Merge git://oss.sgi.com:8090/oss/git/xfs-2.6
[sfrench/cifs-2.6.git] / sound / pci / hda / hda_codec.c
1 /*
2  * Universal Interface for Intel High Definition Audio Codec
3  *
4  * Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
5  *
6  *
7  *  This driver is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License as published by
9  *  the Free Software Foundation; either version 2 of the License, or
10  *  (at your option) any later version.
11  *
12  *  This driver is distributed in the hope that it will be useful,
13  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *  GNU General Public License for more details.
16  *
17  *  You should have received a copy of the GNU General Public License
18  *  along with this program; if not, write to the Free Software
19  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  */
21
22 #include <sound/driver.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/slab.h>
26 #include <linux/pci.h>
27 #include <linux/moduleparam.h>
28 #include <linux/mutex.h>
29 #include <sound/core.h>
30 #include "hda_codec.h"
31 #include <sound/asoundef.h>
32 #include <sound/initval.h>
33 #include "hda_local.h"
34
35
36 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
37 MODULE_DESCRIPTION("Universal interface for High Definition Audio Codec");
38 MODULE_LICENSE("GPL");
39
40
41 /*
42  * vendor / preset table
43  */
44
45 struct hda_vendor_id {
46         unsigned int id;
47         const char *name;
48 };
49
50 /* codec vendor labels */
51 static struct hda_vendor_id hda_vendor_ids[] = {
52         { 0x10ec, "Realtek" },
53         { 0x11d4, "Analog Devices" },
54         { 0x13f6, "C-Media" },
55         { 0x434d, "C-Media" },
56         { 0x8384, "SigmaTel" },
57         {} /* terminator */
58 };
59
60 /* codec presets */
61 #include "hda_patch.h"
62
63
64 /**
65  * snd_hda_codec_read - send a command and get the response
66  * @codec: the HDA codec
67  * @nid: NID to send the command
68  * @direct: direct flag
69  * @verb: the verb to send
70  * @parm: the parameter for the verb
71  *
72  * Send a single command and read the corresponding response.
73  *
74  * Returns the obtained response value, or -1 for an error.
75  */
76 unsigned int snd_hda_codec_read(struct hda_codec *codec, hda_nid_t nid, int direct,
77                                 unsigned int verb, unsigned int parm)
78 {
79         unsigned int res;
80         mutex_lock(&codec->bus->cmd_mutex);
81         if (! codec->bus->ops.command(codec, nid, direct, verb, parm))
82                 res = codec->bus->ops.get_response(codec);
83         else
84                 res = (unsigned int)-1;
85         mutex_unlock(&codec->bus->cmd_mutex);
86         return res;
87 }
88
89 /**
90  * snd_hda_codec_write - send a single command without waiting for response
91  * @codec: the HDA codec
92  * @nid: NID to send the command
93  * @direct: direct flag
94  * @verb: the verb to send
95  * @parm: the parameter for the verb
96  *
97  * Send a single command without waiting for response.
98  *
99  * Returns 0 if successful, or a negative error code.
100  */
101 int snd_hda_codec_write(struct hda_codec *codec, hda_nid_t nid, int direct,
102                          unsigned int verb, unsigned int parm)
103 {
104         int err;
105         mutex_lock(&codec->bus->cmd_mutex);
106         err = codec->bus->ops.command(codec, nid, direct, verb, parm);
107         mutex_unlock(&codec->bus->cmd_mutex);
108         return err;
109 }
110
111 /**
112  * snd_hda_sequence_write - sequence writes
113  * @codec: the HDA codec
114  * @seq: VERB array to send
115  *
116  * Send the commands sequentially from the given array.
117  * The array must be terminated with NID=0.
118  */
119 void snd_hda_sequence_write(struct hda_codec *codec, const struct hda_verb *seq)
120 {
121         for (; seq->nid; seq++)
122                 snd_hda_codec_write(codec, seq->nid, 0, seq->verb, seq->param);
123 }
124
125 /**
126  * snd_hda_get_sub_nodes - get the range of sub nodes
127  * @codec: the HDA codec
128  * @nid: NID to parse
129  * @start_id: the pointer to store the start NID
130  *
131  * Parse the NID and store the start NID of its sub-nodes.
132  * Returns the number of sub-nodes.
133  */
134 int snd_hda_get_sub_nodes(struct hda_codec *codec, hda_nid_t nid, hda_nid_t *start_id)
135 {
136         unsigned int parm;
137
138         parm = snd_hda_param_read(codec, nid, AC_PAR_NODE_COUNT);
139         *start_id = (parm >> 16) & 0x7fff;
140         return (int)(parm & 0x7fff);
141 }
142
143 /**
144  * snd_hda_get_connections - get connection list
145  * @codec: the HDA codec
146  * @nid: NID to parse
147  * @conn_list: connection list array
148  * @max_conns: max. number of connections to store
149  *
150  * Parses the connection list of the given widget and stores the list
151  * of NIDs.
152  *
153  * Returns the number of connections, or a negative error code.
154  */
155 int snd_hda_get_connections(struct hda_codec *codec, hda_nid_t nid,
156                             hda_nid_t *conn_list, int max_conns)
157 {
158         unsigned int parm;
159         int i, conn_len, conns;
160         unsigned int shift, num_elems, mask;
161         hda_nid_t prev_nid;
162
163         snd_assert(conn_list && max_conns > 0, return -EINVAL);
164
165         parm = snd_hda_param_read(codec, nid, AC_PAR_CONNLIST_LEN);
166         if (parm & AC_CLIST_LONG) {
167                 /* long form */
168                 shift = 16;
169                 num_elems = 2;
170         } else {
171                 /* short form */
172                 shift = 8;
173                 num_elems = 4;
174         }
175         conn_len = parm & AC_CLIST_LENGTH;
176         mask = (1 << (shift-1)) - 1;
177
178         if (! conn_len)
179                 return 0; /* no connection */
180
181         if (conn_len == 1) {
182                 /* single connection */
183                 parm = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONNECT_LIST, 0);
184                 conn_list[0] = parm & mask;
185                 return 1;
186         }
187
188         /* multi connection */
189         conns = 0;
190         prev_nid = 0;
191         for (i = 0; i < conn_len; i++) {
192                 int range_val;
193                 hda_nid_t val, n;
194
195                 if (i % num_elems == 0)
196                         parm = snd_hda_codec_read(codec, nid, 0,
197                                                   AC_VERB_GET_CONNECT_LIST, i);
198                 range_val = !! (parm & (1 << (shift-1))); /* ranges */
199                 val = parm & mask;
200                 parm >>= shift;
201                 if (range_val) {
202                         /* ranges between the previous and this one */
203                         if (! prev_nid || prev_nid >= val) {
204                                 snd_printk(KERN_WARNING "hda_codec: invalid dep_range_val %x:%x\n", prev_nid, val);
205                                 continue;
206                         }
207                         for (n = prev_nid + 1; n <= val; n++) {
208                                 if (conns >= max_conns) {
209                                         snd_printk(KERN_ERR "Too many connections\n");
210                                         return -EINVAL;
211                                 }
212                                 conn_list[conns++] = n;
213                         }
214                 } else {
215                         if (conns >= max_conns) {
216                                 snd_printk(KERN_ERR "Too many connections\n");
217                                 return -EINVAL;
218                         }
219                         conn_list[conns++] = val;
220                 }
221                 prev_nid = val;
222         }
223         return conns;
224 }
225
226
227 /**
228  * snd_hda_queue_unsol_event - add an unsolicited event to queue
229  * @bus: the BUS
230  * @res: unsolicited event (lower 32bit of RIRB entry)
231  * @res_ex: codec addr and flags (upper 32bit or RIRB entry)
232  *
233  * Adds the given event to the queue.  The events are processed in
234  * the workqueue asynchronously.  Call this function in the interrupt
235  * hanlder when RIRB receives an unsolicited event.
236  *
237  * Returns 0 if successful, or a negative error code.
238  */
239 int snd_hda_queue_unsol_event(struct hda_bus *bus, u32 res, u32 res_ex)
240 {
241         struct hda_bus_unsolicited *unsol;
242         unsigned int wp;
243
244         if ((unsol = bus->unsol) == NULL)
245                 return 0;
246
247         wp = (unsol->wp + 1) % HDA_UNSOL_QUEUE_SIZE;
248         unsol->wp = wp;
249
250         wp <<= 1;
251         unsol->queue[wp] = res;
252         unsol->queue[wp + 1] = res_ex;
253
254         queue_work(unsol->workq, &unsol->work);
255
256         return 0;
257 }
258
259 /*
260  * process queueud unsolicited events
261  */
262 static void process_unsol_events(void *data)
263 {
264         struct hda_bus *bus = data;
265         struct hda_bus_unsolicited *unsol = bus->unsol;
266         struct hda_codec *codec;
267         unsigned int rp, caddr, res;
268
269         while (unsol->rp != unsol->wp) {
270                 rp = (unsol->rp + 1) % HDA_UNSOL_QUEUE_SIZE;
271                 unsol->rp = rp;
272                 rp <<= 1;
273                 res = unsol->queue[rp];
274                 caddr = unsol->queue[rp + 1];
275                 if (! (caddr & (1 << 4))) /* no unsolicited event? */
276                         continue;
277                 codec = bus->caddr_tbl[caddr & 0x0f];
278                 if (codec && codec->patch_ops.unsol_event)
279                         codec->patch_ops.unsol_event(codec, res);
280         }
281 }
282
283 /*
284  * initialize unsolicited queue
285  */
286 static int init_unsol_queue(struct hda_bus *bus)
287 {
288         struct hda_bus_unsolicited *unsol;
289
290         if (bus->unsol) /* already initialized */
291                 return 0;
292
293         unsol = kzalloc(sizeof(*unsol), GFP_KERNEL);
294         if (! unsol) {
295                 snd_printk(KERN_ERR "hda_codec: can't allocate unsolicited queue\n");
296                 return -ENOMEM;
297         }
298         unsol->workq = create_workqueue("hda_codec");
299         if (! unsol->workq) {
300                 snd_printk(KERN_ERR "hda_codec: can't create workqueue\n");
301                 kfree(unsol);
302                 return -ENOMEM;
303         }
304         INIT_WORK(&unsol->work, process_unsol_events, bus);
305         bus->unsol = unsol;
306         return 0;
307 }
308
309 /*
310  * destructor
311  */
312 static void snd_hda_codec_free(struct hda_codec *codec);
313
314 static int snd_hda_bus_free(struct hda_bus *bus)
315 {
316         struct list_head *p, *n;
317
318         if (! bus)
319                 return 0;
320         if (bus->unsol) {
321                 destroy_workqueue(bus->unsol->workq);
322                 kfree(bus->unsol);
323         }
324         list_for_each_safe(p, n, &bus->codec_list) {
325                 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
326                 snd_hda_codec_free(codec);
327         }
328         if (bus->ops.private_free)
329                 bus->ops.private_free(bus);
330         kfree(bus);
331         return 0;
332 }
333
334 static int snd_hda_bus_dev_free(struct snd_device *device)
335 {
336         struct hda_bus *bus = device->device_data;
337         return snd_hda_bus_free(bus);
338 }
339
340 /**
341  * snd_hda_bus_new - create a HDA bus
342  * @card: the card entry
343  * @temp: the template for hda_bus information
344  * @busp: the pointer to store the created bus instance
345  *
346  * Returns 0 if successful, or a negative error code.
