2ff25ed4d834b6595489d0435f27efb69874a22e
[sfrench/cifs-2.6.git] / sound / core / pcm_lib.c
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <sound/core.h>
26 #include <sound/control.h>
27 #include <sound/info.h>
28 #include <sound/pcm.h>
29 #include <sound/pcm_params.h>
30 #include <sound/timer.h>
31
32 /*
33  * fill ring buffer with silence
34  * runtime->silence_start: starting pointer to silence area
35  * runtime->silence_filled: size filled with silence
36  * runtime->silence_threshold: threshold from application
37  * runtime->silence_size: maximal size from application
38  *
39  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
40  */
41 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
42 {
43         struct snd_pcm_runtime *runtime = substream->runtime;
44         snd_pcm_uframes_t frames, ofs, transfer;
45
46         if (runtime->silence_size < runtime->boundary) {
47                 snd_pcm_sframes_t noise_dist, n;
48                 if (runtime->silence_start != runtime->control->appl_ptr) {
49                         n = runtime->control->appl_ptr - runtime->silence_start;
50                         if (n < 0)
51                                 n += runtime->boundary;
52                         if ((snd_pcm_uframes_t)n < runtime->silence_filled)
53                                 runtime->silence_filled -= n;
54                         else
55                                 runtime->silence_filled = 0;
56                         runtime->silence_start = runtime->control->appl_ptr;
57                 }
58                 if (runtime->silence_filled >= runtime->buffer_size)
59                         return;
60                 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
61                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
62                         return;
63                 frames = runtime->silence_threshold - noise_dist;
64                 if (frames > runtime->silence_size)
65                         frames = runtime->silence_size;
66         } else {
67                 if (new_hw_ptr == ULONG_MAX) {  /* initialization */
68                         snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
69                         runtime->silence_filled = avail > 0 ? avail : 0;
70                         runtime->silence_start = (runtime->status->hw_ptr +
71                                                   runtime->silence_filled) %
72                                                  runtime->boundary;
73                 } else {
74                         ofs = runtime->status->hw_ptr;
75                         frames = new_hw_ptr - ofs;
76                         if ((snd_pcm_sframes_t)frames < 0)
77                                 frames += runtime->boundary;
78                         runtime->silence_filled -= frames;
79                         if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
80                                 runtime->silence_filled = 0;
81                                 runtime->silence_start = new_hw_ptr;
82                         } else {
83                                 runtime->silence_start = ofs;
84                         }
85                 }
86                 frames = runtime->buffer_size - runtime->silence_filled;
87         }
88         if (snd_BUG_ON(frames > runtime->buffer_size))
89                 return;
90         if (frames == 0)
91                 return;
92         ofs = runtime->silence_start % runtime->buffer_size;
93         while (frames > 0) {
94                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
95                 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
96                     runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
97                         if (substream->ops->silence) {
98                                 int err;
99                                 err = substream->ops->silence(substream, -1, ofs, transfer);
100                                 snd_BUG_ON(err < 0);
101                         } else {
102                                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
103                                 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
104                         }
105                 } else {
106                         unsigned int c;
107                         unsigned int channels = runtime->channels;
108                         if (substream->ops->silence) {
109                                 for (c = 0; c < channels; ++c) {
110                                         int err;
111                                         err = substream->ops->silence(substream, c, ofs, transfer);
112                                         snd_BUG_ON(err < 0);
113                                 }
114                         } else {
115                                 size_t dma_csize = runtime->dma_bytes / channels;
116                                 for (c = 0; c < channels; ++c) {
117                                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
118                                         snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
119                                 }
120                         }
121                 }
122                 runtime->silence_filled += transfer;
123                 frames -= transfer;
124                 ofs = 0;
125         }
126 }
127
128 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
129 #define xrun_debug(substream)   ((substream)->pstr->xrun_debug)
130 #else
131 #define xrun_debug(substream)   0
132 #endif
133
134 #define dump_stack_on_xrun(substream) do {      \
135                 if (xrun_debug(substream) > 1)  \
136                         dump_stack();           \
137         } while (0)
138
139 static void xrun(struct snd_pcm_substream *substream)
140 {
141         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
142         if (xrun_debug(substream)) {
143                 snd_printd(KERN_DEBUG "XRUN: pcmC%dD%d%c\n",
144                            substream->pcm->card->number,
145                            substream->pcm->device,
146                            substream->stream ? 'c' : 'p');
147                 dump_stack_on_xrun(substream);
148         }
149 }
150
151 static inline snd_pcm_uframes_t snd_pcm_update_hw_ptr_pos(struct snd_pcm_substream *substream,
152                                                           struct snd_pcm_runtime *runtime)
153 {
154         snd_pcm_uframes_t pos;
155
156         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
157                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
158         pos = substream->ops->pointer(substream);
159         if (pos == SNDRV_PCM_POS_XRUN)
160                 return pos; /* XRUN */
161 #ifdef CONFIG_SND_DEBUG
162         if (pos >= runtime->buffer_size) {
163                 snd_printk(KERN_ERR  "BUG: stream = %i, pos = 0x%lx, buffer size = 0x%lx, period size = 0x%lx\n", substream->stream, pos, runtime->buffer_size, runtime->period_size);
164         }
165 #endif
166         pos -= pos % runtime->min_align;
167         return pos;
168 }
169
170 static inline int snd_pcm_update_hw_ptr_post(struct snd_pcm_substream *substream,
171                                              struct snd_pcm_runtime *runtime)
172 {
173         snd_pcm_uframes_t avail;
174
175         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
176                 avail = snd_pcm_playback_avail(runtime);
177         else
178                 avail = snd_pcm_capture_avail(runtime);
179         if (avail > runtime->avail_max)
180                 runtime->avail_max = avail;
181         if (avail >= runtime->stop_threshold) {
182                 if (substream->runtime->status->state == SNDRV_PCM_STATE_DRAINING)
183                         snd_pcm_drain_done(substream);
184                 else
185                         xrun(substream);
186                 return -EPIPE;
187         }
188         if (avail >= runtime->control->avail_min)
189                 wake_up(&runtime->sleep);
190         return 0;
191 }
192
193 #define hw_ptr_error(substream, fmt, args...)                           \
194         do {                                                            \
195                 if (xrun_debug(substream)) {                            \
196                         if (printk_ratelimit()) {                       \
197                                 snd_printd("PCM: " fmt, ##args);        \
198                         }                                               \
199                         dump_stack_on_xrun(substream);                  \
200                 }                                                       \
201         } while (0)
202
203 static inline int snd_pcm_update_hw_ptr_interrupt(struct snd_pcm_substream *substream)
204 {
205         struct snd_pcm_runtime *runtime = substream->runtime;
206         snd_pcm_uframes_t pos;
207         snd_pcm_uframes_t new_hw_ptr, hw_ptr_interrupt, hw_base;
208         snd_pcm_sframes_t delta;
209
210         pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
211         if (pos == SNDRV_PCM_POS_XRUN) {
212                 xrun(substream);
213                 return -EPIPE;
214         }
215         hw_base = runtime->hw_ptr_base;
216         new_hw_ptr = hw_base + pos;
217         hw_ptr_interrupt = runtime->hw_ptr_interrupt + runtime->period_size;
218         delta = new_hw_ptr - hw_ptr_interrupt;
219         if (hw_ptr_interrupt == runtime->boundary)
220                 hw_ptr_interrupt = 0;
221         if (delta < 0) {
222                 delta += runtime->buffer_size;
223                 if (delta < 0) {
224                         hw_ptr_error(substream, 
225                                      "Unexpected hw_pointer value "
226                                      "(stream=%i, pos=%ld, intr_ptr=%ld)\n",
