Merge branch 'linus' of master.kernel.org:/pub/scm/linux/kernel/git/perex/alsa
[sfrench/cifs-2.6.git] / sound / pci / fm801.c
1 /*
2  *  The driver for the ForteMedia FM801 based soundcards
3  *  Copyright (c) by Jaroslav Kysela <perex@suse.cz>
4  *
5  *  Support FM only card by Andy Shevchenko <andy@smile.org.ua>
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22
23 #include <sound/driver.h>
24 #include <linux/delay.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/pci.h>
28 #include <linux/slab.h>
29 #include <linux/moduleparam.h>
30 #include <sound/core.h>
31 #include <sound/pcm.h>
32 #include <sound/tlv.h>
33 #include <sound/ac97_codec.h>
34 #include <sound/mpu401.h>
35 #include <sound/opl3.h>
36 #include <sound/initval.h>
37
38 #include <asm/io.h>
39
40 #ifdef CONFIG_SND_FM801_TEA575X_BOOL
41 #include <sound/tea575x-tuner.h>
42 #define TEA575X_RADIO 1
43 #endif
44
45 MODULE_AUTHOR("Jaroslav Kysela <perex@suse.cz>");
46 MODULE_DESCRIPTION("ForteMedia FM801");
47 MODULE_LICENSE("GPL");
48 MODULE_SUPPORTED_DEVICE("{{ForteMedia,FM801},"
49                 "{Genius,SoundMaker Live 5.1}}");
50
51 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;      /* Index 0-MAX */
52 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;       /* ID for this card */
53 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;      /* Enable this card */
54 /*
55  *  Enable TEA575x tuner
56  *    1 = MediaForte 256-PCS
57  *    2 = MediaForte 256-PCPR
58  *    3 = MediaForte 64-PCR
59  *   16 = setup tuner only (this is additional bit), i.e. SF-64-PCR FM card
60  *  High 16-bits are video (radio) device number + 1
61  */
62 static int tea575x_tuner[SNDRV_CARDS];
63
64 module_param_array(index, int, NULL, 0444);
65 MODULE_PARM_DESC(index, "Index value for the FM801 soundcard.");
66 module_param_array(id, charp, NULL, 0444);
67 MODULE_PARM_DESC(id, "ID string for the FM801 soundcard.");
68 module_param_array(enable, bool, NULL, 0444);
69 MODULE_PARM_DESC(enable, "Enable FM801 soundcard.");
70 module_param_array(tea575x_tuner, int, NULL, 0444);
71 MODULE_PARM_DESC(tea575x_tuner, "Enable TEA575x tuner.");
72
73 /*
74  *  Direct registers
75  */
76
77 #define FM801_REG(chip, reg)    (chip->port + FM801_##reg)
78
79 #define FM801_PCM_VOL           0x00    /* PCM Output Volume */
80 #define FM801_FM_VOL            0x02    /* FM Output Volume */
81 #define FM801_I2S_VOL           0x04    /* I2S Volume */
82 #define FM801_REC_SRC           0x06    /* Record Source */
83 #define FM801_PLY_CTRL          0x08    /* Playback Control */
84 #define FM801_PLY_COUNT         0x0a    /* Playback Count */
85 #define FM801_PLY_BUF1          0x0c    /* Playback Bufer I */
86 #define FM801_PLY_BUF2          0x10    /* Playback Buffer II */
87 #define FM801_CAP_CTRL          0x14    /* Capture Control */
88 #define FM801_CAP_COUNT         0x16    /* Capture Count */
89 #define FM801_CAP_BUF1          0x18    /* Capture Buffer I */
90 #define FM801_CAP_BUF2          0x1c    /* Capture Buffer II */
91 #define FM801_CODEC_CTRL        0x22    /* Codec Control */
92 #define FM801_I2S_MODE          0x24    /* I2S Mode Control */
93 #define FM801_VOLUME            0x26    /* Volume Up/Down/Mute Status */
94 #define FM801_I2C_CTRL          0x29    /* I2C Control */
95 #define FM801_AC97_CMD          0x2a    /* AC'97 Command */
96 #define FM801_AC97_DATA         0x2c    /* AC'97 Data */
97 #define FM801_MPU401_DATA       0x30    /* MPU401 Data */
98 #define FM801_MPU401_CMD        0x31    /* MPU401 Command */
99 #define FM801_GPIO_CTRL         0x52    /* General Purpose I/O Control */
100 #define FM801_GEN_CTRL          0x54    /* General Control */
101 #define FM801_IRQ_MASK          0x56    /* Interrupt Mask */
102 #define FM801_IRQ_STATUS        0x5a    /* Interrupt Status */
103 #define FM801_OPL3_BANK0        0x68    /* OPL3 Status Read / Bank 0 Write */
104 #define FM801_OPL3_DATA0        0x69    /* OPL3 Data 0 Write */
105 #define FM801_OPL3_BANK1        0x6a    /* OPL3 Bank 1 Write */
106 #define FM801_OPL3_DATA1        0x6b    /* OPL3 Bank 1 Write */
107 #define FM801_POWERDOWN         0x70    /* Blocks Power Down Control */
108
109 /* codec access */
110 #define FM801_AC97_READ         (1<<7)  /* read=1, write=0 */
111 #define FM801_AC97_VALID        (1<<8)  /* port valid=1 */
112 #define FM801_AC97_BUSY         (1<<9)  /* busy=1 */
113 #define FM801_AC97_ADDR_SHIFT   10      /* codec id (2bit) */
114
115 /* playback and record control register bits */
116 #define FM801_BUF1_LAST         (1<<1)
117 #define FM801_BUF2_LAST         (1<<2)
118 #define FM801_START             (1<<5)
119 #define FM801_PAUSE             (1<<6)
120 #define FM801_IMMED_STOP        (1<<7)
121 #define FM801_RATE_SHIFT        8
122 #define FM801_RATE_MASK         (15 << FM801_RATE_SHIFT)
123 #define FM801_CHANNELS_4        (1<<12) /* playback only */
124 #define FM801_CHANNELS_6        (2<<12) /* playback only */
125 #define FM801_CHANNELS_6MS      (3<<12) /* playback only */
126 #define FM801_CHANNELS_MASK     (3<<12)
127 #define FM801_16BIT             (1<<14)
128 #define FM801_STEREO            (1<<15)
129
130 /* IRQ status bits */
131 #define FM801_IRQ_PLAYBACK      (1<<8)
132 #define FM801_IRQ_CAPTURE       (1<<9)
133 #define FM801_IRQ_VOLUME        (1<<14)
134 #define FM801_IRQ_MPU           (1<<15)
135
136 /* GPIO control register */
137 #define FM801_GPIO_GP0          (1<<0)  /* read/write */
138 #define FM801_GPIO_GP1          (1<<1)
139 #define FM801_GPIO_GP2          (1<<2)
140 #define FM801_GPIO_GP3          (1<<3)
141 #define FM801_GPIO_GP(x)        (1<<(0+(x)))
142 #define FM801_GPIO_GD0          (1<<8)  /* directions: 1 = input, 0 = output*/
143 #define FM801_GPIO_GD1          (1<<9)
144 #define FM801_GPIO_GD2          (1<<10)
145 #define FM801_GPIO_GD3          (1<<11)
146 #define FM801_GPIO_GD(x)        (1<<(8+(x)))
147 #define FM801_GPIO_GS0          (1<<12) /* function select: */
148 #define FM801_GPIO_GS1          (1<<13) /*    1 = GPIO */
149 #define FM801_GPIO_GS2          (1<<14) /*    0 = other (S/PDIF, VOL) */
150 #define FM801_GPIO_GS3          (1<<15)
151 #define FM801_GPIO_GS(x)        (1<<(12+(x)))
152         
153 /*
154
155  */
156
157 struct fm801 {
158         int irq;
159
160         unsigned long port;     /* I/O port number */
161         unsigned int multichannel: 1,   /* multichannel support */
162                      secondary: 1;      /* secondary codec */
163         unsigned char secondary_addr;   /* address of the secondary codec */
164         unsigned int tea575x_tuner;     /* tuner flags */
165
166         unsigned short ply_ctrl; /* playback control */
167         unsigned short cap_ctrl; /* capture control */
168
169         unsigned long ply_buffer;
170         unsigned int ply_buf;
171         unsigned int ply_count;
172         unsigned int ply_size;
173         unsigned int ply_pos;
174
175         unsigned long cap_buffer;
176         unsigned int cap_buf;
177         unsigned int cap_count;
178         unsigned int cap_size;
179         unsigned int cap_pos;
180
181         struct snd_ac97_bus *ac97_bus;
182         struct snd_ac97 *ac97;
183         struct snd_ac97 *ac97_sec;
184
185         struct pci_dev *pci;
186         struct snd_card *card;
187         struct snd_pcm *pcm;
188         struct snd_rawmidi *rmidi;
189         struct snd_pcm_substream *playback_substream;
190         struct snd_pcm_substream *capture_substream;
191         unsigned int p_dma_size;
192         unsigned int c_dma_size;
193
194         spinlock_t reg_lock;
195         struct snd_info_entry *proc_entry;
196
197 #ifdef TEA575X_RADIO
198         struct snd_tea575x tea;
199 #endif
200
201 #ifdef CONFIG_PM
202         u16 saved_regs[0x20];
203 #endif
204 };
205
206 static struct pci_device_id snd_fm801_ids[] = {
207         { 0x1319, 0x0801, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, 0, },   /* FM801 */
208         { 0x5213, 0x0510, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, 0, },   /* Gallant Odyssey Sound 4 */
209         { 0, }
210 };
211
212 MODULE_DEVICE_TABLE(pci, snd_fm801_ids);
213
214 /*
215  *  common I/O routines
216  */
217
218 static int snd_fm801_update_bits(struct fm801 *chip, unsigned short reg,
219                                  unsigned short mask, unsigned short value)
220 {
221         int change;
222         unsigned long flags;
223         unsigned short old, new;
224
225         spin_lock_irqsave(&chip->reg_lock, flags);
226         old = inw(chip->port + reg);
227         new = (old & ~mask) | value;
228         change = old != new;
229         if (change)
230                 outw(new, chip->port + reg);
231         spin_unlock_irqrestore(&chip->reg_lock, flags);
232         return change;
233 }
234
235 static void snd_fm801_codec_write(struct snd_ac97 *ac97,
236                                   unsigned short reg,
237                                   unsigned short val)
238 {
239         struct fm801 *chip = ac97->private_data;
240         int idx;
241
242         /*
243          *  Wait until the codec interface is not ready..
