULL;
661         }
662         return 0;
663 }
664
665 static int snd_ymfpci_playback_prepare(struct snd_pcm_substream *substream)
666 {
667         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
668         struct snd_pcm_runtime *runtime = substream->runtime;
669         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
670         unsigned int nvoice;
671
672         ypcm->period_size = runtime->period_size;
673         ypcm->buffer_size = runtime->buffer_size;
674         ypcm->period_pos = 0;
675         ypcm->last_pos = 0;
676         for (nvoice = 0; nvoice < runtime->channels; nvoice++)
677                 snd_ymfpci_pcm_init_voice(ypcm, nvoice, runtime,
678                                           substream->pcm == chip->pcm);
679         return 0;
680 }
681
682 static int snd_ymfpci_capture_hw_params(struct snd_pcm_substream *substream,
683                                         struct snd_pcm_hw_params *hw_params)
684 {
685         return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
686 }
687
688 static int snd_ymfpci_capture_hw_free(struct snd_pcm_substream *substream)
689 {
690         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
691
692         /* wait, until the PCI operations are not finished */
693         snd_ymfpci_irq_wait(chip);
694         return snd_pcm_lib_free_pages(substream);
695 }
696
697 static int snd_ymfpci_capture_prepare(struct snd_pcm_substream *substream)
698 {
699         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
700         struct snd_pcm_runtime *runtime = substream->runtime;
701         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
702         struct snd_ymfpci_capture_bank * bank;
703         int nbank;
704         u32 rate, format;
705
706         ypcm->period_size = runtime->period_size;
707         ypcm->buffer_size = runtime->buffer_size;
708         ypcm->period_pos = 0;
709         ypcm->last_pos = 0;
710         ypcm->shift = 0;
711         rate = ((48000 * 4096) / runtime->rate) - 1;
712         format = 0;
713         if (runtime->channels == 2) {
714                 format |= 2;
715                 ypcm->shift++;
716         }
717         if (snd_pcm_format_width(runtime->format) == 8)
718                 format |= 1;
719         else
720                 ypcm->shift++;
721         switch (ypcm->capture_bank_number) {
722         case 0:
723                 snd_ymfpci_writel(chip, YDSXGR_RECFORMAT, format);
724                 snd_ymfpci_writel(chip, YDSXGR_RECSLOTSR, rate);
725                 break;
726         case 1:
727                 snd_ymfpci_writel(chip, YDSXGR_ADCFORMAT, format);
728                 snd_ymfpci_writel(chip, YDSXGR_ADCSLOTSR, rate);
729                 break;
730         }
731         for (nbank = 0; nbank < 2; nbank++) {
732                 bank = chip->bank_capture[ypcm->capture_bank_number][nbank];
733                 bank->base = cpu_to_le32(runtime->dma_addr);
734                 bank->loop_end = cpu_to_le32(ypcm->buffer_size << ypcm->shift);
735                 bank->start = 0;
736                 bank->num_of_loops = 0;
737         }
738         return 0;
739 }
740
741 static snd_pcm_uframes_t snd_ymfpci_playback_pointer(struct snd_pcm_substream *substream)
742 {
743         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
744         struct snd_pcm_runtime *runtime = substream->runtime;
745         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
746         struct snd_ymfpci_voice *voice = ypcm->voices[0];
747
748         if (!(ypcm->running && voice))
749                 return 0;
750         return le32_to_cpu(voice->bank[chip->active_bank].start);
751 }
752
753 static snd_pcm_uframes_t snd_ymfpci_capture_pointer(struct snd_pcm_substream *substream)
754 {
755         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
756         struct snd_pcm_runtime *runtime = substream->runtime;
757         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
758
759         if (!ypcm->running)
760                 return 0;
761         return le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
762 }
763
764 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip)
765 {
766         wait_queue_t wait;
767         int loops = 4;
768
769         while (loops-- > 0) {
770                 if ((snd_ymfpci_readl(chip, YDSXGR_MODE) & 3) == 0)
771                         continue;
772                 init_waitqueue_entry(&wait, current);
773                 add_wait_queue(&chip->interrupt_sleep, &wait);
774                 atomic_inc(&chip->interrupt_sleep_count);
775                 schedule_timeout_uninterruptible(msecs_to_jiffies(50));
776                 remove_wait_queue(&chip->interrupt_sleep, &wait);
777         }
778 }
779
780 static irqreturn_t snd_ymfpci_interrupt(int irq, void *dev_id)
781 {
782         struct snd_ymfpci *chip = dev_id;
783         u32 status, nvoice, mode;
784         struct snd_ymfpci_voice *voice;
785
786         status = snd_ymfpci_readl(chip, YDSXGR_STATUS);
787         if (status & 0x80000000) {
788                 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
789                 spin_lock(&chip->voice_lock);
790                 for (nvoice = 0; nvoice < YDSXG_PLAYBACK_VOICES; nvoice++) {
791                         voice = &chip->voices[nvoice];
792                         if (voice->interrupt)
793                                 voice->interrupt(chip, voice);
794                 }
795                 for (nvoice = 0; nvoice < YDSXG_CAPTURE_VOICES; nvoice++) {
796                         if (chip->capture_substream[nvoice])
797                                 snd_ymfpci_pcm_capture_interrupt(chip->capture_substream[nvoice]);
798                 }
799 #if 0
800                 for (nvoice = 0; nvoice < YDSXG_EFFECT_VOICES; nvoice++) {
801                         if (chip->effect_substream[nvoice])
802                                 snd_ymfpci_pcm_effect_interrupt(chip->effect_substream[nvoice]);
803                 }
804 #endif
805                 spin_unlock(&chip->voice_lock);
806                 spin_lock(&chip->reg_lock);
807                 snd_ymfpci_writel(chip, YDSXGR_STATUS, 0x80000000);
808                 mode = snd_ymfpci_readl(chip, YDSXGR_MODE) | 2;
809                 snd_ymfpci_writel(chip, YDSXGR_MODE, mode);
810                 spin_unlock(&chip->reg_lock);
811
812                 if (atomic_read(&chip->interrupt_sleep_count)) {
813                         atomic_set(&chip->interrupt_sleep_count, 0);
814                         wake_up(&chip->interrupt_sleep);
815                 }
816         }
817
818         status = snd_ymfpci_readw(chip, YDSXGR_INTFLAG);
819         if (status & 1) {
820                 if (chip->timer)
821                         snd_timer_interrupt(chip->timer, chip->timer->sticks);
822         }
823         snd_ymfpci_writew(chip, YDSXGR_INTFLAG, status);
824
825         if (chip->rawmidi)
826                 snd_mpu401_uart_interrupt(irq, chip->rawmidi->private_data);
827         return IRQ_HANDLED;
828 }
829
830 static struct snd_pcm_hardware snd_ymfpci_playback =
831 {
832         .info =                 (SNDRV_PCM_INFO_MMAP |
833                                  SNDRV_PCM_INFO_MMAP_VALID | 
834                                  SNDRV_PCM_INFO_INTERLEAVED |
835                                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
836                                  SNDRV_PCM_INFO_PAUSE |
837                                  SNDRV_PCM_INFO_RESUME),
838         .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
839         .rates =                SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
840         .rate_min =             8000,
841         .rate_max =             48000,
842         .channels_min =         1,
843         .channels_max =         2,
844         .buffer_bytes_max =     256 * 1024, /* FIXME: enough? */
845         .period_bytes_min =     64,
846         .period_bytes_max =     256 * 1024, /* FIXME: enough? */
847         .periods_min =          3,
848         .periods_max =          1024,
849         .fifo_size =            0,
850 };
851
852 static struct snd_pcm_hardware snd_ymfpci_capture =
853 {
854         .info =                 (SNDRV_PCM_INFO_MMAP |
855                                  SNDRV_PCM_INFO_MMAP_VALID |
856                                  SNDRV_PCM_INFO_INTERLEAVED |
857                                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
858                                  SNDRV_PCM_INFO_PAUSE |
859                                  SNDRV_PCM_INFO_RESUME),
860         .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
861         .rates =                SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
862         .rate_min =             8000,
863         .rate_max =             48000,
864         .channels_min =         1,
865         .channels_max =         2,
866         .buffer_bytes_max =     256 * 1024, /* FIXME: enough? */
867         .period_bytes_min =     64,
868         .period_bytes_max =     256 * 1024, /* FIXME: enough? */
869         .periods_min =          3,
870         .periods_max =          1024,
871         .fifo_size =            0,
872 };
873
874 static void snd_ymfpci_pcm_free_substream(struct snd_pcm_runtime *runtime)
875 {
876         kfree(runtime->private_data);
877 }
878
879 static int snd_ymfpci_playback_open_1(struct snd_pcm_substream *substream)