347  */
348 int snd_hda_bus_new(struct snd_card *card, const struct hda_bus_template *temp,
349                     struct hda_bus **busp)
350 {
351         struct hda_bus *bus;
352         int err;
353         static struct snd_device_ops dev_ops = {
354                 .dev_free = snd_hda_bus_dev_free,
355         };
356
357         snd_assert(temp, return -EINVAL);
358         snd_assert(temp->ops.command && temp->ops.get_response, return -EINVAL);
359
360         if (busp)
361                 *busp = NULL;
362
363         bus = kzalloc(sizeof(*bus), GFP_KERNEL);
364         if (bus == NULL) {
365                 snd_printk(KERN_ERR "can't allocate struct hda_bus\n");
366                 return -ENOMEM;
367         }
368
369         bus->card = card;
370         bus->private_data = temp->private_data;
371         bus->pci = temp->pci;
372         bus->modelname = temp->modelname;
373         bus->ops = temp->ops;
374
375         mutex_init(&bus->cmd_mutex);
376         INIT_LIST_HEAD(&bus->codec_list);
377
378         if ((err = snd_device_new(card, SNDRV_DEV_BUS, bus, &dev_ops)) < 0) {
379                 snd_hda_bus_free(bus);
380                 return err;
381         }
382         if (busp)
383                 *busp = bus;
384         return 0;
385 }
386
387
388 /*
389  * find a matching codec preset
390  */
391 static const struct hda_codec_preset *find_codec_preset(struct hda_codec *codec)
392 {
393         const struct hda_codec_preset **tbl, *preset;
394
395         for (tbl = hda_preset_tables; *tbl; tbl++) {
396                 for (preset = *tbl; preset->id; preset++) {
397                         u32 mask = preset->mask;
398                         if (! mask)
399                                 mask = ~0;
400                         if (preset->id == (codec->vendor_id & mask))
401                                 return preset;
402                 }
403         }
404         return NULL;
405 }
406
407 /*
408  * snd_hda_get_codec_name - store the codec name
409  */
410 void snd_hda_get_codec_name(struct hda_codec *codec,
411                             char *name, int namelen)
412 {
413         const struct hda_vendor_id *c;
414         const char *vendor = NULL;
415         u16 vendor_id = codec->vendor_id >> 16;
416         char tmp[16];
417
418         for (c = hda_vendor_ids; c->id; c++) {
419                 if (c->id == vendor_id) {
420                         vendor = c->name;
421                         break;
422                 }
423         }
424         if (! vendor) {
425                 sprintf(tmp, "Generic %04x", vendor_id);
426                 vendor = tmp;
427         }
428         if (codec->preset && codec->preset->name)
429                 snprintf(name, namelen, "%s %s", vendor, codec->preset->name);
430         else
431                 snprintf(name, namelen, "%s ID %x", vendor, codec->vendor_id & 0xffff);
432 }
433
434 /*
435  * look for an AFG and MFG nodes
436  */
437 static void setup_fg_nodes(struct hda_codec *codec)
438 {
439         int i, total_nodes;
440         hda_nid_t nid;
441
442         total_nodes = snd_hda_get_sub_nodes(codec, AC_NODE_ROOT, &nid);
443         for (i = 0; i < total_nodes; i++, nid++) {
444                 switch((snd_hda_param_read(codec, nid, AC_PAR_FUNCTION_TYPE) & 0xff)) {
445                 case AC_GRP_AUDIO_FUNCTION:
446                         codec->afg = nid;
447                         break;
448                 case AC_GRP_MODEM_FUNCTION:
449                         codec->mfg = nid;
450                         break;
451                 default:
452                         break;
453                 }
454         }
455 }
456
457 /*
458  * read widget caps for each widget and store in cache
459  */
460 static int read_widget_caps(struct hda_codec *codec, hda_nid_t fg_node)
461 {
462         int i;
463         hda_nid_t nid;
464
465         codec->num_nodes = snd_hda_get_sub_nodes(codec, fg_node,
466                                                  &codec->start_nid);
467         codec->wcaps = kmalloc(codec->num_nodes * 4, GFP_KERNEL);
468         if (! codec->wcaps)
469                 return -ENOMEM;
470         nid = codec->start_nid;
471         for (i = 0; i < codec->num_nodes; i++, nid++)
472                 codec->wcaps[i] = snd_hda_param_read(codec, nid,
473                                                      AC_PAR_AUDIO_WIDGET_CAP);
474         return 0;
475 }
476
477
478 /*
479  * codec destructor
480  */
481 static void snd_hda_codec_free(struct hda_codec *codec)
482 {
483         if (! codec)
484                 return;
485         list_del(&codec->list);
486         codec->bus->caddr_tbl[codec->addr] = NULL;
487         if (codec->patch_ops.free)
488                 codec->patch_ops.free(codec);
489         kfree(codec->amp_info);
490         kfree(codec->wcaps);
491         kfree(codec);
492 }
493
494 static void init_amp_hash(struct hda_codec *codec);
495
496 /**
497  * snd_hda_codec_new - create a HDA codec
498  * @bus: the bus to assign
499  * @codec_addr: the codec address
500  * @codecp: the pointer to store the generated codec
501  *
502  * Returns 0 if successful, or a negative error code.
503  */
504 int snd_hda_codec_new(struct hda_bus *bus, unsigned int codec_addr,
505                       struct hda_codec **codecp)
506 {
507         struct hda_codec *codec;
508         char component[13];
509         int err;
510
511         snd_assert(bus, return -EINVAL);
512         snd_assert(codec_addr <= HDA_MAX_CODEC_ADDRESS, return -EINVAL);
513
514         if (bus->caddr_tbl[codec_addr]) {
515                 snd_printk(KERN_ERR "hda_codec: address 0x%x is already occupied\n", codec_addr);
516                 return -EBUSY;
517         }
518
519         codec = kzalloc(sizeof(*codec), GFP_KERNEL);
520         if (codec == NULL) {
521                 snd_printk(KERN_ERR "can't allocate struct hda_codec\n");
522                 return -ENOMEM;
523         }
524
525         codec->bus = bus;
526         codec->addr = codec_addr;
527         mutex_init(&codec->spdif_mutex);
528         init_amp_hash(codec);
529
530         list_add_tail(&codec->list, &bus->codec_list);
531         bus->caddr_tbl[codec_addr] = codec;
532
533         codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_VENDOR_ID);
534         if (codec->vendor_id == -1)
535                 /* read again, hopefully the access method was corrected
536                  * in the last read...
537                  */
538                 codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT,
539                                                       AC_PAR_VENDOR_ID);
540         codec->subsystem_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_SUBSYSTEM_ID);
541         codec->revision_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_REV_ID);
542
543         setup_fg_nodes(codec);
544         if (! codec->afg && ! codec->mfg) {
545                 snd_printdd("hda_codec: no AFG or MFG node found\n");
546                 snd_hda_codec_free(codec);
547                 return -ENODEV;
548         }
549
550         if (read_widget_caps(codec, codec->afg ? codec->afg : codec->mfg) < 0) {
551                 snd_printk(KERN_ERR "hda_codec: cannot malloc\n");
552                 snd_hda_codec_free(codec);
553                 return -ENOMEM;
554         }
555
556         if (! codec->subsystem_id) {
557                 hda_nid_t nid = codec->afg ? codec->afg : codec->mfg;
558                 codec->subsystem_id = snd_hda_codec_read(codec, nid, 0,
559                                                          AC_VERB_GET_SUBSYSTEM_ID,
560                                                          0);
561         }
562
563         codec->preset = find_codec_preset(codec);
564         if (! *bus->card->mixername)
565                 snd_hda_get_codec_name(codec, bus->card->mixername,
566                                        sizeof(bus->card->mixername));
567
568         if (codec->preset && codec->preset->patch)
569                 err = codec->preset->patch(codec);
570         else
571                 err = snd_hda_parse_generic_codec(codec);
572         if (err < 0) {
573                 snd_hda_codec_free(codec);
574                 return err;
575         }
576
577         if (codec->patch_ops.unsol_event)
578                 init_unsol_queue(bus);
579
580         snd_hda_codec_proc_new(codec);
581
582         sprintf(component, "HDA:%08x", codec->vendor_id);
583         snd_component_add(codec->bus->card, component);
584
585         if (codecp)
586                 *codecp = codec;
587         return 0;
588 }
589
590 /**
591  * snd_hda_codec_setup_stream - set up the codec for streaming
592  * @codec: the CODEC to set up
593  * @nid: the NID to set up
594  * @stream_tag: stream tag to pass, it's between 0x1 and 0xf.
595  * @channel_id: channel id to pass, zero based.
596  * @format: stream format.