244          */
245         for (idx = 0; idx < 100; idx++) {
246                 if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
247                         goto ok1;
248                 udelay(10);
249         }
250         snd_printk(KERN_ERR "AC'97 interface is busy (1)\n");
251         return;
252
253  ok1:
254         /* write data and address */
255         outw(val, FM801_REG(chip, AC97_DATA));
256         outw(reg | (ac97->addr << FM801_AC97_ADDR_SHIFT), FM801_REG(chip, AC97_CMD));
257         /*
258          *  Wait until the write command is not completed..
259          */
260         for (idx = 0; idx < 1000; idx++) {
261                 if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
262                         return;
263                 udelay(10);
264         }
265         snd_printk(KERN_ERR "AC'97 interface #%d is busy (2)\n", ac97->num);
266 }
267
268 static unsigned short snd_fm801_codec_read(struct snd_ac97 *ac97, unsigned short reg)
269 {
270         struct fm801 *chip = ac97->private_data;
271         int idx;
272
273         /*
274          *  Wait until the codec interface is not ready..
275          */
276         for (idx = 0; idx < 100; idx++) {
277                 if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
278                         goto ok1;
279                 udelay(10);
280         }
281         snd_printk(KERN_ERR "AC'97 interface is busy (1)\n");
282         return 0;
283
284  ok1:
285         /* read command */
286         outw(reg | (ac97->addr << FM801_AC97_ADDR_SHIFT) | FM801_AC97_READ,
287              FM801_REG(chip, AC97_CMD));
288         for (idx = 0; idx < 100; idx++) {
289                 if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
290                         goto ok2;
291                 udelay(10);
292         }
293         snd_printk(KERN_ERR "AC'97 interface #%d is busy (2)\n", ac97->num);
294         return 0;
295
296  ok2:
297         for (idx = 0; idx < 1000; idx++) {
298                 if (inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_VALID)
299                         goto ok3;
300                 udelay(10);
301         }
302         snd_printk(KERN_ERR "AC'97 interface #%d is not valid (2)\n", ac97->num);
303         return 0;
304
305  ok3:
306         return inw(FM801_REG(chip, AC97_DATA));
307 }
308
309 static unsigned int rates[] = {
310   5500,  8000,  9600, 11025,
311   16000, 19200, 22050, 32000,
312   38400, 44100, 48000
313 };
314
315 static struct snd_pcm_hw_constraint_list hw_constraints_rates = {
316         .count = ARRAY_SIZE(rates),
317         .list = rates,
318         .mask = 0,
319 };
320
321 static unsigned int channels[] = {
322   2, 4, 6
323 };
324
325 static struct snd_pcm_hw_constraint_list hw_constraints_channels = {
326         .count = ARRAY_SIZE(channels),
327         .list = channels,
328         .mask = 0,
329 };
330
331 /*
332  *  Sample rate routines
333  */
334
335 static unsigned short snd_fm801_rate_bits(unsigned int rate)
336 {
337         unsigned int idx;
338
339         for (idx = 0; idx < ARRAY_SIZE(rates); idx++)
340                 if (rates[idx] == rate)
341                         return idx;
342         snd_BUG();
343         return ARRAY_SIZE(rates) - 1;
344 }
345
346 /*
347  *  PCM part
348  */
349
350 static int snd_fm801_playback_trigger(struct snd_pcm_substream *substream,
351                                       int cmd)
352 {
353         struct fm801 *chip = snd_pcm_substream_chip(substream);
354
355         spin_lock(&chip->reg_lock);
356         switch (cmd) {
357         case SNDRV_PCM_TRIGGER_START:
358                 chip->ply_ctrl &= ~(FM801_BUF1_LAST |
359                                      FM801_BUF2_LAST |
360                                      FM801_PAUSE);
361                 chip->ply_ctrl |= FM801_START |
362                                    FM801_IMMED_STOP;
363                 break;
364         case SNDRV_PCM_TRIGGER_STOP:
365                 chip->ply_ctrl &= ~(FM801_START | FM801_PAUSE);
366                 break;
367         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
368         case SNDRV_PCM_TRIGGER_SUSPEND:
369                 chip->ply_ctrl |= FM801_PAUSE;
370                 break;
371         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
372         case SNDRV_PCM_TRIGGER_RESUME:
373                 chip->ply_ctrl &= ~FM801_PAUSE;
374                 break;
375         default:
376                 spin_unlock(&chip->reg_lock);
377                 snd_BUG();
378                 return -EINVAL;
379         }
380         outw(chip->ply_ctrl, FM801_REG(chip, PLY_CTRL));
381         spin_unlock(&chip->reg_lock);
382         return 0;
383 }
384
385 static int snd_fm801_capture_trigger(struct snd_pcm_substream *substream,
386                                      int cmd)
387 {
388         struct fm801 *chip = snd_pcm_substream_chip(substream);
389
390         spin_lock(&chip->reg_lock);
391         switch (cmd) {
392         case SNDRV_PCM_TRIGGER_START:
393                 chip->cap_ctrl &= ~(FM801_BUF1_LAST |
394                                      FM801_BUF2_LAST |
395                                      FM801_PAUSE);
396                 chip->cap_ctrl |= FM801_START |
397                                    FM801_IMMED_STOP;
398                 break;
399         case SNDRV_PCM_TRIGGER_STOP:
400                 chip->cap_ctrl &= ~(FM801_START | FM801_PAUSE);
401                 break;
402         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
403         case SNDRV_PCM_TRIGGER_SUSPEND:
404                 chip->cap_ctrl |= FM801_PAUSE;
405                 break;
406         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
407         case SNDRV_PCM_TRIGGER_RESUME:
408                 chip->cap_ctrl &= ~FM801_PAUSE;
409                 break;
410         default:
411                 spin_unlock(&chip->reg_lock);
412                 snd_BUG();
413                 return -EINVAL;
414         }
415         outw(chip->cap_ctrl, FM801_REG(chip, CAP_CTRL));
416         spin_unlock(&chip->reg_lock);
417         return 0;
418 }
419
420 static int snd_fm801_hw_params(struct snd_pcm_substream *substream,
421                                struct snd_pcm_hw_params *hw_params)