880 {
881         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
882         struct snd_pcm_runtime *runtime = substream->runtime;
883         struct snd_ymfpci_pcm *ypcm;
884
885         ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
886         if (ypcm == NULL)
887                 return -ENOMEM;
888         ypcm->chip = chip;
889         ypcm->type = PLAYBACK_VOICE;
890         ypcm->substream = substream;
891         runtime->hw = snd_ymfpci_playback;
892         runtime->private_data = ypcm;
893         runtime->private_free = snd_ymfpci_pcm_free_substream;
894         /* FIXME? True value is 256/48 = 5.33333 ms */
895         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 5333, UINT_MAX);
896         return 0;
897 }
898
899 /* call with spinlock held */
900 static void ymfpci_open_extension(struct snd_ymfpci *chip)
901 {
902         if (! chip->rear_opened) {
903                 if (! chip->spdif_opened) /* set AC3 */
904                         snd_ymfpci_writel(chip, YDSXGR_MODE,
905                                           snd_ymfpci_readl(chip, YDSXGR_MODE) | (1 << 30));
906                 /* enable second codec (4CHEN) */
907                 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
908                                   (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) | 0x0010);
909         }
910 }
911
912 /* call with spinlock held */
913 static void ymfpci_close_extension(struct snd_ymfpci *chip)
914 {
915         if (! chip->rear_opened) {
916                 if (! chip->spdif_opened)
917                         snd_ymfpci_writel(chip, YDSXGR_MODE,
918                                           snd_ymfpci_readl(chip, YDSXGR_MODE) & ~(1 << 30));
919                 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
920                                   (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) & ~0x0010);
921         }
922 }
923
924 static int snd_ymfpci_playback_open(struct snd_pcm_substream *substream)
925 {
926         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
927         struct snd_pcm_runtime *runtime = substream->runtime;
928         struct snd_ymfpci_pcm *ypcm;
929         struct snd_kcontrol *kctl;
930         int err;
931         
932         if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
933                 return err;
934         ypcm = runtime->private_data;
935         ypcm->output_front = 1;
936         ypcm->output_rear = chip->mode_dup4ch ? 1 : 0;
937         ypcm->swap_rear = 0;
938         spin_lock_irq(&chip->reg_lock);
939         if (ypcm->output_rear) {
940                 ymfpci_open_extension(chip);
941                 chip->rear_opened++;
942         }
943         spin_unlock_irq(&chip->reg_lock);
944
945         kctl = chip->pcm_mixer[substream->number].ctl;
946         kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
947         snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
948         return 0;
949 }
950
951 static int snd_ymfpci_playback_spdif_open(struct snd_pcm_substream *substream)
952 {
953         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
954         struct snd_pcm_runtime *runtime = substream->runtime;
955         struct snd_ymfpci_pcm *ypcm;
956         int err;
957         
958         if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
959                 return err;
960         ypcm = runtime->private_data;
961         ypcm->output_front = 0;
962         ypcm->output_rear = 1;
963         ypcm->swap_rear = 1;
964         spin_lock_irq(&chip->reg_lock);
965         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
966                           snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) | 2);
967         ymfpci_open_extension(chip);
968         chip->spdif_pcm_bits = chip->spdif_bits;
969         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
970         chip->spdif_opened++;
971         spin_unlock_irq(&chip->reg_lock);
972
973         chip->spdif_pcm_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
974         snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
975                        SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
976         return 0;
977 }
978
979 static int snd_ymfpci_playback_4ch_open(struct snd_pcm_substream *substream)
980 {
981         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
982         struct snd_pcm_runtime *runtime = substream->runtime;
983         struct snd_ymfpci_pcm *ypcm;
984         int err;
985         
986         if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
987                 return err;
988         ypcm = runtime->private_data;
989         ypcm->output_front = 0;
990         ypcm->output_rear = 1;
991         ypcm->swap_rear = 0;
992         spin_lock_irq(&chip->reg_lock);
993         ymfpci_open_extension(chip);
994         chip->rear_opened++;
995         spin_unlock_irq(&chip->reg_lock);
996         return 0;
997 }
998
999 static int snd_ymfpci_capture_open(struct snd_pcm_substream *substream,
1000                                    u32 capture_bank_number)
1001 {
1002         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1003         struct snd_pcm_runtime *runtime = substream->runtime;
1004         struct snd_ymfpci_pcm *ypcm;
1005
1006         ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
1007         if (ypcm == NULL)
1008                 return -ENOMEM;
1009         ypcm->chip = chip;
1010         ypcm->type = capture_bank_number + CAPTURE_REC;
1011         ypcm->substream = substream;    
1012         ypcm->capture_bank_number = capture_bank_number;
1013         chip->capture_substream[capture_bank_number] = substream;
1014         runtime->hw = snd_ymfpci_capture;
1015         /* FIXME? True value is 256/48 = 5.33333 ms */
1016         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 5333, UINT_MAX);
1017         runtime->private_data = ypcm;
1018         runtime->private_free = snd_ymfpci_pcm_free_substream;
1019         snd_ymfpci_hw_start(chip);
1020         return 0;
1021 }
1022
1023 static int snd_ymfpci_capture_rec_open(struct snd_pcm_substream *substream)
1024 {
1025         return snd_ymfpci_capture_open(substream, 0);
1026 }
1027
1028 static int snd_ymfpci_capture_ac97_open(struct snd_pcm_substream *substream)
1029 {
1030         return snd_ymfpci_capture_open(substream, 1);
1031 }
1032
1033 static int snd_ymfpci_playback_close_1(struct snd_pcm_substream *substream)
1034 {
1035         return 0;
1036 }
1037
1038 static int snd_ymfpci_playback_close(struct snd_pcm_substream *substream)
1039 {
1040         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1041         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1042         struct snd_kcontrol *kctl;
1043
1044         spin_lock_irq(&chip->reg_lock);
1045         if (ypcm->output_rear && chip->rear_opened > 0) {
1046                 chip->rear_opened--;
1047                 ymfpci_close_extension(chip);
1048         }
1049         spin_unlock_irq(&chip->reg_lock);
1050         kctl = chip->pcm_mixer[substream->number].ctl;
1051         kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1052         snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
1053         return snd_ymfpci_playback_close_1(substream);
1054 }
1055
1056 static int snd_ymfpci_playback_spdif_close(struct snd_pcm_substream *substream)
1057 {
1058         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1059
1060         spin_lock_irq(&chip->reg_lock);
1061         chip->spdif_opened = 0;
1062         ymfpci_close_extension(chip);
1063         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
1064                           snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & ~2);
1065         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1066         spin_unlock_irq(&chip->reg_lock);
1067         chip->spdif_pcm_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1068         snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
1069                        SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
1070         return snd_ymfpci_playback_close_1(substream);
1071 }
1072
1073 static int snd_ymfpci_playback_4ch_close(struct snd_pcm_substream *substream)
1074 {
1075         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1076
1077         spin_lock_irq(&chip->reg_lock);
1078         if (chip->rear_opened > 0) {
1079                 chip->rear_opened--;
1080                 ymfpci_close_extension(chip);
1081         }
1082         spin_unlock_irq(&chip->reg_lock);
1083         return snd_ymfpci_playback_close_1(substream);
1084 }
1085
1086 static int snd_ymfpci_capture_close(struct snd_pcm_substream *substream)
1087 {
1088         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1089         struct snd_pcm_runtime *runtime = substream->runtime;
1090         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
1091
1092         if (ypcm != NULL) {
1093                 chip->capture_substream[ypcm->capture_bank_number] = NULL;
1094                 snd_ymfpci_hw_stop(chip);
1095         }
1096         return 0;
1097 }
1098
1099 static struct snd_pcm_ops snd_ymfpci_playback_ops = {
1100         .open =                 snd_ymfpci_playback_open,
1101         .close =                snd_ymfpci_playback_close,
1102         .ioctl =                snd_pcm_lib_ioctl,