597  */
598 void snd_hda_codec_setup_stream(struct hda_codec *codec, hda_nid_t nid, u32 stream_tag,
599                                 int channel_id, int format)
600 {
601         if (! nid)
602                 return;
603
604         snd_printdd("hda_codec_setup_stream: NID=0x%x, stream=0x%x, channel=%d, format=0x%x\n",
605                     nid, stream_tag, channel_id, format);
606         snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CHANNEL_STREAMID,
607                             (stream_tag << 4) | channel_id);
608         msleep(1);
609         snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_STREAM_FORMAT, format);
610 }
611
612
613 /*
614  * amp access functions
615  */
616
617 /* FIXME: more better hash key? */
618 #define HDA_HASH_KEY(nid,dir,idx) (u32)((nid) + ((idx) << 16) + ((dir) << 24))
619 #define INFO_AMP_CAPS   (1<<0)
620 #define INFO_AMP_VOL(ch)        (1 << (1 + (ch)))
621
622 /* initialize the hash table */
623 static void init_amp_hash(struct hda_codec *codec)
624 {
625         memset(codec->amp_hash, 0xff, sizeof(codec->amp_hash));
626         codec->num_amp_entries = 0;
627         codec->amp_info_size = 0;
628         codec->amp_info = NULL;
629 }
630
631 /* query the hash.  allocate an entry if not found. */
632 static struct hda_amp_info *get_alloc_amp_hash(struct hda_codec *codec, u32 key)
633 {
634         u16 idx = key % (u16)ARRAY_SIZE(codec->amp_hash);
635         u16 cur = codec->amp_hash[idx];
636         struct hda_amp_info *info;
637
638         while (cur != 0xffff) {
639                 info = &codec->amp_info[cur];
640                 if (info->key == key)
641                         return info;
642                 cur = info->next;
643         }
644
645         /* add a new hash entry */
646         if (codec->num_amp_entries >= codec->amp_info_size) {
647                 /* reallocate the array */
648                 int new_size = codec->amp_info_size + 64;
649                 struct hda_amp_info *new_info = kcalloc(new_size, sizeof(struct hda_amp_info),
650                                                         GFP_KERNEL);
651                 if (! new_info) {
652                         snd_printk(KERN_ERR "hda_codec: can't malloc amp_info\n");
653                         return NULL;
654                 }
655                 if (codec->amp_info) {
656                         memcpy(new_info, codec->amp_info,
657                                codec->amp_info_size * sizeof(struct hda_amp_info));
658                         kfree(codec->amp_info);
659                 }
660                 codec->amp_info_size = new_size;
661                 codec->amp_info = new_info;
662         }
663         cur = codec->num_amp_entries++;
664         info = &codec->amp_info[cur];
665         info->key = key;
666         info->status = 0; /* not initialized yet */
667         info->next = codec->amp_hash[idx];
668         codec->amp_hash[idx] = cur;
669
670         return info;
671 }
672
673 /*
674  * query AMP capabilities for the given widget and direction
675  */
676 static u32 query_amp_caps(struct hda_codec *codec, hda_nid_t nid, int direction)
677 {
678         struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, 0));
679
680         if (! info)
681                 return 0;
682         if (! (info->status & INFO_AMP_CAPS)) {
683                 if (! (get_wcaps(codec, nid) & AC_WCAP_AMP_OVRD))
684                         nid = codec->afg;
685                 info->amp_caps = snd_hda_param_read(codec, nid, direction == HDA_OUTPUT ?
686                                                     AC_PAR_AMP_OUT_CAP : AC_PAR_AMP_IN_CAP);
687                 info->status |= INFO_AMP_CAPS;
688         }
689         return info->amp_caps;
690 }
691
692 /*
693  * read the current volume to info
694  * if the cache exists, read the cache value.
695  */
696 static unsigned int get_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
697                          hda_nid_t nid, int ch, int direction, int index)
698 {
699         u32 val, parm;
700
701         if (info->status & INFO_AMP_VOL(ch))
702                 return info->vol[ch];
703
704         parm = ch ? AC_AMP_GET_RIGHT : AC_AMP_GET_LEFT;
705         parm |= direction == HDA_OUTPUT ? AC_AMP_GET_OUTPUT : AC_AMP_GET_INPUT;
706         parm |= index;
707         val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_AMP_GAIN_MUTE, parm);
708         info->vol[ch] = val & 0xff;
709         info->status |= INFO_AMP_VOL(ch);
710         return info->vol[ch];
711 }
712
713 /*
714  * write the current volume in info to the h/w and update the cache
715  */
716 static void put_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
717                          hda_nid_t nid, int ch, int direction, int index, int val)
718 {
719         u32 parm;
720
721         parm = ch ? AC_AMP_SET_RIGHT : AC_AMP_SET_LEFT;
722         parm |= direction == HDA_OUTPUT ? AC_AMP_SET_OUTPUT : AC_AMP_SET_INPUT;
723         parm |= index << AC_AMP_SET_INDEX_SHIFT;
724         parm |= val;
725         snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE, parm);
726         info->vol[ch] = val;
727 }
728
729 /*
730  * read AMP value.  The volume is between 0 to 0x7f, 0x80 = mute bit.
731  */
732 int snd_hda_codec_amp_read(struct hda_codec *codec, hda_nid_t nid, int ch,
733                            int direction, int index)
734 {
735         struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, index));
736         if (! info)
737                 return 0;
738         return get_vol_mute(codec, info, nid, ch, direction, index);
739 }
740
741 /*
742  * update the AMP value, mask = bit mask to set, val = the value
743  */
744 int snd_hda_codec_amp_update(struct hda_codec *codec, hda_nid_t nid, int ch,
745                              int direction, int idx, int mask, int val)
746 {
747         struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, idx));
748
749         if (! info)
750                 return 0;
751         val &= mask;
752         val |= get_vol_mute(codec, info, nid, ch, direction, idx) & ~mask;
753         if (info->vol[ch] == val && ! codec->in_resume)
754                 return 0;
755         put_vol_mute(codec, info, nid, ch, direction, idx, val);
756         return 1;
757 }
758
759
760 /*
761  * AMP control callbacks
762  */
763 /* retrieve parameters from private_value */
764 #define get_amp_nid(kc)         ((kc)->private_value & 0xffff)
765 #define get_amp_channels(kc)    (((kc)->private_value >> 16) & 0x3)
766 #define get_amp_direction(kc)   (((kc)->private_value >> 18) & 0x1)
767 #define get_amp_index(kc)       (((kc)->private_value >> 19) & 0xf)
768
769 /* volume */
770 int snd_hda_mixer_amp_volume_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
771 {
772         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
773         u16 nid = get_amp_nid(kcontrol);
774         u8 chs = get_amp_channels(kcontrol);
775         int dir = get_amp_direction(kcontrol);
776         u32 caps;
777
778         caps = query_amp_caps(codec, nid, dir);
779         caps = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT; /* num steps */
780         if (! caps) {
781                 printk(KERN_WARNING "hda_codec: num_steps = 0 for NID=0x%x\n", nid);
782                 return -EINVAL;
783         }
784         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
785         uinfo->count = chs == 3 ? 2 : 1;
786         uinfo->value.integer.min = 0;
787         uinfo->value.integer.max = caps;
788         return 0;
789 }
790
791 int snd_hda_mixer_amp_volume_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
792 {
793         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
794         hda_nid_t nid = get_amp_nid(kcontrol);
795         int chs = get_amp_channels(kcontrol);
796         int dir = get_amp_direction(kcontrol);
797         int idx = get_amp_index(kcontrol);
798         long *valp = ucontrol->value.integer.value;
799
800         if (chs & 1)
801                 *valp++ = snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x7f;
802         if (chs & 2)
803                 *valp = snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x7f;
804         return 0;
805 }
806
807 int snd_hda_mixer_amp_volume_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
808 {
809         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
810         hda_nid_t nid = get_amp_nid(kcontrol);
811         int chs = get_amp_channels(kcontrol);
812         int dir = get_amp_direction(kcontrol);
813         int idx = get_amp_index(kcontrol);
814         long *valp = ucontrol->value.integer.value;
815         int change = 0;
816
817         if (chs & 1) {
818                 change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
819                                                   0x7f, *valp);
820                 valp++;
821         }
822         if (chs & 2)
823                 change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
824                                                    0x7f, *valp);
825         return change;
826 }
827
828 /* switch */
829 int snd_hda_mixer_amp_switch_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
830 {
831         int chs = get_amp_channels(kcontrol);
832
833         uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
834         uinfo->count = chs == 3 ? 2 : 1;
835         uinfo->value.integer.min = 0;
836         uinfo->value.integer.max = 1;
837         return 0;
838 }
839
840 int snd_hda_mixer_amp_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
841 {
842         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
843         hda_nid_t nid = get_amp_nid(kcontrol);
844         int chs = get_amp_channels(kcontrol);
845         int dir = get_amp_direction(kcontrol);
846         int idx = get_amp_index(kcontrol);
847         long *valp = ucontrol->value.integer.value;
848
849         if (chs & 1)
850                 *valp++ = (snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x80) ? 0 : 1;
851         if (chs & 2)
852                 *valp = (snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x80) ? 0 : 1;
853         return 0;
854 }
855
856 int snd_hda_mixer_amp_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
857 {
858         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
859         hda_nid_t nid = get_amp_nid(kcontrol);
860         int chs = get_amp_channels(kcontrol);
861         int dir = get_amp_direction(kcontrol);
862         int idx = get_amp_index(kcontrol);
863         long *valp = ucontrol->value.integer.value;
864         int change = 0;
865
866         if (chs & 1) {
867                 change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
868                                                   0x80, *valp ? 0 : 0x80);
869                 valp++;
870         }
871         if (chs & 2)
872                 change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
873                                                    0x80, *valp ? 0 : 0x80);
874         
875         return change;
876 }
877
878 /*
879  * bound volume controls
880  *
881  * bind multiple volumes (# indices, from 0)
882  */
883
884 #define AMP_VAL_IDX_SHIFT       19
885 #define AMP_VAL_IDX_MASK        (0x0f<<19)
886
887 int snd_hda_mixer_bind_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
888 {
889         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
890         unsigned long pval;
891         int err;
892
893         mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
894         pval = kcontrol->private_value;
895         kcontrol->private_value = pval & ~AMP_VAL_IDX_MASK; /* index 0 */
896         err = snd_hda_mixer_amp_switch_get(kcontrol, ucontrol);
897         kcontrol->private_value = pval;
898         mutex_unlock(&codec->spdif_mutex);
899         return err;
900 }
901
902 int snd_hda_mixer_bind_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
903 {
904         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
905         unsigned long pval;
906         int i, indices, err = 0, change = 0;
907
908         mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
909         pval = kcontrol->private_value;
910         indices = (pval & AMP_VAL_IDX_MASK) >> AMP_VAL_IDX_SHIFT;
911         for (i = 0; i < indices; i++) {
912                 kcontrol->private_value = (pval & ~AMP_VAL_IDX_MASK) | (i << AMP_VAL_IDX_SHIFT);
