Merge master.kernel.org:/pub/scm/linux/kernel/git/davej/cpufreq
[sfrench/cifs-2.6.git] / security / selinux / ss / services.c
1 /*
2  * Implementation of the security services.
3  *
4  * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5  *           James Morris <jmorris@redhat.com>
6  *
7  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8  *
9  *      Support for enhanced MLS infrastructure.
10  *      Support for context based audit filters.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *      Added conditional policy language extensions
15  *
16  * Updated: Hewlett-Packard <paul.moore@hp.com>
17  *
18  *      Added support for NetLabel
19  *
20  * Updated: Chad Sellers <csellers@tresys.com>
21  *
22  *  Added validation of kernel classes and permissions
23  *
24  * Copyright (C) 2006 Hewlett-Packard Development Company, L.P.
25  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
26  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
27  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
28  *      This program is free software; you can redistribute it and/or modify
29  *      it under the terms of the GNU General Public License as published by
30  *      the Free Software Foundation, version 2.
31  */
32 #include <linux/kernel.h>
33 #include <linux/slab.h>
34 #include <linux/string.h>
35 #include <linux/spinlock.h>
36 #include <linux/rcupdate.h>
37 #include <linux/errno.h>
38 #include <linux/in.h>
39 #include <linux/sched.h>
40 #include <linux/audit.h>
41 #include <linux/mutex.h>
42 #include <net/sock.h>
43 #include <net/netlabel.h>
44
45 #include "flask.h"
46 #include "avc.h"
47 #include "avc_ss.h"
48 #include "security.h"
49 #include "context.h"
50 #include "policydb.h"
51 #include "sidtab.h"
52 #include "services.h"
53 #include "conditional.h"
54 #include "mls.h"
55 #include "objsec.h"
56 #include "selinux_netlabel.h"
57 #include "xfrm.h"
58 #include "ebitmap.h"
59
60 extern void selnl_notify_policyload(u32 seqno);
61 unsigned int policydb_loaded_version;
62
63 /*
64  * This is declared in avc.c
65  */
66 extern const struct selinux_class_perm selinux_class_perm;
67
68 static DEFINE_RWLOCK(policy_rwlock);
69 #define POLICY_RDLOCK read_lock(&policy_rwlock)
70 #define POLICY_WRLOCK write_lock_irq(&policy_rwlock)
71 #define POLICY_RDUNLOCK read_unlock(&policy_rwlock)
72 #define POLICY_WRUNLOCK write_unlock_irq(&policy_rwlock)
73
74 static DEFINE_MUTEX(load_mutex);
75 #define LOAD_LOCK mutex_lock(&load_mutex)
76 #define LOAD_UNLOCK mutex_unlock(&load_mutex)
77
78 static struct sidtab sidtab;
79 struct policydb policydb;
80 int ss_initialized = 0;
81
82 /*
83  * The largest sequence number that has been used when
84  * providing an access decision to the access vector cache.
85  * The sequence number only changes when a policy change
86  * occurs.
87  */
88 static u32 latest_granting = 0;
89
90 /* Forward declaration. */
91 static int context_struct_to_string(struct context *context, char **scontext,
92                                     u32 *scontext_len);
93
94 /*
95  * Return the boolean value of a constraint expression
96  * when it is applied to the specified source and target
97  * security contexts.
98  *
99  * xcontext is a special beast...  It is used by the validatetrans rules
100  * only.  For these rules, scontext is the context before the transition,
101  * tcontext is the context after the transition, and xcontext is the context
102  * of the process performing the transition.  All other callers of
103  * constraint_expr_eval should pass in NULL for xcontext.
104  */
105 static int constraint_expr_eval(struct context *scontext,
106                                 struct context *tcontext,
107                                 struct context *xcontext,
108                                 struct constraint_expr *cexpr)
109 {
110         u32 val1, val2;
111         struct context *c;
112         struct role_datum *r1, *r2;
113         struct mls_level *l1, *l2;
114         struct constraint_expr *e;
115         int s[CEXPR_MAXDEPTH];
116         int sp = -1;
117
118         for (e = cexpr; e; e = e->next) {
119                 switch (e->expr_type) {
120                 case CEXPR_NOT:
121                         BUG_ON(sp < 0);
122                         s[sp] = !s[sp];
123                         break;
124                 case CEXPR_AND:
125                         BUG_ON(sp < 1);
126                         sp--;
127                         s[sp] &= s[sp+1];
128                         break;
129                 case CEXPR_OR:
130                         BUG_ON(sp < 1);
131                         sp--;
132                         s[sp] |= s[sp+1];
133                         break;
134                 case CEXPR_ATTR:
135                         if (sp == (CEXPR_MAXDEPTH-1))
136                                 return 0;
137                         switch (e->attr) {
138                         case CEXPR_USER:
139                                 val1 = scontext->user;
140                                 val2 = tcontext->user;
141                                 break;
142                         case CEXPR_TYPE:
143                                 val1 = scontext->type;
144                                 val2 = tcontext->type;
145                                 break;
146                         case CEXPR_ROLE:
147                                 val1 = scontext->role;
148                                 val2 = tcontext->role;
149                                 r1 = policydb.role_val_to_struct[val1 - 1];
150                                 r2 = policydb.role_val_to_struct[val2 - 1];
151                                 switch (e->op) {
152                                 case CEXPR_DOM:
153                                         s[++sp] = ebitmap_get_bit(&r1->dominates,
154                                                                   val2 - 1);
155                                         continue;
156                                 case CEXPR_DOMBY:
157                                         s[++sp] = ebitmap_get_bit(&r2->dominates,
158                                                                   val1 - 1);
159                                         continue;
160                                 case CEXPR_INCOMP:
161                                         s[++sp] = ( !ebitmap_get_bit(&r1->dominates,
162                                                                      val2 - 1) &&
163                                                     !ebitmap_get_bit(&r2->dominates,
164                                                                      val1 - 1) );
165                                         continue;
166                                 default:
167                                         break;
168                                 }
169                                 break;
170                         case CEXPR_L1L2:
171                                 l1 = &(scontext->range.level[0]);
172                                 l2 = &(tcontext->range.level[0]);
173                                 goto mls_ops;
174                         case CEXPR_L1H2:
175                                 l1 = &(scontext->range.level[0]);
176                                 l2 = &(tcontext->range.level[1]);
177                                 goto mls_ops;
178                         case CEXPR_H1L2:
179                                 l1 = &(scontext->range.level[1]);
180                                 l2 = &(tcontext->range.level[0]);
181                                 goto mls_ops;
182                         case CEXPR_H1H2:
183                                 l1 = &(scontext->range.level[1]);
184                                 l2 = &(tcontext->range.level[1]);
185                                 goto mls_ops;
186                         case CEXPR_L1H1:
187                                 l1 = &(scontext->range.level[0]);
188                                 l2 = &(scontext->range.level[1]);
189                                 goto mls_ops;
190                         case CEXPR_L2H2:
191                                 l1 = &(tcontext->range.level[0]);
192                                 l2 = &(tcontext->range.level[1]);
193                                 goto mls_ops;
194 mls_ops:
195                         switch (e->op) {
196                         case CEXPR_EQ:
197                                 s[++sp] = mls_level_eq(l1, l2);
198                                 continue;
199                         case CEXPR_NEQ:
200                                 s[++sp] = !mls_level_eq(l1, l2);
201                                 continue;
202                         case CEXPR_DOM:
203                                 s[++sp] = mls_level_dom(l1, l2);
204                                 continue;
205                         case CEXPR_DOMBY:
206                                 s[++sp] = mls_level_dom(l2, l1);
207                                 continue;
208                         case CEXPR_INCOMP:
209                                 s[++sp] = mls_level_incomp(l2, l1);
210                                 continue;
211                         default:
212                                 BUG();
213                                 return 0;
214                         }
215                         break;
216                         default:
217                                 BUG();
218                                 return 0;
219                         }
220
221                         switch (e->op) {
222                         case CEXPR_EQ:
223                                 s[++sp] = (val1 == val2);
224                                 break;
225                         case CEXPR_NEQ:
226                                 s[++sp] = (val1 != val2);
227                                 break;
228                         default:
229                                 BUG();
230                                 return 0;
231                         }
232                         break;
233                 case CEXPR_NAMES:
234                         if (sp == (CEXPR_MAXDEPTH-1))
235                                 return 0;
236                         c = scontext;
237                         if (e->attr & CEXPR_TARGET)
238                                 c = tcontext;
239                         else if (e->attr & CEXPR_XTARGET) {
240                                 c = xcontext;
241                                 if (!c) {
242                                         BUG();
243                                         return 0;
244                                 }
245                         }
246                         if (e->attr & CEXPR_USER)
247                                 val1 = c->user;
248                         else if (e->attr & CEXPR_ROLE)
249                                 val1 = c->role;
250                         else if (e->attr & CEXPR_TYPE)
251                                 val1 = c->type;
252                         else {
253                                 BUG();
254                                 return 0;
255                         }
256
257                         switch (e->op) {
258                         case CEXPR_EQ:
259                                 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
260                                 break;
261                         case CEXPR_NEQ:
262                                 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
263                                 break;
264                         default:
265                                 BUG();
266                                 return 0;
267                         }
268                         break;
269                 default:
270                         BUG();
271                         return 0;
272                 }
273         }
274
275         BUG_ON(sp != 0);
276         return s[0];
277 }
278
279 /*
280  * Compute access vectors based on a context structure pair for
281  * the permissions in a particular class.
282  */
283 static int context_struct_compute_av(struct context *scontext,
284                                      struct context *tcontext,
285                                      u16 tclass,
286                                      u32 requested,
287                                      struct av_decision *avd)
288 {
289         struct constraint_node *constraint;
290         struct role_allow *ra;
291         struct avtab_key avkey;
292         struct avtab_node *node;
293         struct class_datum *tclass_datum;
294         struct ebitmap *sattr, *tattr;
295         struct ebitmap_node *snode, *tnode;
296         unsigned int i, j;
297
298         /*
299          * Remap extended Netlink classes for old policy versions.
300          * Do this here rather than socket_type_to_security_class()
301          * in case a newer policy version is loaded, allowing sockets
302          * to remain in the correct class.
303          */
304         if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
305                 if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
306                     tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
307                         tclass = SECCLASS_NETLINK_SOCKET;
308
309         if (!tclass || tclass > policydb.p_classes.nprim) {
310                 printk(KERN_ERR "security_compute_av:  unrecognized class %d\n",
311                        tclass);
312                 return -EINVAL;
313         }
314         tclass_datum = policydb.class_val_to_struct[tclass - 1];
315
316         /*
317          * Initialize the access vectors to the default values.
318          */
319         avd->allowed = 0;
320         avd->decided = 0xffffffff;
321         avd->auditallow = 0;
322         avd->auditdeny = 0xffffffff;
323         avd->seqno = latest_granting;
324
325         /*
326          * If a specific type enforcement rule was defined for
327          * this permission check, then use it.
