Merge git://git.kernel.org/pub/scm/linux/kernel/git/sfrench/cifs-2.6
[sfrench/cifs-2.6.git] / sound / pci / ymfpci / ymfpci_main.c
1 /*
2  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
3  *  Routines for control of YMF724/740/744/754 chips
4  *
5  *   This program is free software; you can redistribute it and/or modify
6  *   it under the terms of the GNU General Public License as published by
7  *   the Free Software Foundation; either version 2 of the License, or
8  *   (at your option) any later version.
9  *
10  *   This program is distributed in the hope that it will be useful,
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  *   GNU General Public License for more details.
14  *
15  *   You should have received a copy of the GNU General Public License
16  *   along with this program; if not, write to the Free Software
17  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18  *
19  */
20
21 #include <linux/delay.h>
22 #include <linux/firmware.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/pci.h>
26 #include <linux/sched.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29
30 #include <sound/core.h>
31 #include <sound/control.h>
32 #include <sound/info.h>
33 #include <sound/tlv.h>
34 #include <sound/ymfpci.h>
35 #include <sound/asoundef.h>
36 #include <sound/mpu401.h>
37
38 #include <asm/io.h>
39 #include <asm/byteorder.h>
40
41 /*
42  *  common I/O routines
43  */
44
45 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip);
46
47 static inline u8 snd_ymfpci_readb(struct snd_ymfpci *chip, u32 offset)
48 {
49         return readb(chip->reg_area_virt + offset);
50 }
51
52 static inline void snd_ymfpci_writeb(struct snd_ymfpci *chip, u32 offset, u8 val)
53 {
54         writeb(val, chip->reg_area_virt + offset);
55 }
56
57 static inline u16 snd_ymfpci_readw(struct snd_ymfpci *chip, u32 offset)
58 {
59         return readw(chip->reg_area_virt + offset);
60 }
61
62 static inline void snd_ymfpci_writew(struct snd_ymfpci *chip, u32 offset, u16 val)
63 {
64         writew(val, chip->reg_area_virt + offset);
65 }
66
67 static inline u32 snd_ymfpci_readl(struct snd_ymfpci *chip, u32 offset)
68 {
69         return readl(chip->reg_area_virt + offset);
70 }
71
72 static inline void snd_ymfpci_writel(struct snd_ymfpci *chip, u32 offset, u32 val)
73 {
74         writel(val, chip->reg_area_virt + offset);
75 }
76
77 static int snd_ymfpci_codec_ready(struct snd_ymfpci *chip, int secondary)
78 {
79         unsigned long end_time;
80         u32 reg = secondary ? YDSXGR_SECSTATUSADR : YDSXGR_PRISTATUSADR;
81         
82         end_time = jiffies + msecs_to_jiffies(750);
83         do {
84                 if ((snd_ymfpci_readw(chip, reg) & 0x8000) == 0)
85                         return 0;
86                 schedule_timeout_uninterruptible(1);
87         } while (time_before(jiffies, end_time));
88         snd_printk(KERN_ERR "codec_ready: codec %i is not ready [0x%x]\n", secondary, snd_ymfpci_readw(chip, reg));
89         return -EBUSY;
90 }
91
92 static void snd_ymfpci_codec_write(struct snd_ac97 *ac97, u16 reg, u16 val)
93 {
94         struct snd_ymfpci *chip = ac97->private_data;
95         u32 cmd;
96         
97         snd_ymfpci_codec_ready(chip, 0);
98         cmd = ((YDSXG_AC97WRITECMD | reg) << 16) | val;
99         snd_ymfpci_writel(chip, YDSXGR_AC97CMDDATA, cmd);
100 }
101
102 static u16 snd_ymfpci_codec_read(struct snd_ac97 *ac97, u16 reg)
103 {
104         struct snd_ymfpci *chip = ac97->private_data;
105
106         if (snd_ymfpci_codec_ready(chip, 0))
107                 return ~0;
108         snd_ymfpci_writew(chip, YDSXGR_AC97CMDADR, YDSXG_AC97READCMD | reg);
109         if (snd_ymfpci_codec_ready(chip, 0))
110                 return ~0;
111         if (chip->device_id == PCI_DEVICE_ID_YAMAHA_744 && chip->rev < 2) {
112                 int i;
113                 for (i = 0; i < 600; i++)
114                         snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
115         }
116         return snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
117 }
118
119 /*
120  *  Misc routines
121  */
122
123 static u32 snd_ymfpci_calc_delta(u32 rate)
124 {
125         switch (rate) {
126         case 8000:      return 0x02aaab00;
127         case 11025:     return 0x03accd00;
128         case 16000:     return 0x05555500;
129         case 22050:     return 0x07599a00;
130         case 32000:     return 0x0aaaab00;
131         case 44100:     return 0x0eb33300;
132         default:        return ((rate << 16) / 375) << 5;
133         }
134 }
135
136 static u32 def_rate[8] = {
137         100, 2000, 8000, 11025, 16000, 22050, 32000, 48000
138 };
139
140 static u32 snd_ymfpci_calc_lpfK(u32 rate)
141 {
142         u32 i;
143         static u32 val[8] = {
144                 0x00570000, 0x06AA0000, 0x18B20000, 0x20930000,
145                 0x2B9A0000, 0x35A10000, 0x3EAA0000, 0x40000000
146         };
147         
148         if (rate == 44100)
149                 return 0x40000000;      /* FIXME: What's the right value? */
150         for (i = 0; i < 8; i++)
151                 if (rate <= def_rate[i])
152                         return val[i];
153         return val[0];
154 }
155
156 static u32 snd_ymfpci_calc_lpfQ(u32 rate)
157 {
158         u32 i;
159         static u32 val[8] = {
160                 0x35280000, 0x34A70000, 0x32020000, 0x31770000,
161                 0x31390000, 0x31C90000, 0x33D00000, 0x40000000
162         };
163         
164         if (rate == 44100)
165                 return 0x370A0000;
166         for (i = 0; i < 8; i++)
167                 if (rate <= def_rate[i])
168                         return val[i];
169         return val[0];
170 }
171
172 /*
173  *  Hardware start management
174  */
175
176 static void snd_ymfpci_hw_start(struct snd_ymfpci *chip)
177 {
178         unsigned long flags;
179
180         spin_lock_irqsave(&chip->reg_lock, flags);
181         if (chip->start_count++ > 0)
182                 goto __end;
183         snd_ymfpci_writel(chip, YDSXGR_MODE,
184                           snd_ymfpci_readl(chip, YDSXGR_MODE) | 3);
185         chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
186       __end:
187         spin_unlock_irqrestore(&chip->reg_lock, flags);
188 }
189
190 static void snd_ymfpci_hw_stop(struct snd_ymfpci *chip)
191 {
192         unsigned long flags;
193         long timeout = 1000;
194
195         spin_lock_irqsave(&chip->reg_lock, flags);
196         if (--chip->start_count > 0)
197                 goto __end;
198         snd_ymfpci_writel(chip, YDSXGR_MODE,
199                           snd_ymfpci_readl(chip, YDSXGR_MODE) & ~3);
200         while (timeout-- > 0) {
201                 if ((snd_ymfpci_readl(chip, YDSXGR_STATUS) & 2) == 0)
202                         break;
203         }
204         if (atomic_read(&chip->interrupt_sleep_count)) {
205                 atomic_set(&chip->interrupt_sleep_count, 0);
206                 wake_up(&chip->interrupt_sleep);
207         }
208       __end:
209         spin_unlock_irqrestore(&chip->reg_lock, flags);
210 }
211
212 /*
213  *  Playback voice management
214  */
215
216 static int voice_alloc(struct snd_ymfpci *chip,
217                        enum snd_ymfpci_voice_type type, int pair,
218                        struct snd_ymfpci_voice **rvoice)
219 {
220         struct snd_ymfpci_voice *voice, *voice2;
221         int idx;
222         
223         *rvoice = NULL;
224         for (idx = 0; idx < YDSXG_PLAYBACK_VOICES; idx += pair ? 2 : 1) {
225                 voice = &chip->voices[idx];
226                 voice2 = pair ? &chip->voices[idx+1] : NULL;
227                 if (voice->use || (voice2 && voice2->use))
228                         continue;
229                 voice->use = 1;
230                 if (voice2)
231                         voice2->use = 1;
232                 switch (type) {
233                 case YMFPCI_PCM:
234                         voice->pcm = 1;
235                         if (voice2)
236                                 voice2->pcm = 1;
237                         break;
238                 case YMFPCI_SYNTH:
239                         voice->synth = 1;
240                         break;
241                 case YMFPCI_MIDI:
242                         voice->midi = 1;
243                         break;
244                 }
245                 snd_ymfpci_hw_start(chip);
246                 if (voice2)
247                         snd_ymfpci_hw_start(chip);
248                 *rvoice = voice;
249                 return 0;
250         }
251         return -ENOMEM;
252 }
253
254 static int snd_ymfpci_voice_alloc(struct snd_ymfpci *chip,
255                                   enum snd_ymfpci_voice_type type, int pair,
256                                   struct snd_ymfpci_voice **rvoice)
257 {
258         unsigned long flags;
259         int result;
260         
261         snd_assert(rvoice != NULL, return -EINVAL);
262         snd_assert(!pair || type == YMFPCI_PCM, return -EINVAL);
263         
264         spin_lock_irqsave(&chip->voice_lock, flags);
265         for (;;) {
266                 result = voice_alloc(chip, type, pair, rvoice);
267                 if (result == 0 || type != YMFPCI_PCM)
268                         break;
269                 /* TODO: synth/midi voice deallocation */
270                 break;
271         }
272         spin_unlock_irqrestore(&chip->voice_lock, flags);       
273         return result;          
274 }
275
276 static int snd_ymfpci_voice_free(struct snd_ymfpci *chip, struct snd_ymfpci_voice *pvoice)
277 {
278         unsigned long flags;
279         
280         snd_assert(pvoice != NULL, return -EINVAL);
281         snd_ymfpci_hw_stop(chip);
282         spin_lock_irqsave(&chip->voice_lock, flags);
283         if (pvoice->number == chip->src441_used) {
284                 chip->src441_used = -1;
285                 pvoice->ypcm->use_441_slot = 0;
286         }
287         pvoice->use = pvoice->pcm = pvoice->synth = pvoice->midi = 0;
288         pvoice->ypcm = NULL;
289         pvoice->interrupt = NULL;
290         spin_unlock_irqrestore(&chip->voice_lock, flags);
291         return 0;
292 }
293
294 /*
295  *  PCM part
296  */
297
298 static void snd_ymfpci_pcm_interrupt(struct snd_ymfpci *chip, struct snd_ymfpci_voice *voice)
299 {
300         struct snd_ymfpci_pcm *ypcm;
301         u32 pos, delta;
302         
303         if ((ypcm = voice->ypcm) == NULL)
304                 return;
305         if (ypcm->substream == NULL)
306                 return;
307         spin_lock(&chip->reg_lock);
308         if (ypcm->running) {
309                 pos = le32_to_cpu(voice->bank[chip->active_bank].start);
310                 if (pos < ypcm->last_pos)
311                         delta = pos + (ypcm->buffer_size - ypcm->last_pos);
312                 else
313                         delta = pos - ypcm->last_pos;
314                 ypcm->period_pos += delta;
315                 ypcm->last_pos = pos;
316                 if (ypcm->period_pos >= ypcm->period_size) {
317                         // printk("done - active_bank = 0x%x, start = 0x%x\n", chip->active_bank, voice->bank[chip->active_bank].start);
318                         ypcm->period_pos %= ypcm->period_size;
319                         spin_unlock(&chip->reg_lock);
320                         snd_pcm_period_elapsed(ypcm->substream);
321                         spin_lock(&chip->reg_lock);
322                 }
323
324                 if (unlikely(ypcm->update_pcm_vol)) {
325                         unsigned int subs = ypcm->substream->number;
326                         unsigned int next_bank = 1 - chip->active_bank;