913                 err = snd_hda_mixer_amp_switch_put(kcontrol, ucontrol);
914                 if (err < 0)
915                         break;
916                 change |= err;
917         }
918         kcontrol->private_value = pval;
919         mutex_unlock(&codec->spdif_mutex);
920         return err < 0 ? err : change;
921 }
922
923 /*
924  * SPDIF out controls
925  */
926
927 static int snd_hda_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
928 {
929         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
930         uinfo->count = 1;
931         return 0;
932 }
933
934 static int snd_hda_spdif_cmask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
935 {
936         ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
937                                            IEC958_AES0_NONAUDIO |
938                                            IEC958_AES0_CON_EMPHASIS_5015 |
939                                            IEC958_AES0_CON_NOT_COPYRIGHT;
940         ucontrol->value.iec958.status[1] = IEC958_AES1_CON_CATEGORY |
941                                            IEC958_AES1_CON_ORIGINAL;
942         return 0;
943 }
944
945 static int snd_hda_spdif_pmask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
946 {
947         ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
948                                            IEC958_AES0_NONAUDIO |
949                                            IEC958_AES0_PRO_EMPHASIS_5015;
950         return 0;
951 }
952
953 static int snd_hda_spdif_default_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
954 {
955         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
956
957         ucontrol->value.iec958.status[0] = codec->spdif_status & 0xff;
958         ucontrol->value.iec958.status[1] = (codec->spdif_status >> 8) & 0xff;
959         ucontrol->value.iec958.status[2] = (codec->spdif_status >> 16) & 0xff;
960         ucontrol->value.iec958.status[3] = (codec->spdif_status >> 24) & 0xff;
961
962         return 0;
963 }
964
965 /* convert from SPDIF status bits to HDA SPDIF bits
966  * bit 0 (DigEn) is always set zero (to be filled later)
967  */
968 static unsigned short convert_from_spdif_status(unsigned int sbits)
969 {
970         unsigned short val = 0;
971
972         if (sbits & IEC958_AES0_PROFESSIONAL)
973                 val |= 1 << 6;
974         if (sbits & IEC958_AES0_NONAUDIO)
975                 val |= 1 << 5;
976         if (sbits & IEC958_AES0_PROFESSIONAL) {
977                 if ((sbits & IEC958_AES0_PRO_EMPHASIS) == IEC958_AES0_PRO_EMPHASIS_5015)
978                         val |= 1 << 3;
979         } else {
980                 if ((sbits & IEC958_AES0_CON_EMPHASIS) == IEC958_AES0_CON_EMPHASIS_5015)
981                         val |= 1 << 3;
982                 if (! (sbits & IEC958_AES0_CON_NOT_COPYRIGHT))
983                         val |= 1 << 4;
984                 if (sbits & (IEC958_AES1_CON_ORIGINAL << 8))
985                         val |= 1 << 7;
986                 val |= sbits & (IEC958_AES1_CON_CATEGORY << 8);
987         }
988         return val;
989 }
990
991 /* convert to SPDIF status bits from HDA SPDIF bits
992  */
993 static unsigned int convert_to_spdif_status(unsigned short val)
994 {
995         unsigned int sbits = 0;
996
997         if (val & (1 << 5))
998                 sbits |= IEC958_AES0_NONAUDIO;
999         if (val & (1 << 6))
1000                 sbits |= IEC958_AES0_PROFESSIONAL;
1001         if (sbits & IEC958_AES0_PROFESSIONAL) {
1002                 if (sbits & (1 << 3))
1003                         sbits |= IEC958_AES0_PRO_EMPHASIS_5015;
1004         } else {
1005                 if (val & (1 << 3))
1006                         sbits |= IEC958_AES0_CON_EMPHASIS_5015;
1007                 if (! (val & (1 << 4)))
1008                         sbits |= IEC958_AES0_CON_NOT_COPYRIGHT;
1009                 if (val & (1 << 7))
1010                         sbits |= (IEC958_AES1_CON_ORIGINAL << 8);
1011                 sbits |= val & (0x7f << 8);
1012         }
1013         return sbits;
1014 }
1015
1016 static int snd_hda_spdif_default_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1017 {
1018         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1019         hda_nid_t nid = kcontrol->private_value;
1020         unsigned short val;
1021         int change;
1022
1023         mutex_lock(&codec->spdif_mutex);
1024         codec->spdif_status = ucontrol->value.iec958.status[0] |
1025                 ((unsigned int)ucontrol->value.iec958.status[1] << 8) |
1026                 ((unsigned int)ucontrol->value.iec958.status[2] << 16) |
1027                 ((unsigned int)ucontrol->value.iec958.status[3] << 24);
1028         val = convert_from_spdif_status(codec->spdif_status);
1029         val |= codec->spdif_ctls & 1;
1030         change = codec->spdif_ctls != val;
1031         codec->spdif_ctls = val;
1032
1033         if (change || codec->in_resume) {
1034                 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val & 0xff);
1035                 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_2, val >> 8);
1036         }
1037
1038         mutex_unlock(&codec->spdif_mutex);
1039         return change;
1040 }
1041
1042 static int snd_hda_spdif_out_switch_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1043 {
1044         uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1045         uinfo->count = 1;
1046         uinfo->value.integer.min = 0;
1047         uinfo->value.integer.max = 1;
1048         return 0;
1049 }
1050
1051 static int snd_hda_spdif_out_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1052 {
1053         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1054
1055         ucontrol->value.integer.value[0] = codec->spdif_ctls & 1;
1056         return 0;
1057 }
1058
1059 static int snd_hda_spdif_out_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1060 {
1061         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1062         hda_nid_t nid = kcontrol->private_value;
1063         unsigned short val;
1064         int change;
1065
1066         mutex_lock(&codec->spdif_mutex);
1067         val = codec->spdif_ctls & ~1;
1068         if (ucontrol->value.integer.value[0])
1069                 val |= 1;
1070         change = codec->spdif_ctls != val;
1071         if (change || codec->in_resume) {
1072                 codec->spdif_ctls = val;
1073                 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val & 0xff);
1074                 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE,
1075                                     AC_AMP_SET_RIGHT | AC_AMP_SET_LEFT |
1076                                     AC_AMP_SET_OUTPUT | ((val & 1) ? 0 : 0x80));
1077         }
1078         mutex_unlock(&codec->spdif_mutex);
1079         return change;
1080 }
1081
1082 static struct snd_kcontrol_new dig_mixes[] = {
1083         {
1084                 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1085                 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1086                 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1087                 .info = snd_hda_spdif_mask_info,
1088                 .get = snd_hda_spdif_cmask_get,
1089         },
1090         {
1091                 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1092                 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1093                 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PRO_MASK),
1094                 .info = snd_hda_spdif_mask_info,
1095                 .get = snd_hda_spdif_pmask_get,
1096         },
1097         {
1098                 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1099                 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1100                 .info = snd_hda_spdif_mask_info,
1101                 .get = snd_hda_spdif_default_get,
1102                 .put = snd_hda_spdif_default_put,
1103         },
1104         {
1105                 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1106                 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH),
1107                 .info = snd_hda_spdif_out_switch_info,
1108                 .get = snd_hda_spdif_out_switch_get,
1109                 .put = snd_hda_spdif_out_switch_put,
1110         },
1111         { } /* end */
1112 };
1113
1114 /**
1115  * snd_hda_create_spdif_out_ctls - create Output SPDIF-related controls
1116  * @codec: the HDA codec
1117  * @nid: audio out widget NID
1118  *
1119  * Creates controls related with the SPDIF output.
1120  * Called from each patch supporting the SPDIF out.
1121  *
1122  * Returns 0 if successful, or a negative error code.
1123  */
1124 int snd_hda_create_spdif_out_ctls(struct hda_codec *codec, hda_nid_t nid)
1125 {
1126         int err;
1127         struct snd_kcontrol *kctl;
1128         struct snd_kcontrol_new *dig_mix;
1129
1130         for (dig_mix = dig_mixes; dig_mix->name; dig_mix++) {
1131                 kctl = snd_ctl_new1(dig_mix, codec);
1132                 kctl->private_value = nid;
1133                 if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
1134                         return err;
1135         }
1136         codec->spdif_ctls = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1137         codec->spdif_status = convert_to_spdif_status(codec->spdif_ctls);
1138         return 0;
1139 }
1140
1141 /*
1142  * SPDIF input
1143  */
1144
1145 #define snd_hda_spdif_in_switch_info    snd_hda_spdif_out_switch_info
1146
1147 static int snd_hda_spdif_in_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1148 {
1149         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1150
1151         ucontrol->value.integer.value[0] = codec->spdif_in_enable;
1152         return 0;
1153 }
1154
1155 static int snd_hda_spdif_in_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1156 {
1157         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1158         hda_nid_t nid = kcontrol->private_value;
1159         unsigned int val = !!ucontrol->value.integer.value[0];
1160         int change;
1161
1162         mutex_lock(&codec->spdif_mutex);
1163         change = codec->spdif_in_enable != val;
1164         if (change || codec->in_resume) {
1165                 codec->spdif_in_enable = val;
1166                 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val);
1167         }
1168         mutex_unlock(&codec->spdif_mutex);
1169         return change;
1170 }
1171
1172 static int snd_hda_spdif_in_status_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1173 {
1174         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1175         hda_nid_t nid = kcontrol->private_value;
1176         unsigned short val;
1177         unsigned int sbits;
1178
1179         val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1180         sbits = convert_to_spdif_status(val);
1181         ucontrol->value.iec958.status[0] = sbits;
1182         ucontrol->value.iec958.status[1] = sbits >> 8;
1183         ucontrol->value.iec958.status[2] = sbits >> 16;
1184         ucontrol->value.iec958.status[3] = sbits >> 24;
1185         return 0;
1186 }
1187
1188 static struct snd_kcontrol_new dig_in_ctls[] = {
1189         {
1190                 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1191                 .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH),
1192                 .info = snd_hda_spdif_in_switch_info,
1193                 .get = snd_hda_spdif_in_switch_get,
1194                 .put = snd_hda_spdif_in_switch_put,
1195         },
1196         {
1197                 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1198                 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1199                 .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,DEFAULT),
1200                 .info = snd_hda_spdif_mask_info,
1201                 .get = snd_hda_spdif_in_status_get,
1202         },
1203         { } /* end */
1204 };
1205
1206 /**
1207  * snd_hda_create_spdif_in_ctls - create Input SPDIF-related controls
1208  * @codec: the HDA codec
1209  * @nid: audio in widget NID
1210  *
1211  * Creates controls related with the SPDIF input.
1212  * Called from each patch supporting the SPDIF in.
1213  *
1214  * Returns 0 if successful, or a negative error code.