422 {
423         return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
424 }
425
426 static int snd_fm801_hw_free(struct snd_pcm_substream *substream)
427 {
428         return snd_pcm_lib_free_pages(substream);
429 }
430
431 static int snd_fm801_playback_prepare(struct snd_pcm_substream *substream)
432 {
433         struct fm801 *chip = snd_pcm_substream_chip(substream);
434         struct snd_pcm_runtime *runtime = substream->runtime;
435
436         chip->ply_size = snd_pcm_lib_buffer_bytes(substream);
437         chip->ply_count = snd_pcm_lib_period_bytes(substream);
438         spin_lock_irq(&chip->reg_lock);
439         chip->ply_ctrl &= ~(FM801_START | FM801_16BIT |
440                              FM801_STEREO | FM801_RATE_MASK |
441                              FM801_CHANNELS_MASK);
442         if (snd_pcm_format_width(runtime->format) == 16)
443                 chip->ply_ctrl |= FM801_16BIT;
444         if (runtime->channels > 1) {
445                 chip->ply_ctrl |= FM801_STEREO;
446                 if (runtime->channels == 4)
447                         chip->ply_ctrl |= FM801_CHANNELS_4;
448                 else if (runtime->channels == 6)
449                         chip->ply_ctrl |= FM801_CHANNELS_6;
450         }
451         chip->ply_ctrl |= snd_fm801_rate_bits(runtime->rate) << FM801_RATE_SHIFT;
452         chip->ply_buf = 0;
453         outw(chip->ply_ctrl, FM801_REG(chip, PLY_CTRL));
454         outw(chip->ply_count - 1, FM801_REG(chip, PLY_COUNT));
455         chip->ply_buffer = runtime->dma_addr;
456         chip->ply_pos = 0;
457         outl(chip->ply_buffer, FM801_REG(chip, PLY_BUF1));
458         outl(chip->ply_buffer + (chip->ply_count % chip->ply_size), FM801_REG(chip, PLY_BUF2));
459         spin_unlock_irq(&chip->reg_lock);
460         return 0;
461 }
462
463 static int snd_fm801_capture_prepare(struct snd_pcm_substream *substream)
464 {
465         struct fm801 *chip = snd_pcm_substream_chip(substream);
466         struct snd_pcm_runtime *runtime = substream->runtime;
467
468         chip->cap_size = snd_pcm_lib_buffer_bytes(substream);
469         chip->cap_count = snd_pcm_lib_period_bytes(substream);
470         spin_lock_irq(&chip->reg_lock);
471         chip->cap_ctrl &= ~(FM801_START | FM801_16BIT |
472                              FM801_STEREO | FM801_RATE_MASK);
473         if (snd_pcm_format_width(runtime->format) == 16)
474                 chip->cap_ctrl |= FM801_16BIT;
475         if (runtime->channels > 1)
476                 chip->cap_ctrl |= FM801_STEREO;
477         chip->cap_ctrl |= snd_fm801_rate_bits(runtime->rate) << FM801_RATE_SHIFT;
478         chip->cap_buf = 0;
479         outw(chip->cap_ctrl, FM801_REG(chip, CAP_CTRL));
480         outw(chip->cap_count - 1, FM801_REG(chip, CAP_COUNT));
481         chip->cap_buffer = runtime->dma_addr;
482         chip->cap_pos = 0;
483         outl(chip->cap_buffer, FM801_REG(chip, CAP_BUF1));
484         outl(chip->cap_buffer + (chip->cap_count % chip->cap_size), FM801_REG(chip, CAP_BUF2));
485         spin_unlock_irq(&chip->reg_lock);
486         return 0;
487 }
488
489 static snd_pcm_uframes_t snd_fm801_playback_pointer(struct snd_pcm_substream *substream)
490 {
491         struct fm801 *chip = snd_pcm_substream_chip(substream);
492         size_t ptr;
493
494         if (!(chip->ply_ctrl & FM801_START))
495                 return 0;
496         spin_lock(&chip->reg_lock);
497         ptr = chip->ply_pos + (chip->ply_count - 1) - inw(FM801_REG(chip, PLY_COUNT));
498         if (inw(FM801_REG(chip, IRQ_STATUS)) & FM801_IRQ_PLAYBACK) {
499                 ptr += chip->ply_count;
500                 ptr %= chip->ply_size;
501         }
502         spin_unlock(&chip->reg_lock);
503         return bytes_to_frames(substream->runtime, ptr);
504 }
505
506 static snd_pcm_uframes_t snd_fm801_capture_pointer(struct snd_pcm_substream *substream)
507 {
508         struct fm801 *chip = snd_pcm_substream_chip(substream);
509         size_t ptr;
510
511         if (!(chip->cap_ctrl & FM801_START))
512                 return 0;
513         spin_lock(&chip->reg_lock);
514         ptr = chip->cap_pos + (chip->cap_count - 1) - inw(FM801_REG(chip, CAP_COUNT));
515         if (inw(FM801_REG(chip, IRQ_STATUS)) & FM801_IRQ_CAPTURE) {
516                 ptr += chip->cap_count;
517                 ptr %= chip->cap_size;
518         }
519         spin_unlock(&chip->reg_lock);
520         return bytes_to_frames(substream->runtime, ptr);
521 }
522
523 static irqreturn_t snd_fm801_interrupt(int irq, void *dev_id, struct pt_regs *regs)
524 {
525         struct fm801 *chip = dev_id;
526         unsigned short status;
527         unsigned int tmp;
528
529         status = inw(FM801_REG(chip, IRQ_STATUS));
530         status &= FM801_IRQ_PLAYBACK|FM801_IRQ_CAPTURE|FM801_IRQ_MPU|FM801_IRQ_VOLUME;
531         if (! status)
532                 return IRQ_NONE;
533         /* ack first */
534         outw(status, FM801_REG(chip, IRQ_STATUS));
535         if (chip->pcm && (status & FM801_IRQ_PLAYBACK) && chip->playback_substream) {
536                 spin_lock(&chip->reg_lock);
537                 chip->ply_buf++;
538                 chip->ply_pos += chip->ply_count;
539                 chip->ply_pos %= chip->ply_size;
540                 tmp = chip->ply_pos + chip->ply_count;
541                 tmp %= chip->ply_size;
542                 outl(chip->ply_buffer + tmp,
543                                 (chip->ply_buf & 1) ?
544                                         FM801_REG(chip, PLY_BUF1) :
545                                         FM801_REG(chip, PLY_BUF2));
546                 spin_unlock(&chip->reg_lock);
547                 snd_pcm_period_elapsed(chip->playback_substream);
548         }
549         if (chip->pcm && (status & FM801_IRQ_CAPTURE) && chip->capture_substream) {
550                 spin_lock(&chip->reg_lock);
551                 chip->cap_buf++;
552                 chip->cap_pos += chip->cap_count;
553                 chip->cap_pos %= chip->cap_size;
554                 tmp = chip->cap_pos + chip->cap_count;
555                 tmp %= chip->cap_size;
556                 outl(chip->cap_buffer + tmp,
557                                 (chip->cap_buf & 1) ?