227                                      substream->stream, (long)pos,
228                                      (long)hw_ptr_interrupt);
229                         /* rebase to interrupt position */
230                         hw_base = new_hw_ptr = hw_ptr_interrupt;
231                         delta = 0;
232                 } else {
233                         hw_base += runtime->buffer_size;
234                         if (hw_base == runtime->boundary)
235                                 hw_base = 0;
236                         new_hw_ptr = hw_base + pos;
237                 }
238         }
239         if (delta > runtime->period_size) {
240                 hw_ptr_error(substream,
241                              "Lost interrupts? "
242                              "(stream=%i, delta=%ld, intr_ptr=%ld)\n",
243                              substream->stream, (long)delta,
244                              (long)hw_ptr_interrupt);
245                 /* rebase hw_ptr_interrupt */
246                 hw_ptr_interrupt =
247                         new_hw_ptr - new_hw_ptr % runtime->period_size;
248         }
249         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
250             runtime->silence_size > 0)
251                 snd_pcm_playback_silence(substream, new_hw_ptr);
252
253         runtime->hw_ptr_base = hw_base;
254         runtime->status->hw_ptr = new_hw_ptr;
255         runtime->hw_ptr_interrupt = hw_ptr_interrupt;
256
257         return snd_pcm_update_hw_ptr_post(substream, runtime);
258 }
259
260 /* CAUTION: call it with irq disabled */
261 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
262 {
263         struct snd_pcm_runtime *runtime = substream->runtime;
264         snd_pcm_uframes_t pos;
265         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
266         snd_pcm_sframes_t delta;
267
268         old_hw_ptr = runtime->status->hw_ptr;
269         pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
270         if (pos == SNDRV_PCM_POS_XRUN) {
271                 xrun(substream);
272                 return -EPIPE;
273         }
274         hw_base = runtime->hw_ptr_base;
275         new_hw_ptr = hw_base + pos;
276
277         delta = new_hw_ptr - old_hw_ptr;
278         if (delta < 0) {
279                 delta += runtime->buffer_size;
280                 if (delta < 0) {
281                         hw_ptr_error(substream, 
282                                      "Unexpected hw_pointer value [2] "
283                                      "(stream=%i, pos=%ld, old_ptr=%ld)\n",
284                                      substream->stream, (long)pos,
285                                      (long)old_hw_ptr);
286                         return 0;
287                 }
288                 hw_base += runtime->buffer_size;
289                 if (hw_base == runtime->boundary)
290                         hw_base = 0;
291                 new_hw_ptr = hw_base + pos;
292         }
293         if (delta > runtime->period_size && runtime->periods > 1) {
294                 hw_ptr_error(substream,
295                              "hw_ptr skipping! "
296                              "(pos=%ld, delta=%ld, period=%ld)\n",
297                              (long)pos, (long)delta,
298                              (long)runtime->period_size);
299                 return 0;
300         }
301         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
302             runtime->silence_size > 0)
303                 snd_pcm_playback_silence(substream, new_hw_ptr);
304
305         runtime->hw_ptr_base = hw_base;
306         runtime->status->hw_ptr = new_hw_ptr;
307
308         return snd_pcm_update_hw_ptr_post(substream, runtime);
309 }
310
311 /**
312  * snd_pcm_set_ops - set the PCM operators
313  * @pcm: the pcm instance
314  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
315  * @ops: the operator table
316  *
317  * Sets the given PCM operators to the pcm instance.
318  */
319 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
320 {
321         struct snd_pcm_str *stream = &pcm->streams[direction];
322         struct snd_pcm_substream *substream;
323         
324         for (substream = stream->substream; substream != NULL; substream = substream->next)
325                 substream->ops = ops;
326 }
327
328 EXPORT_SYMBOL(snd_pcm_set_ops);
329
330 /**
331  * snd_pcm_sync - set the PCM sync id
332  * @substream: the pcm substream
333  *
334  * Sets the PCM sync identifier for the card.
335  */
336 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
337 {
338         struct snd_pcm_runtime *runtime = substream->runtime;
339         
340         runtime->sync.id32[0] = substream->pcm->card->number;
341         runtime->sync.id32[1] = -1;
342         runtime->sync.id32[2] = -1;
343         runtime->sync.id32[3] = -1;
344 }
345
346 EXPORT_SYMBOL(snd_pcm_set_sync);
347
348 /*
349  *  Standard ioctl routine
350  */
351
352 static inline unsigned int div32(unsigned int a, unsigned int b, 
353                                  unsigned int *r)
354 {
355         if (b == 0) {
356                 *r = 0;
357                 return UINT_MAX;
358         }
359         *r = a % b;
360         return a / b;
361 }
362
363 static inline unsigned int div_down(unsigned int a, unsigned int b)
364 {
365         if (b == 0)
366                 return UINT_MAX;
367         return a / b;
368 }
369
370 static inline unsigned int div_up(unsigned int a, unsigned int b)
371 {
372         unsigned int r;
373         unsigned int q;
374         if (b == 0)
375                 return UINT_MAX;
376         q = div32(a, b, &r);
377         if (r)
378                 ++q;
379         return q;
380 }
381
382 static inline unsigned int mul(unsigned int a, unsigned int b)
383 {
384         if (a == 0)
385                 return 0;
386         if (div_down(UINT_MAX, a) < b)
387                 return UINT_MAX;
388         return a * b;
389 }
390
391 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
392                                     unsigned int c, unsigned int *r)
393 {
394         u_int64_t n = (u_int64_t) a * b;
395         if (c == 0) {
396                 snd_BUG_ON(!n);
397                 *r = 0;
398                 return UINT_MAX;
399         }
400         div64_32(&n, c, r);
401         if (n >= UINT_MAX) {
402                 *r = 0;
403                 return UINT_MAX;
404         }
405         return n;
406 }
407
408 /**
409  * snd_interval_refine - refine the interval value of configurator
410  * @i: the interval value to refine
411  * @v: the interval value to refer to
412  *
413  * Refines the interval value with the reference value.
414  * The interval is changed to the range satisfying both intervals.
415  * The interval status (min, max, integer, etc.) are evaluated.
416  *
417  * Returns non-zero if the value is changed, zero if not changed.
418  */
419 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
420 {
421         int changed = 0;
422         if (snd_BUG_ON(snd_interval_empty(i)))
423                 return -EINVAL;
424         if (i->min < v->min) {
425                 i->min = v->min;
426                 i->openmin = v->openmin;
427                 changed = 1;
428         } else if (i->min == v->min && !i->openmin && v->openmin) {
429                 i->openmin = 1;
430                 changed = 1;
431         }
432         if (i->max > v->max) {
433                 i->max = v->max;
434                 i->openmax = v->openmax;
435                 changed = 1;
436         } else if (i->max == v->max && !i->openmax && v->openmax) {
437                 i->openmax = 1;
438                 changed = 1;
439         }
440         if (!i->integer && v->integer) {
441                 i->integer = 1;
442                 changed = 1;
443         }
444         if (i->integer) {
445                 if (i->openmin) {
446                         i->min++;
447                         i->openmin = 0;
448                 }
449                 if (i->openmax) {
450                         i->max--;
451                         i->openmax = 0;
452                 }
453         } else if (!i->openmin && !i->openmax && i->min == i->max)
454                 i->integer = 1;
455         if (snd_interval_checkempty(i)) {
456                 snd_interval_none(i);
457                 return -EINVAL;
458         }
459         return changed;
460 }
461
462 EXPORT_SYMBOL(snd_interval_refine);
463
464 static int snd_interval_refine_first(struct snd_interval *i)
465 {
466         if (snd_BUG_ON(snd_interval_empty(i)))
467                 return -EINVAL;
468         if (snd_interval_single(i))
469                 return 0;
470         i->max = i->min;
471         i->openmax = i->openmin;
472         if (i->openmax)
473                 i->max++;
474         return 1;
475 }
476
477 static int snd_interval_refine_last(struct snd_interval *i)
478 {
479         if (snd_BUG_ON(snd_interval_empty(i)))
480                 return -EINVAL;
481         if (snd_interval_single(i))
482                 return 0;
483         i->min = i->max;
484         i->openmin = i->openmax;
485         if (i->openmin)
486                 i->min--;
487         return 1;
488 }
489
490 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
491 {
492         if (a->empty || b->empty) {
493                 snd_interval_none(c);
494                 return;
495         }
496         c->empty = 0;
497         c->min = mul(a->min, b->min);
498         c->openmin = (a->openmin || b->openmin);
499         c->max = mul(a->max,  b->max);
500         c->openmax = (a->openmax || b->openmax);
501         c->integer = (a->integer && b->integer);
502 }
503
504 /**
505  * snd_interval_div - refine the interval value with division
506  * @a: dividend
507  * @b: divisor
508  * @c: quotient
509  *
510  * c = a / b
511  *
512  * Returns non-zero if the value is changed, zero if not changed.