327                         struct snd_ymfpci_playback_bank *bank;
328                         u32 volume;
329                         
330                         bank = &voice->bank[next_bank];
331                         volume = cpu_to_le32(chip->pcm_mixer[subs].left << 15);
332                         bank->left_gain_end = volume;
333                         if (ypcm->output_rear)
334                                 bank->eff2_gain_end = volume;
335                         if (ypcm->voices[1])
336                                 bank = &ypcm->voices[1]->bank[next_bank];
337                         volume = cpu_to_le32(chip->pcm_mixer[subs].right << 15);
338                         bank->right_gain_end = volume;
339                         if (ypcm->output_rear)
340                                 bank->eff3_gain_end = volume;
341                         ypcm->update_pcm_vol--;
342                 }
343         }
344         spin_unlock(&chip->reg_lock);
345 }
346
347 static void snd_ymfpci_pcm_capture_interrupt(struct snd_pcm_substream *substream)
348 {
349         struct snd_pcm_runtime *runtime = substream->runtime;
350         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
351         struct snd_ymfpci *chip = ypcm->chip;
352         u32 pos, delta;
353         
354         spin_lock(&chip->reg_lock);
355         if (ypcm->running) {
356                 pos = le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
357                 if (pos < ypcm->last_pos)
358                         delta = pos + (ypcm->buffer_size - ypcm->last_pos);
359                 else
360                         delta = pos - ypcm->last_pos;
361                 ypcm->period_pos += delta;
362                 ypcm->last_pos = pos;
363                 if (ypcm->period_pos >= ypcm->period_size) {
364                         ypcm->period_pos %= ypcm->period_size;
365                         // printk("done - active_bank = 0x%x, start = 0x%x\n", chip->active_bank, voice->bank[chip->active_bank].start);
366                         spin_unlock(&chip->reg_lock);
367                         snd_pcm_period_elapsed(substream);
368                         spin_lock(&chip->reg_lock);
369                 }
370         }
371         spin_unlock(&chip->reg_lock);
372 }
373
374 static int snd_ymfpci_playback_trigger(struct snd_pcm_substream *substream,
375                                        int cmd)
376 {
377         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
378         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
379         struct snd_kcontrol *kctl = NULL;
380         int result = 0;
381
382         spin_lock(&chip->reg_lock);
383         if (ypcm->voices[0] == NULL) {
384                 result = -EINVAL;
385                 goto __unlock;
386         }
387         switch (cmd) {
388         case SNDRV_PCM_TRIGGER_START:
389         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
390         case SNDRV_PCM_TRIGGER_RESUME:
391                 chip->ctrl_playback[ypcm->voices[0]->number + 1] = cpu_to_le32(ypcm->voices[0]->bank_addr);
392                 if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
393                         chip->ctrl_playback[ypcm->voices[1]->number + 1] = cpu_to_le32(ypcm->voices[1]->bank_addr);
394                 ypcm->running = 1;
395                 break;
396         case SNDRV_PCM_TRIGGER_STOP:
397                 if (substream->pcm == chip->pcm && !ypcm->use_441_slot) {
398                         kctl = chip->pcm_mixer[substream->number].ctl;
399                         kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
400                 }
401                 /* fall through */
402         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
403         case SNDRV_PCM_TRIGGER_SUSPEND:
404                 chip->ctrl_playback[ypcm->voices[0]->number + 1] = 0;
405                 if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
406                         chip->ctrl_playback[ypcm->voices[1]->number + 1] = 0;
407                 ypcm->running = 0;
408                 break;
409         default:
410                 result = -EINVAL;
411                 break;
412         }
413       __unlock:
414         spin_unlock(&chip->reg_lock);
415         if (kctl)
416                 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
417         return result;
418 }
419 static int snd_ymfpci_capture_trigger(struct snd_pcm_substream *substream,
420                                       int cmd)
421 {
422         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
423         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
424         int result = 0;
425         u32 tmp;
426
427         spin_lock(&chip->reg_lock);
428         switch (cmd) {
429         case SNDRV_PCM_TRIGGER_START:
430         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
431         case SNDRV_PCM_TRIGGER_RESUME:
432                 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) | (1 << ypcm->capture_bank_number);
433                 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
434                 ypcm->running = 1;
435                 break;
436         case SNDRV_PCM_TRIGGER_STOP:
437         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
438         case SNDRV_PCM_TRIGGER_SUSPEND:
439                 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) & ~(1 << ypcm->capture_bank_number);
440                 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
441                 ypcm->running = 0;
442                 break;
443         default:
444                 result = -EINVAL;
445                 break;
446         }
447         spin_unlock(&chip->reg_lock);
448         return result;
449 }
450
451 static int snd_ymfpci_pcm_voice_alloc(struct snd_ymfpci_pcm *ypcm, int voices)
452 {
453         int err;
454
455         if (ypcm->voices[1] != NULL && voices < 2) {
456                 snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[1]);
457                 ypcm->voices[1] = NULL;
458         }
459         if (voices == 1 && ypcm->voices[0] != NULL)
460                 return 0;               /* already allocated */
461         if (voices == 2 && ypcm->voices[0] != NULL && ypcm->voices[1] != NULL)
462                 return 0;               /* already allocated */
463         if (voices > 1) {
464                 if (ypcm->voices[0] != NULL && ypcm->voices[1] == NULL) {
465                         snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[0]);
466                         ypcm->voices[0] = NULL;
467                 }               
468         }
469         err = snd_ymfpci_voice_alloc(ypcm->chip, YMFPCI_PCM, voices > 1, &ypcm->voices[0]);
470         if (err < 0)
471                 return err;
472         ypcm->voices[0]->ypcm = ypcm;
473         ypcm->voices[0]->interrupt = snd_ymfpci_pcm_interrupt;
474         if (voices > 1) {
475                 ypcm->voices[1] = &ypcm->chip->voices[ypcm->voices[0]->number + 1];
476                 ypcm->voices[1]->ypcm = ypcm;
477         }
478         return 0;
479 }
480
481 static void snd_ymfpci_pcm_init_voice(struct snd_ymfpci_pcm *ypcm, unsigned int voiceidx,
482                                       struct snd_pcm_runtime *runtime,
483                                       int has_pcm_volume)
484 {
485         struct snd_ymfpci_voice *voice = ypcm->voices[voiceidx];
486         u32 format;
487         u32 delta = snd_ymfpci_calc_delta(runtime->rate);
488         u32 lpfQ = snd_ymfpci_calc_lpfQ(runtime->rate);
489         u32 lpfK = snd_ymfpci_calc_lpfK(runtime->rate);
490         struct snd_ymfpci_playback_bank *bank;
491         unsigned int nbank;
492         u32 vol_left, vol_right;
493         u8 use_left, use_right;
494         unsigned long flags;
495
496         snd_assert(voice != NULL, return);
497         if (runtime->channels == 1) {
498                 use_left = 1;
499                 use_right = 1;
500         } else {
501                 use_left = (voiceidx & 1) == 0;
502                 use_right = !use_left;
503         }
504         if (has_pcm_volume) {
505                 vol_left = cpu_to_le32(ypcm->chip->pcm_mixer
506                                        [ypcm->substream->number].left << 15);
507                 vol_right = cpu_to_le32(ypcm->chip->pcm_mixer
508                                         [ypcm->substream->number].right << 15);
509         } else {
510                 vol_left = cpu_to_le32(0x40000000);
511                 vol_right = cpu_to_le32(0x40000000);
512         }
513         spin_lock_irqsave(&ypcm->chip->voice_lock, flags);
514         format = runtime->channels == 2 ? 0x00010000 : 0;
515         if (snd_pcm_format_width(runtime->format) == 8)
516                 format |= 0x80000000;
517         else if (ypcm->chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
518                  runtime->rate == 44100 && runtime->channels == 2 &&
519                  voiceidx == 0 && (ypcm->chip->src441_used == -1 ||
520                                    ypcm->chip->src441_used == voice->number)) {
521                 ypcm->chip->src441_used = voice->number;
522                 ypcm->use_441_slot = 1;
523                 format |= 0x10000000;
524         }
525         if (ypcm->chip->src441_used == voice->number &&
526             (format & 0x10000000) == 0) {
527                 ypcm->chip->src441_used = -1;
528                 ypcm->use_441_slot = 0;
529         }
530         if (runtime->channels == 2 && (voiceidx & 1) != 0)
531                 format |= 1;
532         spin_unlock_irqrestore(&ypcm->chip->voice_lock, flags);
533         for (nbank = 0; nbank < 2; nbank++) {
534                 bank = &voice->bank[nbank];
535                 memset(bank, 0, sizeof(*bank));
536                 bank->format = cpu_to_le32(format);
537                 bank->base = cpu_to_le32(runtime->dma_addr);
538                 bank->loop_end = cpu_to_le32(ypcm->buffer_size);
539                 bank->lpfQ = cpu_to_le32(lpfQ);
540                 bank->delta =
541                 bank->delta_end = cpu_to_le32(delta);
542                 bank->lpfK =
543                 bank->lpfK_end = cpu_to_le32(lpfK);
544                 bank->eg_gain =
545                 bank->eg_gain_end = cpu_to_le32(0x40000000);
546
547                 if (ypcm->output_front) {
548                         if (use_left) {
549                                 bank->left_gain =
550                                 bank->left_gain_end = vol_left;
551                         }
552                         if (use_right) {
553                                 bank->right_gain =
554                                 bank->right_gain_end = vol_right;
555                         }
556                 }
557                 if (ypcm->output_rear) {
558                         if (!ypcm->swap_rear) {
559                                 if (use_left) {
560                                         bank->eff2_gain =
561                                         bank->eff2_gain_end = vol_left;
562                                 }
563                                 if (use_right) {
564                                         bank->eff3_gain =
565                                         bank->eff3_gain_end = vol_right;
566                                 }
567                         } else {
568                                 /* The SPDIF out channels seem to be swapped, so we have
569                                  * to swap them here, too.  The rear analog out channels
570                                  * will be wrong, but otherwise AC3 would not work.