328          */
329         avkey.target_class = tclass;
330         avkey.specified = AVTAB_AV;
331         sattr = &policydb.type_attr_map[scontext->type - 1];
332         tattr = &policydb.type_attr_map[tcontext->type - 1];
333         ebitmap_for_each_bit(sattr, snode, i) {
334                 if (!ebitmap_node_get_bit(snode, i))
335                         continue;
336                 ebitmap_for_each_bit(tattr, tnode, j) {
337                         if (!ebitmap_node_get_bit(tnode, j))
338                                 continue;
339                         avkey.source_type = i + 1;
340                         avkey.target_type = j + 1;
341                         for (node = avtab_search_node(&policydb.te_avtab, &avkey);
342                              node != NULL;
343                              node = avtab_search_node_next(node, avkey.specified)) {
344                                 if (node->key.specified == AVTAB_ALLOWED)
345                                         avd->allowed |= node->datum.data;
346                                 else if (node->key.specified == AVTAB_AUDITALLOW)
347                                         avd->auditallow |= node->datum.data;
348                                 else if (node->key.specified == AVTAB_AUDITDENY)
349                                         avd->auditdeny &= node->datum.data;
350                         }
351
352                         /* Check conditional av table for additional permissions */
353                         cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
354
355                 }
356         }
357
358         /*
359          * Remove any permissions prohibited by a constraint (this includes
360          * the MLS policy).
361          */
362         constraint = tclass_datum->constraints;
363         while (constraint) {
364                 if ((constraint->permissions & (avd->allowed)) &&
365                     !constraint_expr_eval(scontext, tcontext, NULL,
366                                           constraint->expr)) {
367                         avd->allowed = (avd->allowed) & ~(constraint->permissions);
368                 }
369                 constraint = constraint->next;
370         }
371
372         /*
373          * If checking process transition permission and the
374          * role is changing, then check the (current_role, new_role)
375          * pair.
376          */
377         if (tclass == SECCLASS_PROCESS &&
378             (avd->allowed & (PROCESS__TRANSITION | PROCESS__DYNTRANSITION)) &&
379             scontext->role != tcontext->role) {
380                 for (ra = policydb.role_allow; ra; ra = ra->next) {
381                         if (scontext->role == ra->role &&
382                             tcontext->role == ra->new_role)
383                                 break;
384                 }
385                 if (!ra)
386                         avd->allowed = (avd->allowed) & ~(PROCESS__TRANSITION |
387                                                         PROCESS__DYNTRANSITION);
388         }
389
390         return 0;
391 }
392
393 static int security_validtrans_handle_fail(struct context *ocontext,
394                                            struct context *ncontext,
395                                            struct context *tcontext,
396                                            u16 tclass)
397 {
398         char *o = NULL, *n = NULL, *t = NULL;
399         u32 olen, nlen, tlen;
400
401         if (context_struct_to_string(ocontext, &o, &olen) < 0)
402                 goto out;
403         if (context_struct_to_string(ncontext, &n, &nlen) < 0)
404                 goto out;
405         if (context_struct_to_string(tcontext, &t, &tlen) < 0)
406                 goto out;
407         audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
408                   "security_validate_transition:  denied for"
409                   " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
410                   o, n, t, policydb.p_class_val_to_name[tclass-1]);
411 out:
412         kfree(o);
413         kfree(n);
414         kfree(t);
415
416         if (!selinux_enforcing)
417                 return 0;
418         return -EPERM;
419 }
420
421 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
422                                  u16 tclass)
423 {
424         struct context *ocontext;
425         struct context *ncontext;
426         struct context *tcontext;
427         struct class_datum *tclass_datum;
428         struct constraint_node *constraint;
429         int rc = 0;
430
431         if (!ss_initialized)
432                 return 0;
433
434         POLICY_RDLOCK;
435
436         /*
437          * Remap extended Netlink classes for old policy versions.
438          * Do this here rather than socket_type_to_security_class()
439          * in case a newer policy version is loaded, allowing sockets
440          * to remain in the correct class.
441          */
442         if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
443                 if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
444                     tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
445                         tclass = SECCLASS_NETLINK_SOCKET;
446
447         if (!tclass || tclass > policydb.p_classes.nprim) {
448                 printk(KERN_ERR "security_validate_transition:  "
449                        "unrecognized class %d\n", tclass);
450                 rc = -EINVAL;
451                 goto out;
452         }
453         tclass_datum = policydb.class_val_to_struct[tclass - 1];
454
455         ocontext = sidtab_search(&sidtab, oldsid);
456         if (!ocontext) {
457                 printk(KERN_ERR "security_validate_transition: "
458                        " unrecognized SID %d\n", oldsid);
459                 rc = -EINVAL;
460                 goto out;
461         }
462
463         ncontext = sidtab_search(&sidtab, newsid);
464         if (!ncontext) {
465                 printk(KERN_ERR "security_validate_transition: "
466                        " unrecognized SID %d\n", newsid);
467                 rc = -EINVAL;
468                 goto out;
469         }
470
471         tcontext = sidtab_search(&sidtab, tasksid);
472         if (!tcontext) {
473                 printk(KERN_ERR "security_validate_transition: "
474                        " unrecognized SID %d\n", tasksid);
475                 rc = -EINVAL;
476                 goto out;
477         }
478
479         constraint = tclass_datum->validatetrans;
480         while (constraint) {
481                 if (!constraint_expr_eval(ocontext, ncontext, tcontext,
482                                           constraint->expr)) {
483                         rc = security_validtrans_handle_fail(ocontext, ncontext,
484                                                              tcontext, tclass);
485                         goto out;
486                 }
487                 constraint = constraint->next;
488         }
489
490 out:
491         POLICY_RDUNLOCK;
492         return rc;
493 }
494
495 /**
496  * security_compute_av - Compute access vector decisions.
497  * @ssid: source security identifier
498  * @tsid: target security identifier
499  * @tclass: target security class
500  * @requested: requested permissions
501  * @avd: access vector decisions
502  *
503  * Compute a set of access vector decisions based on the
504  * SID pair (@ssid, @tsid) for the permissions in @tclass.
505  * Return -%EINVAL if any of the parameters are invalid or %0
506  * if the access vector decisions were computed successfully.
507  */
508 int security_compute_av(u32 ssid,
509                         u32 tsid,
510                         u16 tclass,
511                         u32 requested,
512                         struct av_decision *avd)
513 {
514         struct context *scontext = NULL, *tcontext = NULL;
515         int rc = 0;
516
517         if (!ss_initialized) {
518                 avd->allowed = 0xffffffff;
519                 avd->decided = 0xffffffff;
520                 avd->auditallow = 0;
521                 avd->auditdeny = 0xffffffff;
522                 avd->seqno = latest_granting;
523                 return 0;
524         }
525
526         POLICY_RDLOCK;
527
528         scontext = sidtab_search(&sidtab, ssid);
529         if (!scontext) {
530                 printk(KERN_ERR "security_compute_av:  unrecognized SID %d\n",
531                        ssid);
532                 rc = -EINVAL;
533                 goto out;
534         }
535         tcontext = sidtab_search(&sidtab, tsid);
536         if (!tcontext) {
537                 printk(KERN_ERR "security_compute_av:  unrecognized SID %d\n",
538                        tsid);
539                 rc = -EINVAL;
540                 goto out;
541         }
542
543         rc = context_struct_compute_av(scontext, tcontext, tclass,
544                                        requested, avd);
545 out:
546         POLICY_RDUNLOCK;
547         return rc;
548 }
549
550 /*
551  * Write the security context string representation of
552  * the context structure `context' into a dynamically
553  * allocated string of the correct size.  Set `*scontext'
554  * to point to this string and set `*scontext_len' to
555  * the length of the string.
556  */
557 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
558 {
559         char *scontextp;
560
561         *scontext = NULL;
562         *scontext_len = 0;
563
564         /* Compute the size of the context. */
565         *scontext_len += strlen(policydb.p_user_val_to_name[context->user - 1]) + 1;
566         *scontext_len += strlen(policydb.p_role_val_to_name[context->role - 1]) + 1;
567         *scontext_len += strlen(policydb.p_type_val_to_name[context->type - 1]) + 1;
568         *scontext_len += mls_compute_context_len(context);
569
570         /* Allocate space for the context; caller must free this space. */
571         scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
572         if (!scontextp) {
573                 return -ENOMEM;
574         }
575         *scontext = scontextp;
576
577         /*
578          * Copy the user name, role name and type name into the context.
579          */
580         sprintf(scontextp, "%s:%s:%s",
581                 policydb.p_user_val_to_name[context->user - 1],
582                 policydb.p_role_val_to_name[context->role - 1],
583                 policydb.p_type_val_to_name[context->type - 1]);
584         scontextp += strlen(policydb.p_user_val_to_name[context->user - 1]) +
585                      1 + strlen(policydb.p_role_val_to_name[context->role - 1]) +
586                      1 + strlen(policydb.p_type_val_to_name[context->type - 1]);
587
588         mls_sid_to_context(context, &scontextp);
589
590         *scontextp = 0;
591
592         return 0;
593 }
594
595 #include "initial_sid_to_string.h"
596
597 /**
598  * security_sid_to_context - Obtain a context for a given SID.
599  * @sid: security identifier, SID
600  * @scontext: security context
601  * @scontext_len: length in bytes
602  *
603  * Write the string representation of the context associated with @sid
604  * into a dynamically allocated string of the correct size.  Set @scontext
605  * to point to this string and set @scontext_len to the length of the string.
606  */
607 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
608 {
609         struct context *context;
610         int rc = 0;
611
612         *scontext = NULL;
613         *scontext_len  = 0;
614
615         if (!ss_initialized) {
616                 if (sid <= SECINITSID_NUM) {
617                         char *scontextp;
618
619                         *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
620                         scontextp = kmalloc(*scontext_len,GFP_ATOMIC);
621                         if (!scontextp) {
622                                 rc = -ENOMEM;
623                                 goto out;
624                         }
625                         strcpy(scontextp, initial_sid_to_string[sid]);
626                         *scontext = scontextp;
627                         goto out;
628                 }
629                 printk(KERN_ERR "security_sid_to_context:  called before initial "
630                        "load_policy on unknown SID %d\n", sid);
631                 rc = -EINVAL;
632                 goto out;
633         }
634         POLICY_RDLOCK;
635         context = sidtab_search(&sidtab, sid);
636         if (!context) {
637                 printk(KERN_ERR "security_sid_to_context:  unrecognized SID "
638                        "%d\n", sid);
639                 rc = -EINVAL;
640                 goto out_unlock;
641         }
642         rc = context_struct_to_string(context, scontext, scontext_len);
643 out_unlock:
644         POLICY_RDUNLOCK;
645 out:
646         return rc;
647
648 }
649
650 static int security_context_to_sid_core(char *scontext, u32 scontext_len, u32 *sid, u32 def_sid)
651 {
652         char *scontext2;
653         struct context context;
654         struct role_datum *role;
655         struct type_datum *typdatum;
656         struct user_datum *usrdatum;
657         char *scontextp, *p, oldc;
658         int rc = 0;
659
660         if (!ss_initialized) {
661                 int i;
662
663                 for (i = 1; i < SECINITSID_NUM; i++) {
664                         if (!strcmp(initial_sid_to_string[i], scontext)) {
665                                 *sid = i;
666                                 goto out;
667                         }
668                 }
669                 *sid = SECINITSID_KERNEL;
670                 goto out;
671         }
672         *sid = SECSID_NULL;
673
674         /* Copy the string so that we can modify the copy as we parse it.