513  */
514 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
515 {
516         unsigned int r;
517         if (a->empty || b->empty) {
518                 snd_interval_none(c);
519                 return;
520         }
521         c->empty = 0;
522         c->min = div32(a->min, b->max, &r);
523         c->openmin = (r || a->openmin || b->openmax);
524         if (b->min > 0) {
525                 c->max = div32(a->max, b->min, &r);
526                 if (r) {
527                         c->max++;
528                         c->openmax = 1;
529                 } else
530                         c->openmax = (a->openmax || b->openmin);
531         } else {
532                 c->max = UINT_MAX;
533                 c->openmax = 0;
534         }
535         c->integer = 0;
536 }
537
538 /**
539  * snd_interval_muldivk - refine the interval value
540  * @a: dividend 1
541  * @b: dividend 2
542  * @k: divisor (as integer)
543  * @c: result
544   *
545  * c = a * b / k
546  *
547  * Returns non-zero if the value is changed, zero if not changed.
548  */
549 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
550                       unsigned int k, struct snd_interval *c)
551 {
552         unsigned int r;
553         if (a->empty || b->empty) {
554                 snd_interval_none(c);
555                 return;
556         }
557         c->empty = 0;
558         c->min = muldiv32(a->min, b->min, k, &r);
559         c->openmin = (r || a->openmin || b->openmin);
560         c->max = muldiv32(a->max, b->max, k, &r);
561         if (r) {
562                 c->max++;
563                 c->openmax = 1;
564         } else
565                 c->openmax = (a->openmax || b->openmax);
566         c->integer = 0;
567 }
568
569 /**
570  * snd_interval_mulkdiv - refine the interval value
571  * @a: dividend 1
572  * @k: dividend 2 (as integer)
573  * @b: divisor
574  * @c: result
575  *
576  * c = a * k / b
577  *
578  * Returns non-zero if the value is changed, zero if not changed.
579  */
580 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
581                       const struct snd_interval *b, struct snd_interval *c)
582 {
583         unsigned int r;
584         if (a->empty || b->empty) {
585                 snd_interval_none(c);
586                 return;
587         }
588         c->empty = 0;
589         c->min = muldiv32(a->min, k, b->max, &r);
590         c->openmin = (r || a->openmin || b->openmax);
591         if (b->min > 0) {
592                 c->max = muldiv32(a->max, k, b->min, &r);
593                 if (r) {
594                         c->max++;
595                         c->openmax = 1;
596                 } else
597                         c->openmax = (a->openmax || b->openmin);
598         } else {
599                 c->max = UINT_MAX;
600                 c->openmax = 0;
601         }
602         c->integer = 0;
603 }
604
605 /* ---- */
606
607
608 /**
609  * snd_interval_ratnum - refine the interval value
610  * @i: interval to refine
611  * @rats_count: number of ratnum_t 
612  * @rats: ratnum_t array
613  * @nump: pointer to store the resultant numerator
614  * @denp: pointer to store the resultant denominator
615  *
616  * Returns non-zero if the value is changed, zero if not changed.
617  */
618 int snd_interval_ratnum(struct snd_interval *i,
619                         unsigned int rats_count, struct snd_ratnum *rats,
620                         unsigned int *nump, unsigned int *denp)
621 {
622         unsigned int best_num, best_diff, best_den;
623         unsigned int k;
624         struct snd_interval t;
625         int err;
626
627         best_num = best_den = best_diff = 0;
628         for (k = 0; k < rats_count; ++k) {
629                 unsigned int num = rats[k].num;
630                 unsigned int den;
631                 unsigned int q = i->min;
632                 int diff;
633                 if (q == 0)
634                         q = 1;
635                 den = div_down(num, q);
636                 if (den < rats[k].den_min)
637                         continue;
638                 if (den > rats[k].den_max)
639                         den = rats[k].den_max;
640                 else {
641                         unsigned int r;
642                         r = (den - rats[k].den_min) % rats[k].den_step;
643                         if (r != 0)
644                                 den -= r;
645                 }
646                 diff = num - q * den;
647                 if (best_num == 0 ||
648                     diff * best_den < best_diff * den) {
649                         best_diff = diff;
650                         best_den = den;
651                         best_num = num;
652                 }
653         }
654         if (best_den == 0) {
655                 i->empty = 1;
656                 return -EINVAL;
657         }
658         t.min = div_down(best_num, best_den);
659         t.openmin = !!(best_num % best_den);
660         
661         best_num = best_den = best_diff = 0;
662         for (k = 0; k < rats_count; ++k) {
663                 unsigned int num = rats[k].num;
664                 unsigned int den;
665                 unsigned int q = i->max;
666                 int diff;
667                 if (q == 0) {
668                         i->empty = 1;
669                         return -EINVAL;
670                 }
671                 den = div_up(num, q);
672                 if (den > rats[k].den_max)
673                         continue;
674                 if (den < rats[k].den_min)
675                         den = rats[k].den_min;
676                 else {
677                         unsigned int r;
678                         r = (den - rats[k].den_min) % rats[k].den_step;
679                         if (r != 0)
680                                 den += rats[k].den_step - r;
681                 }
682                 diff = q * den - num;
683                 if (best_num == 0 ||
684                     diff * best_den < best_diff * den) {
685                         best_diff = diff;
686                         best_den = den;
687                         best_num = num;
688                 }
689         }
690         if (best_den == 0) {
691                 i->empty = 1;
692                 return -EINVAL;
693         }
694         t.max = div_up(best_num, best_den);
695         t.openmax = !!(best_num % best_den);
696         t.integer = 0;
697         err = snd_interval_refine(i, &t);
698         if (err < 0)
699                 return err;
700
701         if (snd_interval_single(i)) {
702                 if (nump)
703                         *nump = best_num;
704                 if (denp)
705                         *denp = best_den;
706         }
707         return err;
708 }
709
710 EXPORT_SYMBOL(snd_interval_ratnum);
711
712 /**
713  * snd_interval_ratden - refine the interval value
714  * @i: interval to refine
715  * @rats_count: number of struct ratden
716  * @rats: struct ratden array
717  * @nump: pointer to store the resultant numerator
718  * @denp: pointer to store the resultant denominator
719  *
720  * Returns non-zero if the value is changed, zero if not changed.
