Merge remote-tracking branches 'regulator/fix/da9211', 'regulator/fix/ltc3589' and...
[sfrench/cifs-2.6.git] / sound / firewire / dice.c
1 /*
2  * TC Applied Technologies Digital Interface Communications Engine driver
3  *
4  * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
5  * Licensed under the terms of the GNU General Public License, version 2.
6  */
7
8 #include <linux/compat.h>
9 #include <linux/completion.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/firewire.h>
13 #include <linux/firewire-constants.h>
14 #include <linux/jiffies.h>
15 #include <linux/module.h>
16 #include <linux/mod_devicetable.h>
17 #include <linux/mutex.h>
18 #include <linux/slab.h>
19 #include <linux/spinlock.h>
20 #include <linux/wait.h>
21 #include <sound/control.h>
22 #include <sound/core.h>
23 #include <sound/firewire.h>
24 #include <sound/hwdep.h>
25 #include <sound/info.h>
26 #include <sound/initval.h>
27 #include <sound/pcm.h>
28 #include <sound/pcm_params.h>
29 #include "amdtp.h"
30 #include "iso-resources.h"
31 #include "lib.h"
32 #include "dice-interface.h"
33
34
35 struct dice {
36         struct snd_card *card;
37         struct fw_unit *unit;
38         spinlock_t lock;
39         struct mutex mutex;
40         unsigned int global_offset;
41         unsigned int rx_offset;
42         unsigned int clock_caps;
43         unsigned int rx_channels[3];
44         unsigned int rx_midi_ports[3];
45         struct fw_address_handler notification_handler;
46         int owner_generation;
47         int dev_lock_count; /* > 0 driver, < 0 userspace */
48         bool dev_lock_changed;
49         bool global_enabled;
50         struct completion clock_accepted;
51         wait_queue_head_t hwdep_wait;
52         u32 notification_bits;
53         struct fw_iso_resources resources;
54         struct amdtp_stream stream;
55 };
56
57 MODULE_DESCRIPTION("DICE driver");
58 MODULE_AUTHOR("Clemens Ladisch <clemens@ladisch.de>");
59 MODULE_LICENSE("GPL v2");
60
61 static const unsigned int dice_rates[] = {
62         /* mode 0 */
63         [0] =  32000,
64         [1] =  44100,
65         [2] =  48000,
66         /* mode 1 */
67         [3] =  88200,
68         [4] =  96000,
69         /* mode 2 */
70         [5] = 176400,
71         [6] = 192000,
72 };
73
74 static unsigned int rate_to_index(unsigned int rate)
75 {
76         unsigned int i;
77
78         for (i = 0; i < ARRAY_SIZE(dice_rates); ++i)
79                 if (dice_rates[i] == rate)
80                         return i;
81
82         return 0;
83 }
84
85 static unsigned int rate_index_to_mode(unsigned int rate_index)
86 {
87         return ((int)rate_index - 1) / 2;
88 }
89
90 static void dice_lock_changed(struct dice *dice)
91 {
92         dice->dev_lock_changed = true;
93         wake_up(&dice->hwdep_wait);
94 }
95
96 static int dice_try_lock(struct dice *dice)
97 {
98         int err;
99
100         spin_lock_irq(&dice->lock);
101
102         if (dice->dev_lock_count < 0) {
103                 err = -EBUSY;
104                 goto out;
105         }
106
107         if (dice->dev_lock_count++ == 0)
108                 dice_lock_changed(dice);
109         err = 0;
110
111 out:
112         spin_unlock_irq(&dice->lock);
113
114         return err;
115 }
116
117 static void dice_unlock(struct dice *dice)
118 {
119         spin_lock_irq(&dice->lock);
120
121         if (WARN_ON(dice->dev_lock_count <= 0))
122                 goto out;
123
124         if (--dice->dev_lock_count == 0)
125                 dice_lock_changed(dice);
126
127 out:
128         spin_unlock_irq(&dice->lock);
129 }
130
131 static inline u64 global_address(struct dice *dice, unsigned int offset)
132 {
133         return DICE_PRIVATE_SPACE + dice->global_offset + offset;
134 }
135
136 // TODO: rx index
137 static inline u64 rx_address(struct dice *dice, unsigned int offset)
138 {
139         return DICE_PRIVATE_SPACE + dice->rx_offset + offset;
140 }
141
142 static int dice_owner_set(struct dice *dice)
143 {
144         struct fw_device *device = fw_parent_device(dice->unit);
145         __be64 *buffer;
146         int err, errors = 0;
147
148         buffer = kmalloc(2 * 8, GFP_KERNEL);
149         if (!buffer)
150                 return -ENOMEM;
151
152         for (;;) {
153                 buffer[0] = cpu_to_be64(OWNER_NO_OWNER);
154                 buffer[1] = cpu_to_be64(
155                         ((u64)device->card->node_id << OWNER_NODE_SHIFT) |
156                         dice->notification_handler.offset);
157
158                 dice->owner_generation = device->generation;
159                 smp_rmb(); /* node_id vs. generation */
160                 err = snd_fw_transaction(dice->unit,
161                                          TCODE_LOCK_COMPARE_SWAP,
162                                          global_address(dice, GLOBAL_OWNER),
163                                          buffer, 2 * 8,
164                                          FW_FIXED_GENERATION |
165                                                         dice->owner_generation);
166
167                 if (err == 0) {
168                         if (buffer[0] != cpu_to_be64(OWNER_NO_OWNER)) {
169                                 dev_err(&dice->unit->device,
170                                         "device is already in use\n");
171                                 err = -EBUSY;
172                         }
173                         break;
174                 }
175                 if (err != -EAGAIN || ++errors >= 3)
176                         break;
177
178                 msleep(20);
179         }
180
181         kfree(buffer);
182
183         return err;
184 }
185
186 static int dice_owner_update(struct dice *dice)
187 {
188         struct fw_device *device = fw_parent_device(dice->unit);
189         __be64 *buffer;
190         int err;
191
192         if (dice->owner_generation == -1)
193                 return 0;
194
195         buffer = kmalloc(2 * 8, GFP_KERNEL);
196         if (!buffer)
197                 return -ENOMEM;
198
199         buffer[0] = cpu_to_be64(OWNER_NO_OWNER);
200         buffer[1] = cpu_to_be64(
201                 ((u64)device->card->node_id << OWNER_NODE_SHIFT) |
202                 dice->notification_handler.offset);
203
204         dice->owner_generation = device->generation;
205         smp_rmb(); /* node_id vs. generation */
206         err = snd_fw_transaction(dice->unit, TCODE_LOCK_COMPARE_SWAP,
207                                  global_address(dice, GLOBAL_OWNER),
208                                  buffer, 2 * 8,
209                                  FW_FIXED_GENERATION | dice->owner_generation);
210
211         if (err == 0) {
212                 if (buffer[0] != cpu_to_be64(OWNER_NO_OWNER)) {
213                         dev_err(&dice->unit->device,