1103         .hw_params =            snd_ymfpci_playback_hw_params,
1104         .hw_free =              snd_ymfpci_playback_hw_free,
1105         .prepare =              snd_ymfpci_playback_prepare,
1106         .trigger =              snd_ymfpci_playback_trigger,
1107         .pointer =              snd_ymfpci_playback_pointer,
1108 };
1109
1110 static struct snd_pcm_ops snd_ymfpci_capture_rec_ops = {
1111         .open =                 snd_ymfpci_capture_rec_open,
1112         .close =                snd_ymfpci_capture_close,
1113         .ioctl =                snd_pcm_lib_ioctl,
1114         .hw_params =            snd_ymfpci_capture_hw_params,
1115         .hw_free =              snd_ymfpci_capture_hw_free,
1116         .prepare =              snd_ymfpci_capture_prepare,
1117         .trigger =              snd_ymfpci_capture_trigger,
1118         .pointer =              snd_ymfpci_capture_pointer,
1119 };
1120
1121 int __devinit snd_ymfpci_pcm(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1122 {
1123         struct snd_pcm *pcm;
1124         int err;
1125
1126         if (rpcm)
1127                 *rpcm = NULL;
1128         if ((err = snd_pcm_new(chip->card, "YMFPCI", device, 32, 1, &pcm)) < 0)
1129                 return err;
1130         pcm->private_data = chip;
1131
1132         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_ops);
1133         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_rec_ops);
1134
1135         /* global setup */
1136         pcm->info_flags = 0;
1137         strcpy(pcm->name, "YMFPCI");
1138         chip->pcm = pcm;
1139
1140         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1141                                               snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1142
1143         if (rpcm)
1144                 *rpcm = pcm;
1145         return 0;
1146 }
1147
1148 static struct snd_pcm_ops snd_ymfpci_capture_ac97_ops = {
1149         .open =                 snd_ymfpci_capture_ac97_open,
1150         .close =                snd_ymfpci_capture_close,
1151         .ioctl =                snd_pcm_lib_ioctl,
1152         .hw_params =            snd_ymfpci_capture_hw_params,
1153         .hw_free =              snd_ymfpci_capture_hw_free,
1154         .prepare =              snd_ymfpci_capture_prepare,
1155         .trigger =              snd_ymfpci_capture_trigger,
1156         .pointer =              snd_ymfpci_capture_pointer,
1157 };
1158
1159 int __devinit snd_ymfpci_pcm2(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1160 {
1161         struct snd_pcm *pcm;
1162         int err;
1163
1164         if (rpcm)
1165                 *rpcm = NULL;
1166         if ((err = snd_pcm_new(chip->card, "YMFPCI - PCM2", device, 0, 1, &pcm)) < 0)
1167                 return err;
1168         pcm->private_data = chip;
1169
1170         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_ac97_ops);
1171
1172         /* global setup */
1173         pcm->info_flags = 0;
1174         sprintf(pcm->name, "YMFPCI - %s",
1175                 chip->device_id == PCI_DEVICE_ID_YAMAHA_754 ? "Direct Recording" : "AC'97");
1176         chip->pcm2 = pcm;
1177
1178         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1179                                               snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1180
1181         if (rpcm)
1182                 *rpcm = pcm;
1183         return 0;
1184 }
1185
1186 static struct snd_pcm_ops snd_ymfpci_playback_spdif_ops = {
1187         .open =                 snd_ymfpci_playback_spdif_open,
1188         .close =                snd_ymfpci_playback_spdif_close,
1189         .ioctl =                snd_pcm_lib_ioctl,
1190         .hw_params =            snd_ymfpci_playback_hw_params,
1191         .hw_free =              snd_ymfpci_playback_hw_free,
1192         .prepare =              snd_ymfpci_playback_prepare,
1193         .trigger =              snd_ymfpci_playback_trigger,
1194         .pointer =              snd_ymfpci_playback_pointer,
1195 };
1196
1197 int __devinit snd_ymfpci_pcm_spdif(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1198 {
1199         struct snd_pcm *pcm;
1200         int err;
1201
1202         if (rpcm)
1203                 *rpcm = NULL;
1204         if ((err = snd_pcm_new(chip->card, "YMFPCI - IEC958", device, 1, 0, &pcm)) < 0)
1205                 return err;
1206         pcm->private_data = chip;
1207
1208         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_spdif_ops);
1209
1210         /* global setup */
1211         pcm->info_flags = 0;
1212         strcpy(pcm->name, "YMFPCI - IEC958");
1213         chip->pcm_spdif = pcm;
1214
1215         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1216                                               snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1217
1218         if (rpcm)
1219                 *rpcm = pcm;
1220         return 0;
1221 }
1222
1223 static struct snd_pcm_ops snd_ymfpci_playback_4ch_ops = {
1224         .open =                 snd_ymfpci_playback_4ch_open,
1225         .close =                snd_ymfpci_playback_4ch_close,
1226         .ioctl =                snd_pcm_lib_ioctl,
1227         .hw_params =            snd_ymfpci_playback_hw_params,
1228         .hw_free =              snd_ymfpci_playback_hw_free,
1229         .prepare =              snd_ymfpci_playback_prepare,
1230         .trigger =              snd_ymfpci_playback_trigger,
1231         .pointer =              snd_ymfpci_playback_pointer,
1232 };
1233
1234 int __devinit snd_ymfpci_pcm_4ch(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1235 {
1236         struct snd_pcm *pcm;
1237         int err;
1238
1239         if (rpcm)
1240                 *rpcm = NULL;
1241         if ((err = snd_pcm_new(chip->card, "YMFPCI - Rear", device, 1, 0, &pcm)) < 0)
1242                 return err;
1243         pcm->private_data = chip;
1244
1245         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_4ch_ops);
1246
1247         /* global setup */
1248         pcm->info_flags = 0;
1249         strcpy(pcm->name, "YMFPCI - Rear PCM");
1250         chip->pcm_4ch = pcm;
1251
1252         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1253                                               snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1254
1255         if (rpcm)
1256                 *rpcm = pcm;
1257         return 0;
1258 }
1259
1260 static int snd_ymfpci_spdif_default_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1261 {
1262         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1263         uinfo->count = 1;
1264         return 0;
1265 }
1266
1267 static int snd_ymfpci_spdif_default_get(struct snd_kcontrol *kcontrol,
1268                                         struct snd_ctl_elem_value *ucontrol)
1269 {
1270         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1271
1272         spin_lock_irq(&chip->reg_lock);
1273         ucontrol->value.iec958.status[0] = (chip->spdif_bits >> 0) & 0xff;
1274         ucontrol->value.iec958.status[1] = (chip->spdif_bits >> 8) & 0xff;
1275         ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
1276         spin_unlock_irq(&chip->reg_lock);
1277         return 0;
1278 }
1279
1280 static int snd_ymfpci_spdif_default_put(struct snd_kcontrol *kcontrol,
1281                                          struct snd_ctl_elem_value *ucontrol)
1282 {
1283         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1284         unsigned int val;
1285         int change;
1286
1287         val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1288               (ucontrol->value.iec958.status[1] << 8);
1289         spin_lock_irq(&chip->reg_lock);
1290         change = chip->spdif_bits != val;
1291         chip->spdif_bits = val;
1292         if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 1) && chip->pcm_spdif == NULL)
1293                 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1294         spin_unlock_irq(&chip->reg_lock);
1295         return change;
1296 }
1297
1298 static struct snd_kcontrol_new snd_ymfpci_spdif_default __devinitdata =
1299 {
1300         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1301         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1302         .info =         snd_ymfpci_spdif_default_info,
1303         .get =          snd_ymfpci_spdif_default_get,
1304         .put =          snd_ymfpci_spdif_default_put
1305 };
1306
1307 static int snd_ymfpci_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1308 {
1309         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1310         uinfo->count = 1;
1311         return 0;
1312 }
1313
1314 static int snd_ymfpci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1315                                       struct snd_ctl_elem_value *ucontrol)
1316 {
1317         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1318
1319         spin_lock_irq(&chip->reg_lock);
1320         ucontrol->value.iec958.status[0] = 0x3e;
1321         ucontrol->value.iec958.status[1] = 0xff;
1322         spin_unlock_irq(&chip->reg_lock);
1323         return 0;
1324 }
1325
1326 static struct snd_kcontrol_new snd_ymfpci_spdif_mask __devinitdata =
1327 {
1328         .access =       SNDRV_CTL_ELEM_ACCESS_READ,
1329         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1330         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1331         .info =         snd_ymfpci_spdif_mask_info,