558                                         FM801_REG(chip, CAP_BUF1) :
559                                         FM801_REG(chip, CAP_BUF2));
560                 spin_unlock(&chip->reg_lock);
561                 snd_pcm_period_elapsed(chip->capture_substream);
562         }
563         if (chip->rmidi && (status & FM801_IRQ_MPU))
564                 snd_mpu401_uart_interrupt(irq, chip->rmidi->private_data, regs);
565         if (status & FM801_IRQ_VOLUME)
566                 ;/* TODO */
567
568         return IRQ_HANDLED;
569 }
570
571 static struct snd_pcm_hardware snd_fm801_playback =
572 {
573         .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
574                                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
575                                  SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME |
576                                  SNDRV_PCM_INFO_MMAP_VALID),
577         .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
578         .rates =                SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_8000_48000,
579         .rate_min =             5500,
580         .rate_max =             48000,
581         .channels_min =         1,
582         .channels_max =         2,
583         .buffer_bytes_max =     (128*1024),
584         .period_bytes_min =     64,
585         .period_bytes_max =     (128*1024),
586         .periods_min =          1,
587         .periods_max =          1024,
588         .fifo_size =            0,
589 };
590
591 static struct snd_pcm_hardware snd_fm801_capture =
592 {
593         .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
594                                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
595                                  SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME |
596                                  SNDRV_PCM_INFO_MMAP_VALID),
597         .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
598         .rates =                SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_8000_48000,
599         .rate_min =             5500,
600         .rate_max =             48000,
601         .channels_min =         1,
602         .channels_max =         2,
603         .buffer_bytes_max =     (128*1024),
604         .period_bytes_min =     64,
605         .period_bytes_max =     (128*1024),
606         .periods_min =          1,
607         .periods_max =          1024,
608         .fifo_size =            0,
609 };
610
611 static int snd_fm801_playback_open(struct snd_pcm_substream *substream)
612 {
613         struct fm801 *chip = snd_pcm_substream_chip(substream);
614         struct snd_pcm_runtime *runtime = substream->runtime;
615         int err;
616
617         chip->playback_substream = substream;
618         runtime->hw = snd_fm801_playback;
619         snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
620                                    &hw_constraints_rates);
621         if (chip->multichannel) {
622                 runtime->hw.channels_max = 6;
623                 snd_pcm_hw_constraint_list(runtime, 0,
624                                            SNDRV_PCM_HW_PARAM_CHANNELS,
625                                            &hw_constraints_channels);
626         }
627         if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
628                 return err;
629         return 0;
630 }
631
632 static int snd_fm801_capture_open(struct snd_pcm_substream *substream)
633 {
634         struct fm801 *chip = snd_pcm_substream_chip(substream);
635         struct snd_pcm_runtime *runtime = substream->runtime;
636         int err;
637
638         chip->capture_substream = substream;
639         runtime->hw = snd_fm801_capture;
640         snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
641                                    &hw_constraints_rates);
642         if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
643                 return err;
644         return 0;
645 }
646
647 static int snd_fm801_playback_close(struct snd_pcm_substream *substream)
648 {
649         struct fm801 *chip = snd_pcm_substream_chip(substream);
650
651         chip->playback_substream = NULL;
652         return 0;
653 }
654
655 static int snd_fm801_capture_close(struct snd_pcm_substream *substream)
656 {
657         struct fm801 *chip = snd_pcm_substream_chip(substream);
658
659         chip->capture_substream = NULL;
660         return 0;
661 }
662
663 static struct snd_pcm_ops snd_fm801_playback_ops = {
664         .open =         snd_fm801_playback_open,
665         .close =        snd_fm801_playback_close,
666         .ioctl =        snd_pcm_lib_ioctl,
667         .hw_params =    snd_fm801_hw_params,
668         .hw_free =      snd_fm801_hw_free,
669         .prepare =      snd_fm801_playback_prepare,
670         .trigger =      snd_fm801_playback_trigger,
671         .pointer =      snd_fm801_playback_pointer,
672 };
673
674 static struct snd_pcm_ops snd_fm801_capture_ops = {
675         .open =         snd_fm801_capture_open,
676         .close =        snd_fm801_capture_close,
677         .ioctl =        snd_pcm_lib_ioctl,
678         .hw_params =    snd_fm801_hw_params,
679         .hw_free =      snd_fm801_hw_free,
680         .prepare =      snd_fm801_capture_prepare,
681         .trigger =      snd_fm801_capture_trigger,
682         .pointer =      snd_fm801_capture_pointer,
683 };
684
685 static int __devinit snd_fm801_pcm(struct fm801 *chip, int device, struct snd_pcm ** rpcm)
686 {
687         struct snd_pcm *pcm;
688         int err;
689
690         if (rpcm)
691                 *rpcm = NULL;
692         if ((err = snd_pcm_new(chip->card, "FM801", device, 1, 1, &pcm)) < 0)
693                 return err;
694
695         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_fm801_playback_ops);
696         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_fm801_capture_ops);
697
698         pcm->private_data = chip;
699         pcm->info_flags = 0;
700         strcpy(pcm->name, "FM801");
701         chip->pcm = pcm;
702
703         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
704                                               snd_dma_pci_data(chip->pci),
705                                               chip->multichannel ? 128*1024 : 64*1024, 128*1024);
706
707         if (rpcm)
708                 *rpcm = pcm;
709         return 0;
710 }
711
712 /*
713  *  TEA5757 radio
714  */
715
716 #ifdef TEA575X_RADIO
717
718 /* 256PCS GPIO numbers */
719 #define TEA_256PCS_DATA                 1
720 #define TEA_256PCS_WRITE_ENABLE         2       /* inverted */
721 #define TEA_256PCS_BUS_CLOCK            3
722
723 static void snd_fm801_tea575x_256pcs_write(struct snd_tea575x *tea, unsigned int val)
724 {
725         struct fm801 *chip = tea->private_data;
726         unsigned short reg;
727         int i = 25;
728
729         spin_lock_irq(&chip->reg_lock);
730         reg = inw(FM801_REG(chip, GPIO_CTRL));
731         /* use GPIO lines and set write enable bit */
732         reg |= FM801_GPIO_GS(TEA_256PCS_DATA) |
733                FM801_GPIO_GS(TEA_256PCS_WRITE_ENABLE) |
734                FM801_GPIO_GS(TEA_256PCS_BUS_CLOCK);
735         /* all of lines are in the write direction */
736         /* clear data and clock lines */
737         reg &= ~(FM801_GPIO_GD(TEA_256PCS_DATA) |
738                  FM801_GPIO_GD(TEA_256PCS_WRITE_ENABLE) |
739                  FM801_GPIO_GD(TEA_256PCS_BUS_CLOCK) |
740                  FM801_GPIO_GP(TEA_256PCS_DATA) |
741                  FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK) |
742                  FM801_GPIO_GP(TEA_256PCS_WRITE_ENABLE));
743         outw(reg, FM801_REG(chip, GPIO_CTRL));
744         udelay(1);
745
746         while (i--) {
747                 if (val & (1 << i))
748                         reg |= FM801_GPIO_GP(TEA_256PCS_DATA);
749                 else
750                         reg &= ~FM801_GPIO_GP(TEA_256PCS_DATA);
751                 outw(reg, FM801_REG(chip, GPIO_CTRL));
752                 udelay(1);
753                 reg |= FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK);
754                 outw(reg, FM801_REG(chip, GPIO_CTRL));
755                 reg &= ~FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK);
756                 outw(reg, FM801_REG(chip, GPIO_CTRL));
757                 udelay(1);
758         }
759
760         /* and reset the write enable bit */