214                                 "device is already in use\n");
215                         err = -EBUSY;
216                 }
217         } else if (err == -EAGAIN) {
218                 err = 0; /* try again later */
219         }
220
221         kfree(buffer);
222
223         if (err < 0)
224                 dice->owner_generation = -1;
225
226         return err;
227 }
228
229 static void dice_owner_clear(struct dice *dice)
230 {
231         struct fw_device *device = fw_parent_device(dice->unit);
232         __be64 *buffer;
233
234         buffer = kmalloc(2 * 8, GFP_KERNEL);
235         if (!buffer)
236                 return;
237
238         buffer[0] = cpu_to_be64(
239                 ((u64)device->card->node_id << OWNER_NODE_SHIFT) |
240                 dice->notification_handler.offset);
241         buffer[1] = cpu_to_be64(OWNER_NO_OWNER);
242         snd_fw_transaction(dice->unit, TCODE_LOCK_COMPARE_SWAP,
243                            global_address(dice, GLOBAL_OWNER),
244                            buffer, 2 * 8, FW_QUIET |
245                            FW_FIXED_GENERATION | dice->owner_generation);
246
247         kfree(buffer);
248
249         dice->owner_generation = -1;
250 }
251
252 static int dice_enable_set(struct dice *dice)
253 {
254         __be32 value;
255         int err;
256
257         value = cpu_to_be32(1);
258         err = snd_fw_transaction(dice->unit, TCODE_WRITE_QUADLET_REQUEST,
259                                  global_address(dice, GLOBAL_ENABLE),
260                                  &value, 4,
261                                  FW_FIXED_GENERATION | dice->owner_generation);
262         if (err < 0)
263                 return err;
264
265         dice->global_enabled = true;
266
267         return 0;
268 }
269
270 static void dice_enable_clear(struct dice *dice)
271 {
272         __be32 value;
273
274         if (!dice->global_enabled)
275                 return;
276
277         value = 0;
278         snd_fw_transaction(dice->unit, TCODE_WRITE_QUADLET_REQUEST,
279                            global_address(dice, GLOBAL_ENABLE),
280                            &value, 4, FW_QUIET |
281                            FW_FIXED_GENERATION | dice->owner_generation);
282
283         dice->global_enabled = false;
284 }
285
286 static void dice_notification(struct fw_card *card, struct fw_request *request,
287                               int tcode, int destination, int source,
288                               int generation, unsigned long long offset,
289                               void *data, size_t length, void *callback_data)
290 {
291         struct dice *dice = callback_data;
292         u32 bits;
293         unsigned long flags;
294
295         if (tcode != TCODE_WRITE_QUADLET_REQUEST) {
296                 fw_send_response(card, request, RCODE_TYPE_ERROR);
297                 return;
298         }
299         if ((offset & 3) != 0) {
300                 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
301                 return;
302         }
303
304         bits = be32_to_cpup(data);
305
306         spin_lock_irqsave(&dice->lock, flags);
307         dice->notification_bits |= bits;
308         spin_unlock_irqrestore(&dice->lock, flags);
309
310         fw_send_response(card, request, RCODE_COMPLETE);
311
312         if (bits & NOTIFY_CLOCK_ACCEPTED)
313                 complete(&dice->clock_accepted);
314         wake_up(&dice->hwdep_wait);
315 }
316
317 static int dice_rate_constraint(struct snd_pcm_hw_params *params,
318                                 struct snd_pcm_hw_rule *rule)
319 {
320         struct dice *dice = rule->private;
321         const struct snd_interval *channels =
322                 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_CHANNELS);
323         struct snd_interval *rate =
324                 hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
325         struct snd_interval allowed_rates = {
326                 .min = UINT_MAX, .max = 0, .integer = 1
327         };
328         unsigned int i, mode;
329
330         for (i = 0; i < ARRAY_SIZE(dice_rates); ++i) {
331                 mode = rate_index_to_mode(i);
332                 if ((dice->clock_caps & (1 << i)) &&
333                     snd_interval_test(channels, dice->rx_channels[mode])) {
334                         allowed_rates.min = min(allowed_rates.min,
335                                                 dice_rates[i]);
336                         allowed_rates.max = max(allowed_rates.max,
337                                                 dice_rates[i]);
338                 }
339         }
340
341         return snd_interval_refine(rate, &allowed_rates);
342 }
343
344 static int dice_channels_constraint(struct snd_pcm_hw_params *params,
345                                     struct snd_pcm_hw_rule *rule)
346 {
347         struct dice *dice = rule->private;
348         const struct snd_interval *rate =
349                 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE);
350         struct snd_interval *channels =
351                 hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
352         struct snd_interval allowed_channels = {
353                 .min = UINT_MAX, .max = 0, .integer = 1
354         };
355         unsigned int i, mode;
356
357         for (i = 0; i < ARRAY_SIZE(dice_rates); ++i)
358                 if ((dice->clock_caps & (1 << i)) &&
359                     snd_interval_test(rate, dice_rates[i])) {
360                         mode = rate_index_to_mode(i);
361                         allowed_channels.min = min(allowed_channels.min,
362                                                    dice->rx_channels[mode]);
363                         allowed_channels.max = max(allowed_channels.max,
364                                                    dice->rx_channels[mode]);
365                 }
366
367         return snd_interval_refine(channels, &allowed_channels);
368 }
369
370 static int dice_open(struct snd_pcm_substream *substream)
371 {
372         static const struct snd_pcm_hardware hardware = {
373                 .info = SNDRV_PCM_INFO_MMAP |
374                         SNDRV_PCM_INFO_MMAP_VALID |
375                         SNDRV_PCM_INFO_BATCH |
376                         SNDRV_PCM_INFO_INTERLEAVED |
377                         SNDRV_PCM_INFO_BLOCK_TRANSFER,
378                 .formats = AMDTP_OUT_PCM_FORMAT_BITS,
379                 .channels_min = UINT_MAX,
380                 .channels_max = 0,
381                 .buffer_bytes_max = 16 * 1024 * 1024,
382                 .period_bytes_min = 1,
383                 .period_bytes_max = UINT_MAX,
384                 .periods_min = 1,
385                 .periods_max = UINT_MAX,
386         };
387         struct dice *dice = substream->private_data;
388         struct snd_pcm_runtime *runtime = substream->runtime;