1332         .get =          snd_ymfpci_spdif_mask_get,
1333 };
1334
1335 static int snd_ymfpci_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1336 {
1337         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1338         uinfo->count = 1;
1339         return 0;
1340 }
1341
1342 static int snd_ymfpci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1343                                         struct snd_ctl_elem_value *ucontrol)
1344 {
1345         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1346
1347         spin_lock_irq(&chip->reg_lock);
1348         ucontrol->value.iec958.status[0] = (chip->spdif_pcm_bits >> 0) & 0xff;
1349         ucontrol->value.iec958.status[1] = (chip->spdif_pcm_bits >> 8) & 0xff;
1350         ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
1351         spin_unlock_irq(&chip->reg_lock);
1352         return 0;
1353 }
1354
1355 static int snd_ymfpci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1356                                         struct snd_ctl_elem_value *ucontrol)
1357 {
1358         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1359         unsigned int val;
1360         int change;
1361
1362         val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1363               (ucontrol->value.iec958.status[1] << 8);
1364         spin_lock_irq(&chip->reg_lock);
1365         change = chip->spdif_pcm_bits != val;
1366         chip->spdif_pcm_bits = val;
1367         if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 2))
1368                 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
1369         spin_unlock_irq(&chip->reg_lock);
1370         return change;
1371 }
1372
1373 static struct snd_kcontrol_new snd_ymfpci_spdif_stream __devinitdata =
1374 {
1375         .access =       SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1376         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1377         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1378         .info =         snd_ymfpci_spdif_stream_info,
1379         .get =          snd_ymfpci_spdif_stream_get,
1380         .put =          snd_ymfpci_spdif_stream_put
1381 };
1382
1383 static int snd_ymfpci_drec_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info)
1384 {
1385         static char *texts[3] = {"AC'97", "IEC958", "ZV Port"};
1386
1387         info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1388         info->count = 1;
1389         info->value.enumerated.items = 3;
1390         if (info->value.enumerated.item > 2)
1391                 info->value.enumerated.item = 2;
1392         strcpy(info->value.enumerated.name, texts[info->value.enumerated.item]);
1393         return 0;
1394 }
1395
1396 static int snd_ymfpci_drec_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1397 {
1398         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1399         u16 reg;
1400
1401         spin_lock_irq(&chip->reg_lock);
1402         reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1403         spin_unlock_irq(&chip->reg_lock);
1404         if (!(reg & 0x100))
1405                 value->value.enumerated.item[0] = 0;
1406         else
1407                 value->value.enumerated.item[0] = 1 + ((reg & 0x200) != 0);
1408         return 0;
1409 }
1410
1411 static int snd_ymfpci_drec_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1412 {
1413         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1414         u16 reg, old_reg;
1415
1416         spin_lock_irq(&chip->reg_lock);
1417         old_reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1418         if (value->value.enumerated.item[0] == 0)
1419                 reg = old_reg & ~0x100;
1420         else
1421                 reg = (old_reg & ~0x300) | 0x100 | ((value->value.enumerated.item[0] == 2) << 9);
1422         snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, reg);
1423         spin_unlock_irq(&chip->reg_lock);
1424         return reg != old_reg;
1425 }
1426
1427 static struct snd_kcontrol_new snd_ymfpci_drec_source __devinitdata = {
1428         .access =       SNDRV_CTL_ELEM_ACCESS_READWRITE,
1429         .iface =        SNDRV_CTL_ELEM_IFACE_MIXER,
1430         .name =         "Direct Recording Source",
1431         .info =         snd_ymfpci_drec_source_info,
1432         .get =          snd_ymfpci_drec_source_get,
1433         .put =          snd_ymfpci_drec_source_put
1434 };
1435
1436 /*
1437  *  Mixer controls
1438  */
1439
1440 #define YMFPCI_SINGLE(xname, xindex, reg, shift) \
1441 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1442   .info = snd_ymfpci_info_single, \
1443   .get = snd_ymfpci_get_single, .put = snd_ymfpci_put_single, \
1444   .private_value = ((reg) | ((shift) << 16)) }
1445
1446 #define snd_ymfpci_info_single          snd_ctl_boolean_mono_info
1447
1448 static int snd_ymfpci_get_single(struct snd_kcontrol *kcontrol,
1449                                  struct snd_ctl_elem_value *ucontrol)
1450 {
1451         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1452         int reg = kcontrol->private_value & 0xffff;
1453         unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1454         unsigned int mask = 1;
1455         
1456         switch (reg) {
1457         case YDSXGR_SPDIFOUTCTRL: break;
1458         case YDSXGR_SPDIFINCTRL: break;
1459         default: return -EINVAL;
1460         }
1461         ucontrol->value.integer.value[0] =
1462                 (snd_ymfpci_readl(chip, reg) >> shift) & mask;
1463         return 0;
1464 }
1465
1466 static int snd_ymfpci_put_single(struct snd_kcontrol *kcontrol,
1467                                  struct snd_ctl_elem_value *ucontrol)
1468 {
1469         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1470         int reg = kcontrol->private_value & 0xffff;
1471         unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1472         unsigned int mask = 1;
1473         int change;
1474         unsigned int val, oval;
1475         
1476         switch (reg) {
1477         case YDSXGR_SPDIFOUTCTRL: break;
1478         case YDSXGR_SPDIFINCTRL: break;
1479         default: return -EINVAL;
1480         }
1481         val = (ucontrol->value.integer.value[0] & mask);
1482         val <<= shift;
1483         spin_lock_irq(&chip->reg_lock);
1484         oval = snd_ymfpci_readl(chip, reg);
1485         val = (oval & ~(mask << shift)) | val;
1486         change = val != oval;
1487         snd_ymfpci_writel(chip, reg, val);
1488         spin_unlock_irq(&chip->reg_lock);
1489         return change;
1490 }
1491
1492 static const DECLARE_TLV_DB_LINEAR(db_scale_native, TLV_DB_GAIN_MUTE, 0);
1493
1494 #define YMFPCI_DOUBLE(xname, xindex, reg) \
1495 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1496   .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
1497   .info = snd_ymfpci_info_double, \
1498   .get = snd_ymfpci_get_double, .put = snd_ymfpci_put_double, \
1499   .private_value = reg, \
1500   .tlv = { .p = db_scale_native } }
1501
1502 static int snd_ymfpci_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1503 {
1504         unsigned int reg = kcontrol->private_value;
1505
1506         if (reg < 0x80 || reg >= 0xc0)
1507                 return -EINVAL;
1508         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1509         uinfo->count = 2;
1510         uinfo->value.integer.min = 0;
1511         uinfo->value.integer.max = 16383;
1512         return 0;
1513 }
1514
1515 static int snd_ymfpci_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1516 {
1517         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1518         unsigned int reg = kcontrol->private_value;
1519         unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1520         unsigned int val;
1521         
1522         if (reg < 0x80 || reg >= 0xc0)
1523                 return -EINVAL;
1524         spin_lock_irq(&chip->reg_lock);
1525         val = snd_ymfpci_readl(chip, reg);
1526         spin_unlock_irq(&chip->reg_lock);
1527         ucontrol->value.integer.value[0] = (val >> shift_left) & mask;
1528         ucontrol->value.integer.value[1] = (val >> shift_right) & mask;
1529         return 0;
1530 }
1531
1532 static int snd_ymfpci_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1533 {
1534         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1535         unsigned int reg = kcontrol->private_value;
1536         unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1537         int change;
1538         unsigned int val1, val2, oval;
1539         
1540         if (reg < 0x80 || reg >= 0xc0)
1541                 return -EINVAL;
1542         val1 = ucontrol->value.integer.value[0] & mask;
1543         val2 = ucontrol->value.integer.value[1] & mask;
1544         val1 <<= shift_left;
1545         val2 <<= shift_right;
1546         spin_lock_irq(&chip->reg_lock);
1547         oval = snd_ymfpci_readl(chip, reg);
1548         val1 = (oval & ~((mask << shift_left) | (mask << shift_right))) | val1 | val2;
1549         change = val1 != oval;
1550         snd_ymfpci_writel(chip, reg, val1);
1551         spin_unlock_irq(&chip->reg_lock);
1552         return change;
1553 }
1554
1555 /*
1556  * 4ch duplication
1557  */
1558 #define snd_ymfpci_info_dup4ch          snd_ctl_boolean_mono_info
1559
1560 static int snd_ymfpci_get_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1561 {