571                                  */
572                                 if (use_left) {
573                                         bank->eff3_gain =
574                                         bank->eff3_gain_end = vol_left;
575                                 }
576                                 if (use_right) {
577                                         bank->eff2_gain =
578                                         bank->eff2_gain_end = vol_right;
579                                 }
580                         }
581                 }
582         }
583 }
584
585 static int __devinit snd_ymfpci_ac3_init(struct snd_ymfpci *chip)
586 {
587         if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
588                                 4096, &chip->ac3_tmp_base) < 0)
589                 return -ENOMEM;
590
591         chip->bank_effect[3][0]->base =
592         chip->bank_effect[3][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr);
593         chip->bank_effect[3][0]->loop_end =
594         chip->bank_effect[3][1]->loop_end = cpu_to_le32(1024);
595         chip->bank_effect[4][0]->base =
596         chip->bank_effect[4][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr + 2048);
597         chip->bank_effect[4][0]->loop_end =
598         chip->bank_effect[4][1]->loop_end = cpu_to_le32(1024);
599
600         spin_lock_irq(&chip->reg_lock);
601         snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
602                           snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) | 3 << 3);
603         spin_unlock_irq(&chip->reg_lock);
604         return 0;
605 }
606
607 static int snd_ymfpci_ac3_done(struct snd_ymfpci *chip)
608 {
609         spin_lock_irq(&chip->reg_lock);
610         snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
611                           snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) & ~(3 << 3));
612         spin_unlock_irq(&chip->reg_lock);
613         // snd_ymfpci_irq_wait(chip);
614         if (chip->ac3_tmp_base.area) {
615                 snd_dma_free_pages(&chip->ac3_tmp_base);
616                 chip->ac3_tmp_base.area = NULL;
617         }
618         return 0;
619 }
620
621 static int snd_ymfpci_playback_hw_params(struct snd_pcm_substream *substream,
622                                          struct snd_pcm_hw_params *hw_params)
623 {
624         struct snd_pcm_runtime *runtime = substream->runtime;
625         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
626         int err;
627
628         if ((err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params))) < 0)
629                 return err;
630         if ((err = snd_ymfpci_pcm_voice_alloc(ypcm, params_channels(hw_params))) < 0)
631                 return err;
632         return 0;
633 }
634
635 static int snd_ymfpci_playback_hw_free(struct snd_pcm_substream *substream)
636 {
637         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
638         struct snd_pcm_runtime *runtime = substream->runtime;
639         struct snd_ymfpci_pcm *ypcm;
640         
641         if (runtime->private_data == NULL)
642                 return 0;
643         ypcm = runtime->private_data;
644
645         /* wait, until the PCI operations are not finished */
646         snd_ymfpci_irq_wait(chip);
647         snd_pcm_lib_free_pages(substream);
648         if (ypcm->voices[1]) {
649                 snd_ymfpci_voice_free(chip, ypcm->voices[1]);
650                 ypcm->voices[1] = NULL;
651         }
652         if (ypcm->voices[0]) {
653                 snd_ymfpci_voice_free(chip, ypcm->voices[0]);
654                 ypcm->voices[0] = NULL;
655         }
656         return 0;
657 }
658
659 static int snd_ymfpci_playback_prepare(struct snd_pcm_substream *substream)
660 {
661         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
662         struct snd_pcm_runtime *runtime = substream->runtime;
663         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
664         struct snd_kcontrol *kctl;
665         unsigned int nvoice;
666
667         ypcm->period_size = runtime->period_size;
668         ypcm->buffer_size = runtime->buffer_size;
669         ypcm->period_pos = 0;
670         ypcm->last_pos = 0;
671         for (nvoice = 0; nvoice < runtime->channels; nvoice++)
672                 snd_ymfpci_pcm_init_voice(ypcm, nvoice, runtime,
673                                           substream->pcm == chip->pcm);
674
675         if (substream->pcm == chip->pcm && !ypcm->use_441_slot) {
676                 kctl = chip->pcm_mixer[substream->number].ctl;
677                 kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
678                 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
679         }
680         return 0;
681 }
682
683 static int snd_ymfpci_capture_hw_params(struct snd_pcm_substream *substream,
684                                         struct snd_pcm_hw_params *hw_params)
685 {
686         return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
687 }
688
689 static int snd_ymfpci_capture_hw_free(struct snd_pcm_substream *substream)
690 {
691         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
692
693         /* wait, until the PCI operations are not finished */
694         snd_ymfpci_irq_wait(chip);
695         return snd_pcm_lib_free_pages(substream);
696 }
697
698 static int snd_ymfpci_capture_prepare(struct snd_pcm_substream *substream)
699 {
700         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
701         struct snd_pcm_runtime *runtime = substream->runtime;
702         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
703         struct snd_ymfpci_capture_bank * bank;
704         int nbank;
705         u32 rate, format;
706
707         ypcm->period_size = runtime->period_size;
708         ypcm->buffer_size = runtime->buffer_size;
709         ypcm->period_pos = 0;
710         ypcm->last_pos = 0;
711         ypcm->shift = 0;
712         rate = ((48000 * 4096) / runtime->rate) - 1;
713         format = 0;
714         if (runtime->channels == 2) {
715                 format |= 2;
716                 ypcm->shift++;
717         }
718         if (snd_pcm_format_width(runtime->format) == 8)
719                 format |= 1;
720         else
721                 ypcm->shift++;
722         switch (ypcm->capture_bank_number) {
723         case 0:
724                 snd_ymfpci_writel(chip, YDSXGR_RECFORMAT, format);
725                 snd_ymfpci_writel(chip, YDSXGR_RECSLOTSR, rate);
726                 break;
727         case 1:
728                 snd_ymfpci_writel(chip, YDSXGR_ADCFORMAT, format);
729                 snd_ymfpci_writel(chip, YDSXGR_ADCSLOTSR, rate);
730                 break;
731         }
732         for (nbank = 0; nbank < 2; nbank++) {
733                 bank = chip->bank_capture[ypcm->capture_bank_number][nbank];
734                 bank->base = cpu_to_le32(runtime->dma_addr);
735                 bank->loop_end = cpu_to_le32(ypcm->buffer_size << ypcm->shift);
736                 bank->start = 0;
737                 bank->num_of_loops = 0;
738         }
739         return 0;
740 }
741
742 static snd_pcm_uframes_t snd_ymfpci_playback_pointer(struct snd_pcm_substream *substream)
743 {
744         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
745         struct snd_pcm_runtime *runtime = substream->runtime;
746         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
747         struct snd_ymfpci_voice *voice = ypcm->voices[0];
748
749         if (!(ypcm->running && voice))
750                 return 0;
751         return le32_to_cpu(voice->bank[chip->active_bank].start);
752 }
753
754 static snd_pcm_uframes_t snd_ymfpci_capture_pointer(struct snd_pcm_substream *substream)
755 {
756         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
757         struct snd_pcm_runtime *runtime = substream->runtime;
758         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
759
760         if (!ypcm->running)
761                 return 0;
762         return le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
763 }
764
765 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip)
766 {
767         wait_queue_t wait;
768         int loops = 4;
769
770         while (loops-- > 0) {
771                 if ((snd_ymfpci_readl(chip, YDSXGR_MODE) & 3) == 0)
772                         continue;
773                 init_waitqueue_entry(&wait, current);
774                 add_wait_queue(&chip->interrupt_sleep, &wait);
775                 atomic_inc(&chip->interrupt_sleep_count);
776                 schedule_timeout_uninterruptible(msecs_to_jiffies(50));
777                 remove_wait_queue(&chip->interrupt_sleep, &wait);
778         }
779 }
780
781 static irqreturn_t snd_ymfpci_interrupt(int irq, void *dev_id)
782 {
783         struct snd_ymfpci *chip = dev_id;
784         u32 status, nvoice, mode;
785         struct snd_ymfpci_voice *voice;
786
787         status = snd_ymfpci_readl(chip, YDSXGR_STATUS);
788         if (status & 0x80000000) {
789                 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
790                 spin_lock(&chip->voice_lock);
791                 for (nvoice = 0; nvoice < YDSXG_PLAYBACK_VOICES; nvoice++) {
792                         voice = &chip->voices[nvoice];
793                         if (voice->interrupt)
794                                 voice->interrupt(chip, voice);
795                 }
796                 for (nvoice = 0; nvoice < YDSXG_CAPTURE_VOICES; nvoice++) {
797                         if (chip->capture_substream[nvoice])
798                                 snd_ymfpci_pcm_capture_interrupt(chip->capture_substream[nvoice]);
799                 }
800 #if 0
801                 for (nvoice = 0; nvoice < YDSXG_EFFECT_VOICES; nvoice++) {
802                         if (chip->effect_substream[nvoice])
803                                 snd_ymfpci_pcm_effect_interrupt(chip->effect_substream[nvoice]);
804                 }
805 #endif
806                 spin_unlock(&chip->voice_lock);
807                 spin_lock(&chip->reg_lock);
808                 snd_ymfpci_writel(chip, YDSXGR_STATUS, 0x80000000);
809                 mode = snd_ymfpci_readl(chip, YDSXGR_MODE) | 2;
810                 snd_ymfpci_writel(chip, YDSXGR_MODE, mode);
811                 spin_unlock(&chip->reg_lock);
812
813                 if (atomic_read(&chip->interrupt_sleep_count)) {
814                         atomic_set(&chip->interrupt_sleep_count, 0);
815                         wake_up(&chip->interrupt_sleep);
816                 }
817         }
818
819         status = snd_ymfpci_readw(chip, YDSXGR_INTFLAG);
820         if (status & 1) {
821                 if (chip->timer)
822                         snd_timer_interrupt(chip->timer, chip->timer->sticks);
823         }
824         snd_ymfpci_writew(chip, YDSXGR_INTFLAG, status);
825
826         if (chip->rawmidi)
827                 snd_mpu401_uart_interrupt(irq, chip->rawmidi->private_data);
828         return IRQ_HANDLED;
829 }
830
831 static struct snd_pcm_hardware snd_ymfpci_playback =
832 {
833         .info =                 (SNDRV_PCM_INFO_MMAP |
834                                  SNDRV_PCM_INFO_MMAP_VALID | 
835                                  SNDRV_PCM_INFO_INTERLEAVED |
836                                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
837                                  SNDRV_PCM_INFO_PAUSE |
838                                  SNDRV_PCM_INFO_RESUME),
839         .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
840         .rates =                SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
841         .rate_min =             8000,
842         .rate_max =             48000,
843         .channels_min =         1,
844         .channels_max =         2,
845         .buffer_bytes_max =     256 * 1024, /* FIXME: enough? */
846         .period_bytes_min =     64,
847         .period_bytes_max =     256 * 1024, /* FIXME: enough? */
848         .periods_min =          3,
849         .periods_max =          1024,
850         .fifo_size =            0,
851 };
852
853 static struct snd_pcm_hardware snd_ymfpci_capture =
854 {
855         .info =                 (SNDRV_PCM_INFO_MMAP |
856                                  SNDRV_PCM_INFO_MMAP_VALID |
857                                  SNDRV_PCM_INFO_INTERLEAVED |
858                                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
859                                  SNDRV_PCM_INFO_PAUSE |
860                                  SNDRV_PCM_INFO_RESUME),
861         .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
862         .rates =                SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
863         .rate_min =             8000,
864         .rate_max =             48000,
865         .channels_min =         1,
866         .channels_max =         2,
867         .buffer_bytes_max =     256 * 1024, /* FIXME: enough? */
868         .period_bytes_min =     64,
869         .period_bytes_max =     256 * 1024, /* FIXME: enough? */
870         .periods_min =          3,
871         .periods_max =          1024,
872         .fifo_size =            0,
873 };
874
875 static void snd_ymfpci_pcm_free_substream(struct snd_pcm_runtime *runtime)
876 {
877         kfree(runtime->private_data);
878 }
879
880 static int snd_ymfpci_playback_open_1(struct snd_pcm_substream *substream)
881 {
882         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
883         struct snd_pcm_runtime *runtime = substream->runtime;
884         struct snd_ymfpci_pcm *ypcm;
885
886         ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
887         if (ypcm == NULL)
888                 return -ENOMEM;
889         ypcm->chip = chip;
890         ypcm->type = PLAYBACK_VOICE;
891         ypcm->substream = substream;
892         runtime->hw = snd_ymfpci_playback;
893         runtime->private_data = ypcm;
894         runtime->private_free = snd_ymfpci_pcm_free_substream;
895         /* FIXME? True value is 256/48 = 5.33333 ms */
896         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 5333, UINT_MAX);
897         return 0;
898 }
899