1215  */
1216 int snd_hda_create_spdif_in_ctls(struct hda_codec *codec, hda_nid_t nid)
1217 {
1218         int err;
1219         struct snd_kcontrol *kctl;
1220         struct snd_kcontrol_new *dig_mix;
1221
1222         for (dig_mix = dig_in_ctls; dig_mix->name; dig_mix++) {
1223                 kctl = snd_ctl_new1(dig_mix, codec);
1224                 kctl->private_value = nid;
1225                 if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
1226                         return err;
1227         }
1228         codec->spdif_in_enable = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0) & 1;
1229         return 0;
1230 }
1231
1232
1233 /*
1234  * set power state of the codec
1235  */
1236 static void hda_set_power_state(struct hda_codec *codec, hda_nid_t fg,
1237                                 unsigned int power_state)
1238 {
1239         hda_nid_t nid, nid_start;
1240         int nodes;
1241
1242         snd_hda_codec_write(codec, fg, 0, AC_VERB_SET_POWER_STATE,
1243                             power_state);
1244
1245         nodes = snd_hda_get_sub_nodes(codec, fg, &nid_start);
1246         for (nid = nid_start; nid < nodes + nid_start; nid++) {
1247                 if (get_wcaps(codec, nid) & AC_WCAP_POWER)
1248                         snd_hda_codec_write(codec, nid, 0,
1249                                             AC_VERB_SET_POWER_STATE,
1250                                             power_state);
1251         }
1252
1253         if (power_state == AC_PWRST_D0)
1254                 msleep(10);
1255 }
1256
1257
1258 /**
1259  * snd_hda_build_controls - build mixer controls
1260  * @bus: the BUS
1261  *
1262  * Creates mixer controls for each codec included in the bus.
1263  *
1264  * Returns 0 if successful, otherwise a negative error code.
1265  */
1266 int snd_hda_build_controls(struct hda_bus *bus)
1267 {
1268         struct list_head *p;
1269
1270         /* build controls */
1271         list_for_each(p, &bus->codec_list) {
1272                 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1273                 int err;
1274                 if (! codec->patch_ops.build_controls)
1275                         continue;
1276                 err = codec->patch_ops.build_controls(codec);
1277                 if (err < 0)
1278                         return err;
1279         }
1280
1281         /* initialize */
1282         list_for_each(p, &bus->codec_list) {
1283                 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1284                 int err;
1285                 hda_set_power_state(codec,
1286                                     codec->afg ? codec->afg : codec->mfg,
1287                                     AC_PWRST_D0);
1288                 if (! codec->patch_ops.init)
1289                         continue;
1290                 err = codec->patch_ops.init(codec);
1291                 if (err < 0)
1292                         return err;
1293         }
1294         return 0;
1295 }
1296
1297
1298 /*
1299  * stream formats
1300  */
1301 struct hda_rate_tbl {
1302         unsigned int hz;
1303         unsigned int alsa_bits;
1304         unsigned int hda_fmt;
1305 };
1306
1307 static struct hda_rate_tbl rate_bits[] = {
1308         /* rate in Hz, ALSA rate bitmask, HDA format value */
1309
1310         /* autodetected value used in snd_hda_query_supported_pcm */
1311         { 8000, SNDRV_PCM_RATE_8000, 0x0500 }, /* 1/6 x 48 */
1312         { 11025, SNDRV_PCM_RATE_11025, 0x4300 }, /* 1/4 x 44 */
1313         { 16000, SNDRV_PCM_RATE_16000, 0x0200 }, /* 1/3 x 48 */
1314         { 22050, SNDRV_PCM_RATE_22050, 0x4100 }, /* 1/2 x 44 */
1315         { 32000, SNDRV_PCM_RATE_32000, 0x0a00 }, /* 2/3 x 48 */
1316         { 44100, SNDRV_PCM_RATE_44100, 0x4000 }, /* 44 */
1317         { 48000, SNDRV_PCM_RATE_48000, 0x0000 }, /* 48 */
1318         { 88200, SNDRV_PCM_RATE_88200, 0x4800 }, /* 2 x 44 */
1319         { 96000, SNDRV_PCM_RATE_96000, 0x0800 }, /* 2 x 48 */
1320         { 176400, SNDRV_PCM_RATE_176400, 0x5800 },/* 4 x 44 */
1321         { 192000, SNDRV_PCM_RATE_192000, 0x1800 }, /* 4 x 48 */
1322
1323         /* not autodetected value */
1324         { 9600, SNDRV_PCM_RATE_KNOT, 0x0400 }, /* 1/5 x 48 */
1325
1326         { 0 } /* terminator */
1327 };
1328
1329 /**
1330  * snd_hda_calc_stream_format - calculate format bitset
1331  * @rate: the sample rate
1332  * @channels: the number of channels
1333  * @format: the PCM format (SNDRV_PCM_FORMAT_XXX)
1334  * @maxbps: the max. bps
1335  *
1336  * Calculate the format bitset from the given rate, channels and th PCM format.
1337  *
1338  * Return zero if invalid.
1339  */
1340 unsigned int snd_hda_calc_stream_format(unsigned int rate,
1341                                         unsigned int channels,
1342                                         unsigned int format,
1343                                         unsigned int maxbps)
1344 {
1345         int i;
1346         unsigned int val = 0;
1347
1348         for (i = 0; rate_bits[i].hz; i++)
1349                 if (rate_bits[i].hz == rate) {
1350                         val = rate_bits[i].hda_fmt;
1351                         break;
1352                 }
1353         if (! rate_bits[i].hz) {
1354                 snd_printdd("invalid rate %d\n", rate);
1355                 return 0;
1356         }
1357
1358         if (channels == 0 || channels > 8) {
1359                 snd_printdd("invalid channels %d\n", channels);
1360                 return 0;
1361         }
1362         val |= channels - 1;
1363
1364         switch (snd_pcm_format_width(format)) {
1365         case 8:  val |= 0x00; break;
1366         case 16: val |= 0x10; break;
1367         case 20:
1368         case 24:
1369         case 32:
1370                 if (maxbps >= 32)
1371                         val |= 0x40;
1372                 else if (maxbps >= 24)
1373                         val |= 0x30;
1374                 else
1375                         val |= 0x20;
1376                 break;
1377         default:
1378                 snd_printdd("invalid format width %d\n", snd_pcm_format_width(format));
1379                 return 0;
1380         }
1381
1382         return val;
1383 }
1384
1385 /**
1386  * snd_hda_query_supported_pcm - query the supported PCM rates and formats
1387  * @codec: the HDA codec
1388  * @nid: NID to query
1389  * @ratesp: the pointer to store the detected rate bitflags
1390  * @formatsp: the pointer to store the detected formats
1391  * @bpsp: the pointer to store the detected format widths
1392  *
1393  * Queries the supported PCM rates and formats.  The NULL @ratesp, @formatsp
1394  * or @bsps argument is ignored.
1395  *
1396  * Returns 0 if successful, otherwise a negative error code.
1397  */
1398 int snd_hda_query_supported_pcm(struct hda_codec *codec, hda_nid_t nid,
1399                                 u32 *ratesp, u64 *formatsp, unsigned int *bpsp)
1400 {
1401         int i;
1402         unsigned int val, streams;
1403
1404         val = 0;
1405         if (nid != codec->afg &&
1406             (get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) {
1407                 val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1408                 if (val == -1)
1409                         return -EIO;
1410         }
1411         if (! val)
1412                 val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1413
1414         if (ratesp) {
1415                 u32 rates = 0;
1416                 for (i = 0; rate_bits[i].hz; i++) {
1417                         if (val & (1 << i))
1418                                 rates |= rate_bits[i].alsa_bits;
1419                 }
1420                 *ratesp = rates;
1421         }
1422
1423         if (formatsp || bpsp) {
1424                 u64 formats = 0;
1425                 unsigned int bps;
1426                 unsigned int wcaps;
1427
1428                 wcaps = get_wcaps(codec, nid);
1429                 streams = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1430                 if (streams == -1)
1431                         return -EIO;
1432                 if (! streams) {
1433                         streams = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
1434                         if (streams == -1)
1435                                 return -EIO;
1436                 }
1437
1438                 bps = 0;
1439                 if (streams & AC_SUPFMT_PCM) {
1440                         if (val & AC_SUPPCM_BITS_8) {
1441                                 formats |= SNDRV_PCM_FMTBIT_U8;
1442                                 bps = 8;
1443                         }
1444                         if (val & AC_SUPPCM_BITS_16) {
1445                                 formats |= SNDRV_PCM_FMTBIT_S16_LE;
1446                                 bps = 16;
1447                         }
1448                         if (wcaps & AC_WCAP_DIGITAL) {
1449                                 if (val & AC_SUPPCM_BITS_32)
1450                                         formats |= SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE;
1451                                 if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24))
1452                                         formats |= SNDRV_PCM_FMTBIT_S32_LE;
1453                                 if (val & AC_SUPPCM_BITS_24)
1454                                         bps = 24;
1455                                 else if (val & AC_SUPPCM_BITS_20)
1456                                         bps = 20;
1457                         } else if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24|AC_SUPPCM_BITS_32)) {
1458                                 formats |= SNDRV_PCM_FMTBIT_S32_LE;
1459                                 if (val & AC_SUPPCM_BITS_32)
1460                                         bps = 32;
1461                                 else if (val & AC_SUPPCM_BITS_20)
1462                                         bps = 20;
1463                                 else if (val & AC_SUPPCM_BITS_24)
1464                                         bps = 24;
1465                         }
1466                 }
1467                 else if (streams == AC_SUPFMT_FLOAT32) { /* should be exclusive */
1468                         formats |= SNDRV_PCM_FMTBIT_FLOAT_LE;
1469                         bps = 32;
1470                 } else if (streams == AC_SUPFMT_AC3) { /* should be exclusive */
1471                         /* temporary hack: we have still no proper support
1472                          * for the direct AC3 stream...
1473                          */
1474                         formats |= SNDRV_PCM_FMTBIT_U8;
1475                         bps = 8;
1476                 }
1477                 if (formatsp)
1478                         *formatsp = formats;
1479                 if (bpsp)
1480                         *bpsp = bps;
1481         }
1482
1483         return 0;
1484 }
1485
1486 /**
1487  * snd_hda_is_supported_format - check whether the given node supports the format val
1488  *
1489  * Returns 1 if supported, 0 if not.