675            The string should already by null terminated, but we append a
676            null suffix to the copy to avoid problems with the existing
677            attr package, which doesn't view the null terminator as part
678            of the attribute value. */
679         scontext2 = kmalloc(scontext_len+1,GFP_KERNEL);
680         if (!scontext2) {
681                 rc = -ENOMEM;
682                 goto out;
683         }
684         memcpy(scontext2, scontext, scontext_len);
685         scontext2[scontext_len] = 0;
686
687         context_init(&context);
688         *sid = SECSID_NULL;
689
690         POLICY_RDLOCK;
691
692         /* Parse the security context. */
693
694         rc = -EINVAL;
695         scontextp = (char *) scontext2;
696
697         /* Extract the user. */
698         p = scontextp;
699         while (*p && *p != ':')
700                 p++;
701
702         if (*p == 0)
703                 goto out_unlock;
704
705         *p++ = 0;
706
707         usrdatum = hashtab_search(policydb.p_users.table, scontextp);
708         if (!usrdatum)
709                 goto out_unlock;
710
711         context.user = usrdatum->value;
712
713         /* Extract role. */
714         scontextp = p;
715         while (*p && *p != ':')
716                 p++;
717
718         if (*p == 0)
719                 goto out_unlock;
720
721         *p++ = 0;
722
723         role = hashtab_search(policydb.p_roles.table, scontextp);
724         if (!role)
725                 goto out_unlock;
726         context.role = role->value;
727
728         /* Extract type. */
729         scontextp = p;
730         while (*p && *p != ':')
731                 p++;
732         oldc = *p;
733         *p++ = 0;
734
735         typdatum = hashtab_search(policydb.p_types.table, scontextp);
736         if (!typdatum)
737                 goto out_unlock;
738
739         context.type = typdatum->value;
740
741         rc = mls_context_to_sid(oldc, &p, &context, &sidtab, def_sid);
742         if (rc)
743                 goto out_unlock;
744
745         if ((p - scontext2) < scontext_len) {
746                 rc = -EINVAL;
747                 goto out_unlock;
748         }
749
750         /* Check the validity of the new context. */
751         if (!policydb_context_isvalid(&policydb, &context)) {
752                 rc = -EINVAL;
753                 goto out_unlock;
754         }
755         /* Obtain the new sid. */
756         rc = sidtab_context_to_sid(&sidtab, &context, sid);
757 out_unlock:
758         POLICY_RDUNLOCK;
759         context_destroy(&context);
760         kfree(scontext2);
761 out:
762         return rc;
763 }
764
765 /**
766  * security_context_to_sid - Obtain a SID for a given security context.
767  * @scontext: security context
768  * @scontext_len: length in bytes
769  * @sid: security identifier, SID
770  *
771  * Obtains a SID associated with the security context that
772  * has the string representation specified by @scontext.
773  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
774  * memory is available, or 0 on success.
775  */
776 int security_context_to_sid(char *scontext, u32 scontext_len, u32 *sid)
777 {
778         return security_context_to_sid_core(scontext, scontext_len,
779                                             sid, SECSID_NULL);
780 }
781
782 /**
783  * security_context_to_sid_default - Obtain a SID for a given security context,
784  * falling back to specified default if needed.
785  *
786  * @scontext: security context
787  * @scontext_len: length in bytes
788  * @sid: security identifier, SID
789  * @def_sid: default SID to assign on errror
790  *
791  * Obtains a SID associated with the security context that
792  * has the string representation specified by @scontext.
793  * The default SID is passed to the MLS layer to be used to allow
794  * kernel labeling of the MLS field if the MLS field is not present
795  * (for upgrading to MLS without full relabel).
796  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
797  * memory is available, or 0 on success.
798  */
799 int security_context_to_sid_default(char *scontext, u32 scontext_len, u32 *sid, u32 def_sid)
800 {
801         return security_context_to_sid_core(scontext, scontext_len,
802                                             sid, def_sid);
803 }
804
805 static int compute_sid_handle_invalid_context(
806         struct context *scontext,
807         struct context *tcontext,
808         u16 tclass,
809         struct context *newcontext)
810 {
811         char *s = NULL, *t = NULL, *n = NULL;
812         u32 slen, tlen, nlen;
813
814         if (context_struct_to_string(scontext, &s, &slen) < 0)
815                 goto out;
816         if (context_struct_to_string(tcontext, &t, &tlen) < 0)
817                 goto out;
818         if (context_struct_to_string(newcontext, &n, &nlen) < 0)
819                 goto out;
820         audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
821                   "security_compute_sid:  invalid context %s"
822                   " for scontext=%s"
823                   " tcontext=%s"
824                   " tclass=%s",
825                   n, s, t, policydb.p_class_val_to_name[tclass-1]);
826 out:
827         kfree(s);
828         kfree(t);
829         kfree(n);
830         if (!selinux_enforcing)
831                 return 0;
832         return -EACCES;
833 }
834
835 static int security_compute_sid(u32 ssid,
836                                 u32 tsid,
837                                 u16 tclass,
838                                 u32 specified,
839                                 u32 *out_sid)
840 {
841         struct context *scontext = NULL, *tcontext = NULL, newcontext;
842         struct role_trans *roletr = NULL;
843         struct avtab_key avkey;
844         struct avtab_datum *avdatum;
845         struct avtab_node *node;
846         int rc = 0;
847
848         if (!ss_initialized) {
849                 switch (tclass) {
850                 case SECCLASS_PROCESS:
851                         *out_sid = ssid;
852                         break;
853                 default:
854                         *out_sid = tsid;
855                         break;
856                 }
857                 goto out;
858         }
859
860         context_init(&newcontext);
861
862         POLICY_RDLOCK;
863
864         scontext = sidtab_search(&sidtab, ssid);
865         if (!scontext) {
866                 printk(KERN_ERR "security_compute_sid:  unrecognized SID %d\n",
867                        ssid);
868                 rc = -EINVAL;
869                 goto out_unlock;
870         }
871         tcontext = sidtab_search(&sidtab, tsid);
872         if (!tcontext) {
873                 printk(KERN_ERR "security_compute_sid:  unrecognized SID %d\n",
874                        tsid);
875                 rc = -EINVAL;
876                 goto out_unlock;
877         }
878
879         /* Set the user identity. */
880         switch (specified) {
881         case AVTAB_TRANSITION:
882         case AVTAB_CHANGE:
883                 /* Use the process user identity. */
884                 newcontext.user = scontext->user;
885                 break;
886         case AVTAB_MEMBER:
887                 /* Use the related object owner. */
888                 newcontext.user = tcontext->user;
889                 break;
890         }
891
892         /* Set the role and type to default values. */
893         switch (tclass) {
894         case SECCLASS_PROCESS:
895                 /* Use the current role and type of process. */
896                 newcontext.role = scontext->role;
897                 newcontext.type = scontext->type;
898                 break;
899         default:
900                 /* Use the well-defined object role. */
901                 newcontext.role = OBJECT_R_VAL;
902                 /* Use the type of the related object. */
903                 newcontext.type = tcontext->type;
904         }
905
906         /* Look for a type transition/member/change rule. */
907         avkey.source_type = scontext->type;
908         avkey.target_type = tcontext->type;
909         avkey.target_class = tclass;
910         avkey.specified = specified;
911         avdatum = avtab_search(&policydb.te_avtab, &avkey);
912
913         /* If no permanent rule, also check for enabled conditional rules */
914         if(!avdatum) {
915                 node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
916                 for (; node != NULL; node = avtab_search_node_next(node, specified)) {
917                         if (node->key.specified & AVTAB_ENABLED) {
918                                 avdatum = &node->datum;
919                                 break;
920                         }
921                 }
922         }
923
924         if (avdatum) {
925                 /* Use the type from the type transition/member/change rule. */
926                 newcontext.type = avdatum->data;
927         }
928
929         /* Check for class-specific changes. */
930         switch (tclass) {
931         case SECCLASS_PROCESS:
932                 if (specified & AVTAB_TRANSITION) {
933                         /* Look for a role transition rule. */
934                         for (roletr = policydb.role_tr; roletr;
935                              roletr = roletr->next) {
936                                 if (roletr->role == scontext->role &&
937                                     roletr->type == tcontext->type) {
938                                         /* Use the role transition rule. */
939                                         newcontext.role = roletr->new_role;
940                                         break;
941                                 }
942                         }
943                 }
944                 break;
945         default:
946                 break;
947         }
948
949         /* Set the MLS attributes.
950            This is done last because it may allocate memory. */
951         rc = mls_compute_sid(scontext, tcontext, tclass, specified, &newcontext);
952         if (rc)
953                 goto out_unlock;
954
955         /* Check the validity of the context. */
956         if (!policydb_context_isvalid(&policydb, &newcontext)) {
957                 rc = compute_sid_handle_invalid_context(scontext,
958                                                         tcontext,
959                                                         tclass,
960                                                         &newcontext);
961                 if (rc)
962                         goto out_unlock;
963         }
964         /* Obtain the sid for the context. */
965         rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
966 out_unlock:
967         POLICY_RDUNLOCK;
968         context_destroy(&newcontext);
969 out:
970         return rc;
971 }
972
973 /**
974  * security_transition_sid - Compute the SID for a new subject/object.
975  * @ssid: source security identifier
976  * @tsid: target security identifier
977  * @tclass: target security class
978  * @out_sid: security identifier for new subject/object
979  *
980  * Compute a SID to use for labeling a new subject or object in the
981  * class @tclass based on a SID pair (@ssid, @tsid).
982  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
983  * if insufficient memory is available, or %0 if the new SID was
984  * computed successfully.
985  */
986 int security_transition_sid(u32 ssid,
987                             u32 tsid,
988                             u16 tclass,
989                             u32 *out_sid)
990 {
991         return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, out_sid);
992 }
993
994 /**
995  * security_member_sid - Compute the SID for member selection.
996  * @ssid: source security identifier
997  * @tsid: target security identifier
998  * @tclass: target security class
999  * @out_sid: security identifier for selected member
1000  *
1001  * Compute a SID to use when selecting a member of a polyinstantiated
1002  * object of class @tclass based on a SID pair (@ssid, @tsid).
1003  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1004  * if insufficient memory is available, or %0 if the SID was
1005  * computed successfully.
1006  */
1007 int security_member_sid(u32 ssid,
1008                         u32 tsid,
1009                         u16 tclass,
1010                         u32 *out_sid)
1011 {
1012         return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid);
1013 }
1014
1015 /**
1016  * security_change_sid - Compute the SID for object relabeling.
1017  * @ssid: source security identifier
1018  * @tsid: target security identifier
1019  * @tclass: target security class
1020  * @out_sid: security identifier for selected member
1021  *
1022  * Compute a SID to use for relabeling an object of class @tclass
1023  * based on a SID pair (@ssid, @tsid).
1024  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1025  * if insufficient memory is available, or %0 if the SID was
1026  * computed successfully.