721  */
722 static int snd_interval_ratden(struct snd_interval *i,
723                                unsigned int rats_count, struct snd_ratden *rats,
724                                unsigned int *nump, unsigned int *denp)
725 {
726         unsigned int best_num, best_diff, best_den;
727         unsigned int k;
728         struct snd_interval t;
729         int err;
730
731         best_num = best_den = best_diff = 0;
732         for (k = 0; k < rats_count; ++k) {
733                 unsigned int num;
734                 unsigned int den = rats[k].den;
735                 unsigned int q = i->min;
736                 int diff;
737                 num = mul(q, den);
738                 if (num > rats[k].num_max)
739                         continue;
740                 if (num < rats[k].num_min)
741                         num = rats[k].num_max;
742                 else {
743                         unsigned int r;
744                         r = (num - rats[k].num_min) % rats[k].num_step;
745                         if (r != 0)
746                                 num += rats[k].num_step - r;
747                 }
748                 diff = num - q * den;
749                 if (best_num == 0 ||
750                     diff * best_den < best_diff * den) {
751                         best_diff = diff;
752                         best_den = den;
753                         best_num = num;
754                 }
755         }
756         if (best_den == 0) {
757                 i->empty = 1;
758                 return -EINVAL;
759         }
760         t.min = div_down(best_num, best_den);
761         t.openmin = !!(best_num % best_den);
762         
763         best_num = best_den = best_diff = 0;
764         for (k = 0; k < rats_count; ++k) {
765                 unsigned int num;
766                 unsigned int den = rats[k].den;
767                 unsigned int q = i->max;
768                 int diff;
769                 num = mul(q, den);
770                 if (num < rats[k].num_min)
771                         continue;
772                 if (num > rats[k].num_max)
773                         num = rats[k].num_max;
774                 else {
775                         unsigned int r;
776                         r = (num - rats[k].num_min) % rats[k].num_step;
777                         if (r != 0)
778                                 num -= r;
779                 }
780                 diff = q * den - num;
781                 if (best_num == 0 ||
782                     diff * best_den < best_diff * den) {
783                         best_diff = diff;
784                         best_den = den;
785                         best_num = num;
786                 }
787         }
788         if (best_den == 0) {
789                 i->empty = 1;
790                 return -EINVAL;
791         }
792         t.max = div_up(best_num, best_den);
793         t.openmax = !!(best_num % best_den);
794         t.integer = 0;
795         err = snd_interval_refine(i, &t);
796         if (err < 0)
797                 return err;
798
799         if (snd_interval_single(i)) {
800                 if (nump)
801                         *nump = best_num;
802                 if (denp)
803                         *denp = best_den;
804         }
805         return err;
806 }
807
808 /**
809  * snd_interval_list - refine the interval value from the list
810  * @i: the interval value to refine
811  * @count: the number of elements in the list
812  * @list: the value list
813  * @mask: the bit-mask to evaluate
814  *
815  * Refines the interval value from the list.
816  * When mask is non-zero, only the elements corresponding to bit 1 are
817  * evaluated.
818  *
819  * Returns non-zero if the value is changed, zero if not changed.
820  */
821 int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask)
822 {
823         unsigned int k;
824         int changed = 0;
825
826         if (!count) {
827                 i->empty = 1;
828                 return -EINVAL;
829         }
830         for (k = 0; k < count; k++) {
831                 if (mask && !(mask & (1 << k)))
832                         continue;
833                 if (i->min == list[k] && !i->openmin)
834                         goto _l1;
835                 if (i->min < list[k]) {
836                         i->min = list[k];
837                         i->openmin = 0;
838                         changed = 1;
839                         goto _l1;
840                 }
841         }
842         i->empty = 1;
843         return -EINVAL;
844  _l1:
845         for (k = count; k-- > 0;) {
846                 if (mask && !(mask & (1 << k)))
847                         continue;
848                 if (i->max == list[k] && !i->openmax)
849                         goto _l2;
850                 if (i->max > list[k]) {
851                         i->max = list[k];
852                         i->openmax = 0;
853                         changed = 1;
854                         goto _l2;
855                 }
856         }
857         i->empty = 1;
858         return -EINVAL;
859  _l2:
860         if (snd_interval_checkempty(i)) {
861                 i->empty = 1;
862                 return -EINVAL;
863         }
864         return changed;
865 }
866
867 EXPORT_SYMBOL(snd_interval_list);
868
869 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
870 {
871         unsigned int n;
872         int changed = 0;
873         n = (i->min - min) % step;
874         if (n != 0 || i->openmin) {
875                 i->min += step - n;
876                 changed = 1;
877         }
878         n = (i->max - min) % step;
879         if (n != 0 || i->openmax) {
880                 i->max -= n;
881                 changed = 1;
882         }
883         if (snd_interval_checkempty(i)) {
884                 i->empty = 1;
885                 return -EINVAL;
886         }
887         return changed;
888 }
889
890 /* Info constraints helpers */
891
892 /**
893  * snd_pcm_hw_rule_add - add the hw-constraint rule
894  * @runtime: the pcm runtime instance
895  * @cond: condition bits
896  * @var: the variable to evaluate
897  * @func: the evaluation function
898  * @private: the private data pointer passed to function
899  * @dep: the dependent variables
900  *
901  * Returns zero if successful, or a negative error code on failure.
902  */
903 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
904                         int var,
905                         snd_pcm_hw_rule_func_t func, void *private,
906                         int dep, ...)
907 {
908         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
909         struct snd_pcm_hw_rule *c;
910         unsigned int k;
911         va_list args;
912         va_start(args, dep);
913         if (constrs->rules_num >= constrs->rules_all) {
914                 struct snd_pcm_hw_rule *new;
915                 unsigned int new_rules = constrs->rules_all + 16;
916                 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
917                 if (!new)
918                         return -ENOMEM;
919                 if (constrs->rules) {
920                         memcpy(new, constrs->rules,
921                                constrs->rules_num * sizeof(*c));
922                         kfree(constrs->rules);
923                 }
924                 constrs->rules = new;
925                 constrs->rules_all = new_rules;
926         }
927         c = &constrs->rules[constrs->rules_num];
928         c->cond = cond;
929         c->func = func;
930         c->var = var;
931         c->private = private;
932         k = 0;
933         while (1) {
934                 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps)))
935                         return -EINVAL;
936                 c->deps[k++] = dep;
937                 if (dep < 0)
938                         break;
939                 dep = va_arg(args, int);
940         }
941         constrs->rules_num++;
942         va_end(args);
943         return 0;
944 }                                   
945
946 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
947
948 /**
949  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
950  * @runtime: PCM runtime instance
951  * @var: hw_params variable to apply the mask
952  * @mask: the bitmap mask
953  *
954  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
955  */
956 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
957                                u_int32_t mask)
958 {
959         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
960         struct snd_mask *maskp = constrs_mask(constrs, var);
961         *maskp->bits &= mask;
962         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
963         if (*maskp->bits == 0)
964                 return -EINVAL;
965         return 0;
966 }
967
968 /**
969  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
970  * @runtime: PCM runtime instance
971  * @var: hw_params variable to apply the mask
972  * @mask: the 64bit bitmap mask
973  *
974  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
975  */
976 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
977                                  u_int64_t mask)
978 {
979         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
980         struct snd_mask *maskp = constrs_mask(constrs, var);
981         maskp->bits[0] &= (u_int32_t)mask;
982         maskp->bits[1] &= (u_int32_t)(mask >> 32);
983         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
984         if (! maskp->bits[0] && ! maskp->bits[1])
985                 return -EINVAL;
986         return 0;
987 }
988
989 /**
990  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
991  * @runtime: PCM runtime instance
992  * @var: hw_params variable to apply the integer constraint
993  *
994  * Apply the constraint of integer to an interval parameter.
995  */
996 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
997 {
998         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
999         return snd_interval_setinteger(constrs_interval(constrs, var));
1000 }
1001
1002 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1003
1004 /**
1005  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1006  * @runtime: PCM runtime instance
1007  * @var: hw_params variable to apply the range
1008  * @min: the minimal value
1009  * @max: the maximal value
1010  * 
1011  * Apply the min/max range constraint to an interval parameter.