1490  */
1491 int snd_hda_is_supported_format(struct hda_codec *codec, hda_nid_t nid,
1492                                 unsigned int format)
1493 {
1494         int i;
1495         unsigned int val = 0, rate, stream;
1496
1497         if (nid != codec->afg &&
1498             (get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) {
1499                 val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1500                 if (val == -1)
1501                         return 0;
1502         }
1503         if (! val) {
1504                 val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1505                 if (val == -1)
1506                         return 0;
1507         }
1508
1509         rate = format & 0xff00;
1510         for (i = 0; rate_bits[i].hz; i++)
1511                 if (rate_bits[i].hda_fmt == rate) {
1512                         if (val & (1 << i))
1513                                 break;
1514                         return 0;
1515                 }
1516         if (! rate_bits[i].hz)
1517                 return 0;
1518
1519         stream = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1520         if (stream == -1)
1521                 return 0;
1522         if (! stream && nid != codec->afg)
1523                 stream = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
1524         if (! stream || stream == -1)
1525                 return 0;
1526
1527         if (stream & AC_SUPFMT_PCM) {
1528                 switch (format & 0xf0) {
1529                 case 0x00:
1530                         if (! (val & AC_SUPPCM_BITS_8))
1531                                 return 0;
1532                         break;
1533                 case 0x10:
1534                         if (! (val & AC_SUPPCM_BITS_16))
1535                                 return 0;
1536                         break;
1537                 case 0x20:
1538                         if (! (val & AC_SUPPCM_BITS_20))
1539                                 return 0;
1540                         break;
1541                 case 0x30:
1542                         if (! (val & AC_SUPPCM_BITS_24))
1543                                 return 0;
1544                         break;
1545                 case 0x40:
1546                         if (! (val & AC_SUPPCM_BITS_32))
1547                                 return 0;
1548                         break;
1549                 default:
1550                         return 0;
1551                 }
1552         } else {
1553                 /* FIXME: check for float32 and AC3? */
1554         }
1555
1556         return 1;
1557 }
1558
1559 /*
1560  * PCM stuff
1561  */
1562 static int hda_pcm_default_open_close(struct hda_pcm_stream *hinfo,
1563                                       struct hda_codec *codec,
1564                                       struct snd_pcm_substream *substream)
1565 {
1566         return 0;
1567 }
1568
1569 static int hda_pcm_default_prepare(struct hda_pcm_stream *hinfo,
1570                                    struct hda_codec *codec,
1571                                    unsigned int stream_tag,
1572                                    unsigned int format,
1573                                    struct snd_pcm_substream *substream)
1574 {
1575         snd_hda_codec_setup_stream(codec, hinfo->nid, stream_tag, 0, format);
1576         return 0;
1577 }
1578
1579 static int hda_pcm_default_cleanup(struct hda_pcm_stream *hinfo,
1580                                    struct hda_codec *codec,
1581                                    struct snd_pcm_substream *substream)
1582 {
1583         snd_hda_codec_setup_stream(codec, hinfo->nid, 0, 0, 0);
1584         return 0;
1585 }
1586
1587 static int set_pcm_default_values(struct hda_codec *codec, struct hda_pcm_stream *info)
1588 {
1589         if (info->nid) {
1590                 /* query support PCM information from the given NID */
1591                 if (! info->rates || ! info->formats)
1592                         snd_hda_query_supported_pcm(codec, info->nid,
1593                                                     info->rates ? NULL : &info->rates,
1594                                                     info->formats ? NULL : &info->formats,
1595                                                     info->maxbps ? NULL : &info->maxbps);
1596         }
1597         if (info->ops.open == NULL)
1598                 info->ops.open = hda_pcm_default_open_close;
1599         if (info->ops.close == NULL)
1600                 info->ops.close = hda_pcm_default_open_close;
1601         if (info->ops.prepare == NULL) {
1602                 snd_assert(info->nid, return -EINVAL);
1603                 info->ops.prepare = hda_pcm_default_prepare;
1604         }
1605         if (info->ops.cleanup == NULL) {
1606                 snd_assert(info->nid, return -EINVAL);
1607                 info->ops.cleanup = hda_pcm_default_cleanup;
1608         }
1609         return 0;
1610 }
1611
1612 /**
1613  * snd_hda_build_pcms - build PCM information
1614  * @bus: the BUS
1615  *
1616  * Create PCM information for each codec included in the bus.
1617  *
1618  * The build_pcms codec patch is requested to set up codec->num_pcms and
1619  * codec->pcm_info properly.  The array is referred by the top-level driver
1620  * to create its PCM instances.
1621  * The allocated codec->pcm_info should be released in codec->patch_ops.free
1622  * callback.
1623  *
1624  * At least, substreams, channels_min and channels_max must be filled for
1625  * each stream.  substreams = 0 indicates that the stream doesn't exist.
1626  * When rates and/or formats are zero, the supported values are queried
1627  * from the given nid.  The nid is used also by the default ops.prepare
1628  * and ops.cleanup callbacks.
1629  *
1630  * The driver needs to call ops.open in its open callback.  Similarly,
1631  * ops.close is supposed to be called in the close callback.
1632  * ops.prepare should be called in the prepare or hw_params callback
1633  * with the proper parameters for set up.
1634  * ops.cleanup should be called in hw_free for clean up of streams.
1635  *
1636  * This function returns 0 if successfull, or a negative error code.
1637  */
1638 int snd_hda_build_pcms(struct hda_bus *bus)
1639 {
1640         struct list_head *p;
1641
1642         list_for_each(p, &bus->codec_list) {
1643                 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1644                 unsigned int pcm, s;
1645                 int err;
1646                 if (! codec->patch_ops.build_pcms)
1647                         continue;
1648                 err = codec->patch_ops.build_pcms(codec);
1649                 if (err < 0)
1650                         return err;
1651                 for (pcm = 0; pcm < codec->num_pcms; pcm++) {
1652                         for (s = 0; s < 2; s++) {
1653                                 struct hda_pcm_stream *info;
1654                                 info = &codec->pcm_info[pcm].stream[s];
1655                                 if (! info->substreams)
1656                                         continue;
1657                                 err = set_pcm_default_values(codec, info);
1658                                 if (err < 0)
1659                                         return err;
1660                         }
1661                 }
1662         }
1663         return 0;
1664 }
1665
1666
1667 /**
1668  * snd_hda_check_board_config - compare the current codec with the config table
1669  * @codec: the HDA codec
1670  * @tbl: configuration table, terminated by null entries
1671  *
1672  * Compares the modelname or PCI subsystem id of the current codec with the
1673  * given configuration table.  If a matching entry is found, returns its
1674  * config value (supposed to be 0 or positive).
1675  *
1676  * If no entries are matching, the function returns a negative value.
1677  */
1678 int snd_hda_check_board_config(struct hda_codec *codec, const struct hda_board_config *tbl)
1679 {
1680         const struct hda_board_config *c;
1681
1682         if (codec->bus->modelname) {
1683                 for (c = tbl; c->modelname || c->pci_subvendor; c++) {
1684                         if (c->modelname &&
1685                             ! strcmp(codec->bus->modelname, c->modelname)) {
1686                                 snd_printd(KERN_INFO "hda_codec: model '%s' is selected\n", c->modelname);
1687                                 return c->config;
1688                         }
1689                 }
1690         }
1691
1692         if (codec->bus->pci) {
1693                 u16 subsystem_vendor, subsystem_device;
1694                 pci_read_config_word(codec->bus->pci, PCI_SUBSYSTEM_VENDOR_ID, &subsystem_vendor);
1695                 pci_read_config_word(codec->bus->pci, PCI_SUBSYSTEM_ID, &subsystem_device);
1696                 for (c = tbl; c->modelname || c->pci_subvendor; c++) {
1697                         if (c->pci_subvendor == subsystem_vendor &&
1698                             (! c->pci_subdevice /* all match */||
1699                              (c->pci_subdevice == subsystem_device))) {
1700                                 snd_printdd(KERN_INFO "hda_codec: PCI %x:%x, codec config %d is selected\n",
1701                                             subsystem_vendor, subsystem_device, c->config);
1702                                 return c->config;
1703                         }
1704                 }
1705         }
1706         return -1;
1707 }
1708
1709 /**
1710  * snd_hda_add_new_ctls - create controls from the array
1711  * @codec: the HDA codec
1712  * @knew: the array of struct snd_kcontrol_new
1713  *
1714  * This helper function creates and add new controls in the given array.
1715  * The array must be terminated with an empty entry as terminator.
1716  *
1717  * Returns 0 if successful, or a negative error code.