761         reg |= FM801_GPIO_GP(TEA_256PCS_WRITE_ENABLE) |
762                FM801_GPIO_GP(TEA_256PCS_DATA);
763         outw(reg, FM801_REG(chip, GPIO_CTRL));
764         spin_unlock_irq(&chip->reg_lock);
765 }
766
767 static unsigned int snd_fm801_tea575x_256pcs_read(struct snd_tea575x *tea)
768 {
769         struct fm801 *chip = tea->private_data;
770         unsigned short reg;
771         unsigned int val = 0;
772         int i;
773         
774         spin_lock_irq(&chip->reg_lock);
775         reg = inw(FM801_REG(chip, GPIO_CTRL));
776         /* use GPIO lines, set data direction to input */
777         reg |= FM801_GPIO_GS(TEA_256PCS_DATA) |
778                FM801_GPIO_GS(TEA_256PCS_WRITE_ENABLE) |
779                FM801_GPIO_GS(TEA_256PCS_BUS_CLOCK) |
780                FM801_GPIO_GD(TEA_256PCS_DATA) |
781                FM801_GPIO_GP(TEA_256PCS_DATA) |
782                FM801_GPIO_GP(TEA_256PCS_WRITE_ENABLE);
783         /* all of lines are in the write direction, except data */
784         /* clear data, write enable and clock lines */
785         reg &= ~(FM801_GPIO_GD(TEA_256PCS_WRITE_ENABLE) |
786                  FM801_GPIO_GD(TEA_256PCS_BUS_CLOCK) |
787                  FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK));
788
789         for (i = 0; i < 24; i++) {
790                 reg &= ~FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK);
791                 outw(reg, FM801_REG(chip, GPIO_CTRL));
792                 udelay(1);
793                 reg |= FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK);
794                 outw(reg, FM801_REG(chip, GPIO_CTRL));
795                 udelay(1);
796                 val <<= 1;
797                 if (inw(FM801_REG(chip, GPIO_CTRL)) & FM801_GPIO_GP(TEA_256PCS_DATA))
798                         val |= 1;
799         }
800
801         spin_unlock_irq(&chip->reg_lock);
802
803         return val;
804 }
805
806 /* 256PCPR GPIO numbers */
807 #define TEA_256PCPR_BUS_CLOCK           0
808 #define TEA_256PCPR_DATA                1
809 #define TEA_256PCPR_WRITE_ENABLE        2       /* inverted */
810
811 static void snd_fm801_tea575x_256pcpr_write(struct snd_tea575x *tea, unsigned int val)
812 {
813         struct fm801 *chip = tea->private_data;
814         unsigned short reg;
815         int i = 25;
816
817         spin_lock_irq(&chip->reg_lock);
818         reg = inw(FM801_REG(chip, GPIO_CTRL));
819         /* use GPIO lines and set write enable bit */
820         reg |= FM801_GPIO_GS(TEA_256PCPR_DATA) |
821                FM801_GPIO_GS(TEA_256PCPR_WRITE_ENABLE) |
822                FM801_GPIO_GS(TEA_256PCPR_BUS_CLOCK);
823         /* all of lines are in the write direction */
824         /* clear data and clock lines */
825         reg &= ~(FM801_GPIO_GD(TEA_256PCPR_DATA) |
826                  FM801_GPIO_GD(TEA_256PCPR_WRITE_ENABLE) |
827                  FM801_GPIO_GD(TEA_256PCPR_BUS_CLOCK) |
828                  FM801_GPIO_GP(TEA_256PCPR_DATA) |
829                  FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK) |
830                  FM801_GPIO_GP(TEA_256PCPR_WRITE_ENABLE));
831         outw(reg, FM801_REG(chip, GPIO_CTRL));
832         udelay(1);
833
834         while (i--) {
835                 if (val & (1 << i))
836                         reg |= FM801_GPIO_GP(TEA_256PCPR_DATA);
837                 else
838                         reg &= ~FM801_GPIO_GP(TEA_256PCPR_DATA);
839                 outw(reg, FM801_REG(chip, GPIO_CTRL));
840                 udelay(1);
841                 reg |= FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK);
842                 outw(reg, FM801_REG(chip, GPIO_CTRL));
843                 reg &= ~FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK);
844                 outw(reg, FM801_REG(chip, GPIO_CTRL));
845                 udelay(1);
846         }
847
848         /* and reset the write enable bit */
849         reg |= FM801_GPIO_GP(TEA_256PCPR_WRITE_ENABLE) |
850                FM801_GPIO_GP(TEA_256PCPR_DATA);
851         outw(reg, FM801_REG(chip, GPIO_CTRL));
852         spin_unlock_irq(&chip->reg_lock);
853 }
854
855 static unsigned int snd_fm801_tea575x_256pcpr_read(struct snd_tea575x *tea)
856 {
857         struct fm801 *chip = tea->private_data;
858         unsigned short reg;
859         unsigned int val = 0;
860         int i;
861         
862         spin_lock_irq(&chip->reg_lock);
863         reg = inw(FM801_REG(chip, GPIO_CTRL));
864         /* use GPIO lines, set data direction to input */
865         reg |= FM801_GPIO_GS(TEA_256PCPR_DATA) |
866                FM801_GPIO_GS(TEA_256PCPR_WRITE_ENABLE) |
867                FM801_GPIO_GS(TEA_256PCPR_BUS_CLOCK) |
868                FM801_GPIO_GD(TEA_256PCPR_DATA) |
869                FM801_GPIO_GP(TEA_256PCPR_DATA) |
870                FM801_GPIO_GP(TEA_256PCPR_WRITE_ENABLE);
871         /* all of lines are in the write direction, except data */
872         /* clear data, write enable and clock lines */
873         reg &= ~(FM801_GPIO_GD(TEA_256PCPR_WRITE_ENABLE) |
874                  FM801_GPIO_GD(TEA_256PCPR_BUS_CLOCK) |
875                  FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK));
876
877         for (i = 0; i < 24; i++) {
878                 reg &= ~FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK);
879                 outw(reg, FM801_REG(chip, GPIO_CTRL));
880                 udelay(1);
881                 reg |= FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK);
882                 outw(reg, FM801_REG(chip, GPIO_CTRL));
883                 udelay(1);
884                 val <<= 1;
885                 if (inw(FM801_REG(chip, GPIO_CTRL)) & FM801_GPIO_GP(TEA_256PCPR_DATA))
886                         val |= 1;
887         }
888
889         spin_unlock_irq(&chip->reg_lock);
890
891         return val;
892 }
893
894 /* 64PCR GPIO numbers */
895 #define TEA_64PCR_BUS_CLOCK             0
896 #define TEA_64PCR_WRITE_ENABLE          1       /* inverted */
897 #define TEA_64PCR_DATA                  2
898
899 static void snd_fm801_tea575x_64pcr_write(struct snd_tea575x *tea, unsigned int val)
900 {
901         struct fm801 *chip = tea->private_data;
902         unsigned short reg;
903         int i = 25;
904
905         spin_lock_irq(&chip->reg_lock);
906         reg = inw(FM801_REG(chip, GPIO_CTRL));
907         /* use GPIO lines and set write enable bit */
908         reg |= FM801_GPIO_GS(TEA_64PCR_DATA) |
909                FM801_GPIO_GS(TEA_64PCR_WRITE_ENABLE) |
910                FM801_GPIO_GS(TEA_64PCR_BUS_CLOCK);
911         /* all of lines are in the write direction */
912         /* clear data and clock lines */
913         reg &= ~(FM801_GPIO_GD(TEA_64PCR_DATA) |
914                  FM801_GPIO_GD(TEA_64PCR_WRITE_ENABLE) |
915                  FM801_GPIO_GD(TEA_64PCR_BUS_CLOCK) |
916                  FM801_GPIO_GP(TEA_64PCR_DATA) |
917                  FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK) |
918                  FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE));
919         outw(reg, FM801_REG(chip, GPIO_CTRL));
920         udelay(1);
921
922         while (i--) {
923                 if (val & (1 << i))
924                         reg |= FM801_GPIO_GP(TEA_64PCR_DATA);
925                 else
926                         reg &= ~FM801_GPIO_GP(TEA_64PCR_DATA);
927                 outw(reg, FM801_REG(chip, GPIO_CTRL));
928                 udelay(1);
929                 reg |= FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK);
930                 outw(reg, FM801_REG(chip, GPIO_CTRL));
931                 reg &= ~FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK);
932                 outw(reg, FM801_REG(chip, GPIO_CTRL));
933                 udelay(1);
934         }
935
936         /* and reset the write enable bit */
937         reg |= FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE) |
938                FM801_GPIO_GP(TEA_64PCR_DATA);
939         outw(reg, FM801_REG(chip, GPIO_CTRL));
940         spin_unlock_irq(&chip->reg_lock);
941 }
942
943 static unsigned int snd_fm801_tea575x_64pcr_read(struct snd_tea575x *tea)
944 {
945         struct fm801 *chip = tea->private_data;
946         unsigned short reg;
947         unsigned int val = 0;
948         int i;
949         
950         spin_lock_irq(&chip->reg_lock);
951         reg = inw(FM801_REG(chip, GPIO_CTRL));
952         /* use GPIO lines, set data direction to input */
953         reg |= FM801_GPIO_GS(TEA_64PCR_DATA) |