900 /* call with spinlock held */
901 static void ymfpci_open_extension(struct snd_ymfpci *chip)
902 {
903         if (! chip->rear_opened) {
904                 if (! chip->spdif_opened) /* set AC3 */
905                         snd_ymfpci_writel(chip, YDSXGR_MODE,
906                                           snd_ymfpci_readl(chip, YDSXGR_MODE) | (1 << 30));
907                 /* enable second codec (4CHEN) */
908                 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
909                                   (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) | 0x0010);
910         }
911 }
912
913 /* call with spinlock held */
914 static void ymfpci_close_extension(struct snd_ymfpci *chip)
915 {
916         if (! chip->rear_opened) {
917                 if (! chip->spdif_opened)
918                         snd_ymfpci_writel(chip, YDSXGR_MODE,
919                                           snd_ymfpci_readl(chip, YDSXGR_MODE) & ~(1 << 30));
920                 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
921                                   (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) & ~0x0010);
922         }
923 }
924
925 static int snd_ymfpci_playback_open(struct snd_pcm_substream *substream)
926 {
927         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
928         struct snd_pcm_runtime *runtime = substream->runtime;
929         struct snd_ymfpci_pcm *ypcm;
930         int err;
931         
932         if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
933                 return err;
934         ypcm = runtime->private_data;
935         ypcm->output_front = 1;
936         ypcm->output_rear = chip->mode_dup4ch ? 1 : 0;
937         ypcm->swap_rear = 0;
938         spin_lock_irq(&chip->reg_lock);
939         if (ypcm->output_rear) {
940                 ymfpci_open_extension(chip);
941                 chip->rear_opened++;
942         }
943         spin_unlock_irq(&chip->reg_lock);
944         return 0;
945 }
946
947 static int snd_ymfpci_playback_spdif_open(struct snd_pcm_substream *substream)
948 {
949         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
950         struct snd_pcm_runtime *runtime = substream->runtime;
951         struct snd_ymfpci_pcm *ypcm;
952         int err;
953         
954         if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
955                 return err;
956         ypcm = runtime->private_data;
957         ypcm->output_front = 0;
958         ypcm->output_rear = 1;
959         ypcm->swap_rear = 1;
960         spin_lock_irq(&chip->reg_lock);
961         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
962                           snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) | 2);
963         ymfpci_open_extension(chip);
964         chip->spdif_pcm_bits = chip->spdif_bits;
965         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
966         chip->spdif_opened++;
967         spin_unlock_irq(&chip->reg_lock);
968
969         chip->spdif_pcm_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
970         snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
971                        SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
972         return 0;
973 }
974
975 static int snd_ymfpci_playback_4ch_open(struct snd_pcm_substream *substream)
976 {
977         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
978         struct snd_pcm_runtime *runtime = substream->runtime;
979         struct snd_ymfpci_pcm *ypcm;
980         int err;
981         
982         if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
983                 return err;
984         ypcm = runtime->private_data;
985         ypcm->output_front = 0;
986         ypcm->output_rear = 1;
987         ypcm->swap_rear = 0;
988         spin_lock_irq(&chip->reg_lock);
989         ymfpci_open_extension(chip);
990         chip->rear_opened++;
991         spin_unlock_irq(&chip->reg_lock);
992         return 0;
993 }
994
995 static int snd_ymfpci_capture_open(struct snd_pcm_substream *substream,
996                                    u32 capture_bank_number)
997 {
998         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
999         struct snd_pcm_runtime *runtime = substream->runtime;
1000         struct snd_ymfpci_pcm *ypcm;
1001
1002         ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
1003         if (ypcm == NULL)
1004                 return -ENOMEM;
1005         ypcm->chip = chip;
1006         ypcm->type = capture_bank_number + CAPTURE_REC;
1007         ypcm->substream = substream;    
1008         ypcm->capture_bank_number = capture_bank_number;
1009         chip->capture_substream[capture_bank_number] = substream;
1010         runtime->hw = snd_ymfpci_capture;
1011         /* FIXME? True value is 256/48 = 5.33333 ms */
1012         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 5333, UINT_MAX);
1013         runtime->private_data = ypcm;
1014         runtime->private_free = snd_ymfpci_pcm_free_substream;
1015         snd_ymfpci_hw_start(chip);
1016         return 0;
1017 }
1018
1019 static int snd_ymfpci_capture_rec_open(struct snd_pcm_substream *substream)
1020 {
1021         return snd_ymfpci_capture_open(substream, 0);
1022 }
1023
1024 static int snd_ymfpci_capture_ac97_open(struct snd_pcm_substream *substream)
1025 {
1026         return snd_ymfpci_capture_open(substream, 1);
1027 }
1028
1029 static int snd_ymfpci_playback_close_1(struct snd_pcm_substream *substream)
1030 {
1031         return 0;
1032 }
1033
1034 static int snd_ymfpci_playback_close(struct snd_pcm_substream *substream)
1035 {
1036         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1037         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1038
1039         spin_lock_irq(&chip->reg_lock);
1040         if (ypcm->output_rear && chip->rear_opened > 0) {
1041                 chip->rear_opened--;
1042                 ymfpci_close_extension(chip);
1043         }
1044         spin_unlock_irq(&chip->reg_lock);
1045         return snd_ymfpci_playback_close_1(substream);
1046 }
1047
1048 static int snd_ymfpci_playback_spdif_close(struct snd_pcm_substream *substream)
1049 {
1050         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1051
1052         spin_lock_irq(&chip->reg_lock);
1053         chip->spdif_opened = 0;
1054         ymfpci_close_extension(chip);
1055         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
1056                           snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & ~2);
1057         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1058         spin_unlock_irq(&chip->reg_lock);
1059         chip->spdif_pcm_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1060         snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
1061                        SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
1062         return snd_ymfpci_playback_close_1(substream);
1063 }
1064
1065 static int snd_ymfpci_playback_4ch_close(struct snd_pcm_substream *substream)
1066 {
1067         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1068
1069         spin_lock_irq(&chip->reg_lock);
1070         if (chip->rear_opened > 0) {
1071                 chip->rear_opened--;
1072                 ymfpci_close_extension(chip);
1073         }
1074         spin_unlock_irq(&chip->reg_lock);
1075         return snd_ymfpci_playback_close_1(substream);
1076 }
1077
1078 static int snd_ymfpci_capture_close(struct snd_pcm_substream *substream)
1079 {
1080         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1081         struct snd_pcm_runtime *runtime = substream->runtime;
1082         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
1083
1084         if (ypcm != NULL) {
1085                 chip->capture_substream[ypcm->capture_bank_number] = NULL;
1086                 snd_ymfpci_hw_stop(chip);
1087         }
1088         return 0;
1089 }
1090
1091 static struct snd_pcm_ops snd_ymfpci_playback_ops = {
1092         .open =                 snd_ymfpci_playback_open,
1093         .close =                snd_ymfpci_playback_close,
1094         .ioctl =                snd_pcm_lib_ioctl,
1095         .hw_params =            snd_ymfpci_playback_hw_params,
1096         .hw_free =              snd_ymfpci_playback_hw_free,
1097         .prepare =              snd_ymfpci_playback_prepare,
1098         .trigger =              snd_ymfpci_playback_trigger,
1099         .pointer =              snd_ymfpci_playback_pointer,
1100 };
1101
1102 static struct snd_pcm_ops snd_ymfpci_capture_rec_ops = {
1103         .open =                 snd_ymfpci_capture_rec_open,
1104         .close =                snd_ymfpci_capture_close,
1105         .ioctl =                snd_pcm_lib_ioctl,
1106         .hw_params =            snd_ymfpci_capture_hw_params,
1107         .hw_free =              snd_ymfpci_capture_hw_free,
1108         .prepare =              snd_ymfpci_capture_prepare,
1109         .trigger =              snd_ymfpci_capture_trigger,
1110         .pointer =              snd_ymfpci_capture_pointer,
1111 };
1112
1113 int __devinit snd_ymfpci_pcm(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1114 {
1115         struct snd_pcm *pcm;
1116         int err;
1117
1118         if (rpcm)
1119                 *rpcm = NULL;
1120         if ((err = snd_pcm_new(chip->card, "YMFPCI", device, 32, 1, &pcm)) < 0)
1121                 return err;
1122         pcm->private_data = chip;
1123
1124         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_ops);
1125         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_rec_ops);
1126
1127         /* global setup */
1128         pcm->info_flags = 0;
1129         strcpy(pcm->name, "YMFPCI");
1130         chip->pcm = pcm;
1131
1132         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1133                                               snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1134
1135         if (rpcm)
1136                 *rpcm = pcm;
1137         return 0;
1138 }
1139
1140 static struct snd_pcm_ops snd_ymfpci_capture_ac97_ops = {
1141         .open =                 snd_ymfpci_capture_ac97_open,
1142         .close =                snd_ymfpci_capture_close,
1143         .ioctl =                snd_pcm_lib_ioctl,
1144         .hw_params =            snd_ymfpci_capture_hw_params,
1145         .hw_free =              snd_ymfpci_capture_hw_free,
1146         .prepare =              snd_ymfpci_capture_prepare,
1147         .trigger =              snd_ymfpci_capture_trigger,
1148         .pointer =              snd_ymfpci_capture_pointer,
1149 };
1150
1151 int __devinit snd_ymfpci_pcm2(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1152 {
1153         struct snd_pcm *pcm;
1154         int err;
1155
1156         if (rpcm)
1157                 *rpcm = NULL;
1158         if ((err = snd_pcm_new(chip->card, "YMFPCI - PCM2", device, 0, 1, &pcm)) < 0)
1159                 return err;
1160         pcm->private_data = chip;
1161
1162         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_ac97_ops);
1163
1164         /* global setup */
1165         pcm->info_flags = 0;
1166         sprintf(pcm->name, "YMFPCI - %s",
1167                 chip->device_id == PCI_DEVICE_ID_YAMAHA_754 ? "Direct Recording" : "AC'97");
1168         chip->pcm2 = pcm;
1169
1170         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1171                                               snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1172
1173         if (rpcm)
1174                 *rpcm = pcm;
1175         return 0;
1176 }
1177
1178 static struct snd_pcm_ops snd_ymfpci_playback_spdif_ops = {
1179         .open =                 snd_ymfpci_playback_spdif_open,
1180         .close =                snd_ymfpci_playback_spdif_close,
1181         .ioctl =                snd_pcm_lib_ioctl,
1182         .hw_params =            snd_ymfpci_playback_hw_params,
1183         .hw_free =              snd_ymfpci_playback_hw_free,
1184         .prepare =              snd_ymfpci_playback_prepare,
1185         .trigger =              snd_ymfpci_playback_trigger,
1186         .pointer =              snd_ymfpci_playback_pointer,
1187 };
1188
1189 int __devinit snd_ymfpci_pcm_spdif(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1190 {
1191         struct snd_pcm *pcm;
1192         int err;
1193
1194         if (rpcm)
1195                 *rpcm = NULL;
1196         if ((err = snd_pcm_new(chip->card, "YMFPCI - IEC958", device, 1, 0, &pcm)) < 0)
1197                 return err;
1198         pcm->private_data = chip;
1199
1200         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_spdif_ops);
1201
1202         /* global setup */
1203         pcm->info_flags = 0;
1204         strcpy(pcm->name, "YMFPCI - IEC958");
1205         chip->pcm_spdif = pcm;
1206
1207         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1208                                               snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1209
1210         if (rpcm)
1211                 *rpcm = pcm;
1212         return 0;
1213 }
1214
1215 static struct snd_pcm_ops snd_ymfpci_playback_4ch_ops = {
1216         .open =                 snd_ymfpci_playback_4ch_open,
1217         .close =                snd_ymfpci_playback_4ch_close,
1218         .ioctl =                snd_pcm_lib_ioctl,
1219         .hw_params =            snd_ymfpci_playback_hw_params,
1220         .hw_free =              snd_ymfpci_playback_hw_free,
1221         .prepare =              snd_ymfpci_playback_prepare,
1222         .trigger =              snd_ymfpci_playback_trigger,
1223         .pointer =              snd_ymfpci_playback_pointer,
1224 };
1225
1226 int __devinit snd_ymfpci_pcm_4ch(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1227 {
1228         struct snd_pcm *pcm;
1229         int err;
1230
1231         if (rpcm)
1232                 *rpcm = NULL;
1233         if ((err = snd_pcm_new(chip->card, "YMFPCI - Rear", device, 1, 0, &pcm)) < 0)
1234                 return err;
1235         pcm->private_data = chip;
1236
1237         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_4ch_ops);
1238