1027  */
1028 int security_change_sid(u32 ssid,
1029                         u32 tsid,
1030                         u16 tclass,
1031                         u32 *out_sid)
1032 {
1033         return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid);
1034 }
1035
1036 /*
1037  * Verify that each kernel class that is defined in the
1038  * policy is correct
1039  */
1040 static int validate_classes(struct policydb *p)
1041 {
1042         int i, j;
1043         struct class_datum *cladatum;
1044         struct perm_datum *perdatum;
1045         u32 nprim, tmp, common_pts_len, perm_val, pol_val;
1046         u16 class_val;
1047         const struct selinux_class_perm *kdefs = &selinux_class_perm;
1048         const char *def_class, *def_perm, *pol_class;
1049         struct symtab *perms;
1050
1051         for (i = 1; i < kdefs->cts_len; i++) {
1052                 def_class = kdefs->class_to_string[i];
1053                 if (i > p->p_classes.nprim) {
1054                         printk(KERN_INFO
1055                                "security:  class %s not defined in policy\n",
1056                                def_class);
1057                         continue;
1058                 }
1059                 pol_class = p->p_class_val_to_name[i-1];
1060                 if (strcmp(pol_class, def_class)) {
1061                         printk(KERN_ERR
1062                                "security:  class %d is incorrect, found %s but should be %s\n",
1063                                i, pol_class, def_class);
1064                         return -EINVAL;
1065                 }
1066         }
1067         for (i = 0; i < kdefs->av_pts_len; i++) {
1068                 class_val = kdefs->av_perm_to_string[i].tclass;
1069                 perm_val = kdefs->av_perm_to_string[i].value;
1070                 def_perm = kdefs->av_perm_to_string[i].name;
1071                 if (class_val > p->p_classes.nprim)
1072                         continue;
1073                 pol_class = p->p_class_val_to_name[class_val-1];
1074                 cladatum = hashtab_search(p->p_classes.table, pol_class);
1075                 BUG_ON(!cladatum);
1076                 perms = &cladatum->permissions;
1077                 nprim = 1 << (perms->nprim - 1);
1078                 if (perm_val > nprim) {
1079                         printk(KERN_INFO
1080                                "security:  permission %s in class %s not defined in policy\n",
1081                                def_perm, pol_class);
1082                         continue;
1083                 }
1084                 perdatum = hashtab_search(perms->table, def_perm);
1085                 if (perdatum == NULL) {
1086                         printk(KERN_ERR
1087                                "security:  permission %s in class %s not found in policy\n",
1088                                def_perm, pol_class);
1089                         return -EINVAL;
1090                 }
1091                 pol_val = 1 << (perdatum->value - 1);
1092                 if (pol_val != perm_val) {
1093                         printk(KERN_ERR
1094                                "security:  permission %s in class %s has incorrect value\n",
1095                                def_perm, pol_class);
1096                         return -EINVAL;
1097                 }
1098         }
1099         for (i = 0; i < kdefs->av_inherit_len; i++) {
1100                 class_val = kdefs->av_inherit[i].tclass;
1101                 if (class_val > p->p_classes.nprim)
1102                         continue;
1103                 pol_class = p->p_class_val_to_name[class_val-1];
1104                 cladatum = hashtab_search(p->p_classes.table, pol_class);
1105                 BUG_ON(!cladatum);
1106                 if (!cladatum->comdatum) {
1107                         printk(KERN_ERR
1108                                "security:  class %s should have an inherits clause but does not\n",
1109                                pol_class);
1110                         return -EINVAL;
1111                 }
1112                 tmp = kdefs->av_inherit[i].common_base;
1113                 common_pts_len = 0;
1114                 while (!(tmp & 0x01)) {
1115                         common_pts_len++;
1116                         tmp >>= 1;
1117                 }
1118                 perms = &cladatum->comdatum->permissions;
1119                 for (j = 0; j < common_pts_len; j++) {
1120                         def_perm = kdefs->av_inherit[i].common_pts[j];
1121                         if (j >= perms->nprim) {
1122                                 printk(KERN_INFO
1123                                        "security:  permission %s in class %s not defined in policy\n",
1124                                        def_perm, pol_class);
1125                                 continue;
1126                         }
1127                         perdatum = hashtab_search(perms->table, def_perm);
1128                         if (perdatum == NULL) {
1129                                 printk(KERN_ERR
1130                                        "security:  permission %s in class %s not found in policy\n",
1131                                        def_perm, pol_class);
1132                                 return -EINVAL;
1133                         }
1134                         if (perdatum->value != j + 1) {
1135                                 printk(KERN_ERR
1136                                        "security:  permission %s in class %s has incorrect value\n",
1137                                        def_perm, pol_class);
1138                                 return -EINVAL;
1139                         }
1140                 }
1141         }
1142         return 0;
1143 }
1144
1145 /* Clone the SID into the new SID table. */
1146 static int clone_sid(u32 sid,
1147                      struct context *context,
1148                      void *arg)
1149 {
1150         struct sidtab *s = arg;
1151
1152         return sidtab_insert(s, sid, context);
1153 }
1154
1155 static inline int convert_context_handle_invalid_context(struct context *context)
1156 {
1157         int rc = 0;
1158
1159         if (selinux_enforcing) {
1160                 rc = -EINVAL;
1161         } else {
1162                 char *s;
1163                 u32 len;
1164
1165                 context_struct_to_string(context, &s, &len);
1166                 printk(KERN_ERR "security:  context %s is invalid\n", s);
1167                 kfree(s);
1168         }
1169         return rc;
1170 }
1171
1172 struct convert_context_args {
1173         struct policydb *oldp;
1174         struct policydb *newp;
1175 };
1176
1177 /*
1178  * Convert the values in the security context
1179  * structure `c' from the values specified
1180  * in the policy `p->oldp' to the values specified
1181  * in the policy `p->newp'.  Verify that the
1182  * context is valid under the new policy.
1183  */
1184 static int convert_context(u32 key,
1185                            struct context *c,
1186                            void *p)
1187 {
1188         struct convert_context_args *args;
1189         struct context oldc;
1190         struct role_datum *role;
1191         struct type_datum *typdatum;
1192         struct user_datum *usrdatum;
1193         char *s;
1194         u32 len;
1195         int rc;
1196
1197         args = p;
1198
1199         rc = context_cpy(&oldc, c);
1200         if (rc)
1201                 goto out;
1202
1203         rc = -EINVAL;
1204
1205         /* Convert the user. */
1206         usrdatum = hashtab_search(args->newp->p_users.table,
1207                                   args->oldp->p_user_val_to_name[c->user - 1]);
1208         if (!usrdatum) {
1209                 goto bad;
1210         }
1211         c->user = usrdatum->value;
1212
1213         /* Convert the role. */
1214         role = hashtab_search(args->newp->p_roles.table,
1215                               args->oldp->p_role_val_to_name[c->role - 1]);
1216         if (!role) {
1217                 goto bad;
1218         }
1219         c->role = role->value;
1220
1221         /* Convert the type. */
1222         typdatum = hashtab_search(args->newp->p_types.table,
1223                                   args->oldp->p_type_val_to_name[c->type - 1]);
1224         if (!typdatum) {
1225                 goto bad;
1226         }
1227         c->type = typdatum->value;
1228
1229         rc = mls_convert_context(args->oldp, args->newp, c);
1230         if (rc)
1231                 goto bad;
1232
1233         /* Check the validity of the new context. */
1234         if (!policydb_context_isvalid(args->newp, c)) {
1235                 rc = convert_context_handle_invalid_context(&oldc);
1236                 if (rc)
1237                         goto bad;
1238         }
1239
1240         context_destroy(&oldc);
1241 out:
1242         return rc;
1243 bad:
1244         context_struct_to_string(&oldc, &s, &len);
1245         context_destroy(&oldc);
1246         printk(KERN_ERR "security:  invalidating context %s\n", s);
1247         kfree(s);
1248         goto out;
1249 }
1250
1251 extern void selinux_complete_init(void);
1252
1253 /**
1254  * security_load_policy - Load a security policy configuration.
1255  * @data: binary policy data
1256  * @len: length of data in bytes
1257  *
1258  * Load a new set of security policy configuration data,
1259  * validate it and convert the SID table as necessary.
1260  * This function will flush the access vector cache after
1261  * loading the new policy.
1262  */
1263 int security_load_policy(void *data, size_t len)
1264 {
1265         struct policydb oldpolicydb, newpolicydb;
1266         struct sidtab oldsidtab, newsidtab;
1267         struct convert_context_args args;
1268         u32 seqno;
1269         int rc = 0;
1270         struct policy_file file = { data, len }, *fp = &file;
1271
1272         LOAD_LOCK;
1273
1274         if (!ss_initialized) {
1275                 avtab_cache_init();
1276                 if (policydb_read(&policydb, fp)) {
1277                         LOAD_UNLOCK;
1278                         avtab_cache_destroy();
1279                         return -EINVAL;
1280                 }
1281                 if (policydb_load_isids(&policydb, &sidtab)) {
1282                         LOAD_UNLOCK;
1283                         policydb_destroy(&policydb);
1284                         avtab_cache_destroy();
1285                         return -EINVAL;
1286                 }
1287                 /* Verify that the kernel defined classes are correct. */
1288                 if (validate_classes(&policydb)) {
1289                         printk(KERN_ERR
1290                                "security:  the definition of a class is incorrect\n");
1291                         LOAD_UNLOCK;
1292                         sidtab_destroy(&sidtab);
1293                         policydb_destroy(&policydb);
1294                         avtab_cache_destroy();
1295                         return -EINVAL;
1296                 }
1297                 policydb_loaded_version = policydb.policyvers;
1298                 ss_initialized = 1;
1299                 seqno = ++latest_granting;
1300                 LOAD_UNLOCK;
1301                 selinux_complete_init();
1302                 avc_ss_reset(seqno);
1303                 selnl_notify_policyload(seqno);
1304                 selinux_netlbl_cache_invalidate();
1305                 selinux_xfrm_notify_policyload();
1306                 return 0;
1307         }
1308
1309 #if 0
1310         sidtab_hash_eval(&sidtab, "sids");
1311 #endif
1312
1313         if (policydb_read(&newpolicydb, fp)) {
1314                 LOAD_UNLOCK;
1315                 return -EINVAL;
1316         }
1317
1318         sidtab_init(&newsidtab);
1319
1320         /* Verify that the kernel defined classes are correct. */
1321         if (validate_classes(&newpolicydb)) {
1322                 printk(KERN_ERR
1323                        "security:  the definition of a class is incorrect\n");
1324                 rc = -EINVAL;
1325                 goto err;
1326         }
1327
1328         /* Clone the SID table. */
1329         sidtab_shutdown(&sidtab);
1330         if (sidtab_map(&sidtab, clone_sid, &newsidtab)) {
1331                 rc = -ENOMEM;
1332                 goto err;
1333         }
1334
1335         /* Convert the internal representations of contexts
1336            in the new SID table and remove invalid SIDs. */
1337         args.oldp = &policydb;
1338         args.newp = &newpolicydb;
1339         sidtab_map_remove_on_error(&newsidtab, convert_context, &args);
1340
1341         /* Save the old policydb and SID table to free later. */
1342         memcpy(&oldpolicydb, &policydb, sizeof policydb);
1343         sidtab_set(&oldsidtab, &sidtab);
1344
1345         /* Install the new policydb and SID table. */
1346         POLICY_WRLOCK;
1347         memcpy(&policydb, &newpolicydb, sizeof policydb);
1348         sidtab_set(&sidtab, &newsidtab);
1349         seqno = ++latest_granting;
1350         policydb_loaded_version = policydb.policyvers;
1351         POLICY_WRUNLOCK;
1352         LOAD_UNLOCK;
1353
1354         /* Free the old policydb and SID table. */
1355         policydb_destroy(&oldpolicydb);
1356         sidtab_destroy(&oldsidtab);
1357
1358         avc_ss_reset(seqno);
1359         selnl_notify_policyload(seqno);
1360         selinux_netlbl_cache_invalidate();
1361         selinux_xfrm_notify_policyload();
1362
1363         return 0;
1364
1365 err:
1366         LOAD_UNLOCK;
1367         sidtab_destroy(&newsidtab);
1368         policydb_destroy(&newpolicydb);
1369         return rc;
1370
1371 }
1372
1373 /**
1374  * security_port_sid - Obtain the SID for a port.