1718  */
1719 int snd_hda_add_new_ctls(struct hda_codec *codec, struct snd_kcontrol_new *knew)
1720 {
1721         int err;
1722
1723         for (; knew->name; knew++) {
1724                 struct snd_kcontrol *kctl;
1725                 kctl = snd_ctl_new1(knew, codec);
1726                 if (! kctl)
1727                         return -ENOMEM;
1728                 err = snd_ctl_add(codec->bus->card, kctl);
1729                 if (err < 0) {
1730                         if (! codec->addr)
1731                                 return err;
1732                         kctl = snd_ctl_new1(knew, codec);
1733                         if (! kctl)
1734                                 return -ENOMEM;
1735                         kctl->id.device = codec->addr;
1736                         if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
1737                                 return err;
1738                 }
1739         }
1740         return 0;
1741 }
1742
1743
1744 /*
1745  * Channel mode helper
1746  */
1747 int snd_hda_ch_mode_info(struct hda_codec *codec, struct snd_ctl_elem_info *uinfo,
1748                          const struct hda_channel_mode *chmode, int num_chmodes)
1749 {
1750         uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1751         uinfo->count = 1;
1752         uinfo->value.enumerated.items = num_chmodes;
1753         if (uinfo->value.enumerated.item >= num_chmodes)
1754                 uinfo->value.enumerated.item = num_chmodes - 1;
1755         sprintf(uinfo->value.enumerated.name, "%dch",
1756                 chmode[uinfo->value.enumerated.item].channels);
1757         return 0;
1758 }
1759
1760 int snd_hda_ch_mode_get(struct hda_codec *codec, struct snd_ctl_elem_value *ucontrol,
1761                         const struct hda_channel_mode *chmode, int num_chmodes,
1762                         int max_channels)
1763 {
1764         int i;
1765
1766         for (i = 0; i < num_chmodes; i++) {
1767                 if (max_channels == chmode[i].channels) {
1768                         ucontrol->value.enumerated.item[0] = i;
1769                         break;
1770                 }
1771         }
1772         return 0;
1773 }
1774
1775 int snd_hda_ch_mode_put(struct hda_codec *codec, struct snd_ctl_elem_value *ucontrol,
1776                         const struct hda_channel_mode *chmode, int num_chmodes,
1777                         int *max_channelsp)
1778 {
1779         unsigned int mode;
1780
1781         mode = ucontrol->value.enumerated.item[0];
1782         snd_assert(mode < num_chmodes, return -EINVAL);
1783         if (*max_channelsp == chmode[mode].channels && ! codec->in_resume)
1784                 return 0;
1785         /* change the current channel setting */
1786         *max_channelsp = chmode[mode].channels;
1787         if (chmode[mode].sequence)
1788                 snd_hda_sequence_write(codec, chmode[mode].sequence);
1789         return 1;
1790 }
1791
1792 /*
1793  * input MUX helper
1794  */
1795 int snd_hda_input_mux_info(const struct hda_input_mux *imux, struct snd_ctl_elem_info *uinfo)
1796 {
1797         unsigned int index;
1798
1799         uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1800         uinfo->count = 1;
1801         uinfo->value.enumerated.items = imux->num_items;
1802         index = uinfo->value.enumerated.item;
1803         if (index >= imux->num_items)
1804                 index = imux->num_items - 1;
1805         strcpy(uinfo->value.enumerated.name, imux->items[index].label);
1806         return 0;
1807 }
1808
1809 int snd_hda_input_mux_put(struct hda_codec *codec, const struct hda_input_mux *imux,
1810                           struct snd_ctl_elem_value *ucontrol, hda_nid_t nid,
1811                           unsigned int *cur_val)
1812 {
1813         unsigned int idx;
1814
1815         idx = ucontrol->value.enumerated.item[0];
1816         if (idx >= imux->num_items)
1817                 idx = imux->num_items - 1;
1818         if (*cur_val == idx && ! codec->in_resume)
1819                 return 0;
1820         snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CONNECT_SEL,
1821                             imux->items[idx].index);
1822         *cur_val = idx;
1823         return 1;
1824 }
1825
1826
1827 /*
1828  * Multi-channel / digital-out PCM helper functions
1829  */
1830
1831 /*
1832  * open the digital out in the exclusive mode
1833  */
1834 int snd_hda_multi_out_dig_open(struct hda_codec *codec, struct hda_multi_out *mout)
1835 {
1836         mutex_lock(&codec->spdif_mutex);
1837         if (mout->dig_out_used) {
1838                 mutex_unlock(&codec->spdif_mutex);
1839                 return -EBUSY; /* already being used */
1840         }
1841         mout->dig_out_used = HDA_DIG_EXCLUSIVE;
1842         mutex_unlock(&codec->spdif_mutex);
1843         return 0;
1844 }
1845
1846 /*
1847  * release the digital out
1848  */
1849 int snd_hda_multi_out_dig_close(struct hda_codec *codec, struct hda_multi_out *mout)
1850 {
1851         mutex_lock(&codec->spdif_mutex);
1852         mout->dig_out_used = 0;
1853         mutex_unlock(&codec->spdif_mutex);
1854         return 0;
1855 }
1856
1857 /*
1858  * set up more restrictions for analog out
1859  */
1860 int snd_hda_multi_out_analog_open(struct hda_codec *codec, struct hda_multi_out *mout,
1861                                   struct snd_pcm_substream *substream)
1862 {
1863         substream->runtime->hw.channels_max = mout->max_channels;
1864         return snd_pcm_hw_constraint_step(substream->runtime, 0,
1865                                           SNDRV_PCM_HW_PARAM_CHANNELS, 2);
1866 }
1867
1868 /*
1869  * set up the i/o for analog out
1870  * when the digital out is available, copy the front out to digital out, too.
1871  */
1872 int snd_hda_multi_out_analog_prepare(struct hda_codec *codec, struct hda_multi_out *mout,
1873                                      unsigned int stream_tag,
1874                                      unsigned int format,
1875                                      struct snd_pcm_substream *substream)
1876 {
1877         hda_nid_t *nids = mout->dac_nids;
1878         int chs = substream->runtime->channels;
1879         int i;
1880
1881         mutex_lock(&codec->spdif_mutex);
1882         if (mout->dig_out_nid && mout->dig_out_used != HDA_DIG_EXCLUSIVE) {
1883                 if (chs == 2 &&
1884                     snd_hda_is_supported_format(codec, mout->dig_out_nid, format) &&
1885                     ! (codec->spdif_status & IEC958_AES0_NONAUDIO)) {
1886                         mout->dig_out_used = HDA_DIG_ANALOG_DUP;
1887                         /* setup digital receiver */
1888                         snd_hda_codec_setup_stream(codec, mout->dig_out_nid,
1889                                                    stream_tag, 0, format);
1890                 } else {
1891                         mout->dig_out_used = 0;
1892                         snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
1893                 }
1894         }
1895         mutex_unlock(&codec->spdif_mutex);
1896
1897         /* front */
1898         snd_hda_codec_setup_stream(codec, nids[HDA_FRONT], stream_tag, 0, format);
1899         if (mout->hp_nid)
1900                 /* headphone out will just decode front left/right (stereo) */
1901                 snd_hda_codec_setup_stream(codec, mout->hp_nid, stream_tag, 0, format);
1902         /* extra outputs copied from front */
1903         for (i = 0; i < ARRAY_SIZE(mout->extra_out_nid); i++)
1904                 if (mout->extra_out_nid[i])
1905                         snd_hda_codec_setup_stream(codec,
1906                                                    mout->extra_out_nid[i],
1907                                                    stream_tag, 0, format);
1908
1909         /* surrounds */
1910         for (i = 1; i < mout->num_dacs; i++) {
1911                 if (chs >= (i + 1) * 2) /* independent out */
1912                         snd_hda_codec_setup_stream(codec, nids[i], stream_tag, i * 2,
1913                                                    format);
1914                 else /* copy front */
1915                         snd_hda_codec_setup_stream(codec, nids[i], stream_tag, 0,
1916                                                    format);
1917         }
1918         return 0;
1919 }
1920
1921 /*
1922  * clean up the setting for analog out
1923  */
1924 int snd_hda_multi_out_analog_cleanup(struct hda_codec *codec, struct hda_multi_out *mout)
1925 {
1926         hda_nid_t *nids = mout->dac_nids;
1927         int i;
1928
1929         for (i = 0; i < mout->num_dacs; i++)
1930                 snd_hda_codec_setup_stream(codec, nids[i], 0, 0, 0);
1931         if (mout->hp_nid)
1932                 snd_hda_codec_setup_stream(codec, mout->hp_nid, 0, 0, 0);
1933         for (i = 0; i < ARRAY_SIZE(mout->extra_out_nid); i++)
1934                 if (mout->extra_out_nid[i])
1935                         snd_hda_codec_setup_stream(codec,
1936                                                    mout->extra_out_nid[i],
1937                                                    0, 0, 0);
1938         mutex_lock(&codec->spdif_mutex);
1939         if (mout->dig_out_nid && mout->dig_out_used == HDA_DIG_ANALOG_DUP) {
1940                 snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
1941                 mout->dig_out_used = 0;
1942         }
1943         mutex_unlock(&codec->spdif_mutex);
1944         return 0;
1945 }
1946
1947 /*
1948  * Helper for automatic ping configuration
1949  */
1950
1951 static int is_in_nid_list(hda_nid_t nid, hda_nid_t *list)
1952 {
1953         for (; *list; list++)
1954                 if (*list == nid)
1955                         return 1;
1956         return 0;
1957 }
1958
1959 /*
1960  * Parse all pin widgets and store the useful pin nids to cfg
1961  *
1962  * The number of line-outs or any primary output is stored in line_outs,
1963  * and the corresponding output pins are assigned to line_out_pins[],
1964  * in the order of front, rear, CLFE, side, ...
1965  *
1966  * If more extra outputs (speaker and headphone) are found, the pins are
1967  * assisnged to hp_pin and speaker_pins[], respectively.  If no line-out jack
1968  * is detected, one of speaker of HP pins is assigned as the primary
1969  * output, i.e. to line_out_pins[0].  So, line_outs is always positive
1970  * if any analog output exists.
1971  * 
1972  * The analog input pins are assigned to input_pins array.
1973  * The digital input/output pins are assigned to dig_in_pin and dig_out_pin,
1974  * respectively.