1012  */
1013 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1014                                  unsigned int min, unsigned int max)
1015 {
1016         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1017         struct snd_interval t;
1018         t.min = min;
1019         t.max = max;
1020         t.openmin = t.openmax = 0;
1021         t.integer = 0;
1022         return snd_interval_refine(constrs_interval(constrs, var), &t);
1023 }
1024
1025 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1026
1027 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1028                                 struct snd_pcm_hw_rule *rule)
1029 {
1030         struct snd_pcm_hw_constraint_list *list = rule->private;
1031         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1032 }               
1033
1034
1035 /**
1036  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1037  * @runtime: PCM runtime instance
1038  * @cond: condition bits
1039  * @var: hw_params variable to apply the list constraint
1040  * @l: list
1041  * 
1042  * Apply the list of constraints to an interval parameter.
1043  */
1044 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1045                                unsigned int cond,
1046                                snd_pcm_hw_param_t var,
1047                                struct snd_pcm_hw_constraint_list *l)
1048 {
1049         return snd_pcm_hw_rule_add(runtime, cond, var,
1050                                    snd_pcm_hw_rule_list, l,
1051                                    var, -1);
1052 }
1053
1054 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1055
1056 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1057                                    struct snd_pcm_hw_rule *rule)
1058 {
1059         struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1060         unsigned int num = 0, den = 0;
1061         int err;
1062         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1063                                   r->nrats, r->rats, &num, &den);
1064         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1065                 params->rate_num = num;
1066                 params->rate_den = den;
1067         }
1068         return err;
1069 }
1070
1071 /**
1072  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1073  * @runtime: PCM runtime instance
1074  * @cond: condition bits
1075  * @var: hw_params variable to apply the ratnums constraint
1076  * @r: struct snd_ratnums constriants
1077  */
1078 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1079                                   unsigned int cond,
1080                                   snd_pcm_hw_param_t var,
1081                                   struct snd_pcm_hw_constraint_ratnums *r)
1082 {
1083         return snd_pcm_hw_rule_add(runtime, cond, var,
1084                                    snd_pcm_hw_rule_ratnums, r,
1085                                    var, -1);
1086 }
1087
1088 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1089
1090 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1091                                    struct snd_pcm_hw_rule *rule)
1092 {
1093         struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1094         unsigned int num = 0, den = 0;
1095         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1096                                   r->nrats, r->rats, &num, &den);
1097         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1098                 params->rate_num = num;
1099                 params->rate_den = den;
1100         }
1101         return err;
1102 }
1103
1104 /**
1105  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1106  * @runtime: PCM runtime instance
1107  * @cond: condition bits
1108  * @var: hw_params variable to apply the ratdens constraint
1109  * @r: struct snd_ratdens constriants
1110  */
1111 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1112                                   unsigned int cond,
1113                                   snd_pcm_hw_param_t var,
1114                                   struct snd_pcm_hw_constraint_ratdens *r)
1115 {
1116         return snd_pcm_hw_rule_add(runtime, cond, var,
1117                                    snd_pcm_hw_rule_ratdens, r,
1118                                    var, -1);
1119 }
1120
1121 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1122
1123 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1124                                   struct snd_pcm_hw_rule *rule)
1125 {
1126         unsigned int l = (unsigned long) rule->private;
1127         int width = l & 0xffff;
1128         unsigned int msbits = l >> 16;
1129         struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1130         if (snd_interval_single(i) && snd_interval_value(i) == width)
1131                 params->msbits = msbits;
1132         return 0;
1133 }
1134
1135 /**
1136  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1137  * @runtime: PCM runtime instance
1138  * @cond: condition bits
1139  * @width: sample bits width
1140  * @msbits: msbits width
1141  */
1142 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1143                                  unsigned int cond,
1144                                  unsigned int width,
1145                                  unsigned int msbits)
1146 {
1147         unsigned long l = (msbits << 16) | width;
1148         return snd_pcm_hw_rule_add(runtime, cond, -1,
1149                                     snd_pcm_hw_rule_msbits,
1150                                     (void*) l,
1151                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1152 }
1153
1154 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1155
1156 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1157                                 struct snd_pcm_hw_rule *rule)
1158 {
1159         unsigned long step = (unsigned long) rule->private;
1160         return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1161 }
1162
1163 /**
1164  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1165  * @runtime: PCM runtime instance
1166  * @cond: condition bits
1167  * @var: hw_params variable to apply the step constraint
1168  * @step: step size
1169  */
1170 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1171                                unsigned int cond,
1172                                snd_pcm_hw_param_t var,
1173                                unsigned long step)
1174 {
1175         return snd_pcm_hw_rule_add(runtime, cond, var, 
1176                                    snd_pcm_hw_rule_step, (void *) step,
1177                                    var, -1);
1178 }
1179
1180 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1181
1182 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1183 {
1184         static unsigned int pow2_sizes[] = {
1185                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1186                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1187                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1188                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1189         };
1190         return snd_interval_list(hw_param_interval(params, rule->var),
1191                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1192 }               
1193
1194 /**
1195  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1196  * @runtime: PCM runtime instance
1197  * @cond: condition bits
1198  * @var: hw_params variable to apply the power-of-2 constraint
1199  */
1200 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1201                                unsigned int cond,
1202                                snd_pcm_hw_param_t var)
1203 {
1204         return snd_pcm_hw_rule_add(runtime, cond, var, 
1205                                    snd_pcm_hw_rule_pow2, NULL,
1206                                    var, -1);
1207 }
1208
1209 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1210
1211 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1212                                   snd_pcm_hw_param_t var)
1213 {
1214         if (hw_is_mask(var)) {
1215                 snd_mask_any(hw_param_mask(params, var));
1216                 params->cmask |= 1 << var;
1217                 params->rmask |= 1 << var;
1218                 return;
1219         }
1220         if (hw_is_interval(var)) {
1221                 snd_interval_any(hw_param_interval(params, var));
1222                 params->cmask |= 1 << var;
1223                 params->rmask |= 1 << var;
1224                 return;
1225         }
1226         snd_BUG();
1227 }
1228
1229 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1230 {
1231         unsigned int k;
1232         memset(params, 0, sizeof(*params));
1233         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1234                 _snd_pcm_hw_param_any(params, k);
1235         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1236                 _snd_pcm_hw_param_any(params, k);
1237         params->info = ~0U;
1238 }
1239
1240 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1241
1242 /**
1243  * snd_pcm_hw_param_value - return @params field @var value
1244  * @params: the hw_params instance
1245  * @var: parameter to retrieve
1246  * @dir: pointer to the direction (-1,0,1) or %NULL
1247  *
1248  * Return the value for field @var if it's fixed in configuration space
1249  * defined by @params. Return -%EINVAL otherwise.
1250  */
1251 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1252                            snd_pcm_hw_param_t var, int *dir)
1253 {
1254         if (hw_is_mask(var)) {
1255                 const struct snd_mask *mask = hw_param_mask_c(params, var);
1256                 if (!snd_mask_single(mask))
1257                         return -EINVAL;
1258                 if (dir)
1259                         *dir = 0;
1260                 return snd_mask_value(mask);
1261         }
1262         if (hw_is_interval(var)) {
1263                 const struct snd_interval *i = hw_param_interval_c(params, var);
1264                 if (!snd_interval_single(i))
1265                         return -EINVAL;
1266                 if (dir)
1267                         *dir = i->openmin;
1268                 return snd_interval_value(i);
1269         }
1270         return -EINVAL;
1271 }
1272
1273 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1274
1275 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1276                                 snd_pcm_hw_param_t var)
1277 {
1278         if (hw_is_mask(var)) {
1279                 snd_mask_none(hw_param_mask(params, var));
1280                 params->cmask |= 1 << var;
1281                 params->rmask |= 1 << var;
1282         } else if (hw_is_interval(var)) {
1283                 snd_interval_none(hw_param_interval(params, var));
1284                 params->cmask |= 1 << var;
1285                 params->rmask |= 1 << var;
1286         } else {
1287                 snd_BUG();
1288         }
1289 }
1290
1291 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1292
1293 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1294                                    snd_pcm_hw_param_t var)
1295 {
1296         int changed;
1297         if (hw_is_mask(var))
1298                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1299         else if (hw_is_interval(var))
1300                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1301         else
1302                 return -EINVAL;
1303         if (changed) {
1304                 params->cmask |= 1 << var;
1305                 params->rmask |= 1 << var;
1306         }
1307         return changed;
1308 }
1309
1310
1311 /**
1312  * snd_pcm_hw_param_first - refine config space and return minimum value
1313  * @pcm: PCM instance
1314  * @params: the hw_params instance
1315  * @var: parameter to retrieve
1316  * @dir: pointer to the direction (-1,0,1) or %NULL
1317  *
1318  * Inside configuration space defined by @params remove from @var all
1319  * values > minimum. Reduce configuration space accordingly.