1375  * @domain: communication domain aka address family
1376  * @type: socket type
1377  * @protocol: protocol number
1378  * @port: port number
1379  * @out_sid: security identifier
1380  */
1381 int security_port_sid(u16 domain,
1382                       u16 type,
1383                       u8 protocol,
1384                       u16 port,
1385                       u32 *out_sid)
1386 {
1387         struct ocontext *c;
1388         int rc = 0;
1389
1390         POLICY_RDLOCK;
1391
1392         c = policydb.ocontexts[OCON_PORT];
1393         while (c) {
1394                 if (c->u.port.protocol == protocol &&
1395                     c->u.port.low_port <= port &&
1396                     c->u.port.high_port >= port)
1397                         break;
1398                 c = c->next;
1399         }
1400
1401         if (c) {
1402                 if (!c->sid[0]) {
1403                         rc = sidtab_context_to_sid(&sidtab,
1404                                                    &c->context[0],
1405                                                    &c->sid[0]);
1406                         if (rc)
1407                                 goto out;
1408                 }
1409                 *out_sid = c->sid[0];
1410         } else {
1411                 *out_sid = SECINITSID_PORT;
1412         }
1413
1414 out:
1415         POLICY_RDUNLOCK;
1416         return rc;
1417 }
1418
1419 /**
1420  * security_netif_sid - Obtain the SID for a network interface.
1421  * @name: interface name
1422  * @if_sid: interface SID
1423  * @msg_sid: default SID for received packets
1424  */
1425 int security_netif_sid(char *name,
1426                        u32 *if_sid,
1427                        u32 *msg_sid)
1428 {
1429         int rc = 0;
1430         struct ocontext *c;
1431
1432         POLICY_RDLOCK;
1433
1434         c = policydb.ocontexts[OCON_NETIF];
1435         while (c) {
1436                 if (strcmp(name, c->u.name) == 0)
1437                         break;
1438                 c = c->next;
1439         }
1440
1441         if (c) {
1442                 if (!c->sid[0] || !c->sid[1]) {
1443                         rc = sidtab_context_to_sid(&sidtab,
1444                                                   &c->context[0],
1445                                                   &c->sid[0]);
1446                         if (rc)
1447                                 goto out;
1448                         rc = sidtab_context_to_sid(&sidtab,
1449                                                    &c->context[1],
1450                                                    &c->sid[1]);
1451                         if (rc)
1452                                 goto out;
1453                 }
1454                 *if_sid = c->sid[0];
1455                 *msg_sid = c->sid[1];
1456         } else {
1457                 *if_sid = SECINITSID_NETIF;
1458                 *msg_sid = SECINITSID_NETMSG;
1459         }
1460
1461 out:
1462         POLICY_RDUNLOCK;
1463         return rc;
1464 }
1465
1466 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
1467 {
1468         int i, fail = 0;
1469
1470         for(i = 0; i < 4; i++)
1471                 if(addr[i] != (input[i] & mask[i])) {
1472                         fail = 1;
1473                         break;
1474                 }
1475
1476         return !fail;
1477 }
1478
1479 /**
1480  * security_node_sid - Obtain the SID for a node (host).
1481  * @domain: communication domain aka address family
1482  * @addrp: address
1483  * @addrlen: address length in bytes
1484  * @out_sid: security identifier
1485  */
1486 int security_node_sid(u16 domain,
1487                       void *addrp,
1488                       u32 addrlen,
1489                       u32 *out_sid)
1490 {
1491         int rc = 0;
1492         struct ocontext *c;
1493
1494         POLICY_RDLOCK;
1495
1496         switch (domain) {
1497         case AF_INET: {
1498                 u32 addr;
1499
1500                 if (addrlen != sizeof(u32)) {
1501                         rc = -EINVAL;
1502                         goto out;
1503                 }
1504
1505                 addr = *((u32 *)addrp);
1506
1507                 c = policydb.ocontexts[OCON_NODE];
1508                 while (c) {
1509                         if (c->u.node.addr == (addr & c->u.node.mask))
1510                                 break;
1511                         c = c->next;
1512                 }
1513                 break;
1514         }
1515
1516         case AF_INET6:
1517                 if (addrlen != sizeof(u64) * 2) {
1518                         rc = -EINVAL;
1519                         goto out;
1520                 }
1521                 c = policydb.ocontexts[OCON_NODE6];
1522                 while (c) {
1523                         if (match_ipv6_addrmask(addrp, c->u.node6.addr,
1524                                                 c->u.node6.mask))
1525                                 break;
1526                         c = c->next;
1527                 }
1528                 break;
1529
1530         default:
1531                 *out_sid = SECINITSID_NODE;
1532                 goto out;
1533         }
1534
1535         if (c) {
1536                 if (!c->sid[0]) {
1537                         rc = sidtab_context_to_sid(&sidtab,
1538                                                    &c->context[0],
1539                                                    &c->sid[0]);
1540                         if (rc)
1541                                 goto out;
1542                 }
1543                 *out_sid = c->sid[0];
1544         } else {
1545                 *out_sid = SECINITSID_NODE;
1546         }
1547
1548 out:
1549         POLICY_RDUNLOCK;
1550         return rc;
1551 }
1552
1553 #define SIDS_NEL 25
1554
1555 /**
1556  * security_get_user_sids - Obtain reachable SIDs for a user.
1557  * @fromsid: starting SID
1558  * @username: username
1559  * @sids: array of reachable SIDs for user
1560  * @nel: number of elements in @sids
1561  *
1562  * Generate the set of SIDs for legal security contexts
1563  * for a given user that can be reached by @fromsid.
1564  * Set *@sids to point to a dynamically allocated
1565  * array containing the set of SIDs.  Set *@nel to the
1566  * number of elements in the array.
1567  */
1568
1569 int security_get_user_sids(u32 fromsid,
1570                            char *username,
1571                            u32 **sids,
1572                            u32 *nel)
1573 {
1574         struct context *fromcon, usercon;
1575         u32 *mysids, *mysids2, sid;
1576         u32 mynel = 0, maxnel = SIDS_NEL;
1577         struct user_datum *user;
1578         struct role_datum *role;
1579         struct av_decision avd;
1580         struct ebitmap_node *rnode, *tnode;
1581         int rc = 0, i, j;
1582
1583         if (!ss_initialized) {
1584                 *sids = NULL;
1585                 *nel = 0;
1586                 goto out;
1587         }
1588
1589         POLICY_RDLOCK;
1590
1591         fromcon = sidtab_search(&sidtab, fromsid);
1592         if (!fromcon) {
1593                 rc = -EINVAL;
1594                 goto out_unlock;
1595         }
1596
1597         user = hashtab_search(policydb.p_users.table, username);
1598         if (!user) {
1599                 rc = -EINVAL;
1600                 goto out_unlock;
1601         }
1602         usercon.user = user->value;
1603
1604         mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
1605         if (!mysids) {
1606                 rc = -ENOMEM;
1607                 goto out_unlock;
1608         }
1609
1610         ebitmap_for_each_bit(&user->roles, rnode, i) {
1611                 if (!ebitmap_node_get_bit(rnode, i))
1612                         continue;
1613                 role = policydb.role_val_to_struct[i];
1614                 usercon.role = i+1;
1615                 ebitmap_for_each_bit(&role->types, tnode, j) {
1616                         if (!ebitmap_node_get_bit(tnode, j))
1617                                 continue;
1618                         usercon.type = j+1;
1619
1620                         if (mls_setup_user_range(fromcon, user, &usercon))
1621                                 continue;
1622
1623                         rc = context_struct_compute_av(fromcon, &usercon,
1624                                                        SECCLASS_PROCESS,
1625                                                        PROCESS__TRANSITION,
1626                                                        &avd);
1627                         if (rc ||  !(avd.allowed & PROCESS__TRANSITION))
1628                                 continue;
1629                         rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
1630                         if (rc) {
1631                                 kfree(mysids);
1632                                 goto out_unlock;
1633                         }
1634                         if (mynel < maxnel) {
1635                                 mysids[mynel++] = sid;
1636                         } else {
1637                                 maxnel += SIDS_NEL;
1638                                 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
1639                                 if (!mysids2) {
1640                                         rc = -ENOMEM;
1641                                         kfree(mysids);
1642                                         goto out_unlock;
1643                                 }
1644                                 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
1645                                 kfree(mysids);
1646                                 mysids = mysids2;
1647                                 mysids[mynel++] = sid;
1648                         }
1649                 }
1650         }
1651
1652         *sids = mysids;
1653         *nel = mynel;
1654
1655 out_unlock:
1656         POLICY_RDUNLOCK;
1657 out:
1658         return rc;
1659 }
1660
1661 /**
1662  * security_genfs_sid - Obtain a SID for a file in a filesystem
1663  * @fstype: filesystem type
1664  * @path: path from root of mount
1665  * @sclass: file security class
1666  * @sid: SID for path
1667  *
1668  * Obtain a SID to use for a file in a filesystem that
1669  * cannot support xattr or use a fixed labeling behavior like
1670  * transition SIDs or task SIDs.
1671  */
1672 int security_genfs_sid(const char *fstype,
1673                        char *path,
1674                        u16 sclass,
1675                        u32 *sid)
1676 {
1677         int len;
1678         struct genfs *genfs;
1679         struct ocontext *c;
1680         int rc = 0, cmp = 0;
1681
1682         POLICY_RDLOCK;
1683
1684         for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
1685                 cmp = strcmp(fstype, genfs->fstype);
1686                 if (cmp <= 0)
1687                         break;
1688         }
1689
1690         if (!genfs || cmp) {
1691                 *sid = SECINITSID_UNLABELED;
1692                 rc = -ENOENT;
1693                 goto out;
1694         }
1695
1696         for (c = genfs->head; c; c = c->next) {
1697                 len = strlen(c->u.name);
1698                 if ((!c->v.sclass || sclass == c->v.sclass) &&
1699                     (strncmp(c->u.name, path, len) == 0))
1700                         break;
1701         }
1702
1703         if (!c) {
1704                 *sid = SECINITSID_UNLABELED;
1705                 rc = -ENOENT;
1706                 goto out;
1707         }
1708
1709         if (!c->sid[0]) {
1710                 rc = sidtab_context_to_sid(&sidtab,
1711                                            &c->context[0],
1712                                            &c->sid[0]);
1713                 if (rc)
1714                         goto out;
1715         }
1716
1717         *sid = c->sid[0];
1718 out:
1719         POLICY_RDUNLOCK;
1720         return rc;
1721 }
1722
1723 /**
1724  * security_fs_use - Determine how to handle labeling for a filesystem.