389         unsigned int i;
390         int err;
391
392         err = dice_try_lock(dice);
393         if (err < 0)
394                 goto error;
395
396         runtime->hw = hardware;
397
398         for (i = 0; i < ARRAY_SIZE(dice_rates); ++i)
399                 if (dice->clock_caps & (1 << i))
400                         runtime->hw.rates |=
401                                 snd_pcm_rate_to_rate_bit(dice_rates[i]);
402         snd_pcm_limit_hw_rates(runtime);
403
404         for (i = 0; i < 3; ++i)
405                 if (dice->rx_channels[i]) {
406                         runtime->hw.channels_min = min(runtime->hw.channels_min,
407                                                        dice->rx_channels[i]);
408                         runtime->hw.channels_max = max(runtime->hw.channels_max,
409                                                        dice->rx_channels[i]);
410                 }
411
412         err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
413                                   dice_rate_constraint, dice,
414                                   SNDRV_PCM_HW_PARAM_CHANNELS, -1);
415         if (err < 0)
416                 goto err_lock;
417         err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
418                                   dice_channels_constraint, dice,
419                                   SNDRV_PCM_HW_PARAM_RATE, -1);
420         if (err < 0)
421                 goto err_lock;
422
423         err = amdtp_stream_add_pcm_hw_constraints(&dice->stream, runtime);
424         if (err < 0)
425                 goto err_lock;
426
427         return 0;
428
429 err_lock:
430         dice_unlock(dice);
431 error:
432         return err;
433 }
434
435 static int dice_close(struct snd_pcm_substream *substream)
436 {
437         struct dice *dice = substream->private_data;
438
439         dice_unlock(dice);
440
441         return 0;
442 }
443
444 static int dice_stream_start_packets(struct dice *dice)
445 {
446         int err;
447
448         if (amdtp_stream_running(&dice->stream))
449                 return 0;
450
451         err = amdtp_stream_start(&dice->stream, dice->resources.channel,
452                                  fw_parent_device(dice->unit)->max_speed);
453         if (err < 0)
454                 return err;
455
456         err = dice_enable_set(dice);
457         if (err < 0) {
458                 amdtp_stream_stop(&dice->stream);
459                 return err;
460         }
461
462         return 0;
463 }
464
465 static int dice_stream_start(struct dice *dice)
466 {
467         __be32 channel;
468         int err;
469
470         if (!dice->resources.allocated) {
471                 err = fw_iso_resources_allocate(&dice->resources,
472                                 amdtp_stream_get_max_payload(&dice->stream),
473                                 fw_parent_device(dice->unit)->max_speed);
474                 if (err < 0)
475                         goto error;
476
477                 channel = cpu_to_be32(dice->resources.channel);
478                 err = snd_fw_transaction(dice->unit,
479                                          TCODE_WRITE_QUADLET_REQUEST,
480                                          rx_address(dice, RX_ISOCHRONOUS),
481                                          &channel, 4, 0);
482                 if (err < 0)
483                         goto err_resources;
484         }
485
486         err = dice_stream_start_packets(dice);
487         if (err < 0)
488                 goto err_rx_channel;
489
490         return 0;
491
492 err_rx_channel:
493         channel = cpu_to_be32((u32)-1);
494         snd_fw_transaction(dice->unit, TCODE_WRITE_QUADLET_REQUEST,
495                            rx_address(dice, RX_ISOCHRONOUS), &channel, 4, 0);
496 err_resources:
497         fw_iso_resources_free(&dice->resources);
498 error:
499         return err;
500 }
501
502 static void dice_stream_stop_packets(struct dice *dice)
503 {
504         if (amdtp_stream_running(&dice->stream)) {
505                 dice_enable_clear(dice);
506                 amdtp_stream_stop(&dice->stream);
507         }
508 }
509
510 static void dice_stream_stop(struct dice *dice)
511 {
512         __be32 channel;
513
514         dice_stream_stop_packets(dice);
515
516         if (!dice->resources.allocated)
517                 return;
518
519         channel = cpu_to_be32((u32)-1);
520         snd_fw_transaction(dice->unit, TCODE_WRITE_QUADLET_REQUEST,
521                            rx_address(dice, RX_ISOCHRONOUS), &channel, 4, 0);
522
523         fw_iso_resources_free(&dice->resources);
524 }
525
526 static int dice_change_rate(struct dice *dice, unsigned int clock_rate)
527 {
528         __be32 value;
529         int err;
530
531         reinit_completion(&dice->clock_accepted);
532
533         value = cpu_to_be32(clock_rate | CLOCK_SOURCE_ARX1);
534         err = snd_fw_transaction(dice->unit, TCODE_WRITE_QUADLET_REQUEST,
535                                  global_address(dice, GLOBAL_CLOCK_SELECT),
536                                  &value, 4, 0);
537         if (err < 0)
538                 return err;
539
540         if (!wait_for_completion_timeout(&dice->clock_accepted,
541                                          msecs_to_jiffies(100)))
542                 dev_warn(&dice->unit->device, "clock change timed out\n");
543
544         return 0;
545 }
546
547 static int dice_hw_params(struct snd_pcm_substream *substream,
548                           struct snd_pcm_hw_params *hw_params)
549 {
550         struct dice *dice = substream->private_data;
551         unsigned int rate_index, mode, rate, channels, i;
552         int err;
553
554         mutex_lock(&dice->mutex);
555         dice_stream_stop(dice);
556         mutex_unlock(&dice->mutex);
557
558         err = snd_pcm_lib_alloc_vmalloc_buffer(substream,
559                                                params_buffer_bytes(hw_params));
560         if (err < 0)
561                 return err;
562
563         rate = params_rate(hw_params);
564         rate_index = rate_to_index(rate);
565         err = dice_change_rate(dice, rate_index << CLOCK_RATE_SHIFT);
566         if (err < 0)
567                 return err;
568
569         /*
570          * At 176.4/192.0 kHz, Dice has a quirk to transfer two PCM frames in
571          * one data block of AMDTP packet. Thus sampling transfer frequency is
572          * a half of PCM sampling frequency, i.e. PCM frames at 192.0 kHz are
573          * transferred on AMDTP packets at 96 kHz. Two successive samples of a
574          * channel are stored consecutively in the packet. This quirk is called
575          * as 'Dual Wire'.
576          * For this quirk, blocking mode is required and PCM buffer size should
577          * be aligned to SYT_INTERVAL.