954                FM801_GPIO_GS(TEA_64PCR_WRITE_ENABLE) |
955                FM801_GPIO_GS(TEA_64PCR_BUS_CLOCK) |
956                FM801_GPIO_GD(TEA_64PCR_DATA) |
957                FM801_GPIO_GP(TEA_64PCR_DATA) |
958                FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE);
959         /* all of lines are in the write direction, except data */
960         /* clear data, write enable and clock lines */
961         reg &= ~(FM801_GPIO_GD(TEA_64PCR_WRITE_ENABLE) |
962                  FM801_GPIO_GD(TEA_64PCR_BUS_CLOCK) |
963                  FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK));
964
965         for (i = 0; i < 24; i++) {
966                 reg &= ~FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK);
967                 outw(reg, FM801_REG(chip, GPIO_CTRL));
968                 udelay(1);
969                 reg |= FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK);
970                 outw(reg, FM801_REG(chip, GPIO_CTRL));
971                 udelay(1);
972                 val <<= 1;
973                 if (inw(FM801_REG(chip, GPIO_CTRL)) & FM801_GPIO_GP(TEA_64PCR_DATA))
974                         val |= 1;
975         }
976
977         spin_unlock_irq(&chip->reg_lock);
978
979         return val;
980 }
981
982 static struct snd_tea575x_ops snd_fm801_tea_ops[3] = {
983         {
984                 /* 1 = MediaForte 256-PCS */
985                 .write = snd_fm801_tea575x_256pcs_write,
986                 .read = snd_fm801_tea575x_256pcs_read,
987         },
988         {
989                 /* 2 = MediaForte 256-PCPR */
990                 .write = snd_fm801_tea575x_256pcpr_write,
991                 .read = snd_fm801_tea575x_256pcpr_read,
992         },
993         {
994                 /* 3 = MediaForte 64-PCR */
995                 .write = snd_fm801_tea575x_64pcr_write,
996                 .read = snd_fm801_tea575x_64pcr_read,
997         }
998 };
999 #endif
1000
1001 /*
1002  *  Mixer routines
1003  */
1004
1005 #define FM801_SINGLE(xname, reg, shift, mask, invert) \
1006 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_fm801_info_single, \
1007   .get = snd_fm801_get_single, .put = snd_fm801_put_single, \
1008   .private_value = reg | (shift << 8) | (mask << 16) | (invert << 24) }
1009
1010 static int snd_fm801_info_single(struct snd_kcontrol *kcontrol,
1011                                  struct snd_ctl_elem_info *uinfo)
1012 {
1013         int mask = (kcontrol->private_value >> 16) & 0xff;
1014
1015         uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
1016         uinfo->count = 1;
1017         uinfo->value.integer.min = 0;
1018         uinfo->value.integer.max = mask;
1019         return 0;
1020 }
1021
1022 static int snd_fm801_get_single(struct snd_kcontrol *kcontrol,
1023                                 struct snd_ctl_elem_value *ucontrol)
1024 {
1025         struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1026         int reg = kcontrol->private_value & 0xff;
1027         int shift = (kcontrol->private_value >> 8) & 0xff;
1028         int mask = (kcontrol->private_value >> 16) & 0xff;
1029         int invert = (kcontrol->private_value >> 24) & 0xff;
1030
1031         ucontrol->value.integer.value[0] = (inw(chip->port + reg) >> shift) & mask;
1032         if (invert)
1033                 ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
1034         return 0;
1035 }
1036
1037 static int snd_fm801_put_single(struct snd_kcontrol *kcontrol,
1038                                 struct snd_ctl_elem_value *ucontrol)
1039 {
1040         struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1041         int reg = kcontrol->private_value & 0xff;
1042         int shift = (kcontrol->private_value >> 8) & 0xff;
1043         int mask = (kcontrol->private_value >> 16) & 0xff;
1044         int invert = (kcontrol->private_value >> 24) & 0xff;
1045         unsigned short val;
1046
1047         val = (ucontrol->value.integer.value[0] & mask);
1048         if (invert)
1049                 val = mask - val;
1050         return snd_fm801_update_bits(chip, reg, mask << shift, val << shift);
1051 }
1052
1053 #define FM801_DOUBLE(xname, reg, shift_left, shift_right, mask, invert) \
1054 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_fm801_info_double, \
1055   .get = snd_fm801_get_double, .put = snd_fm801_put_double, \
1056   .private_value = reg | (shift_left << 8) | (shift_right << 12) | (mask << 16) | (invert << 24) }
1057 #define FM801_DOUBLE_TLV(xname, reg, shift_left, shift_right, mask, invert, xtlv) \
1058 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
1059   .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
1060   .name = xname, .info = snd_fm801_info_double, \
1061   .get = snd_fm801_get_double, .put = snd_fm801_put_double, \
1062   .private_value = reg | (shift_left << 8) | (shift_right << 12) | (mask << 16) | (invert << 24), \
1063   .tlv = { .p = (xtlv) } }
1064
1065 static int snd_fm801_info_double(struct snd_kcontrol *kcontrol,
1066                                  struct snd_ctl_elem_info *uinfo)
1067 {
1068         int mask = (kcontrol->private_value >> 16) & 0xff;
1069
1070         uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
1071         uinfo->count = 2;
1072         uinfo->value.integer.min = 0;
1073         uinfo->value.integer.max = mask;
1074         return 0;
1075 }
1076
1077 static int snd_fm801_get_double(struct snd_kcontrol *kcontrol,
1078                                 struct snd_ctl_elem_value *ucontrol)
1079 {
1080         struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1081         int reg = kcontrol->private_value & 0xff;
1082         int shift_left = (kcontrol->private_value >> 8) & 0x0f;
1083         int shift_right = (kcontrol->private_value >> 12) & 0x0f;
1084         int mask = (kcontrol->private_value >> 16) & 0xff;
1085         int invert = (kcontrol->private_value >> 24) & 0xff;
1086
1087         spin_lock_irq(&chip->reg_lock);
1088         ucontrol->value.integer.value[0] = (inw(chip->port + reg) >> shift_left) & mask;
1089         ucontrol->value.integer.value[1] = (inw(chip->port + reg) >> shift_right) & mask;
1090         spin_unlock_irq(&chip->reg_lock);
1091         if (invert) {
1092                 ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
1093                 ucontrol->value.integer.value[1] = mask - ucontrol->value.integer.value[1];
1094         }
1095         return 0;
1096 }
1097
1098 static int snd_fm801_put_double(struct snd_kcontrol *kcontrol,
1099                                 struct snd_ctl_elem_value *ucontrol)
1100 {
1101         struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1102         int reg = kcontrol->private_value & 0xff;
1103         int shift_left = (kcontrol->private_value >> 8) & 0x0f;
1104         int shift_right = (kcontrol->private_value >> 12) & 0x0f;
1105         int mask = (kcontrol->private_value >> 16) & 0xff;
1106         int invert = (kcontrol->private_value >> 24) & 0xff;
1107         unsigned short val1, val2;
1108  
1109         val1 = ucontrol->value.integer.value[0] & mask;
1110         val2 = ucontrol->value.integer.value[1] & mask;
1111         if (invert) {
1112                 val1 = mask - val1;
1113                 val2 = mask - val2;
1114         }
1115         return snd_fm801_update_bits(chip, reg,
1116                                      (mask << shift_left) | (mask << shift_right),
1117                                      (val1 << shift_left ) | (val2 << shift_right));
1118 }
1119
1120 static int snd_fm801_info_mux(struct snd_kcontrol *kcontrol,
1121                               struct snd_ctl_elem_info *uinfo)
1122 {
1123         static char *texts[5] = {
1124                 "AC97 Primary", "FM", "I2S", "PCM", "AC97 Secondary"
1125         };
1126  
1127         uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1128         uinfo->count = 1;
1129         uinfo->value.enumerated.items = 5;
1130         if (uinfo->value.enumerated.item > 4)
1131                 uinfo->value.enumerated.item = 4;
1132         strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
1133         return 0;
1134 }
1135
1136 static int snd_fm801_get_mux(struct snd_kcontrol *kcontrol,
1137                              struct snd_ctl_elem_value *ucontrol)
1138 {
1139         struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1140         unsigned short val;
1141  
1142         val = inw(FM801_REG(chip, REC_SRC)) & 7;
1143         if (val > 4)