1562         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1563         ucontrol->value.integer.value[0] = chip->mode_dup4ch;
1564         return 0;
1565 }
1566
1567 static int snd_ymfpci_put_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1568 {
1569         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1570         int change;
1571         change = (ucontrol->value.integer.value[0] != chip->mode_dup4ch);
1572         if (change)
1573                 chip->mode_dup4ch = !!ucontrol->value.integer.value[0];
1574         return change;
1575 }
1576
1577
1578 static struct snd_kcontrol_new snd_ymfpci_controls[] __devinitdata = {
1579 YMFPCI_DOUBLE("Wave Playback Volume", 0, YDSXGR_NATIVEDACOUTVOL),
1580 YMFPCI_DOUBLE("Wave Capture Volume", 0, YDSXGR_NATIVEDACLOOPVOL),
1581 YMFPCI_DOUBLE("Digital Capture Volume", 0, YDSXGR_NATIVEDACINVOL),
1582 YMFPCI_DOUBLE("Digital Capture Volume", 1, YDSXGR_NATIVEADCINVOL),
1583 YMFPCI_DOUBLE("ADC Playback Volume", 0, YDSXGR_PRIADCOUTVOL),
1584 YMFPCI_DOUBLE("ADC Capture Volume", 0, YDSXGR_PRIADCLOOPVOL),
1585 YMFPCI_DOUBLE("ADC Playback Volume", 1, YDSXGR_SECADCOUTVOL),
1586 YMFPCI_DOUBLE("ADC Capture Volume", 1, YDSXGR_SECADCLOOPVOL),
1587 YMFPCI_DOUBLE("FM Legacy Volume", 0, YDSXGR_LEGACYOUTVOL),
1588 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ", PLAYBACK,VOLUME), 0, YDSXGR_ZVOUTVOL),
1589 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("", CAPTURE,VOLUME), 0, YDSXGR_ZVLOOPVOL),
1590 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ",PLAYBACK,VOLUME), 1, YDSXGR_SPDIFOUTVOL),
1591 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,VOLUME), 1, YDSXGR_SPDIFLOOPVOL),
1592 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), 0, YDSXGR_SPDIFOUTCTRL, 0),
1593 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), 0, YDSXGR_SPDIFINCTRL, 0),
1594 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("Loop",NONE,NONE), 0, YDSXGR_SPDIFINCTRL, 4),
1595 {
1596         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1597         .name = "4ch Duplication",
1598         .info = snd_ymfpci_info_dup4ch,
1599         .get = snd_ymfpci_get_dup4ch,
1600         .put = snd_ymfpci_put_dup4ch,
1601 },
1602 };
1603
1604
1605 /*
1606  * GPIO
1607  */
1608
1609 static int snd_ymfpci_get_gpio_out(struct snd_ymfpci *chip, int pin)
1610 {
1611         u16 reg, mode;
1612         unsigned long flags;
1613
1614         spin_lock_irqsave(&chip->reg_lock, flags);
1615         reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1616         reg &= ~(1 << (pin + 8));
1617         reg |= (1 << pin);
1618         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1619         /* set the level mode for input line */
1620         mode = snd_ymfpci_readw(chip, YDSXGR_GPIOTYPECONFIG);
1621         mode &= ~(3 << (pin * 2));
1622         snd_ymfpci_writew(chip, YDSXGR_GPIOTYPECONFIG, mode);
1623         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1624         mode = snd_ymfpci_readw(chip, YDSXGR_GPIOINSTATUS);
1625         spin_unlock_irqrestore(&chip->reg_lock, flags);
1626         return (mode >> pin) & 1;
1627 }
1628
1629 static int snd_ymfpci_set_gpio_out(struct snd_ymfpci *chip, int pin, int enable)
1630 {
1631         u16 reg;
1632         unsigned long flags;
1633
1634         spin_lock_irqsave(&chip->reg_lock, flags);
1635         reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1636         reg &= ~(1 << pin);
1637         reg &= ~(1 << (pin + 8));
1638         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1639         snd_ymfpci_writew(chip, YDSXGR_GPIOOUTCTRL, enable << pin);
1640         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1641         spin_unlock_irqrestore(&chip->reg_lock, flags);
1642
1643         return 0;
1644 }
1645
1646 #define snd_ymfpci_gpio_sw_info         snd_ctl_boolean_mono_info
1647
1648 static int snd_ymfpci_gpio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1649 {
1650         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1651         int pin = (int)kcontrol->private_value;
1652         ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1653         return 0;
1654 }
1655
1656 static int snd_ymfpci_gpio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1657 {
1658         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1659         int pin = (int)kcontrol->private_value;
1660
1661         if (snd_ymfpci_get_gpio_out(chip, pin) != ucontrol->value.integer.value[0]) {
1662                 snd_ymfpci_set_gpio_out(chip, pin, !!ucontrol->value.integer.value[0]);
1663                 ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1664                 return 1;
1665         }
1666         return 0;
1667 }
1668
1669 static struct snd_kcontrol_new snd_ymfpci_rear_shared __devinitdata = {
1670         .name = "Shared Rear/Line-In Switch",
1671         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1672         .info = snd_ymfpci_gpio_sw_info,
1673         .get = snd_ymfpci_gpio_sw_get,
1674         .put = snd_ymfpci_gpio_sw_put,
1675         .private_value = 2,
1676 };
1677
1678 /*
1679  * PCM voice volume
1680  */
1681
1682 static int snd_ymfpci_pcm_vol_info(struct snd_kcontrol *kcontrol,
1683                                    struct snd_ctl_elem_info *uinfo)
1684 {
1685         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1686         uinfo->count = 2;
1687         uinfo->value.integer.min = 0;
1688         uinfo->value.integer.max = 0x8000;
1689         return 0;
1690 }
1691
1692 static int snd_ymfpci_pcm_vol_get(struct snd_kcontrol *kcontrol,
1693                                   struct snd_ctl_elem_value *ucontrol)
1694 {
1695         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1696         unsigned int subs = kcontrol->id.subdevice;
1697
1698         ucontrol->value.integer.value[0] = chip->pcm_mixer[subs].left;
1699         ucontrol->value.integer.value[1] = chip->pcm_mixer[subs].right;
1700         return 0;
1701 }
1702
1703 static int snd_ymfpci_pcm_vol_put(struct snd_kcontrol *kcontrol,
1704                                   struct snd_ctl_elem_value *ucontrol)
1705 {
1706         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1707         unsigned int subs = kcontrol->id.subdevice;
1708         struct snd_pcm_substream *substream;
1709         unsigned long flags;
1710
1711         if (ucontrol->value.integer.value[0] != chip->pcm_mixer[subs].left ||
1712             ucontrol->value.integer.value[1] != chip->pcm_mixer[subs].right) {
1713                 chip->pcm_mixer[subs].left = ucontrol->value.integer.value[0];
1714                 chip->pcm_mixer[subs].right = ucontrol->value.integer.value[1];
1715
1716                 substream = (struct snd_pcm_substream *)kcontrol->private_value;
1717                 spin_lock_irqsave(&chip->voice_lock, flags);
1718                 if (substream->runtime && substream->runtime->private_data) {
1719                         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1720                         if (!ypcm->use_441_slot)
1721                                 ypcm->update_pcm_vol = 2;
1722                         else
1723                                 snd_ymfpci_pcm_441_volume_set(ypcm);
1724                 }
1725                 spin_unlock_irqrestore(&chip->voice_lock, flags);
1726                 return 1;
1727         }
1728         return 0;
1729 }
1730
1731 static struct snd_kcontrol_new snd_ymfpci_pcm_volume __devinitdata = {
1732         .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1733         .name = "PCM Playback Volume",
1734         .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
1735                 SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1736         .info = snd_ymfpci_pcm_vol_info,
1737         .get = snd_ymfpci_pcm_vol_get,
1738         .put = snd_ymfpci_pcm_vol_put,
1739 };
1740
1741
1742 /*
1743  *  Mixer routines
1744  */
1745
1746 static void snd_ymfpci_mixer_free_ac97_bus(struct snd_ac97_bus *bus)
1747 {
1748         struct snd_ymfpci *chip = bus->private_data;
1749         chip->ac97_bus = NULL;
1750 }
1751
1752 static void snd_ymfpci_mixer_free_ac97(struct snd_ac97 *ac97)
1753 {
1754         struct snd_ymfpci *chip = ac97->private_data;
1755         chip->ac97 = NULL;
1756 }
1757
1758 int __devinit snd_ymfpci_mixer(struct snd_ymfpci *chip, int rear_switch)
1759 {
1760         struct snd_ac97_template ac97;
1761         struct snd_kcontrol *kctl;
1762         struct snd_pcm_substream *substream;
1763         unsigned int idx;
1764         int err;
1765         static struct snd_ac97_bus_ops ops = {
1766                 .write = snd_ymfpci_codec_write,
1767                 .read = snd_ymfpci_codec_read,
1768         };
1769
1770         if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0)
1771                 return err;
1772         chip->ac97_bus->private_free = snd_ymfpci_mixer_free_ac97_bus;
1773         chip->ac97_bus->no_vra = 1; /* YMFPCI doesn't need VRA */
1774
1775         memset(&ac97, 0, sizeof(ac97));
1776         ac97.private_data = chip;
1777         ac97.private_free = snd_ymfpci_mixer_free_ac97;
1778         if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0)
1779                 return err;
1780
1781         /* to be sure */
1782         snd_ac97_update_bits(chip->ac97, AC97_EXTENDED_STATUS,
1783                              AC97_EA_VRA|AC97_EA_VRM, 0);