1975  */
1976 int snd_hda_parse_pin_def_config(struct hda_codec *codec, struct auto_pin_cfg *cfg,
1977                                  hda_nid_t *ignore_nids)
1978 {
1979         hda_nid_t nid, nid_start;
1980         int i, j, nodes;
1981         short seq, assoc_line_out, sequences[ARRAY_SIZE(cfg->line_out_pins)];
1982
1983         memset(cfg, 0, sizeof(*cfg));
1984
1985         memset(sequences, 0, sizeof(sequences));
1986         assoc_line_out = 0;
1987
1988         nodes = snd_hda_get_sub_nodes(codec, codec->afg, &nid_start);
1989         for (nid = nid_start; nid < nodes + nid_start; nid++) {
1990                 unsigned int wid_caps = get_wcaps(codec, nid);
1991                 unsigned int wid_type = (wid_caps & AC_WCAP_TYPE) >> AC_WCAP_TYPE_SHIFT;
1992                 unsigned int def_conf;
1993                 short assoc, loc;
1994
1995                 /* read all default configuration for pin complex */
1996                 if (wid_type != AC_WID_PIN)
1997                         continue;
1998                 /* ignore the given nids (e.g. pc-beep returns error) */
1999                 if (ignore_nids && is_in_nid_list(nid, ignore_nids))
2000                         continue;
2001
2002                 def_conf = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONFIG_DEFAULT, 0);
2003                 if (get_defcfg_connect(def_conf) == AC_JACK_PORT_NONE)
2004                         continue;
2005                 loc = get_defcfg_location(def_conf);
2006                 switch (get_defcfg_device(def_conf)) {
2007                 case AC_JACK_LINE_OUT:
2008                         seq = get_defcfg_sequence(def_conf);
2009                         assoc = get_defcfg_association(def_conf);
2010                         if (! assoc)
2011                                 continue;
2012                         if (! assoc_line_out)
2013                                 assoc_line_out = assoc;
2014                         else if (assoc_line_out != assoc)
2015                                 continue;
2016                         if (cfg->line_outs >= ARRAY_SIZE(cfg->line_out_pins))
2017                                 continue;
2018                         cfg->line_out_pins[cfg->line_outs] = nid;
2019                         sequences[cfg->line_outs] = seq;
2020                         cfg->line_outs++;
2021                         break;
2022                 case AC_JACK_SPEAKER:
2023                         if (cfg->speaker_outs >= ARRAY_SIZE(cfg->speaker_pins))
2024                                 continue;
2025                         cfg->speaker_pins[cfg->speaker_outs] = nid;
2026                         cfg->speaker_outs++;
2027                         break;
2028                 case AC_JACK_HP_OUT:
2029                         cfg->hp_pin = nid;
2030                         break;
2031                 case AC_JACK_MIC_IN:
2032                         if (loc == AC_JACK_LOC_FRONT)
2033                                 cfg->input_pins[AUTO_PIN_FRONT_MIC] = nid;
2034                         else
2035                                 cfg->input_pins[AUTO_PIN_MIC] = nid;
2036                         break;
2037                 case AC_JACK_LINE_IN:
2038                         if (loc == AC_JACK_LOC_FRONT)
2039                                 cfg->input_pins[AUTO_PIN_FRONT_LINE] = nid;
2040                         else
2041                                 cfg->input_pins[AUTO_PIN_LINE] = nid;
2042                         break;
2043                 case AC_JACK_CD:
2044                         cfg->input_pins[AUTO_PIN_CD] = nid;
2045                         break;
2046                 case AC_JACK_AUX:
2047                         cfg->input_pins[AUTO_PIN_AUX] = nid;
2048                         break;
2049                 case AC_JACK_SPDIF_OUT:
2050                         cfg->dig_out_pin = nid;
2051                         break;
2052                 case AC_JACK_SPDIF_IN:
2053                         cfg->dig_in_pin = nid;
2054                         break;
2055                 }
2056         }
2057
2058         /* sort by sequence */
2059         for (i = 0; i < cfg->line_outs; i++)
2060                 for (j = i + 1; j < cfg->line_outs; j++)
2061                         if (sequences[i] > sequences[j]) {
2062                                 seq = sequences[i];
2063                                 sequences[i] = sequences[j];
2064                                 sequences[j] = seq;
2065                                 nid = cfg->line_out_pins[i];
2066                                 cfg->line_out_pins[i] = cfg->line_out_pins[j];
2067                                 cfg->line_out_pins[j] = nid;
2068                         }
2069
2070         /* Reorder the surround channels
2071          * ALSA sequence is front/surr/clfe/side
2072          * HDA sequence is:
2073          *    4-ch: front/surr  =>  OK as it is
2074          *    6-ch: front/clfe/surr
2075          *    8-ch: front/clfe/side/surr
2076          */
2077         switch (cfg->line_outs) {
2078         case 3:
2079                 nid = cfg->line_out_pins[1];
2080                 cfg->line_out_pins[1] = cfg->line_out_pins[2];
2081                 cfg->line_out_pins[2] = nid;
2082                 break;
2083         case 4:
2084                 nid = cfg->line_out_pins[1];
2085                 cfg->line_out_pins[1] = cfg->line_out_pins[3];
2086                 cfg->line_out_pins[3] = cfg->line_out_pins[2];
2087                 cfg->line_out_pins[2] = nid;
2088                 break;
2089         }
2090
2091         /*
2092          * debug prints of the parsed results
2093          */
2094         snd_printd("autoconfig: line_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
2095                    cfg->line_outs, cfg->line_out_pins[0], cfg->line_out_pins[1],
2096                    cfg->line_out_pins[2], cfg->line_out_pins[3],
2097                    cfg->line_out_pins[4]);
2098         snd_printd("   speaker_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
2099                    cfg->speaker_outs, cfg->speaker_pins[0],
2100                    cfg->speaker_pins[1], cfg->speaker_pins[2],
2101                    cfg->speaker_pins[3], cfg->speaker_pins[4]);
2102         snd_printd("   hp=0x%x, dig_out=0x%x, din_in=0x%x\n",
2103                    cfg->hp_pin, cfg->dig_out_pin, cfg->dig_in_pin);
2104         snd_printd("   inputs: mic=0x%x, fmic=0x%x, line=0x%x, fline=0x%x,"
2105                    " cd=0x%x, aux=0x%x\n",
2106                    cfg->input_pins[AUTO_PIN_MIC],
2107                    cfg->input_pins[AUTO_PIN_FRONT_MIC],
2108                    cfg->input_pins[AUTO_PIN_LINE],
2109                    cfg->input_pins[AUTO_PIN_FRONT_LINE],
2110                    cfg->input_pins[AUTO_PIN_CD],
2111                    cfg->input_pins[AUTO_PIN_AUX]);
2112
2113         /*
2114          * FIX-UP: if no line-outs are detected, try to use speaker or HP pin
2115          * as a primary output
2116          */
2117         if (! cfg->line_outs) {
2118                 if (cfg->speaker_outs) {
2119                         cfg->line_outs = cfg->speaker_outs;
2120                         memcpy(cfg->line_out_pins, cfg->speaker_pins,
2121                                sizeof(cfg->speaker_pins));
2122                         cfg->speaker_outs = 0;
2123                         memset(cfg->speaker_pins, 0, sizeof(cfg->speaker_pins));
2124                 } else if (cfg->hp_pin) {
2125                         cfg->line_outs = 1;
2126                         cfg->line_out_pins[0] = cfg->hp_pin;
2127                         cfg->hp_pin = 0;
2128                 }
2129         }
2130
2131         return 0;
2132 }
2133
2134 /* labels for input pins */
2135 const char *auto_pin_cfg_labels[AUTO_PIN_LAST] = {
2136         "Mic", "Front Mic", "Line", "Front Line", "CD", "Aux"
2137 };
2138
2139
2140 #ifdef CONFIG_PM
2141 /*
2142  * power management
2143  */
2144
2145 /**
2146  * snd_hda_suspend - suspend the codecs
2147  * @bus: the HDA bus
2148  * @state: suspsend state
2149  *
2150  * Returns 0 if successful.
2151  */
2152 int snd_hda_suspend(struct hda_bus *bus, pm_message_t state)
2153 {
2154         struct list_head *p;
2155
2156         /* FIXME: should handle power widget capabilities */
2157         list_for_each(p, &bus->codec_list) {
2158                 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
2159                 if (codec->patch_ops.suspend)
2160                         codec->patch_ops.suspend(codec, state);
2161                 hda_set_power_state(codec,
2162                                     codec->afg ? codec->afg : codec->mfg,
2163                                     AC_PWRST_D3);
2164         }
2165         return 0;
2166 }
2167
2168 /**
2169  * snd_hda_resume - resume the codecs
2170  * @bus: the HDA bus
2171  * @state: resume state
2172  *
2173  * Returns 0 if successful.
2174  */
2175 int snd_hda_resume(struct hda_bus *bus)
2176 {
2177         struct list_head *p;
2178
2179         list_for_each(p, &bus->codec_list) {
2180                 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
2181                 hda_set_power_state(codec,
2182                                     codec->afg ? codec->afg : codec->mfg,
2183                                     AC_PWRST_D0);
2184                 if (codec->patch_ops.resume)
2185                         codec->patch_ops.resume(codec);
2186         }
2187         return 0;
2188 }
2189
2190 /**
2191  * snd_hda_resume_ctls - resume controls in the new control list
2192  * @codec: the HDA codec
2193  * @knew: the array of struct snd_kcontrol_new
2194  *
2195  * This function resumes the mixer controls in the struct snd_kcontrol_new array,
2196  * originally for snd_hda_add_new_ctls().
2197  * The array must be terminated with an empty entry as terminator.
2198  */
2199 int snd_hda_resume_ctls(struct hda_codec *codec, struct snd_kcontrol_new *knew)
2200 {
2201         struct snd_ctl_elem_value *val;
2202
2203         val = kmalloc(sizeof(*val), GFP_KERNEL);
2204         if (! val)
2205                 return -ENOMEM;
2206         codec->in_resume = 1;
2207         for (; knew->name; knew++) {
2208                 int i, count;
2209                 count = knew->count ? knew->count : 1;
2210                 for (i = 0; i < count; i++) {
2211                         memset(val, 0, sizeof(*val));
2212                         val->id.iface = knew->iface;
2213                         val->id.device = knew->device;
2214                         val->id.subdevice = knew->subdevice;
2215                         strcpy(val->id.name, knew->name);
2216                         val->id.index = knew->index ? knew->index : i;
2217                         /* Assume that get callback reads only from cache,
2218                          * not accessing to the real hardware
2219                          */
2220                         if (snd_ctl_elem_read(codec->bus->card, val) < 0)
2221                                 continue;
2222                         snd_ctl_elem_write(codec->bus->card, NULL, val);
2223                 }
2224         }
2225         codec->in_resume = 0;
2226         kfree(val);
2227         return 0;
2228 }
2229
2230 /**
2231  * snd_hda_resume_spdif_out - resume the digital out
2232  * @codec: the HDA codec
2233  */
2234 int snd_hda_resume_spdif_out(struct hda_codec *codec)
2235 {
2236         return snd_hda_resume_ctls(codec, dig_mixes);
2237 }
2238
2239 /**
2240  * snd_hda_resume_spdif_in - resume the digital in
2241  * @codec: the HDA codec
2242  */
2243 int snd_hda_resume_spdif_in(struct hda_codec *codec)
2244 {
2245         return snd_hda_resume_ctls(codec, dig_in_ctls);
2246 }
2247 #endif
2248
2249 /*
2250  * symbols exported for controller modules
2251  */
2252 EXPORT_SYMBOL(snd_hda_codec_read);
2253 EXPORT_SYMBOL(snd_hda_codec_write);
2254 EXPORT_SYMBOL(snd_hda_sequence_write);
2255 EXPORT_SYMBOL(snd_hda_get_sub_nodes);
2256 EXPORT_SYMBOL(snd_hda_queue_unsol_event);
2257 EXPORT_SYMBOL(snd_hda_bus_new);
2258 EXPORT_SYMBOL(snd_hda_codec_new);
2259 EXPORT_SYMBOL(snd_hda_codec_setup_stream);
2260 EXPORT_SYMBOL(snd_hda_calc_stream_format);
2261 EXPORT_SYMBOL(snd_hda_build_pcms);
2262 EXPORT_SYMBOL(snd_hda_build_controls);
2263 #ifdef CONFIG_PM
2264 EXPORT_SYMBOL(snd_hda_suspend);
2265 EXPORT_SYMBOL(snd_hda_resume);
2266 #endif
2267
2268 /*
2269  *  INIT part
2270  */
2271
2272 static int __init alsa_hda_init(void)
2273 {
2274         return 0;
2275 }
2276
2277 static void __exit alsa_hda_exit(void)
2278 {
2279 }
2280
2281 module_init(alsa_hda_init)
2282 module_exit(alsa_hda_exit)