1239         /* global setup */
1240         pcm->info_flags = 0;
1241         strcpy(pcm->name, "YMFPCI - Rear PCM");
1242         chip->pcm_4ch = pcm;
1243
1244         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1245                                               snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1246
1247         if (rpcm)
1248                 *rpcm = pcm;
1249         return 0;
1250 }
1251
1252 static int snd_ymfpci_spdif_default_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1253 {
1254         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1255         uinfo->count = 1;
1256         return 0;
1257 }
1258
1259 static int snd_ymfpci_spdif_default_get(struct snd_kcontrol *kcontrol,
1260                                         struct snd_ctl_elem_value *ucontrol)
1261 {
1262         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1263
1264         spin_lock_irq(&chip->reg_lock);
1265         ucontrol->value.iec958.status[0] = (chip->spdif_bits >> 0) & 0xff;
1266         ucontrol->value.iec958.status[1] = (chip->spdif_bits >> 8) & 0xff;
1267         ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
1268         spin_unlock_irq(&chip->reg_lock);
1269         return 0;
1270 }
1271
1272 static int snd_ymfpci_spdif_default_put(struct snd_kcontrol *kcontrol,
1273                                          struct snd_ctl_elem_value *ucontrol)
1274 {
1275         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1276         unsigned int val;
1277         int change;
1278
1279         val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1280               (ucontrol->value.iec958.status[1] << 8);
1281         spin_lock_irq(&chip->reg_lock);
1282         change = chip->spdif_bits != val;
1283         chip->spdif_bits = val;
1284         if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 1) && chip->pcm_spdif == NULL)
1285                 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1286         spin_unlock_irq(&chip->reg_lock);
1287         return change;
1288 }
1289
1290 static struct snd_kcontrol_new snd_ymfpci_spdif_default __devinitdata =
1291 {
1292         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1293         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1294         .info =         snd_ymfpci_spdif_default_info,
1295         .get =          snd_ymfpci_spdif_default_get,
1296         .put =          snd_ymfpci_spdif_default_put
1297 };
1298
1299 static int snd_ymfpci_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1300 {
1301         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1302         uinfo->count = 1;
1303         return 0;
1304 }
1305
1306 static int snd_ymfpci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1307                                       struct snd_ctl_elem_value *ucontrol)
1308 {
1309         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1310
1311         spin_lock_irq(&chip->reg_lock);
1312         ucontrol->value.iec958.status[0] = 0x3e;
1313         ucontrol->value.iec958.status[1] = 0xff;
1314         spin_unlock_irq(&chip->reg_lock);
1315         return 0;
1316 }
1317
1318 static struct snd_kcontrol_new snd_ymfpci_spdif_mask __devinitdata =
1319 {
1320         .access =       SNDRV_CTL_ELEM_ACCESS_READ,
1321         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1322         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1323         .info =         snd_ymfpci_spdif_mask_info,
1324         .get =          snd_ymfpci_spdif_mask_get,
1325 };
1326
1327 static int snd_ymfpci_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1328 {
1329         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1330         uinfo->count = 1;
1331         return 0;
1332 }
1333
1334 static int snd_ymfpci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1335                                         struct snd_ctl_elem_value *ucontrol)
1336 {
1337         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1338
1339         spin_lock_irq(&chip->reg_lock);
1340         ucontrol->value.iec958.status[0] = (chip->spdif_pcm_bits >> 0) & 0xff;
1341         ucontrol->value.iec958.status[1] = (chip->spdif_pcm_bits >> 8) & 0xff;
1342         ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
1343         spin_unlock_irq(&chip->reg_lock);
1344         return 0;
1345 }
1346
1347 static int snd_ymfpci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1348                                         struct snd_ctl_elem_value *ucontrol)
1349 {
1350         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1351         unsigned int val;
1352         int change;
1353
1354         val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1355               (ucontrol->value.iec958.status[1] << 8);
1356         spin_lock_irq(&chip->reg_lock);
1357         change = chip->spdif_pcm_bits != val;
1358         chip->spdif_pcm_bits = val;
1359         if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 2))
1360                 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
1361         spin_unlock_irq(&chip->reg_lock);
1362         return change;
1363 }
1364
1365 static struct snd_kcontrol_new snd_ymfpci_spdif_stream __devinitdata =
1366 {
1367         .access =       SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1368         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1369         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1370         .info =         snd_ymfpci_spdif_stream_info,
1371         .get =          snd_ymfpci_spdif_stream_get,
1372         .put =          snd_ymfpci_spdif_stream_put
1373 };
1374
1375 static int snd_ymfpci_drec_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info)
1376 {
1377         static char *texts[3] = {"AC'97", "IEC958", "ZV Port"};
1378
1379         info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1380         info->count = 1;
1381         info->value.enumerated.items = 3;
1382         if (info->value.enumerated.item > 2)
1383                 info->value.enumerated.item = 2;
1384         strcpy(info->value.enumerated.name, texts[info->value.enumerated.item]);
1385         return 0;
1386 }
1387
1388 static int snd_ymfpci_drec_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1389 {
1390         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1391         u16 reg;
1392
1393         spin_lock_irq(&chip->reg_lock);
1394         reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1395         spin_unlock_irq(&chip->reg_lock);
1396         if (!(reg & 0x100))
1397                 value->value.enumerated.item[0] = 0;
1398         else
1399                 value->value.enumerated.item[0] = 1 + ((reg & 0x200) != 0);
1400         return 0;
1401 }
1402
1403 static int snd_ymfpci_drec_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1404 {
1405         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1406         u16 reg, old_reg;
1407
1408         spin_lock_irq(&chip->reg_lock);
1409         old_reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1410         if (value->value.enumerated.item[0] == 0)
1411                 reg = old_reg & ~0x100;
1412         else
1413                 reg = (old_reg & ~0x300) | 0x100 | ((value->value.enumerated.item[0] == 2) << 9);
1414         snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, reg);
1415         spin_unlock_irq(&chip->reg_lock);
1416         return reg != old_reg;
1417 }
1418
1419 static struct snd_kcontrol_new snd_ymfpci_drec_source __devinitdata = {
1420         .access =       SNDRV_CTL_ELEM_ACCESS_READWRITE,
1421         .iface =        SNDRV_CTL_ELEM_IFACE_MIXER,
1422         .name =         "Direct Recording Source",
1423         .info =         snd_ymfpci_drec_source_info,
1424         .get =          snd_ymfpci_drec_source_get,
1425         .put =          snd_ymfpci_drec_source_put
1426 };
1427
1428 /*
1429  *  Mixer controls
1430  */
1431
1432 #define YMFPCI_SINGLE(xname, xindex, reg, shift) \
1433 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1434   .info = snd_ymfpci_info_single, \
1435   .get = snd_ymfpci_get_single, .put = snd_ymfpci_put_single, \
1436   .private_value = ((reg) | ((shift) << 16)) }
1437
1438 #define snd_ymfpci_info_single          snd_ctl_boolean_mono_info
1439
1440 static int snd_ymfpci_get_single(struct snd_kcontrol *kcontrol,
1441                                  struct snd_ctl_elem_value *ucontrol)
1442 {
1443         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1444         int reg = kcontrol->private_value & 0xffff;
1445         unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1446         unsigned int mask = 1;
1447         
1448         switch (reg) {
1449         case YDSXGR_SPDIFOUTCTRL: break;
1450         case YDSXGR_SPDIFINCTRL: break;
1451         default: return -EINVAL;
1452         }
1453         ucontrol->value.integer.value[0] =
1454                 (snd_ymfpci_readl(chip, reg) >> shift) & mask;
1455         return 0;
1456 }
1457
1458 static int snd_ymfpci_put_single(struct snd_kcontrol *kcontrol,
1459                                  struct snd_ctl_elem_value *ucontrol)
1460 {
1461         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1462         int reg = kcontrol->private_value & 0xffff;
1463         unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1464         unsigned int mask = 1;
1465         int change;
1466         unsigned int val, oval;
1467         
1468         switch (reg) {
1469         case YDSXGR_SPDIFOUTCTRL: break;
1470         case YDSXGR_SPDIFINCTRL: break;
1471         default: return -EINVAL;
1472         }
1473         val = (ucontrol->value.integer.value[0] & mask);
1474         val <<= shift;
1475         spin_lock_irq(&chip->reg_lock);
1476         oval = snd_ymfpci_readl(chip, reg);
1477         val = (oval & ~(mask << shift)) | val;
1478         change = val != oval;
1479         snd_ymfpci_writel(chip, reg, val);
1480         spin_unlock_irq(&chip->reg_lock);
1481         return change;
1482 }
1483
1484 static const DECLARE_TLV_DB_LINEAR(db_scale_native, TLV_DB_GAIN_MUTE, 0);
1485
1486 #define YMFPCI_DOUBLE(xname, xindex, reg) \
1487 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1488   .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
1489   .info = snd_ymfpci_info_double, \
1490   .get = snd_ymfpci_get_double, .put = snd_ymfpci_put_double, \
1491   .private_value = reg, \
1492   .tlv = { .p = db_scale_native } }
1493
1494 static int snd_ymfpci_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1495 {
1496         unsigned int reg = kcontrol->private_value;
1497
1498         if (reg < 0x80 || reg >= 0xc0)
1499                 return -EINVAL;
1500         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1501         uinfo->count = 2;
1502         uinfo->value.integer.min = 0;
1503         uinfo->value.integer.max = 16383;
1504         return 0;
1505 }
1506
1507 static int snd_ymfpci_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1508 {
1509         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1510         unsigned int reg = kcontrol->private_value;
1511         unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1512         unsigned int val;
1513         
1514         if (reg < 0x80 || reg >= 0xc0)
1515                 return -EINVAL;
1516         spin_lock_irq(&chip->reg_lock);
1517         val = snd_ymfpci_readl(chip, reg);
1518         spin_unlock_irq(&chip->reg_lock);
1519         ucontrol->value.integer.value[0] = (val >> shift_left) & mask;
1520         ucontrol->value.integer.value[1] = (val >> shift_right) & mask;
1521         return 0;
1522 }
1523
1524 static int snd_ymfpci_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1525 {
1526         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1527         unsigned int reg = kcontrol->private_value;
1528         unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1529         int change;
1530         unsigned int val1, val2, oval;
1531         
1532         if (reg < 0x80 || reg >= 0xc0)
1533                 return -EINVAL;
1534         val1 = ucontrol->value.integer.value[0] & mask;
1535         val2 = ucontrol->value.integer.value[1] & mask;
1536         val1 <<= shift_left;
1537         val2 <<= shift_right;
1538         spin_lock_irq(&chip->reg_lock);
1539         oval = snd_ymfpci_readl(chip, reg);
1540         val1 = (oval & ~((mask << shift_left) | (mask << shift_right))) | val1 | val2;
1541         change = val1 != oval;
1542         snd_ymfpci_writel(chip, reg, val1);
1543         spin_unlock_irq(&chip->reg_lock);
1544         return change;
1545 }
1546
1547 static int snd_ymfpci_put_nativedacvol(struct snd_kcontrol *kcontrol,
1548                                        struct snd_ctl_elem_value *ucontrol)
1549 {
1550         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1551         unsigned int reg = YDSXGR_NATIVEDACOUTVOL;
1552         unsigned int reg2 = YDSXGR_BUF441OUTVOL;
1553         int change;
1554         unsigned int value, oval;
1555         
1556         value = ucontrol->value.integer.value[0] & 0x3fff;
1557         value |= (ucontrol->value.integer.value[1] & 0x3fff) << 16;
1558         spin_lock_irq(&chip->reg_lock);
1559         oval = snd_ymfpci_readl(chip, reg);
1560         change = value != oval;
1561         snd_ymfpci_writel(chip, reg, value);
1562         snd_ymfpci_writel(chip, reg2, value);
1563         spin_unlock_irq(&chip->reg_lock);
1564         return change;
1565 }
1566
1567 /*
1568  * 4ch duplication
1569  */
1570 #define snd_ymfpci_info_dup4ch          snd_ctl_boolean_mono_info
1571
1572 static int snd_ymfpci_get_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1573 {
1574         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1575         ucontrol->value.integer.value[0] = chip->mode_dup4ch;
1576         return 0;
1577 }
1578
1579 static int snd_ymfpci_put_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1580 {
1581         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1582         int change;
1583         change = (ucontrol->value.integer.value[0] != chip->mode_dup4ch);
1584         if (change)