1144                 val = 4;
1145         ucontrol->value.enumerated.item[0] = val;
1146         return 0;
1147 }
1148
1149 static int snd_fm801_put_mux(struct snd_kcontrol *kcontrol,
1150                              struct snd_ctl_elem_value *ucontrol)
1151 {
1152         struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1153         unsigned short val;
1154  
1155         if ((val = ucontrol->value.enumerated.item[0]) > 4)
1156                 return -EINVAL;
1157         return snd_fm801_update_bits(chip, FM801_REC_SRC, 7, val);
1158 }
1159
1160 static DECLARE_TLV_DB_SCALE(db_scale_dsp, -3450, 150, 0);
1161
1162 #define FM801_CONTROLS ARRAY_SIZE(snd_fm801_controls)
1163
1164 static struct snd_kcontrol_new snd_fm801_controls[] __devinitdata = {
1165 FM801_DOUBLE_TLV("Wave Playback Volume", FM801_PCM_VOL, 0, 8, 31, 1,
1166                  db_scale_dsp),
1167 FM801_SINGLE("Wave Playback Switch", FM801_PCM_VOL, 15, 1, 1),
1168 FM801_DOUBLE_TLV("I2S Playback Volume", FM801_I2S_VOL, 0, 8, 31, 1,
1169                  db_scale_dsp),
1170 FM801_SINGLE("I2S Playback Switch", FM801_I2S_VOL, 15, 1, 1),
1171 FM801_DOUBLE_TLV("FM Playback Volume", FM801_FM_VOL, 0, 8, 31, 1,
1172                  db_scale_dsp),
1173 FM801_SINGLE("FM Playback Switch", FM801_FM_VOL, 15, 1, 1),
1174 {
1175         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1176         .name = "Digital Capture Source",
1177         .info = snd_fm801_info_mux,
1178         .get = snd_fm801_get_mux,
1179         .put = snd_fm801_put_mux,
1180 }
1181 };
1182
1183 #define FM801_CONTROLS_MULTI ARRAY_SIZE(snd_fm801_controls_multi)
1184
1185 static struct snd_kcontrol_new snd_fm801_controls_multi[] __devinitdata = {
1186 FM801_SINGLE("AC97 2ch->4ch Copy Switch", FM801_CODEC_CTRL, 7, 1, 0),
1187 FM801_SINGLE("AC97 18-bit Switch", FM801_CODEC_CTRL, 10, 1, 0),
1188 FM801_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), FM801_I2S_MODE, 8, 1, 0),
1189 FM801_SINGLE(SNDRV_CTL_NAME_IEC958("Raw Data ",PLAYBACK,SWITCH), FM801_I2S_MODE, 9, 1, 0),
1190 FM801_SINGLE(SNDRV_CTL_NAME_IEC958("Raw Data ",CAPTURE,SWITCH), FM801_I2S_MODE, 10, 1, 0),
1191 FM801_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), FM801_GEN_CTRL, 2, 1, 0),
1192 };
1193
1194 static void snd_fm801_mixer_free_ac97_bus(struct snd_ac97_bus *bus)
1195 {
1196         struct fm801 *chip = bus->private_data;
1197         chip->ac97_bus = NULL;
1198 }
1199
1200 static void snd_fm801_mixer_free_ac97(struct snd_ac97 *ac97)
1201 {
1202         struct fm801 *chip = ac97->private_data;
1203         if (ac97->num == 0) {
1204                 chip->ac97 = NULL;
1205         } else {
1206                 chip->ac97_sec = NULL;
1207         }
1208 }
1209
1210 static int __devinit snd_fm801_mixer(struct fm801 *chip)
1211 {
1212         struct snd_ac97_template ac97;
1213         unsigned int i;
1214         int err;
1215         static struct snd_ac97_bus_ops ops = {
1216                 .write = snd_fm801_codec_write,
1217                 .read = snd_fm801_codec_read,
1218         };
1219
1220         if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0)
1221                 return err;
1222         chip->ac97_bus->private_free = snd_fm801_mixer_free_ac97_bus;
1223
1224         memset(&ac97, 0, sizeof(ac97));
1225         ac97.private_data = chip;
1226         ac97.private_free = snd_fm801_mixer_free_ac97;
1227         if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0)
1228                 return err;
1229         if (chip->secondary) {
1230                 ac97.num = 1;
1231                 ac97.addr = chip->secondary_addr;
1232                 if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97_sec)) < 0)
1233                         return err;
1234         }
1235         for (i = 0; i < FM801_CONTROLS; i++)
1236                 snd_ctl_add(chip->card, snd_ctl_new1(&snd_fm801_controls[i], chip));
1237         if (chip->multichannel) {
1238                 for (i = 0; i < FM801_CONTROLS_MULTI; i++)
1239                         snd_ctl_add(chip->card, snd_ctl_new1(&snd_fm801_controls_multi[i], chip));
1240         }
1241         return 0;
1242 }
1243
1244 /*
1245  *  initialization routines
1246  */
1247
1248 static int wait_for_codec(struct fm801 *chip, unsigned int codec_id,
1249                           unsigned short reg, unsigned long waits)
1250 {
1251         unsigned long timeout = jiffies + waits;
1252
1253         outw(FM801_AC97_READ | (codec_id << FM801_AC97_ADDR_SHIFT) | reg,
1254              FM801_REG(chip, AC97_CMD));
1255         udelay(5);
1256         do {
1257                 if ((inw(FM801_REG(chip, AC97_CMD)) & (FM801_AC97_VALID|FM801_AC97_BUSY))
1258                     == FM801_AC97_VALID)
1259                         return 0;
1260                 schedule_timeout_uninterruptible(1);
1261         } while (time_after(timeout, jiffies));
1262         return -EIO;
1263 }
1264
1265 static int snd_fm801_chip_init(struct fm801 *chip, int resume)
1266 {
1267         int id;
1268         unsigned short cmdw;
1269
1270         if (chip->tea575x_tuner & 0x0010)
1271                 goto __ac97_ok;
1272
1273         /* codec cold reset + AC'97 warm reset */
1274         outw((1<<5) | (1<<6), FM801_REG(chip, CODEC_CTRL));
1275         inw(FM801_REG(chip, CODEC_CTRL)); /* flush posting data */
1276         udelay(100);
1277         outw(0, FM801_REG(chip, CODEC_CTRL));
1278
1279         if (wait_for_codec(chip, 0, AC97_RESET, msecs_to_jiffies(750)) < 0) {
1280                 snd_printk(KERN_ERR "Primary AC'97 codec not found\n");
1281                 if (! resume)
1282                         return -EIO;
1283         }
1284
1285         if (chip->multichannel) {
1286                 if (chip->secondary_addr) {
1287                         wait_for_codec(chip, chip->secondary_addr,
1288                                        AC97_VENDOR_ID1, msecs_to_jiffies(50));
1289                 } else {
1290                         /* my card has the secondary codec */
1291                         /* at address #3, so the loop is inverted */
1292                         for (id = 3; id > 0; id--) {
1293                                 if (! wait_for_codec(chip, id, AC97_VENDOR_ID1,
1294                                                      msecs_to_jiffies(50))) {
1295                                         cmdw = inw(FM801_REG(chip, AC97_DATA));
1296                                         if (cmdw != 0xffff && cmdw != 0) {
1297                                                 chip->secondary = 1;
1298                                                 chip->secondary_addr = id;
1299                                                 break;
1300                                         }
1301                                 }
1302                         }
1303                 }
1304
1305                 /* the recovery phase, it seems that probing for non-existing codec might */
1306                 /* cause timeout problems */
1307                 wait_for_codec(chip, 0, AC97_VENDOR_ID1, msecs_to_jiffies(750));
1308         }
1309
1310       __ac97_ok:
1311
1312         /* init volume */
1313         outw(0x0808, FM801_REG(chip, PCM_VOL));
1314         outw(0x9f1f, FM801_REG(chip, FM_VOL));
1315         outw(0x8808, FM801_REG(chip, I2S_VOL));
1316
1317         /* I2S control - I2S mode */
1318         outw(0x0003, FM801_REG(chip, I2S_MODE));
1319
1320         /* interrupt setup */
1321         cmdw = inw(FM801_REG(chip, IRQ_MASK));
1322         if (chip->irq < 0)
1323                 cmdw |= 0x00c3;         /* mask everything, no PCM nor MPU */
1324         else
1325                 cmdw &= ~0x0083;        /* unmask MPU, PLAYBACK & CAPTURE */
1326         outw(cmdw, FM801_REG(chip, IRQ_MASK));
1327
1328         /* interrupt clear */
1329         outw(FM801_IRQ_PLAYBACK|FM801_IRQ_CAPTURE|FM801_IRQ_MPU, FM801_REG(chip, IRQ_STATUS));
1330
1331         return 0;
1332 }
1333
1334
1335 static int snd_fm801_free(struct fm801 *chip)
1336 {
1337         unsigned short cmdw;
1338
1339         if (chip->irq < 0)
1340                 goto __end_hw;
1341
1342         /* interrupt setup - mask everything */
1343         cmdw = inw(FM801_REG(chip, IRQ_MASK));
1344         cmdw |= 0x00c3;
1345         outw(cmdw, FM801_REG(chip, IRQ_MASK));
1346
1347       __end_hw:
1348 #ifdef TEA575X_RADIO
1349         snd_tea575x_exit(&chip->tea);
1350 #endif
1351         if (chip->irq >= 0)
1352                 free_irq(chip->irq, chip);