1784
1785         for (idx = 0; idx < ARRAY_SIZE(snd_ymfpci_controls); idx++) {
1786                 if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_controls[idx], chip))) < 0)
1787                         return err;
1788         }
1789
1790         /* add S/PDIF control */
1791         snd_assert(chip->pcm_spdif != NULL, return -EIO);
1792         if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_default, chip))) < 0)
1793                 return err;
1794         kctl->id.device = chip->pcm_spdif->device;
1795         if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_mask, chip))) < 0)
1796                 return err;
1797         kctl->id.device = chip->pcm_spdif->device;
1798         if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_stream, chip))) < 0)
1799                 return err;
1800         kctl->id.device = chip->pcm_spdif->device;
1801         chip->spdif_pcm_ctl = kctl;
1802
1803         /* direct recording source */
1804         if (chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
1805             (err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_drec_source, chip))) < 0)
1806                 return err;
1807
1808         /*
1809          * shared rear/line-in
1810          */
1811         if (rear_switch) {
1812                 if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_rear_shared, chip))) < 0)
1813                         return err;
1814         }
1815
1816         /* per-voice volume */
1817         substream = chip->pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream;
1818         for (idx = 0; idx < 32; ++idx) {
1819                 kctl = snd_ctl_new1(&snd_ymfpci_pcm_volume, chip);
1820                 if (!kctl)
1821                         return -ENOMEM;
1822                 kctl->id.device = chip->pcm->device;
1823                 kctl->id.subdevice = idx;
1824                 kctl->private_value = (unsigned long)substream;
1825                 if ((err = snd_ctl_add(chip->card, kctl)) < 0)
1826                         return err;
1827                 chip->pcm_mixer[idx].left = 0x8000;
1828                 chip->pcm_mixer[idx].right = 0x8000;
1829                 chip->pcm_mixer[idx].ctl = kctl;
1830                 substream = substream->next;
1831         }
1832
1833         return 0;
1834 }
1835
1836
1837 /*
1838  * timer
1839  */
1840
1841 static int snd_ymfpci_timer_start(struct snd_timer *timer)
1842 {
1843         struct snd_ymfpci *chip;
1844         unsigned long flags;
1845         unsigned int count;
1846
1847         chip = snd_timer_chip(timer);
1848         count = (timer->sticks << 1) - 1;
1849         spin_lock_irqsave(&chip->reg_lock, flags);
1850         snd_ymfpci_writew(chip, YDSXGR_TIMERCOUNT, count);
1851         snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x03);
1852         spin_unlock_irqrestore(&chip->reg_lock, flags);
1853         return 0;
1854 }
1855
1856 static int snd_ymfpci_timer_stop(struct snd_timer *timer)
1857 {
1858         struct snd_ymfpci *chip;
1859         unsigned long flags;
1860
1861         chip = snd_timer_chip(timer);
1862         spin_lock_irqsave(&chip->reg_lock, flags);
1863         snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x00);
1864         spin_unlock_irqrestore(&chip->reg_lock, flags);
1865         return 0;
1866 }
1867
1868 static int snd_ymfpci_timer_precise_resolution(struct snd_timer *timer,
1869                                                unsigned long *num, unsigned long *den)
1870 {
1871         *num = 1;
1872         *den = 48000;
1873         return 0;
1874 }
1875
1876 static struct snd_timer_hardware snd_ymfpci_timer_hw = {
1877         .flags = SNDRV_TIMER_HW_AUTO,
1878         .resolution = 20833, /* 1/fs = 20.8333...us */
1879         .ticks = 0x8000,
1880         .start = snd_ymfpci_timer_start,
1881         .stop = snd_ymfpci_timer_stop,
1882         .precise_resolution = snd_ymfpci_timer_precise_resolution,
1883 };
1884
1885 int __devinit snd_ymfpci_timer(struct snd_ymfpci *chip, int device)
1886 {
1887         struct snd_timer *timer = NULL;
1888         struct snd_timer_id tid;
1889         int err;
1890
1891         tid.dev_class = SNDRV_TIMER_CLASS_CARD;
1892         tid.dev_sclass = SNDRV_TIMER_SCLASS_NONE;
1893         tid.card = chip->card->number;
1894         tid.device = device;
1895         tid.subdevice = 0;
1896         if ((err = snd_timer_new(chip->card, "YMFPCI", &tid, &timer)) >= 0) {
1897                 strcpy(timer->name, "YMFPCI timer");
1898                 timer->private_data = chip;
1899                 timer->hw = snd_ymfpci_timer_hw;
1900         }
1901         chip->timer = timer;
1902         return err;
1903 }
1904
1905
1906 /*
1907  *  proc interface
1908  */
1909
1910 static void snd_ymfpci_proc_read(struct snd_info_entry *entry, 
1911                                  struct snd_info_buffer *buffer)
1912 {
1913         struct snd_ymfpci *chip = entry->private_data;
1914         int i;
1915         
1916         snd_iprintf(buffer, "YMFPCI\n\n");
1917         for (i = 0; i <= YDSXGR_WORKBASE; i += 4)
1918                 snd_iprintf(buffer, "%04x: %04x\n", i, snd_ymfpci_readl(chip, i));
1919 }
1920
1921 static int __devinit snd_ymfpci_proc_init(struct snd_card *card, struct snd_ymfpci *chip)
1922 {
1923         struct snd_info_entry *entry;
1924         
1925         if (! snd_card_proc_new(card, "ymfpci", &entry))
1926                 snd_info_set_text_ops(entry, chip, snd_ymfpci_proc_read);
1927         return 0;
1928 }
1929
1930 /*
1931  *  initialization routines
1932  */
1933
1934 static void snd_ymfpci_aclink_reset(struct pci_dev * pci)
1935 {
1936         u8 cmd;
1937
1938         pci_read_config_byte(pci, PCIR_DSXG_CTRL, &cmd);
1939 #if 0 // force to reset
1940         if (cmd & 0x03) {
1941 #endif
1942                 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
1943                 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd | 0x03);
1944                 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
1945                 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL1, 0);
1946                 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL2, 0);
1947 #if 0
1948         }
1949 #endif
1950 }
1951
1952 static void snd_ymfpci_enable_dsp(struct snd_ymfpci *chip)
1953 {
1954         snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000001);
1955 }
1956
1957 static void snd_ymfpci_disable_dsp(struct snd_ymfpci *chip)
1958 {
1959         u32 val;
1960         int timeout = 1000;
1961
1962         val = snd_ymfpci_readl(chip, YDSXGR_CONFIG);
1963         if (val)
1964                 snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000000);
1965         while (timeout-- > 0) {
1966                 val = snd_ymfpci_readl(chip, YDSXGR_STATUS);
1967                 if ((val & 0x00000002) == 0)
1968                         break;
1969         }
1970 }
1971
1972 #ifdef CONFIG_SND_YMFPCI_FIRMWARE_IN_KERNEL
1973
1974 #include "ymfpci_image.h"
1975
1976 static struct firmware snd_ymfpci_dsp_microcode = {
1977         .size = YDSXG_DSPLENGTH,
1978         .data = (u8 *)DspInst,
1979 };
1980 static struct firmware snd_ymfpci_controller_microcode = {
1981         .size = YDSXG_CTRLLENGTH,
1982         .data = (u8 *)CntrlInst,
1983 };
1984 static struct firmware snd_ymfpci_controller_1e_microcode = {
1985         .size = YDSXG_CTRLLENGTH,
1986         .data = (u8 *)CntrlInst1E,
1987 };
1988 #endif
1989
1990 #ifdef CONFIG_SND_YMFPCI_FIRMWARE_IN_KERNEL
1991 static int snd_ymfpci_request_firmware(struct snd_ymfpci *chip)
1992 {
1993         chip->dsp_microcode = &snd_ymfpci_dsp_microcode;
1994         if (chip->device_id == PCI_DEVICE_ID_YAMAHA_724F ||
1995             chip->device_id == PCI_DEVICE_ID_YAMAHA_740C ||
1996             chip->device_id == PCI_DEVICE_ID_YAMAHA_744 ||
1997             chip->device_id == PCI_DEVICE_ID_YAMAHA_754)
1998                 chip->controller_microcode =
1999                         &snd_ymfpci_controller_1e_microcode;
2000         else
2001                 chip->controller_microcode =
2002                         &snd_ymfpci_controller_microcode;
2003         return 0;
2004 }
2005
2006 #else /* use fw_loader */
2007
2008 #ifdef __LITTLE_ENDIAN
2009 static inline void snd_ymfpci_convert_from_le(const struct firmware *fw) { }
2010 #else
2011 static void snd_ymfpci_convert_from_le(const struct firmware *fw)
2012 {
2013         int i;
2014         u32 *data = (u32 *)fw->data;
2015
2016         for (i = 0; i < fw->size / 4; ++i)
2017                 le32_to_cpus(&data[i]);
2018 }
2019 #endif
2020
2021 static int snd_ymfpci_request_firmware(struct snd_ymfpci *chip)
2022 {
2023         int err, is_1e;
2024         const char *name;
2025
2026         err = request_firmware(&chip->dsp_microcode, "yamaha/ds1_dsp.fw",
2027                                &chip->pci->dev);
2028         if (err >= 0) {
2029                 if (chip->dsp_microcode->size == YDSXG_DSPLENGTH)
2030                         snd_ymfpci_convert_from_le(chip->dsp_microcode);
2031                 else {
2032                         snd_printk(KERN_ERR "DSP microcode has wrong size\n");
2033                         err = -EINVAL;
2034                 }
2035         }
2036         if (err < 0)
2037                 return err;
2038         is_1e = chip->device_id == PCI_DEVICE_ID_YAMAHA_724F ||