1725  * @fstype: filesystem type
1726  * @behavior: labeling behavior
1727  * @sid: SID for filesystem (superblock)
1728  */
1729 int security_fs_use(
1730         const char *fstype,
1731         unsigned int *behavior,
1732         u32 *sid)
1733 {
1734         int rc = 0;
1735         struct ocontext *c;
1736
1737         POLICY_RDLOCK;
1738
1739         c = policydb.ocontexts[OCON_FSUSE];
1740         while (c) {
1741                 if (strcmp(fstype, c->u.name) == 0)
1742                         break;
1743                 c = c->next;
1744         }
1745
1746         if (c) {
1747                 *behavior = c->v.behavior;
1748                 if (!c->sid[0]) {
1749                         rc = sidtab_context_to_sid(&sidtab,
1750                                                    &c->context[0],
1751                                                    &c->sid[0]);
1752                         if (rc)
1753                                 goto out;
1754                 }
1755                 *sid = c->sid[0];
1756         } else {
1757                 rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
1758                 if (rc) {
1759                         *behavior = SECURITY_FS_USE_NONE;
1760                         rc = 0;
1761                 } else {
1762                         *behavior = SECURITY_FS_USE_GENFS;
1763                 }
1764         }
1765
1766 out:
1767         POLICY_RDUNLOCK;
1768         return rc;
1769 }
1770
1771 int security_get_bools(int *len, char ***names, int **values)
1772 {
1773         int i, rc = -ENOMEM;
1774
1775         POLICY_RDLOCK;
1776         *names = NULL;
1777         *values = NULL;
1778
1779         *len = policydb.p_bools.nprim;
1780         if (!*len) {
1781                 rc = 0;
1782                 goto out;
1783         }
1784
1785        *names = kcalloc(*len, sizeof(char*), GFP_ATOMIC);
1786         if (!*names)
1787                 goto err;
1788
1789        *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
1790         if (!*values)
1791                 goto err;
1792
1793         for (i = 0; i < *len; i++) {
1794                 size_t name_len;
1795                 (*values)[i] = policydb.bool_val_to_struct[i]->state;
1796                 name_len = strlen(policydb.p_bool_val_to_name[i]) + 1;
1797                (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
1798                 if (!(*names)[i])
1799                         goto err;
1800                 strncpy((*names)[i], policydb.p_bool_val_to_name[i], name_len);
1801                 (*names)[i][name_len - 1] = 0;
1802         }
1803         rc = 0;
1804 out:
1805         POLICY_RDUNLOCK;
1806         return rc;
1807 err:
1808         if (*names) {
1809                 for (i = 0; i < *len; i++)
1810                         kfree((*names)[i]);
1811         }
1812         kfree(*values);
1813         goto out;
1814 }
1815
1816
1817 int security_set_bools(int len, int *values)
1818 {
1819         int i, rc = 0;
1820         int lenp, seqno = 0;
1821         struct cond_node *cur;
1822
1823         POLICY_WRLOCK;
1824
1825         lenp = policydb.p_bools.nprim;
1826         if (len != lenp) {
1827                 rc = -EFAULT;
1828                 goto out;
1829         }
1830
1831         for (i = 0; i < len; i++) {
1832                 if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
1833                         audit_log(current->audit_context, GFP_ATOMIC,
1834                                 AUDIT_MAC_CONFIG_CHANGE,
1835                                 "bool=%s val=%d old_val=%d auid=%u",
1836                                 policydb.p_bool_val_to_name[i],
1837                                 !!values[i],
1838                                 policydb.bool_val_to_struct[i]->state,
1839                                 audit_get_loginuid(current->audit_context));
1840                 }
1841                 if (values[i]) {
1842                         policydb.bool_val_to_struct[i]->state = 1;
1843                 } else {
1844                         policydb.bool_val_to_struct[i]->state = 0;
1845                 }
1846         }
1847
1848         for (cur = policydb.cond_list; cur != NULL; cur = cur->next) {
1849                 rc = evaluate_cond_node(&policydb, cur);
1850                 if (rc)
1851                         goto out;
1852         }
1853
1854         seqno = ++latest_granting;
1855
1856 out:
1857         POLICY_WRUNLOCK;
1858         if (!rc) {
1859                 avc_ss_reset(seqno);
1860                 selnl_notify_policyload(seqno);
1861                 selinux_xfrm_notify_policyload();
1862         }
1863         return rc;
1864 }
1865
1866 int security_get_bool_value(int bool)
1867 {
1868         int rc = 0;
1869         int len;
1870
1871         POLICY_RDLOCK;
1872
1873         len = policydb.p_bools.nprim;
1874         if (bool >= len) {
1875                 rc = -EFAULT;
1876                 goto out;
1877         }
1878
1879         rc = policydb.bool_val_to_struct[bool]->state;
1880 out:
1881         POLICY_RDUNLOCK;
1882         return rc;
1883 }
1884
1885 /*
1886  * security_sid_mls_copy() - computes a new sid based on the given
1887  * sid and the mls portion of mls_sid.
1888  */
1889 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
1890 {
1891         struct context *context1;
1892         struct context *context2;
1893         struct context newcon;
1894         char *s;
1895         u32 len;
1896         int rc = 0;
1897
1898         if (!ss_initialized || !selinux_mls_enabled) {
1899                 *new_sid = sid;
1900                 goto out;
1901         }
1902
1903         context_init(&newcon);
1904
1905         POLICY_RDLOCK;
1906         context1 = sidtab_search(&sidtab, sid);
1907         if (!context1) {
1908                 printk(KERN_ERR "security_sid_mls_copy:  unrecognized SID "
1909                        "%d\n", sid);
1910                 rc = -EINVAL;
1911                 goto out_unlock;
1912         }
1913
1914         context2 = sidtab_search(&sidtab, mls_sid);
1915         if (!context2) {
1916                 printk(KERN_ERR "security_sid_mls_copy:  unrecognized SID "
1917                        "%d\n", mls_sid);
1918                 rc = -EINVAL;
1919                 goto out_unlock;
1920         }
1921
1922         newcon.user = context1->user;
1923         newcon.role = context1->role;
1924         newcon.type = context1->type;
1925         rc = mls_context_cpy(&newcon, context2);
1926         if (rc)
1927                 goto out_unlock;
1928
1929         /* Check the validity of the new context. */
1930         if (!policydb_context_isvalid(&policydb, &newcon)) {
1931                 rc = convert_context_handle_invalid_context(&newcon);
1932                 if (rc)
1933                         goto bad;
1934         }
1935
1936         rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
1937         goto out_unlock;
1938
1939 bad:
1940         if (!context_struct_to_string(&newcon, &s, &len)) {
1941                 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1942                           "security_sid_mls_copy: invalid context %s", s);
1943                 kfree(s);
1944         }
1945
1946 out_unlock:
1947         POLICY_RDUNLOCK;
1948         context_destroy(&newcon);
1949 out:
1950         return rc;
1951 }
1952
1953 struct selinux_audit_rule {
1954         u32 au_seqno;
1955         struct context au_ctxt;
1956 };
1957
1958 void selinux_audit_rule_free(struct selinux_audit_rule *rule)
1959 {
1960         if (rule) {
1961                 context_destroy(&rule->au_ctxt);
1962                 kfree(rule);
1963         }
1964 }
1965
1966 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr,
1967                             struct selinux_audit_rule **rule)
1968 {
1969         struct selinux_audit_rule *tmprule;
1970         struct role_datum *roledatum;
1971         struct type_datum *typedatum;
1972         struct user_datum *userdatum;
1973         int rc = 0;
1974
1975         *rule = NULL;
1976
1977         if (!ss_initialized)
1978                 return -ENOTSUPP;
1979
1980         switch (field) {
1981         case AUDIT_SUBJ_USER:
1982         case AUDIT_SUBJ_ROLE:
1983         case AUDIT_SUBJ_TYPE:
1984         case AUDIT_OBJ_USER:
1985         case AUDIT_OBJ_ROLE:
1986         case AUDIT_OBJ_TYPE:
1987                 /* only 'equals' and 'not equals' fit user, role, and type */
1988                 if (op != AUDIT_EQUAL && op != AUDIT_NOT_EQUAL)
1989                         return -EINVAL;
1990                 break;
1991         case AUDIT_SUBJ_SEN:
1992         case AUDIT_SUBJ_CLR:
1993         case AUDIT_OBJ_LEV_LOW:
1994         case AUDIT_OBJ_LEV_HIGH:
1995                 /* we do not allow a range, indicated by the presense of '-' */
1996                 if (strchr(rulestr, '-'))
1997                         return -EINVAL;
1998                 break;
1999         default:
2000                 /* only the above fields are valid */
2001                 return -EINVAL;
2002         }
2003
2004         tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2005         if (!tmprule)
2006                 return -ENOMEM;
2007
2008         context_init(&tmprule->au_ctxt);
2009
2010         POLICY_RDLOCK;
2011
2012         tmprule->au_seqno = latest_granting;
2013
2014         switch (field) {
2015         case AUDIT_SUBJ_USER:
2016         case AUDIT_OBJ_USER:
2017                 userdatum = hashtab_search(policydb.p_users.table, rulestr);
2018                 if (!userdatum)
2019                         rc = -EINVAL;
2020                 else
2021                         tmprule->au_ctxt.user = userdatum->value;
2022                 break;
2023         case AUDIT_SUBJ_ROLE:
2024         case AUDIT_OBJ_ROLE:
2025                 roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2026                 if (!roledatum)
2027                         rc = -EINVAL;
2028                 else
2029                         tmprule->au_ctxt.role = roledatum->value;
2030                 break;
2031         case AUDIT_SUBJ_TYPE:
2032         case AUDIT_OBJ_TYPE:
2033                 typedatum = hashtab_search(policydb.p_types.table, rulestr);
2034                 if (!typedatum)
2035                         rc = -EINVAL;
2036                 else
2037                         tmprule->au_ctxt.type = typedatum->value;
2038                 break;
2039         case AUDIT_SUBJ_SEN:
2040         case AUDIT_SUBJ_CLR:
2041         case AUDIT_OBJ_LEV_LOW:
2042         case AUDIT_OBJ_LEV_HIGH:
2043                 rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
2044                 break;
2045         }
2046
2047         POLICY_RDUNLOCK;
2048
2049         if (rc) {
2050                 selinux_audit_rule_free(tmprule);
2051                 tmprule = NULL;
2052         }
2053
2054         *rule = tmprule;
2055
2056         return rc;
2057 }
2058
2059 int selinux_audit_rule_match(u32 sid, u32 field, u32 op,
2060                              struct selinux_audit_rule *rule,
2061                              struct audit_context *actx)
2062 {
2063         struct context *ctxt;
2064         struct mls_level *level;
2065         int match = 0;
2066
2067         if (!rule) {
2068                 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2069                           "selinux_audit_rule_match: missing rule\n");
2070                 return -ENOENT;
2071         }
2072
2073         POLICY_RDLOCK;
2074
2075         if (rule->au_seqno < latest_granting) {
2076                 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2077                           "selinux_audit_rule_match: stale rule\n");
2078                 match = -ESTALE;
2079                 goto out;
2080         }
2081
2082         ctxt = sidtab_search(&sidtab, sid);
2083         if (!ctxt) {
2084                 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2085                           "selinux_audit_rule_match: unrecognized SID %d\n",
2086                           sid);
2087                 match = -ENOENT;
2088                 goto out;
2089         }
2090
2091         /* a field/op pair that is not caught here will simply fall through
2092            without a match */
2093         switch (field) {
2094         case AUDIT_SUBJ_USER:
2095         case AUDIT_OBJ_USER:
2096                 switch (op) {
2097                 case AUDIT_EQUAL:
2098                         match = (ctxt->user == rule->au_ctxt.user);
2099                         break;
2100                 case AUDIT_NOT_EQUAL:
2101                         match = (ctxt->user != rule->au_ctxt.user);
2102                         break;
2103                 }
2104                 break;
2105         case AUDIT_SUBJ_ROLE:
2106         case AUDIT_OBJ_ROLE:
2107                 switch (op) {
2108                 case AUDIT_EQUAL:
2109                         match = (ctxt->role == rule->au_ctxt.role);
2110                         break;
2111                 case AUDIT_NOT_EQUAL:
2112                         match = (ctxt->role != rule->au_ctxt.role);
2113                         break;
2114                 }
2115                 break;
2116         case AUDIT_SUBJ_TYPE:
2117         case AUDIT_OBJ_TYPE:
2118                 switch (op) {
2119                 case AUDIT_EQUAL:
2120                         match = (ctxt->type == rule->au_ctxt.type);
2121                         break;
2122                 case AUDIT_NOT_EQUAL:
2123                         match = (ctxt->type != rule->au_ctxt.type);
2124                         break;
2125                 }
2126                 break;
2127         case AUDIT_SUBJ_SEN:
2128         case AUDIT_SUBJ_CLR:
2129         case AUDIT_OBJ_LEV_LOW:
2130         case AUDIT_OBJ_LEV_HIGH:
2131                 level = ((field == AUDIT_SUBJ_SEN ||
2132                           field == AUDIT_OBJ_LEV_LOW) ?