1320  * Return the minimum.
1321  */
1322 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1323                            struct snd_pcm_hw_params *params, 
1324                            snd_pcm_hw_param_t var, int *dir)
1325 {
1326         int changed = _snd_pcm_hw_param_first(params, var);
1327         if (changed < 0)
1328                 return changed;
1329         if (params->rmask) {
1330                 int err = snd_pcm_hw_refine(pcm, params);
1331                 if (snd_BUG_ON(err < 0))
1332                         return err;
1333         }
1334         return snd_pcm_hw_param_value(params, var, dir);
1335 }
1336
1337 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1338
1339 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1340                                   snd_pcm_hw_param_t var)
1341 {
1342         int changed;
1343         if (hw_is_mask(var))
1344                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1345         else if (hw_is_interval(var))
1346                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1347         else
1348                 return -EINVAL;
1349         if (changed) {
1350                 params->cmask |= 1 << var;
1351                 params->rmask |= 1 << var;
1352         }
1353         return changed;
1354 }
1355
1356
1357 /**
1358  * snd_pcm_hw_param_last - refine config space and return maximum value
1359  * @pcm: PCM instance
1360  * @params: the hw_params instance
1361  * @var: parameter to retrieve
1362  * @dir: pointer to the direction (-1,0,1) or %NULL
1363  *
1364  * Inside configuration space defined by @params remove from @var all
1365  * values < maximum. Reduce configuration space accordingly.
1366  * Return the maximum.
1367  */
1368 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1369                           struct snd_pcm_hw_params *params,
1370                           snd_pcm_hw_param_t var, int *dir)
1371 {
1372         int changed = _snd_pcm_hw_param_last(params, var);
1373         if (changed < 0)
1374                 return changed;
1375         if (params->rmask) {
1376                 int err = snd_pcm_hw_refine(pcm, params);
1377                 if (snd_BUG_ON(err < 0))
1378                         return err;
1379         }
1380         return snd_pcm_hw_param_value(params, var, dir);
1381 }
1382
1383 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1384
1385 /**
1386  * snd_pcm_hw_param_choose - choose a configuration defined by @params
1387  * @pcm: PCM instance
1388  * @params: the hw_params instance
1389  *
1390  * Choose one configuration from configuration space defined by @params.
1391  * The configuration chosen is that obtained fixing in this order:
1392  * first access, first format, first subformat, min channels,
1393  * min rate, min period time, max buffer size, min tick time
1394  */
1395 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1396                              struct snd_pcm_hw_params *params)
1397 {
1398         static int vars[] = {
1399                 SNDRV_PCM_HW_PARAM_ACCESS,
1400                 SNDRV_PCM_HW_PARAM_FORMAT,
1401                 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1402                 SNDRV_PCM_HW_PARAM_CHANNELS,
1403                 SNDRV_PCM_HW_PARAM_RATE,
1404                 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1405                 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1406                 SNDRV_PCM_HW_PARAM_TICK_TIME,
1407                 -1
1408         };
1409         int err, *v;
1410
1411         for (v = vars; *v != -1; v++) {
1412                 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1413                         err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1414                 else
1415                         err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1416                 if (snd_BUG_ON(err < 0))
1417                         return err;
1418         }
1419         return 0;
1420 }
1421
1422 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1423                                    void *arg)
1424 {
1425         struct snd_pcm_runtime *runtime = substream->runtime;
1426         unsigned long flags;
1427         snd_pcm_stream_lock_irqsave(substream, flags);
1428         if (snd_pcm_running(substream) &&
1429             snd_pcm_update_hw_ptr(substream) >= 0)
1430                 runtime->status->hw_ptr %= runtime->buffer_size;
1431         else
1432                 runtime->status->hw_ptr = 0;
1433         snd_pcm_stream_unlock_irqrestore(substream, flags);
1434         return 0;
1435 }
1436
1437 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1438                                           void *arg)
1439 {
1440         struct snd_pcm_channel_info *info = arg;
1441         struct snd_pcm_runtime *runtime = substream->runtime;
1442         int width;
1443         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1444                 info->offset = -1;
1445                 return 0;
1446         }
1447         width = snd_pcm_format_physical_width(runtime->format);
1448         if (width < 0)
1449                 return width;
1450         info->offset = 0;
1451         switch (runtime->access) {
1452         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1453         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1454                 info->first = info->channel * width;
1455                 info->step = runtime->channels * width;
1456                 break;
1457         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1458         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1459         {
1460                 size_t size = runtime->dma_bytes / runtime->channels;
1461                 info->first = info->channel * size * 8;
1462                 info->step = width;
1463                 break;
1464         }
1465         default:
1466                 snd_BUG();
1467                 break;
1468         }
1469         return 0;
1470 }
1471
1472 /**
1473  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1474  * @substream: the pcm substream instance
1475  * @cmd: ioctl command
1476  * @arg: ioctl argument
1477  *
1478  * Processes the generic ioctl commands for PCM.
1479  * Can be passed as the ioctl callback for PCM ops.
1480  *
1481  * Returns zero if successful, or a negative error code on failure.
1482  */
1483 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1484                       unsigned int cmd, void *arg)
1485 {
1486         switch (cmd) {
1487         case SNDRV_PCM_IOCTL1_INFO:
1488                 return 0;
1489         case SNDRV_PCM_IOCTL1_RESET:
1490                 return snd_pcm_lib_ioctl_reset(substream, arg);
1491         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1492                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1493         }
1494         return -ENXIO;
1495 }
1496
1497 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1498
1499 /**
1500  * snd_pcm_period_elapsed - update the pcm status for the next period
1501  * @substream: the pcm substream instance
1502  *
1503  * This function is called from the interrupt handler when the
1504  * PCM has processed the period size.  It will update the current
1505  * pointer, wake up sleepers, etc.
1506  *
1507  * Even if more than one periods have elapsed since the last call, you
1508  * have to call this only once.
1509  */
1510 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1511 {
1512         struct snd_pcm_runtime *runtime;
1513         unsigned long flags;
1514
1515         if (PCM_RUNTIME_CHECK(substream))
1516                 return;
1517         runtime = substream->runtime;
1518
1519         if (runtime->transfer_ack_begin)
1520                 runtime->transfer_ack_begin(substream);
1521
1522         snd_pcm_stream_lock_irqsave(substream, flags);
1523         if (!snd_pcm_running(substream) ||
1524             snd_pcm_update_hw_ptr_interrupt(substream) < 0)
1525                 goto _end;
1526
1527         if (substream->timer_running)
1528                 snd_timer_interrupt(substream->timer, 1);
1529  _end:
1530         snd_pcm_stream_unlock_irqrestore(substream, flags);
1531         if (runtime->transfer_ack_end)
1532                 runtime->transfer_ack_end(substream);
1533         kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1534 }
1535
1536 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1537
1538 /*
1539  * Wait until avail_min data becomes available
1540  * Returns a negative error code if any error occurs during operation.