2039                 chip->device_id == PCI_DEVICE_ID_YAMAHA_740C ||
2040                 chip->device_id == PCI_DEVICE_ID_YAMAHA_744 ||
2041                 chip->device_id == PCI_DEVICE_ID_YAMAHA_754;
2042         name = is_1e ? "yamaha/ds1e_ctrl.fw" : "yamaha/ds1_ctrl.fw";
2043         err = request_firmware(&chip->controller_microcode, name,
2044                                &chip->pci->dev);
2045         if (err >= 0) {
2046                 if (chip->controller_microcode->size == YDSXG_CTRLLENGTH)
2047                         snd_ymfpci_convert_from_le(chip->controller_microcode);
2048                 else {
2049                         snd_printk(KERN_ERR "controller microcode"
2050                                    " has wrong size\n");
2051                         err = -EINVAL;
2052                 }
2053         }
2054         if (err < 0)
2055                 return err;
2056         return 0;
2057 }
2058
2059 MODULE_FIRMWARE("yamaha/ds1_dsp.fw");
2060 MODULE_FIRMWARE("yamaha/ds1_ctrl.fw");
2061 MODULE_FIRMWARE("yamaha/ds1e_ctrl.fw");
2062
2063 #endif
2064
2065 static void snd_ymfpci_download_image(struct snd_ymfpci *chip)
2066 {
2067         int i;
2068         u16 ctrl;
2069         u32 *inst;
2070
2071         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x00000000);
2072         snd_ymfpci_disable_dsp(chip);
2073         snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00010000);
2074         snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00000000);
2075         snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, 0x00000000);
2076         snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 0x00000000);
2077         snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0x00000000);
2078         snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0x00000000);
2079         snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0x00000000);
2080         ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
2081         snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
2082
2083         /* setup DSP instruction code */
2084         inst = (u32 *)chip->dsp_microcode->data;
2085         for (i = 0; i < YDSXG_DSPLENGTH / 4; i++)
2086                 snd_ymfpci_writel(chip, YDSXGR_DSPINSTRAM + (i << 2), inst[i]);
2087
2088         /* setup control instruction code */
2089         inst = (u32 *)chip->controller_microcode->data;
2090         for (i = 0; i < YDSXG_CTRLLENGTH / 4; i++)
2091                 snd_ymfpci_writel(chip, YDSXGR_CTRLINSTRAM + (i << 2), inst[i]);
2092
2093         snd_ymfpci_enable_dsp(chip);
2094 }
2095
2096 static int __devinit snd_ymfpci_memalloc(struct snd_ymfpci *chip)
2097 {
2098         long size, playback_ctrl_size;
2099         int voice, bank, reg;
2100         u8 *ptr;
2101         dma_addr_t ptr_addr;
2102
2103         playback_ctrl_size = 4 + 4 * YDSXG_PLAYBACK_VOICES;
2104         chip->bank_size_playback = snd_ymfpci_readl(chip, YDSXGR_PLAYCTRLSIZE) << 2;
2105         chip->bank_size_capture = snd_ymfpci_readl(chip, YDSXGR_RECCTRLSIZE) << 2;
2106         chip->bank_size_effect = snd_ymfpci_readl(chip, YDSXGR_EFFCTRLSIZE) << 2;
2107         chip->work_size = YDSXG_DEFAULT_WORK_SIZE;
2108         
2109         size = ALIGN(playback_ctrl_size, 0x100) +
2110                ALIGN(chip->bank_size_playback * 2 * YDSXG_PLAYBACK_VOICES, 0x100) +
2111                ALIGN(chip->bank_size_capture * 2 * YDSXG_CAPTURE_VOICES, 0x100) +
2112                ALIGN(chip->bank_size_effect * 2 * YDSXG_EFFECT_VOICES, 0x100) +
2113                chip->work_size;
2114         /* work_ptr must be aligned to 256 bytes, but it's already
2115            covered with the kernel page allocation mechanism */
2116         if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
2117                                 size, &chip->work_ptr) < 0) 
2118                 return -ENOMEM;
2119         ptr = chip->work_ptr.area;
2120         ptr_addr = chip->work_ptr.addr;
2121         memset(ptr, 0, size);   /* for sure */
2122
2123         chip->bank_base_playback = ptr;
2124         chip->bank_base_playback_addr = ptr_addr;
2125         chip->ctrl_playback = (u32 *)ptr;
2126         chip->ctrl_playback[0] = cpu_to_le32(YDSXG_PLAYBACK_VOICES);
2127         ptr += ALIGN(playback_ctrl_size, 0x100);
2128         ptr_addr += ALIGN(playback_ctrl_size, 0x100);
2129         for (voice = 0; voice < YDSXG_PLAYBACK_VOICES; voice++) {
2130                 chip->voices[voice].number = voice;
2131                 chip->voices[voice].bank = (struct snd_ymfpci_playback_bank *)ptr;
2132                 chip->voices[voice].bank_addr = ptr_addr;
2133                 for (bank = 0; bank < 2; bank++) {
2134                         chip->bank_playback[voice][bank] = (struct snd_ymfpci_playback_bank *)ptr;
2135                         ptr += chip->bank_size_playback;
2136                         ptr_addr += chip->bank_size_playback;
2137                 }
2138         }
2139         ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2140         ptr_addr = ALIGN(ptr_addr, 0x100);
2141         chip->bank_base_capture = ptr;
2142         chip->bank_base_capture_addr = ptr_addr;
2143         for (voice = 0; voice < YDSXG_CAPTURE_VOICES; voice++)
2144                 for (bank = 0; bank < 2; bank++) {
2145                         chip->bank_capture[voice][bank] = (struct snd_ymfpci_capture_bank *)ptr;
2146                         ptr += chip->bank_size_capture;
2147                         ptr_addr += chip->bank_size_capture;
2148                 }
2149         ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2150         ptr_addr = ALIGN(ptr_addr, 0x100);
2151         chip->bank_base_effect = ptr;
2152         chip->bank_base_effect_addr = ptr_addr;
2153         for (voice = 0; voice < YDSXG_EFFECT_VOICES; voice++)
2154                 for (bank = 0; bank < 2; bank++) {
2155                         chip->bank_effect[voice][bank] = (struct snd_ymfpci_effect_bank *)ptr;
2156                         ptr += chip->bank_size_effect;
2157                         ptr_addr += chip->bank_size_effect;
2158                 }
2159         ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2160         ptr_addr = ALIGN(ptr_addr, 0x100);
2161         chip->work_base = ptr;
2162         chip->work_base_addr = ptr_addr;
2163         
2164         snd_assert(ptr + chip->work_size == chip->work_ptr.area + chip->work_ptr.bytes, );
2165
2166         snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, chip->bank_base_playback_addr);
2167         snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, chip->bank_base_capture_addr);
2168         snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, chip->bank_base_effect_addr);
2169         snd_ymfpci_writel(chip, YDSXGR_WORKBASE, chip->work_base_addr);
2170         snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, chip->work_size >> 2);
2171
2172         /* S/PDIF output initialization */
2173         chip->spdif_bits = chip->spdif_pcm_bits = SNDRV_PCM_DEFAULT_CON_SPDIF & 0xffff;
2174         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 0);
2175         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
2176
2177         /* S/PDIF input initialization */
2178         snd_ymfpci_writew(chip, YDSXGR_SPDIFINCTRL, 0);
2179
2180         /* digital mixer setup */
2181         for (reg = 0x80; reg < 0xc0; reg += 4)
2182                 snd_ymfpci_writel(chip, reg, 0);
2183         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x3fff3fff);
2184         snd_ymfpci_writel(chip, YDSXGR_ZVOUTVOL, 0x3fff3fff);
2185         snd_ymfpci_writel(chip, YDSXGR_SPDIFOUTVOL, 0x3fff3fff);
2186         snd_ymfpci_writel(chip, YDSXGR_NATIVEADCINVOL, 0x3fff3fff);
2187         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACINVOL, 0x3fff3fff);
2188         snd_ymfpci_writel(chip, YDSXGR_PRIADCLOOPVOL, 0x3fff3fff);
2189         snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0x3fff3fff);
2190         
2191         return 0;
2192 }
2193
2194 static int snd_ymfpci_free(struct snd_ymfpci *chip)
2195 {
2196         u16 ctrl;
2197
2198         snd_assert(chip != NULL, return -EINVAL);
2199
2200         if (chip->res_reg_area) {       /* don't touch busy hardware */
2201                 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2202                 snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
2203                 snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0);
2204                 snd_ymfpci_writel(chip, YDSXGR_STATUS, ~0);
2205                 snd_ymfpci_disable_dsp(chip);
2206                 snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0);
2207                 snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0);
2208                 snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0);
2209                 snd_ymfpci_writel(chip, YDSXGR_WORKBASE, 0);
2210                 snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, 0);
2211                 ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
2212                 snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
2213         }
2214
2215         snd_ymfpci_ac3_done(chip);
2216
2217         /* Set PCI device to D3 state */
2218 #if 0
2219         /* FIXME: temporarily disabled, otherwise we cannot fire up
2220          * the chip again unless reboot.  ACPI bug?