578          */
579         channels = params_channels(hw_params);
580         if (rate_index > 4) {
581                 if (channels > AMDTP_MAX_CHANNELS_FOR_PCM / 2) {
582                         err = -ENOSYS;
583                         return err;
584                 }
585
586                 rate /= 2;
587                 channels *= 2;
588                 dice->stream.double_pcm_frames = true;
589         } else {
590                 dice->stream.double_pcm_frames = false;
591         }
592
593         mode = rate_index_to_mode(rate_index);
594         amdtp_stream_set_parameters(&dice->stream, rate, channels,
595                                     dice->rx_midi_ports[mode]);
596         if (rate_index > 4) {
597                 channels /= 2;
598
599                 for (i = 0; i < channels; i++) {
600                         dice->stream.pcm_positions[i] = i * 2;
601                         dice->stream.pcm_positions[i + channels] = i * 2 + 1;
602                 }
603         }
604
605         amdtp_stream_set_pcm_format(&dice->stream,
606                                     params_format(hw_params));
607
608         return 0;
609 }
610
611 static int dice_hw_free(struct snd_pcm_substream *substream)
612 {
613         struct dice *dice = substream->private_data;
614
615         mutex_lock(&dice->mutex);
616         dice_stream_stop(dice);
617         mutex_unlock(&dice->mutex);
618
619         return snd_pcm_lib_free_vmalloc_buffer(substream);
620 }
621
622 static int dice_prepare(struct snd_pcm_substream *substream)
623 {
624         struct dice *dice = substream->private_data;
625         int err;
626
627         mutex_lock(&dice->mutex);
628
629         if (amdtp_streaming_error(&dice->stream))
630                 dice_stream_stop_packets(dice);
631
632         err = dice_stream_start(dice);
633         if (err < 0) {
634                 mutex_unlock(&dice->mutex);
635                 return err;
636         }
637
638         mutex_unlock(&dice->mutex);
639
640         amdtp_stream_pcm_prepare(&dice->stream);
641
642         return 0;
643 }
644
645 static int dice_trigger(struct snd_pcm_substream *substream, int cmd)
646 {
647         struct dice *dice = substream->private_data;
648         struct snd_pcm_substream *pcm;
649
650         switch (cmd) {
651         case SNDRV_PCM_TRIGGER_START:
652                 pcm = substream;
653                 break;
654         case SNDRV_PCM_TRIGGER_STOP:
655                 pcm = NULL;
656                 break;
657         default:
658                 return -EINVAL;
659         }
660         amdtp_stream_pcm_trigger(&dice->stream, pcm);
661
662         return 0;
663 }
664
665 static snd_pcm_uframes_t dice_pointer(struct snd_pcm_substream *substream)
666 {
667         struct dice *dice = substream->private_data;
668
669         return amdtp_stream_pcm_pointer(&dice->stream);
670 }
671
672 static int dice_create_pcm(struct dice *dice)
673 {
674         static struct snd_pcm_ops ops = {
675                 .open      = dice_open,
676                 .close     = dice_close,
677                 .ioctl     = snd_pcm_lib_ioctl,
678                 .hw_params = dice_hw_params,
679                 .hw_free   = dice_hw_free,
680                 .prepare   = dice_prepare,
681                 .trigger   = dice_trigger,
682                 .pointer   = dice_pointer,
683                 .page      = snd_pcm_lib_get_vmalloc_page,
684                 .mmap      = snd_pcm_lib_mmap_vmalloc,
685         };
686         struct snd_pcm *pcm;
687         int err;
688
689         err = snd_pcm_new(dice->card, "DICE", 0, 1, 0, &pcm);
690         if (err < 0)
691                 return err;
692         pcm->private_data = dice;
693         strcpy(pcm->name, dice->card->shortname);
694         pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->ops = &ops;
695
696         return 0;
697 }
698
699 static long dice_hwdep_read(struct snd_hwdep *hwdep, char __user *buf,
700                             long count, loff_t *offset)
701 {
702         struct dice *dice = hwdep->private_data;
703         DEFINE_WAIT(wait);
704         union snd_firewire_event event;
705
706         spin_lock_irq(&dice->lock);
707
708         while (!dice->dev_lock_changed && dice->notification_bits == 0) {
709                 prepare_to_wait(&dice->hwdep_wait, &wait, TASK_INTERRUPTIBLE);
710                 spin_unlock_irq(&dice->lock);
711                 schedule();
712                 finish_wait(&dice->hwdep_wait, &wait);
713                 if (signal_pending(current))
714                         return -ERESTARTSYS;
715                 spin_lock_irq(&dice->lock);
716         }
717
718         memset(&event, 0, sizeof(event));
719         if (dice->dev_lock_changed) {
720                 event.lock_status.type = SNDRV_FIREWIRE_EVENT_LOCK_STATUS;
721                 event.lock_status.status = dice->dev_lock_count > 0;
722                 dice->dev_lock_changed = false;
723
724                 count = min(count, (long)sizeof(event.lock_status));
725         } else {
726                 event.dice_notification.type = SNDRV_FIREWIRE_EVENT_DICE_NOTIFICATION;
727                 event.dice_notification.notification = dice->notification_bits;
728                 dice->notification_bits = 0;
729
730                 count = min(count, (long)sizeof(event.dice_notification));
731         }
732
733         spin_unlock_irq(&dice->lock);
734
735         if (copy_to_user(buf, &event, count))
736                 return -EFAULT;
737
738         return count;
739 }
740
741 static unsigned int dice_hwdep_poll(struct snd_hwdep *hwdep, struct file *file,
742                                     poll_table *wait)
743 {
744         struct dice *dice = hwdep->private_data;
745         unsigned int events;
746
747         poll_wait(file, &dice->hwdep_wait, wait);
748
749         spin_lock_irq(&dice->lock);
750         if (dice->dev_lock_changed || dice->notification_bits != 0)
751                 events = POLLIN | POLLRDNORM;
752         else
753                 events = 0;
754         spin_unlock_irq(&dice->lock);
755
756         return events;
757 }
758
759 static int dice_hwdep_get_info(struct dice *dice, void __user *arg)
760 {
761         struct fw_device *dev = fw_parent_device(dice->unit);
762         struct snd_firewire_get_info info;
763
764         memset(&info, 0, sizeof(info));
765         info.type = SNDRV_FIREWIRE_TYPE_DICE;
766         info.card = dev->card->index;
767         *(__be32 *)&info.guid[0] = cpu_to_be32(dev->config_rom[3]);
768         *(__be32 *)&info.guid[4] = cpu_to_be32(dev->config_rom[4]);
769         strlcpy(info.device_name, dev_name(&dev->device),
770                 sizeof(info.device_name));
771
772         if (copy_to_user(arg, &info, sizeof(info)))
773                 return -EFAULT;
774
775         return 0;
776 }
777
778 static int dice_hwdep_lock(struct dice *dice)
779 {
780         int err;
781
782         spin_lock_irq(&dice->lock);
783
784         if (dice->dev_lock_count == 0) {
785                 dice->dev_lock_count = -1;
786                 err = 0;
787         } else {
788                 err = -EBUSY;
789         }
790
791         spin_unlock_irq(&dice->lock);
792
793         return err;
794 }
795
796 static int dice_hwdep_unlock(struct dice *dice)
797 {
798         int err;
799
800         spin_lock_irq(&dice->lock);
801
802         if (dice->dev_lock_count == -1) {
803                 dice->dev_lock_count = 0;
804                 err = 0;
805         } else {
806                 err = -EBADFD;
807         }
808
809         spin_unlock_irq(&dice->lock);
810
811         return err;
812 }
813