1585                 chip->mode_dup4ch = !!ucontrol->value.integer.value[0];
1586         return change;
1587 }
1588
1589
1590 static struct snd_kcontrol_new snd_ymfpci_controls[] __devinitdata = {
1591 {
1592         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1593         .name = "Wave Playback Volume",
1594         .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
1595                   SNDRV_CTL_ELEM_ACCESS_TLV_READ,
1596         .info = snd_ymfpci_info_double,
1597         .get = snd_ymfpci_get_double,
1598         .put = snd_ymfpci_put_nativedacvol,
1599         .private_value = YDSXGR_NATIVEDACOUTVOL,
1600         .tlv = { .p = db_scale_native },
1601 },
1602 YMFPCI_DOUBLE("Wave Capture Volume", 0, YDSXGR_NATIVEDACLOOPVOL),
1603 YMFPCI_DOUBLE("Digital Capture Volume", 0, YDSXGR_NATIVEDACINVOL),
1604 YMFPCI_DOUBLE("Digital Capture Volume", 1, YDSXGR_NATIVEADCINVOL),
1605 YMFPCI_DOUBLE("ADC Playback Volume", 0, YDSXGR_PRIADCOUTVOL),
1606 YMFPCI_DOUBLE("ADC Capture Volume", 0, YDSXGR_PRIADCLOOPVOL),
1607 YMFPCI_DOUBLE("ADC Playback Volume", 1, YDSXGR_SECADCOUTVOL),
1608 YMFPCI_DOUBLE("ADC Capture Volume", 1, YDSXGR_SECADCLOOPVOL),
1609 YMFPCI_DOUBLE("FM Legacy Volume", 0, YDSXGR_LEGACYOUTVOL),
1610 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ", PLAYBACK,VOLUME), 0, YDSXGR_ZVOUTVOL),
1611 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("", CAPTURE,VOLUME), 0, YDSXGR_ZVLOOPVOL),
1612 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ",PLAYBACK,VOLUME), 1, YDSXGR_SPDIFOUTVOL),
1613 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,VOLUME), 1, YDSXGR_SPDIFLOOPVOL),
1614 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), 0, YDSXGR_SPDIFOUTCTRL, 0),
1615 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), 0, YDSXGR_SPDIFINCTRL, 0),
1616 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("Loop",NONE,NONE), 0, YDSXGR_SPDIFINCTRL, 4),
1617 {
1618         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1619         .name = "4ch Duplication",
1620         .info = snd_ymfpci_info_dup4ch,
1621         .get = snd_ymfpci_get_dup4ch,
1622         .put = snd_ymfpci_put_dup4ch,
1623 },
1624 };
1625
1626
1627 /*
1628  * GPIO
1629  */
1630
1631 static int snd_ymfpci_get_gpio_out(struct snd_ymfpci *chip, int pin)
1632 {
1633         u16 reg, mode;
1634         unsigned long flags;
1635
1636         spin_lock_irqsave(&chip->reg_lock, flags);
1637         reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1638         reg &= ~(1 << (pin + 8));
1639         reg |= (1 << pin);
1640         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1641         /* set the level mode for input line */
1642         mode = snd_ymfpci_readw(chip, YDSXGR_GPIOTYPECONFIG);
1643         mode &= ~(3 << (pin * 2));
1644         snd_ymfpci_writew(chip, YDSXGR_GPIOTYPECONFIG, mode);
1645         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1646         mode = snd_ymfpci_readw(chip, YDSXGR_GPIOINSTATUS);
1647         spin_unlock_irqrestore(&chip->reg_lock, flags);
1648         return (mode >> pin) & 1;
1649 }
1650
1651 static int snd_ymfpci_set_gpio_out(struct snd_ymfpci *chip, int pin, int enable)
1652 {
1653         u16 reg;
1654         unsigned long flags;
1655
1656         spin_lock_irqsave(&chip->reg_lock, flags);
1657         reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1658         reg &= ~(1 << pin);
1659         reg &= ~(1 << (pin + 8));
1660         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1661         snd_ymfpci_writew(chip, YDSXGR_GPIOOUTCTRL, enable << pin);
1662         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1663         spin_unlock_irqrestore(&chip->reg_lock, flags);
1664
1665         return 0;
1666 }
1667
1668 #define snd_ymfpci_gpio_sw_info         snd_ctl_boolean_mono_info
1669
1670 static int snd_ymfpci_gpio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1671 {
1672         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1673         int pin = (int)kcontrol->private_value;
1674         ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1675         return 0;
1676 }
1677
1678 static int snd_ymfpci_gpio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1679 {
1680         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1681         int pin = (int)kcontrol->private_value;
1682
1683         if (snd_ymfpci_get_gpio_out(chip, pin) != ucontrol->value.integer.value[0]) {
1684                 snd_ymfpci_set_gpio_out(chip, pin, !!ucontrol->value.integer.value[0]);
1685                 ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1686                 return 1;
1687         }
1688         return 0;
1689 }
1690
1691 static struct snd_kcontrol_new snd_ymfpci_rear_shared __devinitdata = {
1692         .name = "Shared Rear/Line-In Switch",
1693         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1694         .info = snd_ymfpci_gpio_sw_info,
1695         .get = snd_ymfpci_gpio_sw_get,
1696         .put = snd_ymfpci_gpio_sw_put,
1697         .private_value = 2,
1698 };
1699
1700 /*
1701  * PCM voice volume
1702  */
1703
1704 static int snd_ymfpci_pcm_vol_info(struct snd_kcontrol *kcontrol,
1705                                    struct snd_ctl_elem_info *uinfo)
1706 {
1707         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1708         uinfo->count = 2;
1709         uinfo->value.integer.min = 0;
1710         uinfo->value.integer.max = 0x8000;
1711         return 0;
1712 }
1713
1714 static int snd_ymfpci_pcm_vol_get(struct snd_kcontrol *kcontrol,
1715                                   struct snd_ctl_elem_value *ucontrol)
1716 {
1717         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1718         unsigned int subs = kcontrol->id.subdevice;
1719
1720         ucontrol->value.integer.value[0] = chip->pcm_mixer[subs].left;
1721         ucontrol->value.integer.value[1] = chip->pcm_mixer[subs].right;
1722         return 0;
1723 }
1724
1725 static int snd_ymfpci_pcm_vol_put(struct snd_kcontrol *kcontrol,
1726                                   struct snd_ctl_elem_value *ucontrol)
1727 {
1728         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1729         unsigned int subs = kcontrol->id.subdevice;
1730         struct snd_pcm_substream *substream;
1731         unsigned long flags;
1732
1733         if (ucontrol->value.integer.value[0] != chip->pcm_mixer[subs].left ||
1734             ucontrol->value.integer.value[1] != chip->pcm_mixer[subs].right) {
1735                 chip->pcm_mixer[subs].left = ucontrol->value.integer.value[0];
1736                 chip->pcm_mixer[subs].right = ucontrol->value.integer.value[1];
1737                 if (chip->pcm_mixer[subs].left > 0x8000)
1738                         chip->pcm_mixer[subs].left = 0x8000;
1739                 if (chip->pcm_mixer[subs].right > 0x8000)
1740                         chip->pcm_mixer[subs].right = 0x8000;
1741
1742                 substream = (struct snd_pcm_substream *)kcontrol->private_value;
1743                 spin_lock_irqsave(&chip->voice_lock, flags);
1744                 if (substream->runtime && substream->runtime->private_data) {
1745                         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1746                         if (!ypcm->use_441_slot)
1747                                 ypcm->update_pcm_vol = 2;
1748                 }
1749                 spin_unlock_irqrestore(&chip->voice_lock, flags);
1750                 return 1;
1751         }
1752         return 0;
1753 }
1754
1755 static struct snd_kcontrol_new snd_ymfpci_pcm_volume __devinitdata = {
1756         .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1757         .name = "PCM Playback Volume",
1758         .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
1759                 SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1760         .info = snd_ymfpci_pcm_vol_info,
1761         .get = snd_ymfpci_pcm_vol_get,
1762         .put = snd_ymfpci_pcm_vol_put,
1763 };
1764
1765
1766 /*
1767  *  Mixer routines
1768  */
1769
1770 static void snd_ymfpci_mixer_free_ac97_bus(struct snd_ac97_bus *bus)
1771 {
1772         struct snd_ymfpci *chip = bus->private_data;
1773         chip->ac97_bus = NULL;
1774 }
1775
1776 static void snd_ymfpci_mixer_free_ac97(struct snd_ac97 *ac97)
1777 {
1778         struct snd_ymfpci *chip = ac97->private_data;
1779         chip->ac97 = NULL;
1780 }
1781
1782 int __devinit snd_ymfpci_mixer(struct snd_ymfpci *chip, int rear_switch)
1783 {
1784         struct snd_ac97_template ac97;
1785         struct snd_kcontrol *kctl;
1786         struct snd_pcm_substream *substream;
1787         unsigned int idx;
1788         int err;
1789         static struct snd_ac97_bus_ops ops = {
1790                 .write = snd_ymfpci_codec_write,
1791                 .read = snd_ymfpci_codec_read,
1792         };
1793
1794         if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0)
1795                 return err;
1796         chip->ac97_bus->private_free = snd_ymfpci_mixer_free_ac97_bus;
1797         chip->ac97_bus->no_vra = 1; /* YMFPCI doesn't need VRA */
1798
1799         memset(&ac97, 0, sizeof(ac97));
1800         ac97.private_data = chip;
1801         ac97.private_free = snd_ymfpci_mixer_free_ac97;
1802         if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0)
1803                 return err;
1804
1805         /* to be sure */
1806         snd_ac97_update_bits(chip->ac97, AC97_EXTENDED_STATUS,
1807                              AC97_EA_VRA|AC97_EA_VRM, 0);
1808
1809         for (idx = 0; idx < ARRAY_SIZE(snd_ymfpci_controls); idx++) {
1810                 if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_controls[idx], chip))) < 0)
1811                         return err;
1812         }
1813
1814         /* add S/PDIF control */
1815         snd_assert(chip->pcm_spdif != NULL, return -EIO);
1816         if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_default, chip))) < 0)
1817                 return err;
1818         kctl->id.device = chip->pcm_spdif->device;
1819         if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_mask, chip))) < 0)
1820                 return err;
1821         kctl->id.device = chip->pcm_spdif->device;
1822         if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_stream, chip))) < 0)
1823                 return err;
1824         kctl->id.device = chip->pcm_spdif->device;
1825         chip->spdif_pcm_ctl = kctl;
1826
1827         /* direct recording source */
1828         if (chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
1829             (err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_drec_source, chip))) < 0)
1830                 return err;
1831
1832         /*
1833          * shared rear/line-in
1834          */
1835         if (rear_switch) {
1836                 if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_rear_shared, chip))) < 0)
1837                         return err;
1838         }
1839
1840         /* per-voice volume */
1841         substream = chip->pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream;
1842         for (idx = 0; idx < 32; ++idx) {
1843                 kctl = snd_ctl_new1(&snd_ymfpci_pcm_volume, chip);
1844                 if (!kctl)
1845                         return -ENOMEM;
1846                 kctl->id.device = chip->pcm->device;
1847                 kctl->id.subdevice = idx;
1848                 kctl->private_value = (unsigned long)substream;
1849                 if ((err = snd_ctl_add(chip->card, kctl)) < 0)
1850                         return err;
1851                 chip->pcm_mixer[idx].left = 0x8000;
1852                 chip->pcm_mixer[idx].right = 0x8000;
1853                 chip->pcm_mixer[idx].ctl = kctl;
1854                 substream = substream->next;
1855         }
1856
1857         return 0;
1858 }
1859
1860
1861 /*
1862  * timer
1863  */
1864
1865 static int snd_ymfpci_timer_start(struct snd_timer *timer)
1866 {
1867         struct snd_ymfpci *chip;
1868         unsigned long flags;
1869         unsigned int count;
1870
1871         chip = snd_timer_chip(timer);
1872         count = (timer->sticks << 1) - 1;
1873         spin_lock_irqsave(&chip->reg_lock, flags);
1874         snd_ymfpci_writew(chip, YDSXGR_TIMERCOUNT, count);
1875         snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x03);
1876         spin_unlock_irqrestore(&chip->reg_lock, flags);
1877         return 0;
1878 }
1879
1880 static int snd_ymfpci_timer_stop(struct snd_timer *timer)
1881 {
1882         struct snd_ymfpci *chip;
1883         unsigned long flags;
1884
1885         chip = snd_timer_chip(timer);
1886         spin_lock_irqsave(&chip->reg_lock, flags);
1887         snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x00);
1888         spin_unlock_irqrestore(&chip->reg_lock, flags);
1889         return 0;
1890 }
1891
1892 static int snd_ymfpci_timer_precise_resolution(struct snd_timer *timer,
1893                                                unsigned long *num, unsigned long *den)
1894 {
1895         *num = 1;
1896         *den = 48000;
1897         return 0;
1898 }
1899
1900 static struct snd_timer_hardware snd_ymfpci_timer_hw = {
1901         .flags = SNDRV_TIMER_HW_AUTO,
1902         .resolution = 20833, /* 1/fs = 20.8333...us */
1903         .ticks = 0x8000,
1904         .start = snd_ymfpci_timer_start,
1905         .stop = snd_ymfpci_timer_stop,
1906         .precise_resolution = snd_ymfpci_timer_precise_resolution,
1907 };
1908
1909 int __devinit snd_ymfpci_timer(struct snd_ymfpci *chip, int device)
1910 {
1911         struct snd_timer *timer = NULL;
1912         struct snd_timer_id tid;
1913         int err;
1914
1915         tid.dev_class = SNDRV_TIMER_CLASS_CARD;
1916         tid.dev_sclass = SNDRV_TIMER_SCLASS_NONE;
1917         tid.card = chip->card->number;
1918         tid.device = device;
1919         tid.subdevice = 0;
1920         if ((err = snd_timer_new(chip->card, "YMFPCI", &tid, &timer)) >= 0) {
1921                 strcpy(timer->name, "YMFPCI timer");
1922                 timer->private_data = chip;
1923                 timer->hw = snd_ymfpci_timer_hw;
1924         }