1541  * The available space is stored on availp.  When err = 0 and avail = 0
1542  * on the capture stream, it indicates the stream is in DRAINING state.
1543  */
1544 static int wait_for_avail_min(struct snd_pcm_substream *substream,
1545                               snd_pcm_uframes_t *availp)
1546 {
1547         struct snd_pcm_runtime *runtime = substream->runtime;
1548         int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1549         wait_queue_t wait;
1550         int err = 0;
1551         snd_pcm_uframes_t avail = 0;
1552         long tout;
1553
1554         init_waitqueue_entry(&wait, current);
1555         add_wait_queue(&runtime->sleep, &wait);
1556         for (;;) {
1557                 if (signal_pending(current)) {
1558                         err = -ERESTARTSYS;
1559                         break;
1560                 }
1561                 set_current_state(TASK_INTERRUPTIBLE);
1562                 snd_pcm_stream_unlock_irq(substream);
1563                 tout = schedule_timeout(msecs_to_jiffies(10000));
1564                 snd_pcm_stream_lock_irq(substream);
1565                 switch (runtime->status->state) {
1566                 case SNDRV_PCM_STATE_SUSPENDED:
1567                         err = -ESTRPIPE;
1568                         goto _endloop;
1569                 case SNDRV_PCM_STATE_XRUN:
1570                         err = -EPIPE;
1571                         goto _endloop;
1572                 case SNDRV_PCM_STATE_DRAINING:
1573                         if (is_playback)
1574                                 err = -EPIPE;
1575                         else 
1576                                 avail = 0; /* indicate draining */
1577                         goto _endloop;
1578                 case SNDRV_PCM_STATE_OPEN:
1579                 case SNDRV_PCM_STATE_SETUP:
1580                 case SNDRV_PCM_STATE_DISCONNECTED:
1581                         err = -EBADFD;
1582                         goto _endloop;
1583                 }
1584                 if (!tout) {
1585                         snd_printd("%s write error (DMA or IRQ trouble?)\n",
1586                                    is_playback ? "playback" : "capture");
1587                         err = -EIO;
1588                         break;
1589                 }
1590                 if (is_playback)
1591                         avail = snd_pcm_playback_avail(runtime);
1592                 else
1593                         avail = snd_pcm_capture_avail(runtime);
1594                 if (avail >= runtime->control->avail_min)
1595                         break;
1596         }
1597  _endloop:
1598         remove_wait_queue(&runtime->sleep, &wait);
1599         *availp = avail;
1600         return err;
1601 }
1602         
1603 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1604                                       unsigned int hwoff,
1605                                       unsigned long data, unsigned int off,
1606                                       snd_pcm_uframes_t frames)
1607 {
1608         struct snd_pcm_runtime *runtime = substream->runtime;
1609         int err;
1610         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1611         if (substream->ops->copy) {
1612                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1613                         return err;
1614         } else {
1615                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1616                 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1617                         return -EFAULT;
1618         }
1619         return 0;
1620 }
1621  
1622 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1623                           unsigned long data, unsigned int off,
1624                           snd_pcm_uframes_t size);
1625
1626 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
1627                                             unsigned long data,
1628                                             snd_pcm_uframes_t size,
1629                                             int nonblock,
1630                                             transfer_f transfer)
1631 {
1632         struct snd_pcm_runtime *runtime = substream->runtime;
1633         snd_pcm_uframes_t xfer = 0;
1634         snd_pcm_uframes_t offset = 0;
1635         int err = 0;
1636
1637         if (size == 0)
1638                 return 0;
1639
1640         snd_pcm_stream_lock_irq(substream);
1641         switch (runtime->status->state) {
1642         case SNDRV_PCM_STATE_PREPARED:
1643         case SNDRV_PCM_STATE_RUNNING:
1644         case SNDRV_PCM_STATE_PAUSED:
1645                 break;
1646         case SNDRV_PCM_STATE_XRUN:
1647                 err = -EPIPE;
1648                 goto _end_unlock;
1649         case SNDRV_PCM_STATE_SUSPENDED:
1650                 err = -ESTRPIPE;
1651                 goto _end_unlock;
1652         default:
1653                 err = -EBADFD;
1654                 goto _end_unlock;
1655         }
1656
1657         while (size > 0) {
1658                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1659                 snd_pcm_uframes_t avail;
1660                 snd_pcm_uframes_t cont;
1661                 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1662                         snd_pcm_update_hw_ptr(substream);
1663                 avail = snd_pcm_playback_avail(runtime);
1664                 if (!avail) {
1665                         if (nonblock) {
1666                                 err = -EAGAIN;
1667                                 goto _end_unlock;
1668                         }
1669                         err = wait_for_avail_min(substream, &avail);
1670                         if (err < 0)
1671                                 goto _end_unlock;
1672                 }
1673                 frames = size > avail ? avail : size;
1674                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1675                 if (frames > cont)
1676                         frames = cont;
1677                 if (snd_BUG_ON(!frames)) {
1678                         snd_pcm_stream_unlock_irq(substream);
1679                         return -EINVAL;
1680                 }
1681                 appl_ptr = runtime->control->appl_ptr;
1682                 appl_ofs = appl_ptr % runtime->buffer_size;
1683                 snd_pcm_stream_unlock_irq(substream);
1684                 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
1685                         goto _end;
1686                 snd_pcm_stream_lock_irq(substream);
1687                 switch (runtime->status->state) {
1688                 case SNDRV_PCM_STATE_XRUN:
1689                         err = -EPIPE;
1690                         goto _end_unlock;
1691                 case SNDRV_PCM_STATE_SUSPENDED:
1692                         err = -ESTRPIPE;
1693                         goto _end_unlock;
1694                 default:
1695                         break;
1696                 }
1697                 appl_ptr += frames;
1698                 if (appl_ptr >= runtime->boundary)
1699                         appl_ptr -= runtime->boundary;
1700                 runtime->control->appl_ptr = appl_ptr;
1701                 if (substream->ops->ack)
1702                         substream->ops->ack(substream);
1703
1704                 offset += frames;
1705                 size -= frames;
1706                 xfer += frames;
1707                 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1708                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1709                         err = snd_pcm_start(substream);
1710                         if (err < 0)
1711                                 goto _end_unlock;
1712                 }
1713         }
1714  _end_unlock:
1715         snd_pcm_stream_unlock_irq(substream);
1716  _end:
1717         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1718 }
1719
1720 /* sanity-check for read/write methods */
1721 static int pcm_sanity_check(struct snd_pcm_substream *substream)
1722 {
1723         struct snd_pcm_runtime *runtime;
1724         if (PCM_RUNTIME_CHECK(substream))
1725                 return -ENXIO;
1726         runtime = substream->runtime;
1727         if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
1728                 return -EINVAL;
1729         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1730                 return -EBADFD;
1731         return 0;
1732 }
1733
1734 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
1735 {
1736         struct snd_pcm_runtime *runtime;
1737         int nonblock;
1738         int err;
1739
1740         err = pcm_sanity_check(substream);
1741         if (err < 0)
1742                 return err;
1743         runtime = substream->runtime;
1744         nonblock = !!(substream->f_flags & O_NONBLOCK);
1745
1746         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
1747             runtime->channels > 1)
1748                 return -EINVAL;
1749         return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
1750                                   snd_pcm_lib_write_transfer);
1751 }
1752
1753 EXPORT_SYMBOL(snd_pcm_lib_write);
1754
1755 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
1756                                        unsigned int hwoff,
1757                                        unsigned long data, unsigned int off,
1758                                        snd_pcm_uframes_t frames)
1759 {
1760         struct snd_pcm_runtime *runtime = substream->runtime;
1761         int err;
1762         void __user **bufs = (void __user **)data;
1763         int channels = runtime->channels;
1764         int c;
1765         if (substream->ops->copy) {
1766                 if (snd_BUG_ON(!substream->ops->silence))
1767                         return -EINVAL;
1768                 for (c = 0; c < channels; ++c, ++bufs) {
1769                         if (*bufs == NULL) {
1770                                 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
1771                                         return err;
1772                         } else {
1773                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
1774                                 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