814 static int dice_hwdep_release(struct snd_hwdep *hwdep, struct file *file)
815 {
816         struct dice *dice = hwdep->private_data;
817
818         spin_lock_irq(&dice->lock);
819         if (dice->dev_lock_count == -1)
820                 dice->dev_lock_count = 0;
821         spin_unlock_irq(&dice->lock);
822
823         return 0;
824 }
825
826 static int dice_hwdep_ioctl(struct snd_hwdep *hwdep, struct file *file,
827                             unsigned int cmd, unsigned long arg)
828 {
829         struct dice *dice = hwdep->private_data;
830
831         switch (cmd) {
832         case SNDRV_FIREWIRE_IOCTL_GET_INFO:
833                 return dice_hwdep_get_info(dice, (void __user *)arg);
834         case SNDRV_FIREWIRE_IOCTL_LOCK:
835                 return dice_hwdep_lock(dice);
836         case SNDRV_FIREWIRE_IOCTL_UNLOCK:
837                 return dice_hwdep_unlock(dice);
838         default:
839                 return -ENOIOCTLCMD;
840         }
841 }
842
843 #ifdef CONFIG_COMPAT
844 static int dice_hwdep_compat_ioctl(struct snd_hwdep *hwdep, struct file *file,
845                                    unsigned int cmd, unsigned long arg)
846 {
847         return dice_hwdep_ioctl(hwdep, file, cmd,
848                                 (unsigned long)compat_ptr(arg));
849 }
850 #else
851 #define dice_hwdep_compat_ioctl NULL
852 #endif
853
854 static int dice_create_hwdep(struct dice *dice)
855 {
856         static const struct snd_hwdep_ops ops = {
857                 .read         = dice_hwdep_read,
858                 .release      = dice_hwdep_release,
859                 .poll         = dice_hwdep_poll,
860                 .ioctl        = dice_hwdep_ioctl,
861                 .ioctl_compat = dice_hwdep_compat_ioctl,
862         };
863         struct snd_hwdep *hwdep;
864         int err;
865
866         err = snd_hwdep_new(dice->card, "DICE", 0, &hwdep);
867         if (err < 0)
868                 return err;
869         strcpy(hwdep->name, "DICE");
870         hwdep->iface = SNDRV_HWDEP_IFACE_FW_DICE;
871         hwdep->ops = ops;
872         hwdep->private_data = dice;
873         hwdep->exclusive = true;
874
875         return 0;
876 }
877
878 static int dice_proc_read_mem(struct dice *dice, void *buffer,
879                               unsigned int offset_q, unsigned int quadlets)
880 {
881         unsigned int i;
882         int err;
883
884         err = snd_fw_transaction(dice->unit, TCODE_READ_BLOCK_REQUEST,
885                                  DICE_PRIVATE_SPACE + 4 * offset_q,
886                                  buffer, 4 * quadlets, 0);
887         if (err < 0)
888                 return err;
889
890         for (i = 0; i < quadlets; ++i)
891                 be32_to_cpus(&((u32 *)buffer)[i]);
892
893         return 0;
894 }
895
896 static const char *str_from_array(const char *const strs[], unsigned int count,
897                                   unsigned int i)
898 {
899         if (i < count)
900                 return strs[i];
901         else
902                 return "(unknown)";
903 }
904
905 static void dice_proc_fixup_string(char *s, unsigned int size)
906 {
907         unsigned int i;
908
909         for (i = 0; i < size; i += 4)
910                 cpu_to_le32s((u32 *)(s + i));
911
912         for (i = 0; i < size - 2; ++i) {
913                 if (s[i] == '\0')
914                         return;
915                 if (s[i] == '\\' && s[i + 1] == '\\') {
916                         s[i + 2] = '\0';
917                         return;
918                 }
919         }
920         s[size - 1] = '\0';
921 }
922
923 static void dice_proc_read(struct snd_info_entry *entry,
924                            struct snd_info_buffer *buffer)
925 {
926         static const char *const section_names[5] = {
927                 "global", "tx", "rx", "ext_sync", "unused2"
928         };
929         static const char *const clock_sources[] = {
930                 "aes1", "aes2", "aes3", "aes4", "aes", "adat", "tdif",
931                 "wc", "arx1", "arx2", "arx3", "arx4", "internal"
932         };
933         static const char *const rates[] = {
934                 "32000", "44100", "48000", "88200", "96000", "176400", "192000",
935                 "any low", "any mid", "any high", "none"
936         };
937         struct dice *dice = entry->private_data;
938         u32 sections[ARRAY_SIZE(section_names) * 2];
939         struct {
940                 u32 number;
941                 u32 size;
942         } tx_rx_header;
943         union {
944                 struct {
945                         u32 owner_hi, owner_lo;
946                         u32 notification;
947                         char nick_name[NICK_NAME_SIZE];
948                         u32 clock_select;
949                         u32 enable;
950                         u32 status;
951                         u32 extended_status;
952                         u32 sample_rate;
953                         u32 version;
954                         u32 clock_caps;
955                         char clock_source_names[CLOCK_SOURCE_NAMES_SIZE];
956                 } global;
957                 struct {
958                         u32 iso;
959                         u32 number_audio;
960                         u32 number_midi;
961                         u32 speed;
962                         char names[TX_NAMES_SIZE];
963                         u32 ac3_caps;
964                         u32 ac3_enable;
965                 } tx;
966                 struct {
967                         u32 iso;
968                         u32 seq_start;
969                         u32 number_audio;
970                         u32 number_midi;
971                         char names[RX_NAMES_SIZE];
972                         u32 ac3_caps;
973                         u32 ac3_enable;
974                 } rx;
975                 struct {
976                         u32 clock_source;
977                         u32 locked;
978                         u32 rate;
979                         u32 adat_user_data;
980                 } ext_sync;
981         } buf;
982         unsigned int quadlets, stream, i;
983
984         if (dice_proc_read_mem(dice, sections, 0, ARRAY_SIZE(sections)) < 0)
985                 return;
986         snd_iprintf(buffer, "sections:\n");
987         for (i = 0; i < ARRAY_SIZE(section_names); ++i)
988                 snd_iprintf(buffer, "  %s: offset %u, size %u\n",
989                             section_names[i],
990                             sections[i * 2], sections[i * 2 + 1]);
991
992         quadlets = min_t(u32, sections[1], sizeof(buf.global) / 4);
993         if (dice_proc_read_mem(dice, &buf.global, sections[0], quadlets) < 0)
994                 return;
995         snd_iprintf(buffer, "global:\n");
996         snd_iprintf(buffer, "  owner: %04x:%04x%08x\n",
997                     buf.global.owner_hi >> 16,
998                     buf.global.owner_hi & 0xffff, buf.global.owner_lo);
999         snd_iprintf(buffer, "  notification: %08x\n", buf.global.notification);
1000         dice_proc_fixup_string(buf.global.nick_name, NICK_NAME_SIZE);
1001         snd_iprintf(buffer, "  nick name: %s\n", buf.global.nick_name);
1002         snd_iprintf(buffer, "  clock select: %s %s\n",
1003                     str_from_array(clock_sources, ARRAY_SIZE(clock_sources),
1004                                    buf.global.clock_select & CLOCK_SOURCE_MASK),
1005                     str_from_array(rates, ARRAY_SIZE(rates),
1006                                    (buf.global.clock_select & CLOCK_RATE_MASK)
1007                                    >> CLOCK_RATE_SHIFT));