1925         chip->timer = timer;
1926         return err;
1927 }
1928
1929
1930 /*
1931  *  proc interface
1932  */
1933
1934 static void snd_ymfpci_proc_read(struct snd_info_entry *entry, 
1935                                  struct snd_info_buffer *buffer)
1936 {
1937         struct snd_ymfpci *chip = entry->private_data;
1938         int i;
1939         
1940         snd_iprintf(buffer, "YMFPCI\n\n");
1941         for (i = 0; i <= YDSXGR_WORKBASE; i += 4)
1942                 snd_iprintf(buffer, "%04x: %04x\n", i, snd_ymfpci_readl(chip, i));
1943 }
1944
1945 static int __devinit snd_ymfpci_proc_init(struct snd_card *card, struct snd_ymfpci *chip)
1946 {
1947         struct snd_info_entry *entry;
1948         
1949         if (! snd_card_proc_new(card, "ymfpci", &entry))
1950                 snd_info_set_text_ops(entry, chip, snd_ymfpci_proc_read);
1951         return 0;
1952 }
1953
1954 /*
1955  *  initialization routines
1956  */
1957
1958 static void snd_ymfpci_aclink_reset(struct pci_dev * pci)
1959 {
1960         u8 cmd;
1961
1962         pci_read_config_byte(pci, PCIR_DSXG_CTRL, &cmd);
1963 #if 0 // force to reset
1964         if (cmd & 0x03) {
1965 #endif
1966                 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
1967                 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd | 0x03);
1968                 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
1969                 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL1, 0);
1970                 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL2, 0);
1971 #if 0
1972         }
1973 #endif
1974 }
1975
1976 static void snd_ymfpci_enable_dsp(struct snd_ymfpci *chip)
1977 {
1978         snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000001);
1979 }
1980
1981 static void snd_ymfpci_disable_dsp(struct snd_ymfpci *chip)
1982 {
1983         u32 val;
1984         int timeout = 1000;
1985
1986         val = snd_ymfpci_readl(chip, YDSXGR_CONFIG);
1987         if (val)
1988                 snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000000);
1989         while (timeout-- > 0) {
1990                 val = snd_ymfpci_readl(chip, YDSXGR_STATUS);
1991                 if ((val & 0x00000002) == 0)
1992                         break;
1993         }
1994 }
1995
1996 #ifdef CONFIG_SND_YMFPCI_FIRMWARE_IN_KERNEL
1997
1998 #include "ymfpci_image.h"
1999
2000 static struct firmware snd_ymfpci_dsp_microcode = {
2001         .size = YDSXG_DSPLENGTH,
2002         .data = (u8 *)DspInst,
2003 };
2004 static struct firmware snd_ymfpci_controller_microcode = {
2005         .size = YDSXG_CTRLLENGTH,
2006         .data = (u8 *)CntrlInst,
2007 };
2008 static struct firmware snd_ymfpci_controller_1e_microcode = {
2009         .size = YDSXG_CTRLLENGTH,
2010         .data = (u8 *)CntrlInst1E,
2011 };
2012 #endif
2013
2014 #ifdef CONFIG_SND_YMFPCI_FIRMWARE_IN_KERNEL
2015 static int snd_ymfpci_request_firmware(struct snd_ymfpci *chip)
2016 {
2017         chip->dsp_microcode = &snd_ymfpci_dsp_microcode;
2018         if (chip->device_id == PCI_DEVICE_ID_YAMAHA_724F ||
2019             chip->device_id == PCI_DEVICE_ID_YAMAHA_740C ||
2020             chip->device_id == PCI_DEVICE_ID_YAMAHA_744 ||
2021             chip->device_id == PCI_DEVICE_ID_YAMAHA_754)
2022                 chip->controller_microcode =
2023                         &snd_ymfpci_controller_1e_microcode;
2024         else
2025                 chip->controller_microcode =
2026                         &snd_ymfpci_controller_microcode;
2027         return 0;
2028 }
2029
2030 #else /* use fw_loader */
2031
2032 #ifdef __LITTLE_ENDIAN
2033 static inline void snd_ymfpci_convert_from_le(const struct firmware *fw) { }
2034 #else
2035 static void snd_ymfpci_convert_from_le(const struct firmware *fw)
2036 {
2037         int i;
2038         u32 *data = (u32 *)fw->data;
2039
2040         for (i = 0; i < fw->size / 4; ++i)
2041                 le32_to_cpus(&data[i]);
2042 }
2043 #endif
2044
2045 static int snd_ymfpci_request_firmware(struct snd_ymfpci *chip)
2046 {
2047         int err, is_1e;
2048         const char *name;
2049
2050         err = request_firmware(&chip->dsp_microcode, "yamaha/ds1_dsp.fw",
2051                                &chip->pci->dev);
2052         if (err >= 0) {
2053                 if (chip->dsp_microcode->size == YDSXG_DSPLENGTH)
2054                         snd_ymfpci_convert_from_le(chip->dsp_microcode);
2055                 else {
2056                         snd_printk(KERN_ERR "DSP microcode has wrong size\n");
2057                         err = -EINVAL;
2058                 }
2059         }
2060         if (err < 0)
2061                 return err;
2062         is_1e = chip->device_id == PCI_DEVICE_ID_YAMAHA_724F ||
2063                 chip->device_id == PCI_DEVICE_ID_YAMAHA_740C ||
2064                 chip->device_id == PCI_DEVICE_ID_YAMAHA_744 ||
2065                 chip->device_id == PCI_DEVICE_ID_YAMAHA_754;
2066         name = is_1e ? "yamaha/ds1e_ctrl.fw" : "yamaha/ds1_ctrl.fw";
2067         err = request_firmware(&chip->controller_microcode, name,
2068                                &chip->pci->dev);
2069         if (err >= 0) {
2070                 if (chip->controller_microcode->size == YDSXG_CTRLLENGTH)
2071                         snd_ymfpci_convert_from_le(chip->controller_microcode);
2072                 else {
2073                         snd_printk(KERN_ERR "controller microcode"
2074                                    " has wrong size\n");
2075                         err = -EINVAL;
2076                 }
2077         }
2078         if (err < 0)
2079                 return err;
2080         return 0;
2081 }
2082
2083 MODULE_FIRMWARE("yamaha/ds1_dsp.fw");
2084 MODULE_FIRMWARE("yamaha/ds1_ctrl.fw");
2085 MODULE_FIRMWARE("yamaha/ds1e_ctrl.fw");
2086
2087 #endif
2088
2089 static void snd_ymfpci_download_image(struct snd_ymfpci *chip)
2090 {
2091         int i;
2092         u16 ctrl;
2093         u32 *inst;
2094
2095         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x00000000);
2096         snd_ymfpci_disable_dsp(chip);
2097         snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00010000);
2098         snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00000000);
2099         snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, 0x00000000);
2100         snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 0x00000000);
2101         snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0x00000000);
2102         snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0x00000000);
2103         snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0x00000000);
2104         ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
2105         snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
2106
2107         /* setup DSP instruction code */
2108         inst = (u32 *)chip->dsp_microcode->data;
2109         for (i = 0; i < YDSXG_DSPLENGTH / 4; i++)
2110                 snd_ymfpci_writel(chip, YDSXGR_DSPINSTRAM + (i << 2), inst[i]);
2111
2112         /* setup control instruction code */
2113         inst = (u32 *)chip->controller_microcode->data;
2114         for (i = 0; i < YDSXG_CTRLLENGTH / 4; i++)
2115                 snd_ymfpci_writel(chip, YDSXGR_CTRLINSTRAM + (i << 2), inst[i]);
2116
2117         snd_ymfpci_enable_dsp(chip);
2118 }
2119
2120 static int __devinit snd_ymfpci_memalloc(struct snd_ymfpci *chip)
2121 {
2122         long size, playback_ctrl_size;
2123         int voice, bank, reg;
2124         u8 *ptr;
2125         dma_addr_t ptr_addr;
2126
2127         playback_ctrl_size = 4 + 4 * YDSXG_PLAYBACK_VOICES;
2128         chip->bank_size_playback = snd_ymfpci_readl(chip, YDSXGR_PLAYCTRLSIZE) << 2;
2129         chip->bank_size_capture = snd_ymfpci_readl(chip, YDSXGR_RECCTRLSIZE) << 2;
2130         chip->bank_size_effect = snd_ymfpci_readl(chip, YDSXGR_EFFCTRLSIZE) << 2;
2131         chip->work_size = YDSXG_DEFAULT_WORK_SIZE;
2132         
2133         size = ALIGN(playback_ctrl_size, 0x100) +
2134                ALIGN(chip->bank_size_playback * 2 * YDSXG_PLAYBACK_VOICES, 0x100) +
2135                ALIGN(chip->bank_size_capture * 2 * YDSXG_CAPTURE_VOICES, 0x100) +
2136                ALIGN(chip->bank_size_effect * 2 * YDSXG_EFFECT_VOICES, 0x100) +
2137                chip->work_size;
2138         /* work_ptr must be aligned to 256 bytes, but it's already
2139            covered with the kernel page allocation mechanism */
2140         if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
2141                                 size, &chip->work_ptr) < 0) 
2142                 return -ENOMEM;
2143         ptr = chip->work_ptr.area;
2144         ptr_addr = chip->work_ptr.addr;
2145         memset(ptr, 0, size);   /* for sure */
2146
2147         chip->bank_base_playback = ptr;
2148         chip->bank_base_playback_addr = ptr_addr;
2149         chip->ctrl_playback = (u32 *)ptr;
2150         chip->ctrl_playback[0] = cpu_to_le32(YDSXG_PLAYBACK_VOICES);
2151         ptr += ALIGN(playback_ctrl_size, 0x100);
2152         ptr_addr += ALIGN(playback_ctrl_size, 0x100);
2153         for (voice = 0; voice < YDSXG_PLAYBACK_VOICES; voice++) {
2154                 chip->voices[voice].number = voice;
2155                 chip->voices[voice].bank = (struct snd_ymfpci_playback_bank *)ptr;
2156                 chip->voices[voice].bank_addr = ptr_addr;
2157                 for (bank = 0; bank < 2; bank++) {
2158                         chip->bank_playback[voice][bank] = (struct snd_ymfpci_playback_bank *)ptr;
2159                         ptr += chip->bank_size_playback;
2160                         ptr_addr += chip->bank_size_playback;
2161                 }
2162         }
2163         ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2164         ptr_addr = ALIGN(ptr_addr, 0x100);
2165         chip->bank_base_capture = ptr;
2166         chip->bank_base_capture_addr = ptr_addr;
2167         for (voice = 0; voice < YDSXG_CAPTURE_VOICES; voice++)
2168                 for (bank = 0; bank < 2; bank++) {
2169                         chip->bank_capture[voice][bank] = (struct snd_ymfpci_capture_bank *)ptr;
2170                         ptr += chip->bank_size_capture;
2171                         ptr_addr += chip->bank_size_capture;
2172                 }
2173         ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2174         ptr_addr = ALIGN(ptr_addr, 0x100);
2175         chip->bank_base_effect = ptr;
2176         chip->bank_base_effect_addr = ptr_addr;
2177         for (voice = 0; voice < YDSXG_EFFECT_VOICES; voice++)
2178                 for (bank = 0; bank < 2; bank++) {
2179                         chip->bank_effect[voice][bank] = (struct snd_ymfpci_effect_bank *)ptr;
2180                         ptr += chip->bank_size_effect;
2181                         ptr_addr += chip->bank_size_effect;
2182                 }
2183         ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2184         ptr_addr = ALIGN(ptr_addr, 0x100);
2185         chip->work_base = ptr;
2186         chip->work_base_addr = ptr_addr;
2187         
2188         snd_assert(ptr + chip->work_size == chip->work_ptr.area + chip->work_ptr.bytes, );
2189
2190         snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, chip->bank_base_playback_addr);
2191         snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, chip->bank_base_capture_addr);
2192         snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, chip->bank_base_effect_addr);
2193         snd_ymfpci_writel(chip, YDSXGR_WORKBASE, chip->work_base_addr);
2194         snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, chip->work_size >> 2);
2195
2196         /* S/PDIF output initialization */
2197         chip->spdif_bits = chip->spdif_pcm_bits = SNDRV_PCM_DEFAULT_CON_SPDIF & 0xffff;
2198         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 0);
2199         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
2200
2201         /* S/PDIF input initialization */
2202         snd_ymfpci_writew(chip, YDSXGR_SPDIFINCTRL, 0);
2203
2204         /* digital mixer setup */
2205         for (reg = 0x80; reg < 0xc0; reg += 4)
2206                 snd_ymfpci_writel(chip, reg, 0);
2207         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x3fff3fff);
2208         snd_ymfpci_writel(chip, YDSXGR_ZVOUTVOL, 0x3fff3fff);
2209         snd_ymfpci_writel(chip, YDSXGR_SPDIFOUTVOL, 0x3fff3fff);
2210         snd_ymfpci_writel(chip, YDSXGR_NATIVEADCINVOL, 0x3fff3fff);
2211         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACINVOL, 0x3fff3fff);
2212         snd_ymfpci_writel(chip, YDSXGR_PRIADCLOOPVOL, 0x3fff3fff);
2213         snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0x3fff3fff);
2214         
2215         return 0;
2216 }
2217
2218 static int snd_ymfpci_free(struct snd_ymfpci *chip)
2219 {
2220         u16 ctrl;
2221
2222         snd_assert(chip != NULL, return -EINVAL);
2223
2224         if (chip->res_reg_area) {       /* don't touch busy hardware */
2225                 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2226                 snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
2227                 snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0);
2228                 snd_ymfpci_writel(chip, YDSXGR_STATUS, ~0);
2229                 snd_ymfpci_disable_dsp(chip);
2230                 snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0);
2231                 snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0);
2232                 snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0);
2233                 snd_ymfpci_writel(chip, YDSXGR_WORKBASE, 0);
2234                 snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, 0);
2235                 ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
2236                 snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
2237         }
2238
2239         snd_ymfpci_ac3_done(chip);
2240
2241         /* Set PCI device to D3 state */
2242 #if 0
2243         /* FIXME: temporarily disabled, otherwise we cannot fire up
2244          * the chip again unless reboot.  ACPI bug?