2221          */
2222         pci_set_power_state(chip->pci, 3);
2223 #endif
2224
2225 #ifdef CONFIG_PM
2226         vfree(chip->saved_regs);
2227 #endif
2228         release_and_free_resource(chip->mpu_res);
2229         release_and_free_resource(chip->fm_res);
2230         snd_ymfpci_free_gameport(chip);
2231         if (chip->reg_area_virt)
2232                 iounmap(chip->reg_area_virt);
2233         if (chip->work_ptr.area)
2234                 snd_dma_free_pages(&chip->work_ptr);
2235         
2236         if (chip->irq >= 0)
2237                 free_irq(chip->irq, chip);
2238         release_and_free_resource(chip->res_reg_area);
2239
2240         pci_write_config_word(chip->pci, 0x40, chip->old_legacy_ctrl);
2241         
2242         pci_disable_device(chip->pci);
2243 #ifndef CONFIG_SND_YMFPCI_FIRMWARE_IN_KERNEL
2244         release_firmware(chip->dsp_microcode);
2245         release_firmware(chip->controller_microcode);
2246 #endif
2247         kfree(chip);
2248         return 0;
2249 }
2250
2251 static int snd_ymfpci_dev_free(struct snd_device *device)
2252 {
2253         struct snd_ymfpci *chip = device->device_data;
2254         return snd_ymfpci_free(chip);
2255 }
2256
2257 #ifdef CONFIG_PM
2258 static int saved_regs_index[] = {
2259         /* spdif */
2260         YDSXGR_SPDIFOUTCTRL,
2261         YDSXGR_SPDIFOUTSTATUS,
2262         YDSXGR_SPDIFINCTRL,
2263         /* volumes */
2264         YDSXGR_PRIADCLOOPVOL,
2265         YDSXGR_NATIVEDACINVOL,
2266         YDSXGR_NATIVEDACOUTVOL,
2267         YDSXGR_BUF441OUTVOL,
2268         YDSXGR_NATIVEADCINVOL,
2269         YDSXGR_SPDIFLOOPVOL,
2270         YDSXGR_SPDIFOUTVOL,
2271         YDSXGR_ZVOUTVOL,
2272         YDSXGR_LEGACYOUTVOL,
2273         /* address bases */
2274         YDSXGR_PLAYCTRLBASE,
2275         YDSXGR_RECCTRLBASE,
2276         YDSXGR_EFFCTRLBASE,
2277         YDSXGR_WORKBASE,
2278         /* capture set up */
2279         YDSXGR_MAPOFREC,
2280         YDSXGR_RECFORMAT,
2281         YDSXGR_RECSLOTSR,
2282         YDSXGR_ADCFORMAT,
2283         YDSXGR_ADCSLOTSR,
2284 };
2285 #define YDSXGR_NUM_SAVED_REGS   ARRAY_SIZE(saved_regs_index)
2286
2287 int snd_ymfpci_suspend(struct pci_dev *pci, pm_message_t state)
2288 {
2289         struct snd_card *card = pci_get_drvdata(pci);
2290         struct snd_ymfpci *chip = card->private_data;
2291         unsigned int i;
2292         
2293         snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
2294         snd_pcm_suspend_all(chip->pcm);
2295         snd_pcm_suspend_all(chip->pcm2);
2296         snd_pcm_suspend_all(chip->pcm_spdif);
2297         snd_pcm_suspend_all(chip->pcm_4ch);
2298         snd_ac97_suspend(chip->ac97);
2299         for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2300                 chip->saved_regs[i] = snd_ymfpci_readl(chip, saved_regs_index[i]);
2301         chip->saved_ydsxgr_mode = snd_ymfpci_readl(chip, YDSXGR_MODE);
2302         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2303         snd_ymfpci_disable_dsp(chip);
2304         pci_disable_device(pci);
2305         pci_save_state(pci);
2306         pci_set_power_state(pci, pci_choose_state(pci, state));
2307         return 0;
2308 }
2309
2310 int snd_ymfpci_resume(struct pci_dev *pci)
2311 {
2312         struct snd_card *card = pci_get_drvdata(pci);
2313         struct snd_ymfpci *chip = card->private_data;
2314         unsigned int i;
2315
2316         pci_set_power_state(pci, PCI_D0);
2317         pci_restore_state(pci);
2318         if (pci_enable_device(pci) < 0) {
2319                 printk(KERN_ERR "ymfpci: pci_enable_device failed, "
2320                        "disabling device\n");
2321                 snd_card_disconnect(card);
2322                 return -EIO;
2323         }
2324         pci_set_master(pci);
2325         snd_ymfpci_aclink_reset(pci);
2326         snd_ymfpci_codec_ready(chip, 0);
2327         snd_ymfpci_download_image(chip);
2328         udelay(100);
2329
2330         for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2331                 snd_ymfpci_writel(chip, saved_regs_index[i], chip->saved_regs[i]);
2332
2333         snd_ac97_resume(chip->ac97);
2334
2335         /* start hw again */
2336         if (chip->start_count > 0) {
2337                 spin_lock_irq(&chip->reg_lock);
2338                 snd_ymfpci_writel(chip, YDSXGR_MODE, chip->saved_ydsxgr_mode);
2339                 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT);
2340                 spin_unlock_irq(&chip->reg_lock);
2341         }
2342         snd_power_change_state(card, SNDRV_CTL_POWER_D0);
2343         return 0;
2344 }
2345 #endif /* CONFIG_PM */
2346
2347 int __devinit snd_ymfpci_create(struct snd_card *card,
2348                                 struct pci_dev * pci,
2349                                 unsigned short old_legacy_ctrl,
2350                                 struct snd_ymfpci ** rchip)
2351 {
2352         struct snd_ymfpci *chip;
2353         int err;
2354         static struct snd_device_ops ops = {
2355                 .dev_free =     snd_ymfpci_dev_free,
2356         };
2357         
2358         *rchip = NULL;
2359
2360         /* enable PCI device */
2361         if ((err = pci_enable_device(pci)) < 0)
2362                 return err;
2363
2364         chip = kzalloc(sizeof(*chip), GFP_KERNEL);
2365         if (chip == NULL) {
2366                 pci_disable_device(pci);
2367                 return -ENOMEM;
2368         }
2369         chip->old_legacy_ctrl = old_legacy_ctrl;
2370         spin_lock_init(&chip->reg_lock);
2371         spin_lock_init(&chip->voice_lock);
2372         init_waitqueue_head(&chip->interrupt_sleep);
2373         atomic_set(&chip->interrupt_sleep_count, 0);
2374         chip->card = card;
2375         chip->pci = pci;
2376         chip->irq = -1;
2377         chip->device_id = pci->device;
2378         chip->rev = pci->revision;
2379         chip->reg_area_phys = pci_resource_start(pci, 0);
2380         chip->reg_area_virt = ioremap_nocache(chip->reg_area_phys, 0x8000);
2381         pci_set_master(pci);
2382         chip->src441_used = -1;
2383
2384         if ((chip->res_reg_area = request_mem_region(chip->reg_area_phys, 0x8000, "YMFPCI")) == NULL) {
2385                 snd_printk(KERN_ERR "unable to grab memory region 0x%lx-0x%lx\n", chip->reg_area_phys, chip->reg_area_phys + 0x8000 - 1);
2386                 snd_ymfpci_free(chip);
2387                 return -EBUSY;
2388         }
2389         if (request_irq(pci->irq, snd_ymfpci_interrupt, IRQF_SHARED,
2390                         "YMFPCI", chip)) {
2391                 snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
2392                 snd_ymfpci_free(chip);
2393                 return -EBUSY;
2394         }
2395         chip->irq = pci->irq;
2396
2397         snd_ymfpci_aclink_reset(pci);
2398         if (snd_ymfpci_codec_ready(chip, 0) < 0) {
2399                 snd_ymfpci_free(chip);
2400                 return -EIO;
2401         }
2402
2403         err = snd_ymfpci_request_firmware(chip);
2404         if (err < 0) {
2405                 snd_printk(KERN_ERR "firmware request failed: %d\n", err);
2406                 snd_ymfpci_free(chip);
2407                 return err;
2408         }
2409         snd_ymfpci_download_image(chip);
2410
2411         udelay(100); /* seems we need a delay after downloading image.. */
2412
2413         if (snd_ymfpci_memalloc(chip) < 0) {
2414                 snd_ymfpci_free(chip);
2415                 return -EIO;
2416         }
2417
2418         if ((err = snd_ymfpci_ac3_init(chip)) < 0) {
2419                 snd_ymfpci_free(chip);
2420                 return err;
2421         }
2422
2423 #ifdef CONFIG_PM
2424         chip->saved_regs = vmalloc(YDSXGR_NUM_SAVED_REGS * sizeof(u32));
2425         if (chip->saved_regs == NULL) {
2426                 snd_ymfpci_free(chip);
2427                 return -ENOMEM;
2428         }
2429 #endif
2430
2431         if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
2432                 snd_ymfpci_free(chip);
2433                 return err;
2434         }
2435
2436         snd_ymfpci_proc_init(card, chip);
2437
2438         snd_card_set_dev(card, &pci->dev);
2439
2440         *rchip = chip;
2441         return 0;
2442 }