1008         snd_iprintf(buffer, "  enable: %u\n", buf.global.enable);
1009         snd_iprintf(buffer, "  status: %slocked %s\n",
1010                     buf.global.status & STATUS_SOURCE_LOCKED ? "" : "un",
1011                     str_from_array(rates, ARRAY_SIZE(rates),
1012                                    (buf.global.status &
1013                                     STATUS_NOMINAL_RATE_MASK)
1014                                    >> CLOCK_RATE_SHIFT));
1015         snd_iprintf(buffer, "  ext status: %08x\n", buf.global.extended_status);
1016         snd_iprintf(buffer, "  sample rate: %u\n", buf.global.sample_rate);
1017         snd_iprintf(buffer, "  version: %u.%u.%u.%u\n",
1018                     (buf.global.version >> 24) & 0xff,
1019                     (buf.global.version >> 16) & 0xff,
1020                     (buf.global.version >>  8) & 0xff,
1021                     (buf.global.version >>  0) & 0xff);
1022         if (quadlets >= 90) {
1023                 snd_iprintf(buffer, "  clock caps:");
1024                 for (i = 0; i <= 6; ++i)
1025                         if (buf.global.clock_caps & (1 << i))
1026                                 snd_iprintf(buffer, " %s", rates[i]);
1027                 for (i = 0; i <= 12; ++i)
1028                         if (buf.global.clock_caps & (1 << (16 + i)))
1029                                 snd_iprintf(buffer, " %s", clock_sources[i]);
1030                 snd_iprintf(buffer, "\n");
1031                 dice_proc_fixup_string(buf.global.clock_source_names,
1032                                        CLOCK_SOURCE_NAMES_SIZE);
1033                 snd_iprintf(buffer, "  clock source names: %s\n",
1034                             buf.global.clock_source_names);
1035         }
1036
1037         if (dice_proc_read_mem(dice, &tx_rx_header, sections[2], 2) < 0)
1038                 return;
1039         quadlets = min_t(u32, tx_rx_header.size, sizeof(buf.tx) / 4);
1040         for (stream = 0; stream < tx_rx_header.number; ++stream) {
1041                 if (dice_proc_read_mem(dice, &buf.tx, sections[2] + 2 +
1042                                        stream * tx_rx_header.size,
1043                                        quadlets) < 0)
1044                         break;
1045                 snd_iprintf(buffer, "tx %u:\n", stream);
1046                 snd_iprintf(buffer, "  iso channel: %d\n", (int)buf.tx.iso);
1047                 snd_iprintf(buffer, "  audio channels: %u\n",
1048                             buf.tx.number_audio);
1049                 snd_iprintf(buffer, "  midi ports: %u\n", buf.tx.number_midi);
1050                 snd_iprintf(buffer, "  speed: S%u\n", 100u << buf.tx.speed);
1051                 if (quadlets >= 68) {
1052                         dice_proc_fixup_string(buf.tx.names, TX_NAMES_SIZE);
1053                         snd_iprintf(buffer, "  names: %s\n", buf.tx.names);
1054                 }
1055                 if (quadlets >= 70) {
1056                         snd_iprintf(buffer, "  ac3 caps: %08x\n",
1057                                     buf.tx.ac3_caps);
1058                         snd_iprintf(buffer, "  ac3 enable: %08x\n",
1059                                     buf.tx.ac3_enable);
1060                 }
1061         }
1062
1063         if (dice_proc_read_mem(dice, &tx_rx_header, sections[4], 2) < 0)
1064                 return;
1065         quadlets = min_t(u32, tx_rx_header.size, sizeof(buf.rx) / 4);
1066         for (stream = 0; stream < tx_rx_header.number; ++stream) {
1067                 if (dice_proc_read_mem(dice, &buf.rx, sections[4] + 2 +
1068                                        stream * tx_rx_header.size,
1069                                        quadlets) < 0)
1070                         break;
1071                 snd_iprintf(buffer, "rx %u:\n", stream);
1072                 snd_iprintf(buffer, "  iso channel: %d\n", (int)buf.rx.iso);
1073                 snd_iprintf(buffer, "  sequence start: %u\n", buf.rx.seq_start);
1074                 snd_iprintf(buffer, "  audio channels: %u\n",
1075                             buf.rx.number_audio);
1076                 snd_iprintf(buffer, "  midi ports: %u\n", buf.rx.number_midi);
1077                 if (quadlets >= 68) {
1078                         dice_proc_fixup_string(buf.rx.names, RX_NAMES_SIZE);
1079                         snd_iprintf(buffer, "  names: %s\n", buf.rx.names);
1080                 }
1081                 if (quadlets >= 70) {
1082                         snd_iprintf(buffer, "  ac3 caps: %08x\n",
1083                                     buf.rx.ac3_caps);
1084                         snd_iprintf(buffer, "  ac3 enable: %08x\n",
1085                                     buf.rx.ac3_enable);
1086                 }
1087         }
1088
1089         quadlets = min_t(u32, sections[7], sizeof(buf.ext_sync) / 4);
1090         if (quadlets >= 4) {
1091                 if (dice_proc_read_mem(dice, &buf.ext_sync,
1092                                        sections[6], 4) < 0)
1093                         return;
1094                 snd_iprintf(buffer, "ext status:\n");
1095                 snd_iprintf(buffer, "  clock source: %s\n",
1096                             str_from_array(clock_sources,
1097                                            ARRAY_SIZE(clock_sources),
1098                                            buf.ext_sync.clock_source));
1099                 snd_iprintf(buffer, "  locked: %u\n", buf.ext_sync.locked);
1100                 snd_iprintf(buffer, "  rate: %s\n",
1101                             str_from_array(rates, ARRAY_SIZE(rates),
1102                                            buf.ext_sync.rate));
1103                 snd_iprintf(buffer, "  adat user data: ");
1104                 if (buf.ext_sync.adat_user_data & ADAT_USER_DATA_NO_DATA)
1105                         snd_iprintf(buffer, "-\n");
1106                 else
1107                         snd_iprintf(buffer, "%x\n",
1108                                     buf.ext_sync.adat_user_data);
1109         }
1110 }
1111
1112 static void dice_create_proc(struct dice *dice)
1113 {
1114         struct snd_info_entry *entry;
1115
1116         if (!snd_card_proc_new(dice->card, "dice", &entry))
1117                 snd_info_set_text_ops(entry, dice, dice_proc_read);
1118 }
1119
1120 static void dice_card_free(struct snd_card *card)
1121 {
1122         struct dice *dice = card->private_data;
1123
1124         amdtp_stream_destroy(&dice->stream);
1125         fw_core_remove_address_handler(&dice->notification_handler);
1126         mutex_destroy(&dice->mutex);
1127 }
1128
1129 #define OUI_WEISS               0x001c6a
1130
1131 #define DICE_CATEGORY_ID        0x04
1132 #define WEISS_CATEGORY_ID       0x00
1133
1134 static int dice_interface_check(struct fw_unit *unit)
1135 {
1136         static const int min_values[10] = {
1137                 10, 0x64 / 4,
1138                 10, 0x18 / 4,
1139                 10, 0x18 / 4,
1140                 0, 0,
1141                 0, 0,
1142         };
1143         struct fw_device *device = fw_parent_device(unit);
1144         struct fw_csr_iterator it;
1145         int key, value, vendor = -1, model = -1, err;
1146         unsigned int category, i;
1147         __be32 pointers[ARRAY_SIZE(min_values)];
1148         __be32 tx_data[4];
1149         __be32 version;
1150
1151         /*
1152          * Check that GUID and unit directory are constructed according to DICE
1153          * rules, i.e., that the specifier ID is the GUID's OUI, and that the
1154          * GUID chip ID consists of the 8-bit category ID, the 10-bit product
1155          * ID, and a 22-bit serial number.