2245          */
2246         pci_set_power_state(chip->pci, 3);
2247 #endif
2248
2249 #ifdef CONFIG_PM
2250         vfree(chip->saved_regs);
2251 #endif
2252         if (chip->irq >= 0)
2253                 free_irq(chip->irq, chip);
2254         release_and_free_resource(chip->mpu_res);
2255         release_and_free_resource(chip->fm_res);
2256         snd_ymfpci_free_gameport(chip);
2257         if (chip->reg_area_virt)
2258                 iounmap(chip->reg_area_virt);
2259         if (chip->work_ptr.area)
2260                 snd_dma_free_pages(&chip->work_ptr);
2261         
2262         release_and_free_resource(chip->res_reg_area);
2263
2264         pci_write_config_word(chip->pci, 0x40, chip->old_legacy_ctrl);
2265         
2266         pci_disable_device(chip->pci);
2267 #ifndef CONFIG_SND_YMFPCI_FIRMWARE_IN_KERNEL
2268         release_firmware(chip->dsp_microcode);
2269         release_firmware(chip->controller_microcode);
2270 #endif
2271         kfree(chip);
2272         return 0;
2273 }
2274
2275 static int snd_ymfpci_dev_free(struct snd_device *device)
2276 {
2277         struct snd_ymfpci *chip = device->device_data;
2278         return snd_ymfpci_free(chip);
2279 }
2280
2281 #ifdef CONFIG_PM
2282 static int saved_regs_index[] = {
2283         /* spdif */
2284         YDSXGR_SPDIFOUTCTRL,
2285         YDSXGR_SPDIFOUTSTATUS,
2286         YDSXGR_SPDIFINCTRL,
2287         /* volumes */
2288         YDSXGR_PRIADCLOOPVOL,
2289         YDSXGR_NATIVEDACINVOL,
2290         YDSXGR_NATIVEDACOUTVOL,
2291         YDSXGR_BUF441OUTVOL,
2292         YDSXGR_NATIVEADCINVOL,
2293         YDSXGR_SPDIFLOOPVOL,
2294         YDSXGR_SPDIFOUTVOL,
2295         YDSXGR_ZVOUTVOL,
2296         YDSXGR_LEGACYOUTVOL,
2297         /* address bases */
2298         YDSXGR_PLAYCTRLBASE,
2299         YDSXGR_RECCTRLBASE,
2300         YDSXGR_EFFCTRLBASE,
2301         YDSXGR_WORKBASE,
2302         /* capture set up */
2303         YDSXGR_MAPOFREC,
2304         YDSXGR_RECFORMAT,
2305         YDSXGR_RECSLOTSR,
2306         YDSXGR_ADCFORMAT,
2307         YDSXGR_ADCSLOTSR,
2308 };
2309 #define YDSXGR_NUM_SAVED_REGS   ARRAY_SIZE(saved_regs_index)
2310
2311 int snd_ymfpci_suspend(struct pci_dev *pci, pm_message_t state)
2312 {
2313         struct snd_card *card = pci_get_drvdata(pci);
2314         struct snd_ymfpci *chip = card->private_data;
2315         unsigned int i;
2316         
2317         snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
2318         snd_pcm_suspend_all(chip->pcm);
2319         snd_pcm_suspend_all(chip->pcm2);
2320         snd_pcm_suspend_all(chip->pcm_spdif);
2321         snd_pcm_suspend_all(chip->pcm_4ch);
2322         snd_ac97_suspend(chip->ac97);
2323         for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2324                 chip->saved_regs[i] = snd_ymfpci_readl(chip, saved_regs_index[i]);
2325         chip->saved_ydsxgr_mode = snd_ymfpci_readl(chip, YDSXGR_MODE);
2326         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2327         snd_ymfpci_disable_dsp(chip);
2328         pci_disable_device(pci);
2329         pci_save_state(pci);
2330         pci_set_power_state(pci, pci_choose_state(pci, state));
2331         return 0;
2332 }
2333
2334 int snd_ymfpci_resume(struct pci_dev *pci)
2335 {
2336         struct snd_card *card = pci_get_drvdata(pci);
2337         struct snd_ymfpci *chip = card->private_data;
2338         unsigned int i;
2339
2340         pci_set_power_state(pci, PCI_D0);
2341         pci_restore_state(pci);
2342         if (pci_enable_device(pci) < 0) {
2343                 printk(KERN_ERR "ymfpci: pci_enable_device failed, "
2344                        "disabling device\n");
2345                 snd_card_disconnect(card);
2346                 return -EIO;
2347         }
2348         pci_set_master(pci);
2349         snd_ymfpci_aclink_reset(pci);
2350         snd_ymfpci_codec_ready(chip, 0);
2351         snd_ymfpci_download_image(chip);
2352         udelay(100);
2353
2354         for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2355                 snd_ymfpci_writel(chip, saved_regs_index[i], chip->saved_regs[i]);
2356
2357         snd_ac97_resume(chip->ac97);
2358
2359         /* start hw again */
2360         if (chip->start_count > 0) {
2361                 spin_lock_irq(&chip->reg_lock);
2362                 snd_ymfpci_writel(chip, YDSXGR_MODE, chip->saved_ydsxgr_mode);
2363                 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT);
2364                 spin_unlock_irq(&chip->reg_lock);
2365         }
2366         snd_power_change_state(card, SNDRV_CTL_POWER_D0);
2367         return 0;
2368 }
2369 #endif /* CONFIG_PM */
2370
2371 int __devinit snd_ymfpci_create(struct snd_card *card,
2372                                 struct pci_dev * pci,
2373                                 unsigned short old_legacy_ctrl,
2374                                 struct snd_ymfpci ** rchip)
2375 {
2376         struct snd_ymfpci *chip;
2377         int err;
2378         static struct snd_device_ops ops = {
2379                 .dev_free =     snd_ymfpci_dev_free,
2380         };
2381         
2382         *rchip = NULL;
2383
2384         /* enable PCI device */
2385         if ((err = pci_enable_device(pci)) < 0)
2386                 return err;
2387
2388         chip = kzalloc(sizeof(*chip), GFP_KERNEL);
2389         if (chip == NULL) {
2390                 pci_disable_device(pci);
2391                 return -ENOMEM;
2392         }
2393         chip->old_legacy_ctrl = old_legacy_ctrl;
2394         spin_lock_init(&chip->reg_lock);
2395         spin_lock_init(&chip->voice_lock);
2396         init_waitqueue_head(&chip->interrupt_sleep);
2397         atomic_set(&chip->interrupt_sleep_count, 0);
2398         chip->card = card;
2399         chip->pci = pci;
2400         chip->irq = -1;
2401         chip->device_id = pci->device;
2402         chip->rev = pci->revision;
2403         chip->reg_area_phys = pci_resource_start(pci, 0);
2404         chip->reg_area_virt = ioremap_nocache(chip->reg_area_phys, 0x8000);
2405         pci_set_master(pci);
2406         chip->src441_used = -1;
2407
2408         if ((chip->res_reg_area = request_mem_region(chip->reg_area_phys, 0x8000, "YMFPCI")) == NULL) {
2409                 snd_printk(KERN_ERR "unable to grab memory region 0x%lx-0x%lx\n", chip->reg_area_phys, chip->reg_area_phys + 0x8000 - 1);
2410                 snd_ymfpci_free(chip);
2411                 return -EBUSY;
2412         }
2413         if (request_irq(pci->irq, snd_ymfpci_interrupt, IRQF_SHARED,
2414                         "YMFPCI", chip)) {
2415                 snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
2416                 snd_ymfpci_free(chip);
2417                 return -EBUSY;
2418         }
2419         chip->irq = pci->irq;
2420
2421         snd_ymfpci_aclink_reset(pci);
2422         if (snd_ymfpci_codec_ready(chip, 0) < 0) {
2423                 snd_ymfpci_free(chip);
2424                 return -EIO;
2425         }
2426
2427         err = snd_ymfpci_request_firmware(chip);
2428         if (err < 0) {
2429                 snd_printk(KERN_ERR "firmware request failed: %d\n", err);
2430                 snd_ymfpci_free(chip);
2431                 return err;
2432         }
2433         snd_ymfpci_download_image(chip);
2434
2435         udelay(100); /* seems we need a delay after downloading image.. */
2436
2437         if (snd_ymfpci_memalloc(chip) < 0) {
2438                 snd_ymfpci_free(chip);
2439                 return -EIO;
2440         }
2441
2442         if ((err = snd_ymfpci_ac3_init(chip)) < 0) {
2443                 snd_ymfpci_free(chip);
2444                 return err;
2445         }
2446
2447 #ifdef CONFIG_PM
2448         chip->saved_regs = vmalloc(YDSXGR_NUM_SAVED_REGS * sizeof(u32));
2449         if (chip->saved_regs == NULL) {
2450                 snd_ymfpci_free(chip);
2451                 return -ENOMEM;
2452         }
2453 #endif
2454
2455         if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
2456                 snd_ymfpci_free(chip);
2457                 return err;
2458         }
2459
2460         snd_ymfpci_proc_init(card, chip);
2461
2462         snd_card_set_dev(card, &pci->dev);
2463
2464         *rchip = chip;
2465         return 0;
2466 }