1353         pci_release_regions(chip->pci);
1354         pci_disable_device(chip->pci);
1355
1356         kfree(chip);
1357         return 0;
1358 }
1359
1360 static int snd_fm801_dev_free(struct snd_device *device)
1361 {
1362         struct fm801 *chip = device->device_data;
1363         return snd_fm801_free(chip);
1364 }
1365
1366 static int __devinit snd_fm801_create(struct snd_card *card,
1367                                       struct pci_dev * pci,
1368                                       int tea575x_tuner,
1369                                       struct fm801 ** rchip)
1370 {
1371         struct fm801 *chip;
1372         unsigned char rev;
1373         int err;
1374         static struct snd_device_ops ops = {
1375                 .dev_free =     snd_fm801_dev_free,
1376         };
1377
1378         *rchip = NULL;
1379         if ((err = pci_enable_device(pci)) < 0)
1380                 return err;
1381         chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1382         if (chip == NULL) {
1383                 pci_disable_device(pci);
1384                 return -ENOMEM;
1385         }
1386         spin_lock_init(&chip->reg_lock);
1387         chip->card = card;
1388         chip->pci = pci;
1389         chip->irq = -1;
1390         chip->tea575x_tuner = tea575x_tuner;
1391         if ((err = pci_request_regions(pci, "FM801")) < 0) {
1392                 kfree(chip);
1393                 pci_disable_device(pci);
1394                 return err;
1395         }
1396         chip->port = pci_resource_start(pci, 0);
1397         if ((tea575x_tuner & 0x0010) == 0) {
1398                 if (request_irq(pci->irq, snd_fm801_interrupt, IRQF_DISABLED|IRQF_SHARED,
1399                                 "FM801", chip)) {
1400                         snd_printk(KERN_ERR "unable to grab IRQ %d\n", chip->irq);
1401                         snd_fm801_free(chip);
1402                         return -EBUSY;
1403                 }
1404                 chip->irq = pci->irq;
1405                 pci_set_master(pci);
1406         }
1407
1408         pci_read_config_byte(pci, PCI_REVISION_ID, &rev);
1409         if (rev >= 0xb1)        /* FM801-AU */
1410                 chip->multichannel = 1;
1411
1412         snd_fm801_chip_init(chip, 0);
1413
1414         if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
1415                 snd_fm801_free(chip);
1416                 return err;
1417         }
1418
1419         snd_card_set_dev(card, &pci->dev);
1420
1421 #ifdef TEA575X_RADIO
1422         if (tea575x_tuner > 0 && (tea575x_tuner & 0x000f) < 4) {
1423                 chip->tea.dev_nr = tea575x_tuner >> 16;
1424                 chip->tea.card = card;
1425                 chip->tea.freq_fixup = 10700;
1426                 chip->tea.private_data = chip;
1427                 chip->tea.ops = &snd_fm801_tea_ops[(tea575x_tuner & 0x000f) - 1];
1428                 snd_tea575x_init(&chip->tea);
1429         }
1430 #endif
1431
1432         *rchip = chip;
1433         return 0;
1434 }
1435
1436 static int __devinit snd_card_fm801_probe(struct pci_dev *pci,
1437                                           const struct pci_device_id *pci_id)
1438 {
1439         static int dev;
1440         struct snd_card *card;
1441         struct fm801 *chip;
1442         struct snd_opl3 *opl3;
1443         int err;
1444
1445         if (dev >= SNDRV_CARDS)
1446                 return -ENODEV;
1447         if (!enable[dev]) {
1448                 dev++;
1449                 return -ENOENT;
1450         }
1451
1452         card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
1453         if (card == NULL)
1454                 return -ENOMEM;
1455         if ((err = snd_fm801_create(card, pci, tea575x_tuner[dev], &chip)) < 0) {
1456                 snd_card_free(card);
1457                 return err;
1458         }
1459         card->private_data = chip;
1460
1461         strcpy(card->driver, "FM801");
1462         strcpy(card->shortname, "ForteMedia FM801-");
1463         strcat(card->shortname, chip->multichannel ? "AU" : "AS");
1464         sprintf(card->longname, "%s at 0x%lx, irq %i",
1465                 card->shortname, chip->port, chip->irq);
1466
1467         if (tea575x_tuner[dev] & 0x0010)
1468                 goto __fm801_tuner_only;
1469
1470         if ((err = snd_fm801_pcm(chip, 0, NULL)) < 0) {
1471                 snd_card_free(card);
1472                 return err;
1473         }
1474         if ((err = snd_fm801_mixer(chip)) < 0) {
1475                 snd_card_free(card);
1476                 return err;
1477         }
1478         if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_FM801,
1479                                        FM801_REG(chip, MPU401_DATA),
1480                                        MPU401_INFO_INTEGRATED,
1481                                        chip->irq, 0, &chip->rmidi)) < 0) {
1482                 snd_card_free(card);
1483                 return err;
1484         }
1485         if ((err = snd_opl3_create(card, FM801_REG(chip, OPL3_BANK0),
1486                                    FM801_REG(chip, OPL3_BANK1),
1487                                    OPL3_HW_OPL3_FM801, 1, &opl3)) < 0) {
1488                 snd_card_free(card);
1489                 return err;
1490         }
1491         if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
1492                 snd_card_free(card);
1493                 return err;
1494         }
1495
1496       __fm801_tuner_only:
1497         if ((err = snd_card_register(card)) < 0) {
1498                 snd_card_free(card);
1499                 return err;
1500         }
1501         pci_set_drvdata(pci, card);
1502         dev++;
1503         return 0;
1504 }
1505
1506 static void __devexit snd_card_fm801_remove(struct pci_dev *pci)
1507 {
1508         snd_card_free(pci_get_drvdata(pci));
1509         pci_set_drvdata(pci, NULL);
1510 }
1511
1512 #ifdef CONFIG_PM
1513 static unsigned char saved_regs[] = {
1514         FM801_PCM_VOL, FM801_I2S_VOL, FM801_FM_VOL, FM801_REC_SRC,
1515         FM801_PLY_CTRL, FM801_PLY_COUNT, FM801_PLY_BUF1, FM801_PLY_BUF2,
1516         FM801_CAP_CTRL, FM801_CAP_COUNT, FM801_CAP_BUF1, FM801_CAP_BUF2,
1517         FM801_CODEC_CTRL, FM801_I2S_MODE, FM801_VOLUME, FM801_GEN_CTRL,
1518 };
1519
1520 static int snd_fm801_suspend(struct pci_dev *pci, pm_message_t state)
1521 {
1522         struct snd_card *card = pci_get_drvdata(pci);
1523         struct fm801 *chip = card->private_data;
1524         int i;
1525
1526         snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1527         snd_pcm_suspend_all(chip->pcm);
1528         snd_ac97_suspend(chip->ac97);
1529         snd_ac97_suspend(chip->ac97_sec);
1530         for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
1531                 chip->saved_regs[i] = inw(chip->port + saved_regs[i]);
1532         /* FIXME: tea575x suspend */
1533
1534         pci_set_power_state(pci, PCI_D3hot);
1535         pci_disable_device(pci);
1536         pci_save_state(pci);
1537         return 0;
1538 }
1539
1540 static int snd_fm801_resume(struct pci_dev *pci)
1541 {
1542         struct snd_card *card = pci_get_drvdata(pci);
1543         struct fm801 *chip = card->private_data;
1544         int i;
1545
1546         pci_restore_state(pci);
1547         pci_enable_device(pci);
1548         pci_set_power_state(pci, PCI_D0);
1549         pci_set_master(pci);
1550
1551         snd_fm801_chip_init(chip, 1);
1552         snd_ac97_resume(chip->ac97);
1553         snd_ac97_resume(chip->ac97_sec);
1554         for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
1555                 outw(chip->saved_regs[i], chip->port + saved_regs[i]);
1556
1557         snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1558         return 0;
1559 }
1560 #endif
1561
1562 static struct pci_driver driver = {
1563         .name = "FM801",
1564         .id_table = snd_fm801_ids,
1565         .probe = snd_card_fm801_probe,
1566         .remove = __devexit_p(snd_card_fm801_remove),
1567 #ifdef CONFIG_PM
1568         .suspend = snd_fm801_suspend,
1569         .resume = snd_fm801_resume,
1570 #endif
1571 };
1572
1573 static int __init alsa_card_fm801_init(void)
1574 {
1575         return pci_register_driver(&driver);
1576 }
1577
1578 static void __exit alsa_card_fm801_exit(void)
1579 {
1580         pci_unregister_driver(&driver);
1581 }
1582
1583 module_init(alsa_card_fm801_init)
1584 module_exit(alsa_card_fm801_exit)