1156          */
1157         fw_csr_iterator_init(&it, unit->directory);
1158         while (fw_csr_iterator_next(&it, &key, &value)) {
1159                 switch (key) {
1160                 case CSR_SPECIFIER_ID:
1161                         vendor = value;
1162                         break;
1163                 case CSR_MODEL:
1164                         model = value;
1165                         break;
1166                 }
1167         }
1168         if (vendor == OUI_WEISS)
1169                 category = WEISS_CATEGORY_ID;
1170         else
1171                 category = DICE_CATEGORY_ID;
1172         if (device->config_rom[3] != ((vendor << 8) | category) ||
1173             device->config_rom[4] >> 22 != model)
1174                 return -ENODEV;
1175
1176         /*
1177          * Check that the sub address spaces exist and are located inside the
1178          * private address space.  The minimum values are chosen so that all
1179          * minimally required registers are included.
1180          */
1181         err = snd_fw_transaction(unit, TCODE_READ_BLOCK_REQUEST,
1182                                  DICE_PRIVATE_SPACE,
1183                                  pointers, sizeof(pointers), 0);
1184         if (err < 0)
1185                 return -ENODEV;
1186         for (i = 0; i < ARRAY_SIZE(pointers); ++i) {
1187                 value = be32_to_cpu(pointers[i]);
1188                 if (value < min_values[i] || value >= 0x40000)
1189                         return -ENODEV;
1190         }
1191
1192         /* We support playback only. Let capture devices be handled by FFADO. */
1193         err = snd_fw_transaction(unit, TCODE_READ_BLOCK_REQUEST,
1194                                  DICE_PRIVATE_SPACE +
1195                                  be32_to_cpu(pointers[2]) * 4,
1196                                  tx_data, sizeof(tx_data), 0);
1197         if (err < 0 || (tx_data[0] && tx_data[3]))
1198                 return -ENODEV;
1199
1200         /*
1201          * Check that the implemented DICE driver specification major version
1202          * number matches.
1203          */
1204         err = snd_fw_transaction(unit, TCODE_READ_QUADLET_REQUEST,
1205                                  DICE_PRIVATE_SPACE +
1206                                  be32_to_cpu(pointers[0]) * 4 + GLOBAL_VERSION,
1207                                  &version, 4, 0);
1208         if (err < 0)
1209                 return -ENODEV;
1210         if ((version & cpu_to_be32(0xff000000)) != cpu_to_be32(0x01000000)) {
1211                 dev_err(&unit->device,
1212                         "unknown DICE version: 0x%08x\n", be32_to_cpu(version));
1213                 return -ENODEV;
1214         }
1215
1216         return 0;
1217 }
1218
1219 static int highest_supported_mode_rate(struct dice *dice, unsigned int mode)
1220 {
1221         int i;
1222
1223         for (i = ARRAY_SIZE(dice_rates) - 1; i >= 0; --i)
1224                 if ((dice->clock_caps & (1 << i)) &&
1225                     rate_index_to_mode(i) == mode)
1226                         return i;
1227
1228         return -1;
1229 }
1230
1231 static int dice_read_mode_params(struct dice *dice, unsigned int mode)
1232 {
1233         __be32 values[2];
1234         int rate_index, err;
1235
1236         rate_index = highest_supported_mode_rate(dice, mode);
1237         if (rate_index < 0) {
1238                 dice->rx_channels[mode] = 0;
1239                 dice->rx_midi_ports[mode] = 0;
1240                 return 0;
1241         }
1242
1243         err = dice_change_rate(dice, rate_index << CLOCK_RATE_SHIFT);
1244         if (err < 0)
1245                 return err;
1246
1247         err = snd_fw_transaction(dice->unit, TCODE_READ_BLOCK_REQUEST,
1248                                  rx_address(dice, RX_NUMBER_AUDIO),
1249                                  values, 2 * 4, 0);
1250         if (err < 0)
1251                 return err;
1252
1253         dice->rx_channels[mode]   = be32_to_cpu(values[0]);
1254         dice->rx_midi_ports[mode] = be32_to_cpu(values[1]);
1255
1256         return 0;
1257 }
1258
1259 static int dice_read_params(struct dice *dice)
1260 {
1261         __be32 pointers[6];
1262         __be32 value;
1263         int mode, err;
1264
1265         err = snd_fw_transaction(dice->unit, TCODE_READ_BLOCK_REQUEST,
1266                                  DICE_PRIVATE_SPACE,
1267                                  pointers, sizeof(pointers), 0);
1268         if (err < 0)
1269                 return err;
1270
1271         dice->global_offset = be32_to_cpu(pointers[0]) * 4;
1272         dice->rx_offset = be32_to_cpu(pointers[4]) * 4;
1273
1274         /* some very old firmwares don't tell about their clock support */
1275         if (be32_to_cpu(pointers[1]) * 4 >= GLOBAL_CLOCK_CAPABILITIES + 4) {
1276                 err = snd_fw_transaction(
1277                                 dice->unit, TCODE_READ_QUADLET_REQUEST,
1278                                 global_address(dice, GLOBAL_CLOCK_CAPABILITIES),
1279                                 &value, 4, 0);
1280                 if (err < 0)
1281                         return err;
1282                 dice->clock_caps = be32_to_cpu(value);
1283         } else {
1284                 /* this should be supported by any device */
1285                 dice->clock_caps = CLOCK_CAP_RATE_44100 |
1286                                    CLOCK_CAP_RATE_48000 |
1287                                    CLOCK_CAP_SOURCE_ARX1 |
1288                                    CLOCK_CAP_SOURCE_INTERNAL;
1289         }
1290
1291         for (mode = 2; mode >= 0; --mode) {
1292                 err = dice_read_mode_params(dice, mode);
1293                 if (err < 0)
1294                         return err;
1295         }
1296
1297         return 0;
1298 }
1299
1300 static void dice_card_strings(struct dice *dice)
1301 {
1302         struct snd_card *card = dice->card;
1303         struct fw_device *dev = fw_parent_device(dice->unit);
1304         char vendor[32], model[32];
1305         unsigned int i;
1306         int err;
1307
1308         strcpy(card->driver, "DICE");
1309
1310         strcpy(card->shortname, "DICE");
1311         BUILD_BUG_ON(NICK_NAME_SIZE < sizeof(card->shortname));
1312         err = snd_fw_transaction(dice->unit, TCODE_READ_BLOCK_REQUEST,
1313                                  global_address(dice, GLOBAL_NICK_NAME),
1314                                  card->shortname, sizeof(card->shortname), 0);
1315         if (err >= 0) {
1316                 /* DICE strings are returned in "always-wrong" endianness */
1317                 BUILD_BUG_ON(sizeof(card->shortname) % 4 != 0);