2133                          &ctxt->range.level[0] : &ctxt->range.level[1]);
2134                 switch (op) {
2135                 case AUDIT_EQUAL:
2136                         match = mls_level_eq(&rule->au_ctxt.range.level[0],
2137                                              level);
2138                         break;
2139                 case AUDIT_NOT_EQUAL:
2140                         match = !mls_level_eq(&rule->au_ctxt.range.level[0],
2141                                               level);
2142                         break;
2143                 case AUDIT_LESS_THAN:
2144                         match = (mls_level_dom(&rule->au_ctxt.range.level[0],
2145                                                level) &&
2146                                  !mls_level_eq(&rule->au_ctxt.range.level[0],
2147                                                level));
2148                         break;
2149                 case AUDIT_LESS_THAN_OR_EQUAL:
2150                         match = mls_level_dom(&rule->au_ctxt.range.level[0],
2151                                               level);
2152                         break;
2153                 case AUDIT_GREATER_THAN:
2154                         match = (mls_level_dom(level,
2155                                               &rule->au_ctxt.range.level[0]) &&
2156                                  !mls_level_eq(level,
2157                                                &rule->au_ctxt.range.level[0]));
2158                         break;
2159                 case AUDIT_GREATER_THAN_OR_EQUAL:
2160                         match = mls_level_dom(level,
2161                                               &rule->au_ctxt.range.level[0]);
2162                         break;
2163                 }
2164         }
2165
2166 out:
2167         POLICY_RDUNLOCK;
2168         return match;
2169 }
2170
2171 static int (*aurule_callback)(void) = NULL;
2172
2173 static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid,
2174                                u16 class, u32 perms, u32 *retained)
2175 {
2176         int err = 0;
2177
2178         if (event == AVC_CALLBACK_RESET && aurule_callback)
2179                 err = aurule_callback();
2180         return err;
2181 }
2182
2183 static int __init aurule_init(void)
2184 {
2185         int err;
2186
2187         err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET,
2188                                SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0);
2189         if (err)
2190                 panic("avc_add_callback() failed, error %d\n", err);
2191
2192         return err;
2193 }
2194 __initcall(aurule_init);
2195
2196 void selinux_audit_set_callback(int (*callback)(void))
2197 {
2198         aurule_callback = callback;
2199 }
2200
2201 /**
2202  * security_skb_extlbl_sid - Determine the external label of a packet
2203  * @skb: the packet
2204  * @base_sid: the SELinux SID to use as a context for MLS only external labels
2205  * @sid: the packet's SID
2206  *
2207  * Description:
2208  * Check the various different forms of external packet labeling and determine
2209  * the external SID for the packet.
2210  *
2211  */
2212 void security_skb_extlbl_sid(struct sk_buff *skb, u32 base_sid, u32 *sid)
2213 {
2214         u32 xfrm_sid;
2215         u32 nlbl_sid;
2216
2217         selinux_skb_xfrm_sid(skb, &xfrm_sid);
2218         if (selinux_netlbl_skbuff_getsid(skb,
2219                                          (xfrm_sid == SECSID_NULL ?
2220                                           base_sid : xfrm_sid),
2221                                          &nlbl_sid) != 0)
2222                 nlbl_sid = SECSID_NULL;
2223
2224         *sid = (nlbl_sid == SECSID_NULL ? xfrm_sid : nlbl_sid);
2225 }
2226
2227 #ifdef CONFIG_NETLABEL
2228 /*
2229  * This is the structure we store inside the NetLabel cache block.
2230  */
2231 #define NETLBL_CACHE(x)           ((struct netlbl_cache *)(x))
2232 #define NETLBL_CACHE_T_NONE       0
2233 #define NETLBL_CACHE_T_SID        1
2234 #define NETLBL_CACHE_T_MLS        2
2235 struct netlbl_cache {
2236         u32 type;
2237         union {
2238                 u32 sid;
2239                 struct mls_range mls_label;
2240         } data;
2241 };
2242
2243 /**
2244  * selinux_netlbl_cache_free - Free the NetLabel cached data
2245  * @data: the data to free
2246  *
2247  * Description:
2248  * This function is intended to be used as the free() callback inside the
2249  * netlbl_lsm_cache structure.
2250  *
2251  */
2252 static void selinux_netlbl_cache_free(const void *data)
2253 {
2254         struct netlbl_cache *cache;
2255
2256         if (data == NULL)
2257                 return;
2258
2259         cache = NETLBL_CACHE(data);
2260         switch (cache->type) {
2261         case NETLBL_CACHE_T_MLS:
2262                 ebitmap_destroy(&cache->data.mls_label.level[0].cat);
2263                 break;
2264         }
2265         kfree(data);
2266 }
2267
2268 /**
2269  * selinux_netlbl_cache_add - Add an entry to the NetLabel cache
2270  * @skb: the packet
2271  * @ctx: the SELinux context
2272  *
2273  * Description:
2274  * Attempt to cache the context in @ctx, which was derived from the packet in
2275  * @skb, in the NetLabel subsystem cache.
2276  *
2277  */
2278 static void selinux_netlbl_cache_add(struct sk_buff *skb, struct context *ctx)
2279 {
2280         struct netlbl_cache *cache = NULL;
2281         struct netlbl_lsm_secattr secattr;
2282
2283         netlbl_secattr_init(&secattr);
2284         secattr.cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
2285         if (secattr.cache == NULL)
2286                 goto netlbl_cache_add_return;
2287
2288         cache = kzalloc(sizeof(*cache), GFP_ATOMIC);
2289         if (cache == NULL)
2290                 goto netlbl_cache_add_return;
2291
2292         cache->type = NETLBL_CACHE_T_MLS;
2293         if (ebitmap_cpy(&cache->data.mls_label.level[0].cat,
2294                         &ctx->range.level[0].cat) != 0)
2295                 goto netlbl_cache_add_return;
2296         cache->data.mls_label.level[1].cat.highbit =
2297                 cache->data.mls_label.level[0].cat.highbit;
2298         cache->data.mls_label.level[1].cat.node =
2299                 cache->data.mls_label.level[0].cat.node;
2300         cache->data.mls_label.level[0].sens = ctx->range.level[0].sens;
2301         cache->data.mls_label.level[1].sens = ctx->range.level[0].sens;
2302
2303         secattr.cache->free = selinux_netlbl_cache_free;
2304         secattr.cache->data = (void *)cache;
2305         secattr.flags = NETLBL_SECATTR_CACHE;
2306
2307         netlbl_cache_add(skb, &secattr);
2308
2309 netlbl_cache_add_return:
2310         netlbl_secattr_destroy(&secattr);
2311 }
2312
2313 /**
2314  * selinux_netlbl_cache_invalidate - Invalidate the NetLabel cache
2315  *
2316  * Description:
2317  * Invalidate the NetLabel security attribute mapping cache.
2318  *
2319  */
2320 void selinux_netlbl_cache_invalidate(void)
2321 {
2322         netlbl_cache_invalidate();
2323 }
2324
2325 /**
2326  * selinux_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
2327  * @skb: the network packet
2328  * @secattr: the NetLabel packet security attributes
2329  * @base_sid: the SELinux SID to use as a context for MLS only attributes
2330  * @sid: the SELinux SID
2331  *
2332  * Description:
2333  * Convert the given NetLabel packet security attributes in @secattr into a
2334  * SELinux SID.  If the @secattr field does not contain a full SELinux
2335  * SID/context then use the context in @base_sid as the foundation.  If @skb
2336  * is not NULL attempt to cache as much data as possibile.  Returns zero on
2337  * success, negative values on failure.
2338  *
2339  */
2340 static int selinux_netlbl_secattr_to_sid(struct sk_buff *skb,
2341                                          struct netlbl_lsm_secattr *secattr,
2342                                          u32 base_sid,
2343                                          u32 *sid)
2344 {
2345         int rc = -EIDRM;
2346         struct context *ctx;
2347         struct context ctx_new;
2348         struct netlbl_cache *cache;
2349
2350         POLICY_RDLOCK;
2351
2352         if (secattr->flags & NETLBL_SECATTR_CACHE) {
2353                 cache = NETLBL_CACHE(secattr->cache->data);
2354                 switch (cache->type) {
2355                 case NETLBL_CACHE_T_SID:
2356                         *sid = cache->data.sid;
2357                         rc = 0;
2358                         break;
2359                 case NETLBL_CACHE_T_MLS:
2360                         ctx = sidtab_search(&sidtab, base_sid);
2361                         if (ctx == NULL)
2362                                 goto netlbl_secattr_to_sid_return;
2363
2364                         ctx_new.user = ctx->user;
2365                         ctx_new.role = ctx->role;
2366                         ctx_new.type = ctx->type;
2367                         ctx_new.range.level[0].sens =
2368                                 cache->data.mls_label.level[0].sens;
2369                         ctx_new.range.level[0].cat.highbit =
2370                                 cache->data.mls_label.level[0].cat.highbit;
2371                         ctx_new.range.level[0].cat.node =
2372                                 cache->data.mls_label.level[0].cat.node;
2373                         ctx_new.range.level[1].sens =
2374                                 cache->data.mls_label.level[1].sens;
2375                         ctx_new.range.level[1].cat.highbit =
2376                                 cache->data.mls_label.level[1].cat.highbit;
2377                         ctx_new.range.level[1].cat.node =
2378                                 cache->data.mls_label.level[1].cat.node;
2379
2380                         rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
2381                         break;
2382                 default:
2383                         goto netlbl_secattr_to_sid_return;
2384                 }
2385         } else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
2386                 ctx = sidtab_search(&sidtab, base_sid);
2387                 if (ctx == NULL)
2388                         goto netlbl_secattr_to_sid_return;
2389
2390                 ctx_new.user = ctx->user;
2391                 ctx_new.role = ctx->role;
2392                 ctx_new.type = ctx->type;
2393                 mls_import_netlbl_lvl(&ctx_new, secattr);
2394                 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
2395                         if (ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
2396                                                   secattr->mls_cat) != 0)
2397                                 goto netlbl_secattr_to_sid_return;
2398                         ctx_new.range.level[1].cat.highbit =
2399                                 ctx_new.range.level[0].cat.highbit;
2400                         ctx_new.range.level[1].cat.node =
2401                                 ctx_new.range.level[0].cat.node;
2402                 } else {
2403                         ebitmap_init(&ctx_new.range.level[0].cat);
2404                         ebitmap_init(&ctx_new.range.level[1].cat);
2405                 }
2406                 if (mls_context_isvalid(&policydb, &ctx_new) != 1)
2407                         goto netlbl_secattr_to_sid_return_cleanup;
2408
2409                 rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
2410                 if (rc != 0)
2411                         goto netlbl_secattr_to_sid_return_cleanup;
2412
2413                 if (skb != NULL)
2414                         selinux_netlbl_cache_add(skb, &ctx_new);
2415                 ebitmap_destroy(&ctx_new.range.level[0].cat);
2416         } else {
2417                 *sid = SECSID_NULL;
2418                 rc = 0;
2419         }
2420
2421 netlbl_secattr_to_sid_return:
2422         POLICY_RDUNLOCK;
2423         return rc;
2424 netlbl_secattr_to_sid_return_cleanup:
2425         ebitmap_destroy(&ctx_new.range.level[0].cat);
2426         goto netlbl_secattr_to_sid_return;
2427 }
2428
2429 /**
2430  * selinux_netlbl_skbuff_getsid - Get the sid of a packet using NetLabel
2431  * @skb: the packet
2432  * @base_sid: the SELinux SID to use as a context for MLS only attributes
2433  * @sid: the SID
2434  *
2435  * Description:
2436  * Call the NetLabel mechanism to get the security attributes of the given
2437  * packet and use those attributes to determine the correct context/SID to
2438  * assign to the packet.  Returns zero on success, negative values on failure.