1775                                         return err;
1776                         }
1777                 }
1778         } else {
1779                 /* default transfer behaviour */
1780                 size_t dma_csize = runtime->dma_bytes / channels;
1781                 for (c = 0; c < channels; ++c, ++bufs) {
1782                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
1783                         if (*bufs == NULL) {
1784                                 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
1785                         } else {
1786                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
1787                                 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
1788                                         return -EFAULT;
1789                         }
1790                 }
1791         }
1792         return 0;
1793 }
1794  
1795 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
1796                                      void __user **bufs,
1797                                      snd_pcm_uframes_t frames)
1798 {
1799         struct snd_pcm_runtime *runtime;
1800         int nonblock;
1801         int err;
1802
1803         err = pcm_sanity_check(substream);
1804         if (err < 0)
1805                 return err;
1806         runtime = substream->runtime;
1807         nonblock = !!(substream->f_flags & O_NONBLOCK);
1808
1809         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
1810                 return -EINVAL;
1811         return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
1812                                   nonblock, snd_pcm_lib_writev_transfer);
1813 }
1814
1815 EXPORT_SYMBOL(snd_pcm_lib_writev);
1816
1817 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
1818                                      unsigned int hwoff,
1819                                      unsigned long data, unsigned int off,
1820                                      snd_pcm_uframes_t frames)
1821 {
1822         struct snd_pcm_runtime *runtime = substream->runtime;
1823         int err;
1824         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1825         if (substream->ops->copy) {
1826                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1827                         return err;
1828         } else {
1829                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1830                 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
1831                         return -EFAULT;
1832         }
1833         return 0;
1834 }
1835
1836 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
1837                                            unsigned long data,
1838                                            snd_pcm_uframes_t size,
1839                                            int nonblock,
1840                                            transfer_f transfer)
1841 {
1842         struct snd_pcm_runtime *runtime = substream->runtime;
1843         snd_pcm_uframes_t xfer = 0;
1844         snd_pcm_uframes_t offset = 0;
1845         int err = 0;
1846
1847         if (size == 0)
1848                 return 0;
1849
1850         snd_pcm_stream_lock_irq(substream);
1851         switch (runtime->status->state) {
1852         case SNDRV_PCM_STATE_PREPARED:
1853                 if (size >= runtime->start_threshold) {
1854                         err = snd_pcm_start(substream);
1855                         if (err < 0)
1856                                 goto _end_unlock;
1857                 }
1858                 break;
1859         case SNDRV_PCM_STATE_DRAINING:
1860         case SNDRV_PCM_STATE_RUNNING:
1861         case SNDRV_PCM_STATE_PAUSED:
1862                 break;
1863         case SNDRV_PCM_STATE_XRUN:
1864                 err = -EPIPE;
1865                 goto _end_unlock;
1866         case SNDRV_PCM_STATE_SUSPENDED:
1867                 err = -ESTRPIPE;
1868                 goto _end_unlock;
1869         default:
1870                 err = -EBADFD;
1871                 goto _end_unlock;
1872         }
1873
1874         while (size > 0) {
1875                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1876                 snd_pcm_uframes_t avail;
1877                 snd_pcm_uframes_t cont;
1878                 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1879                         snd_pcm_update_hw_ptr(substream);
1880                 avail = snd_pcm_capture_avail(runtime);
1881                 if (!avail) {
1882                         if (runtime->status->state ==
1883                             SNDRV_PCM_STATE_DRAINING) {
1884                                 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
1885                                 goto _end_unlock;
1886                         }
1887                         if (nonblock) {
1888                                 err = -EAGAIN;
1889                                 goto _end_unlock;
1890                         }
1891                         err = wait_for_avail_min(substream, &avail);
1892                         if (err < 0)
1893                                 goto _end_unlock;
1894                         if (!avail)
1895                                 continue; /* draining */
1896                 }
1897                 frames = size > avail ? avail : size;
1898                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1899                 if (frames > cont)
1900                         frames = cont;
1901                 if (snd_BUG_ON(!frames)) {
1902                         snd_pcm_stream_unlock_irq(substream);
1903                         return -EINVAL;
1904                 }
1905                 appl_ptr = runtime->control->appl_ptr;
1906                 appl_ofs = appl_ptr % runtime->buffer_size;
1907                 snd_pcm_stream_unlock_irq(substream);
1908                 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
1909                         goto _end;
1910                 snd_pcm_stream_lock_irq(substream);
1911                 switch (runtime->status->state) {
1912                 case SNDRV_PCM_STATE_XRUN:
1913                         err = -EPIPE;
1914                         goto _end_unlock;
1915                 case SNDRV_PCM_STATE_SUSPENDED:
1916                         err = -ESTRPIPE;
1917                         goto _end_unlock;
1918                 default:
1919                         break;
1920                 }
1921                 appl_ptr += frames;
1922                 if (appl_ptr >= runtime->boundary)
1923                         appl_ptr -= runtime->boundary;
1924                 runtime->control->appl_ptr = appl_ptr;
1925                 if (substream->ops->ack)
1926                         substream->ops->ack(substream);
1927
1928                 offset += frames;
1929                 size -= frames;
1930                 xfer += frames;
1931         }
1932  _end_unlock:
1933         snd_pcm_stream_unlock_irq(substream);
1934  _end:
1935         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1936 }
1937
1938 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
1939 {
1940         struct snd_pcm_runtime *runtime;
1941         int nonblock;
1942         int err;
1943         
1944         err = pcm_sanity_check(substream);
1945         if (err < 0)
1946                 return err;
1947         runtime = substream->runtime;
1948         nonblock = !!(substream->f_flags & O_NONBLOCK);
1949         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
1950                 return -EINVAL;
1951         return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
1952 }
1953
1954 EXPORT_SYMBOL(snd_pcm_lib_read);
1955
1956 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
1957                                       unsigned int hwoff,
1958                                       unsigned long data, unsigned int off,
1959                                       snd_pcm_uframes_t frames)
1960 {
1961         struct snd_pcm_runtime *runtime = substream->runtime;
1962         int err;
1963         void __user **bufs = (void __user **)data;
1964         int channels = runtime->channels;
1965         int c;
1966         if (substream->ops->copy) {
1967                 for (c = 0; c < channels; ++c, ++bufs) {
1968                         char __user *buf;
1969                         if (*bufs == NULL)
1970                                 continue;
1971                         buf = *bufs + samples_to_bytes(runtime, off);
1972                         if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
1973                                 return err;
1974                 }
1975         } else {
1976                 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
1977                 for (c = 0; c < channels; ++c, ++bufs) {
1978                         char *hwbuf;
1979                         char __user *buf;
1980                         if (*bufs == NULL)
1981                                 continue;
1982
1983                         hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
1984                         buf = *bufs + samples_to_bytes(runtime, off);
1985                         if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
1986                                 return -EFAULT;
1987                 }
1988         }
1989         return 0;
1990 }
1991  
1992 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
1993                                     void __user **bufs,
1994                                     snd_pcm_uframes_t frames)
1995 {
1996         struct snd_pcm_runtime *runtime;
1997         int nonblock;
1998         int err;
1999
2000         err = pcm_sanity_check(substream);
2001         if (err < 0)
2002                 return err;
2003         runtime = substream->runtime;
2004         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2005                 return -EBADFD;
2006
2007         nonblock = !!(substream->f_flags & O_NONBLOCK);
2008         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2009                 return -EINVAL;
2010         return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2011 }
2012
2013 EXPORT_SYMBOL(snd_pcm_lib_readv);