1318                 for (i = 0; i < sizeof(card->shortname); i += 4)
1319                         swab32s((u32 *)&card->shortname[i]);
1320                 card->shortname[sizeof(card->shortname) - 1] = '\0';
1321         }
1322
1323         strcpy(vendor, "?");
1324         fw_csr_string(dev->config_rom + 5, CSR_VENDOR, vendor, sizeof(vendor));
1325         strcpy(model, "?");
1326         fw_csr_string(dice->unit->directory, CSR_MODEL, model, sizeof(model));
1327         snprintf(card->longname, sizeof(card->longname),
1328                  "%s %s (serial %u) at %s, S%d",
1329                  vendor, model, dev->config_rom[4] & 0x3fffff,
1330                  dev_name(&dice->unit->device), 100 << dev->max_speed);
1331
1332         strcpy(card->mixername, "DICE");
1333 }
1334
1335 static int dice_probe(struct fw_unit *unit, const struct ieee1394_device_id *id)
1336 {
1337         struct snd_card *card;
1338         struct dice *dice;
1339         __be32 clock_sel;
1340         int err;
1341
1342         err = dice_interface_check(unit);
1343         if (err < 0)
1344                 return err;
1345
1346         err = snd_card_new(&unit->device, -1, NULL, THIS_MODULE,
1347                            sizeof(*dice), &card);
1348         if (err < 0)
1349                 return err;
1350
1351         dice = card->private_data;
1352         dice->card = card;
1353         spin_lock_init(&dice->lock);
1354         mutex_init(&dice->mutex);
1355         dice->unit = unit;
1356         init_completion(&dice->clock_accepted);
1357         init_waitqueue_head(&dice->hwdep_wait);
1358
1359         dice->notification_handler.length = 4;
1360         dice->notification_handler.address_callback = dice_notification;
1361         dice->notification_handler.callback_data = dice;
1362         err = fw_core_add_address_handler(&dice->notification_handler,
1363                                           &fw_high_memory_region);
1364         if (err < 0)
1365                 goto err_mutex;
1366
1367         err = dice_owner_set(dice);
1368         if (err < 0)
1369                 goto err_notification_handler;
1370
1371         err = dice_read_params(dice);
1372         if (err < 0)
1373                 goto err_owner;
1374
1375         err = fw_iso_resources_init(&dice->resources, unit);
1376         if (err < 0)
1377                 goto err_owner;
1378         dice->resources.channels_mask = 0x00000000ffffffffuLL;
1379
1380         err = amdtp_stream_init(&dice->stream, unit, AMDTP_OUT_STREAM,
1381                                 CIP_BLOCKING);
1382         if (err < 0)
1383                 goto err_resources;
1384
1385         card->private_free = dice_card_free;
1386
1387         dice_card_strings(dice);
1388
1389         err = snd_fw_transaction(unit, TCODE_READ_QUADLET_REQUEST,
1390                                  global_address(dice, GLOBAL_CLOCK_SELECT),
1391                                  &clock_sel, 4, 0);
1392         if (err < 0)
1393                 goto error;
1394         clock_sel &= cpu_to_be32(~CLOCK_SOURCE_MASK);
1395         clock_sel |= cpu_to_be32(CLOCK_SOURCE_ARX1);
1396         err = snd_fw_transaction(unit, TCODE_WRITE_QUADLET_REQUEST,
1397                                  global_address(dice, GLOBAL_CLOCK_SELECT),
1398                                  &clock_sel, 4, 0);
1399         if (err < 0)
1400                 goto error;
1401
1402         err = dice_create_pcm(dice);
1403         if (err < 0)
1404                 goto error;
1405
1406         err = dice_create_hwdep(dice);
1407         if (err < 0)
1408                 goto error;
1409
1410         dice_create_proc(dice);
1411
1412         err = snd_card_register(card);
1413         if (err < 0)
1414                 goto error;
1415
1416         dev_set_drvdata(&unit->device, dice);
1417
1418         return 0;
1419
1420 err_resources:
1421         fw_iso_resources_destroy(&dice->resources);
1422 err_owner:
1423         dice_owner_clear(dice);
1424 err_notification_handler:
1425         fw_core_remove_address_handler(&dice->notification_handler);
1426 err_mutex:
1427         mutex_destroy(&dice->mutex);
1428 error:
1429         snd_card_free(card);
1430         return err;
1431 }
1432
1433 static void dice_remove(struct fw_unit *unit)
1434 {
1435         struct dice *dice = dev_get_drvdata(&unit->device);
1436
1437         amdtp_stream_pcm_abort(&dice->stream);
1438
1439         snd_card_disconnect(dice->card);
1440
1441         mutex_lock(&dice->mutex);
1442
1443         dice_stream_stop(dice);
1444         dice_owner_clear(dice);
1445
1446         mutex_unlock(&dice->mutex);
1447
1448         snd_card_free_when_closed(dice->card);
1449 }
1450
1451 static void dice_bus_reset(struct fw_unit *unit)
1452 {
1453         struct dice *dice = dev_get_drvdata(&unit->device);
1454
1455         /*
1456          * On a bus reset, the DICE firmware disables streaming and then goes
1457          * off contemplating its own navel for hundreds of milliseconds before
1458          * it can react to any of our attempts to reenable streaming.  This
1459          * means that we lose synchronization anyway, so we force our streams
1460          * to stop so that the application can restart them in an orderly
1461          * manner.
1462          */
1463         amdtp_stream_pcm_abort(&dice->stream);
1464
1465         mutex_lock(&dice->mutex);
1466
1467         dice->global_enabled = false;
1468         dice_stream_stop_packets(dice);
1469
1470         dice_owner_update(dice);
1471
1472         fw_iso_resources_update(&dice->resources);
1473
1474         mutex_unlock(&dice->mutex);
1475 }
1476
1477 #define DICE_INTERFACE  0x000001
1478
1479 static const struct ieee1394_device_id dice_id_table[] = {
1480         {
1481                 .match_flags = IEEE1394_MATCH_VERSION,
1482                 .version     = DICE_INTERFACE,
1483         },
1484         { }
1485 };
1486 MODULE_DEVICE_TABLE(ieee1394, dice_id_table);
1487
1488 static struct fw_driver dice_driver = {
1489         .driver   = {
1490                 .owner  = THIS_MODULE,
1491                 .name   = KBUILD_MODNAME,
1492                 .bus    = &fw_bus_type,
1493         },
1494         .probe    = dice_probe,
1495         .update   = dice_bus_reset,
1496         .remove   = dice_remove,
1497         .id_table = dice_id_table,
1498 };
1499
1500 static int __init alsa_dice_init(void)
1501 {
1502         return driver_register(&dice_driver.driver);
1503 }
1504
1505 static void __exit alsa_dice_exit(void)
1506 {
1507         driver_unregister(&dice_driver.driver);
1508 }
1509
1510 module_init(alsa_dice_init);
1511 module_exit(alsa_dice_exit);