2439  *
2440  */
2441 int selinux_netlbl_skbuff_getsid(struct sk_buff *skb, u32 base_sid, u32 *sid)
2442 {
2443         int rc;
2444         struct netlbl_lsm_secattr secattr;
2445
2446         netlbl_secattr_init(&secattr);
2447         rc = netlbl_skbuff_getattr(skb, &secattr);
2448         if (rc == 0 && secattr.flags != NETLBL_SECATTR_NONE)
2449                 rc = selinux_netlbl_secattr_to_sid(skb,
2450                                                    &secattr,
2451                                                    base_sid,
2452                                                    sid);
2453         else
2454                 *sid = SECSID_NULL;
2455         netlbl_secattr_destroy(&secattr);
2456
2457         return rc;
2458 }
2459
2460 /**
2461  * selinux_netlbl_socket_setsid - Label a socket using the NetLabel mechanism
2462  * @sock: the socket to label
2463  * @sid: the SID to use
2464  *
2465  * Description:
2466  * Attempt to label a socket using the NetLabel mechanism using the given
2467  * SID.  Returns zero values on success, negative values on failure.  The
2468  * caller is responsibile for calling rcu_read_lock() before calling this
2469  * this function and rcu_read_unlock() after this function returns.
2470  *
2471  */
2472 static int selinux_netlbl_socket_setsid(struct socket *sock, u32 sid)
2473 {
2474         int rc = -ENOENT;
2475         struct sk_security_struct *sksec = sock->sk->sk_security;
2476         struct netlbl_lsm_secattr secattr;
2477         struct context *ctx;
2478
2479         if (!ss_initialized)
2480                 return 0;
2481
2482         netlbl_secattr_init(&secattr);
2483
2484         POLICY_RDLOCK;
2485
2486         ctx = sidtab_search(&sidtab, sid);
2487         if (ctx == NULL)
2488                 goto netlbl_socket_setsid_return;
2489
2490         secattr.domain = kstrdup(policydb.p_type_val_to_name[ctx->type - 1],
2491                                  GFP_ATOMIC);
2492         secattr.flags |= NETLBL_SECATTR_DOMAIN;
2493         mls_export_netlbl_lvl(ctx, &secattr);
2494         rc = mls_export_netlbl_cat(ctx, &secattr);
2495         if (rc != 0)
2496                 goto netlbl_socket_setsid_return;
2497
2498         rc = netlbl_socket_setattr(sock, &secattr);
2499         if (rc == 0) {
2500                 spin_lock_bh(&sksec->nlbl_lock);
2501                 sksec->nlbl_state = NLBL_LABELED;
2502                 spin_unlock_bh(&sksec->nlbl_lock);
2503         }
2504
2505 netlbl_socket_setsid_return:
2506         POLICY_RDUNLOCK;
2507         netlbl_secattr_destroy(&secattr);
2508         return rc;
2509 }
2510
2511 /**
2512  * selinux_netlbl_sk_security_reset - Reset the NetLabel fields
2513  * @ssec: the sk_security_struct
2514  * @family: the socket family
2515  *
2516  * Description:
2517  * Called when the NetLabel state of a sk_security_struct needs to be reset.
2518  * The caller is responsibile for all the NetLabel sk_security_struct locking.
2519  *
2520  */
2521 void selinux_netlbl_sk_security_reset(struct sk_security_struct *ssec,
2522                                       int family)
2523 {
2524         if (family == PF_INET)
2525                 ssec->nlbl_state = NLBL_REQUIRE;
2526         else
2527                 ssec->nlbl_state = NLBL_UNSET;
2528 }
2529
2530 /**
2531  * selinux_netlbl_sk_security_init - Setup the NetLabel fields
2532  * @ssec: the sk_security_struct
2533  * @family: the socket family
2534  *
2535  * Description:
2536  * Called when a new sk_security_struct is allocated to initialize the NetLabel
2537  * fields.
2538  *
2539  */
2540 void selinux_netlbl_sk_security_init(struct sk_security_struct *ssec,
2541                                      int family)
2542 {
2543         /* No locking needed, we are the only one who has access to ssec */
2544         selinux_netlbl_sk_security_reset(ssec, family);
2545         spin_lock_init(&ssec->nlbl_lock);
2546 }
2547
2548 /**
2549  * selinux_netlbl_sk_security_clone - Copy the NetLabel fields
2550  * @ssec: the original sk_security_struct
2551  * @newssec: the cloned sk_security_struct
2552  *
2553  * Description:
2554  * Clone the NetLabel specific sk_security_struct fields from @ssec to
2555  * @newssec.
2556  *
2557  */
2558 void selinux_netlbl_sk_security_clone(struct sk_security_struct *ssec,
2559                                       struct sk_security_struct *newssec)
2560 {
2561         /* We don't need to take newssec->nlbl_lock because we are the only
2562          * thread with access to newssec, but we do need to take the RCU read
2563          * lock as other threads could have access to ssec */
2564         rcu_read_lock();
2565         selinux_netlbl_sk_security_reset(newssec, ssec->sk->sk_family);
2566         newssec->sclass = ssec->sclass;
2567         rcu_read_unlock();
2568 }
2569
2570 /**
2571  * selinux_netlbl_socket_post_create - Label a socket using NetLabel
2572  * @sock: the socket to label
2573  *
2574  * Description:
2575  * Attempt to label a socket using the NetLabel mechanism using the given
2576  * SID.  Returns zero values on success, negative values on failure.
2577  *
2578  */
2579 int selinux_netlbl_socket_post_create(struct socket *sock)
2580 {
2581         int rc = 0;
2582         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
2583         struct sk_security_struct *sksec = sock->sk->sk_security;
2584
2585         sksec->sclass = isec->sclass;
2586
2587         rcu_read_lock();
2588         if (sksec->nlbl_state == NLBL_REQUIRE)
2589                 rc = selinux_netlbl_socket_setsid(sock, sksec->sid);
2590         rcu_read_unlock();
2591
2592         return rc;
2593 }
2594
2595 /**
2596  * selinux_netlbl_sock_graft - Netlabel the new socket
2597  * @sk: the new connection
2598  * @sock: the new socket
2599  *
2600  * Description:
2601  * The connection represented by @sk is being grafted onto @sock so set the
2602  * socket's NetLabel to match the SID of @sk.
2603  *
2604  */
2605 void selinux_netlbl_sock_graft(struct sock *sk, struct socket *sock)
2606 {
2607         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
2608         struct sk_security_struct *sksec = sk->sk_security;
2609         struct netlbl_lsm_secattr secattr;
2610         u32 nlbl_peer_sid;
2611
2612         sksec->sclass = isec->sclass;
2613
2614         rcu_read_lock();
2615
2616         if (sksec->nlbl_state != NLBL_REQUIRE) {
2617                 rcu_read_unlock();
2618                 return;
2619         }
2620
2621         netlbl_secattr_init(&secattr);
2622         if (netlbl_sock_getattr(sk, &secattr) == 0 &&
2623             secattr.flags != NETLBL_SECATTR_NONE &&
2624             selinux_netlbl_secattr_to_sid(NULL,
2625                                           &secattr,
2626                                           SECINITSID_UNLABELED,
2627                                           &nlbl_peer_sid) == 0)
2628                 sksec->peer_sid = nlbl_peer_sid;
2629         netlbl_secattr_destroy(&secattr);
2630
2631         /* Try to set the NetLabel on the socket to save time later, if we fail
2632          * here we will pick up the pieces in later calls to
2633          * selinux_netlbl_inode_permission(). */
2634         selinux_netlbl_socket_setsid(sock, sksec->sid);
2635
2636         rcu_read_unlock();
2637 }
2638
2639 /**
2640  * selinux_netlbl_inode_permission - Verify the socket is NetLabel labeled
2641  * @inode: the file descriptor's inode
2642  * @mask: the permission mask
2643  *
2644  * Description:
2645  * Looks at a file's inode and if it is marked as a socket protected by
2646  * NetLabel then verify that the socket has been labeled, if not try to label
2647  * the socket now with the inode's SID.  Returns zero on success, negative
2648  * values on failure.
2649  *
2650  */
2651 int selinux_netlbl_inode_permission(struct inode *inode, int mask)
2652 {
2653         int rc;
2654         struct sk_security_struct *sksec;
2655         struct socket *sock;
2656
2657         if (!S_ISSOCK(inode->i_mode) ||
2658             ((mask & (MAY_WRITE | MAY_APPEND)) == 0))
2659                 return 0;
2660         sock = SOCKET_I(inode);
2661         sksec = sock->sk->sk_security;
2662
2663         rcu_read_lock();
2664         if (sksec->nlbl_state != NLBL_REQUIRE) {
2665                 rcu_read_unlock();
2666                 return 0;
2667         }
2668         local_bh_disable();
2669         bh_lock_sock_nested(sock->sk);
2670         rc = selinux_netlbl_socket_setsid(sock, sksec->sid);
2671         bh_unlock_sock(sock->sk);
2672         local_bh_enable();
2673         rcu_read_unlock();
2674
2675         return rc;
2676 }
2677
2678 /**
2679  * selinux_netlbl_sock_rcv_skb - Do an inbound access check using NetLabel
2680  * @sksec: the sock's sk_security_struct
2681  * @skb: the packet
2682  * @ad: the audit data
2683  *
2684  * Description:
2685  * Fetch the NetLabel security attributes from @skb and perform an access check
2686  * against the receiving socket.  Returns zero on success, negative values on
2687  * error.
2688  *
2689  */
2690 int selinux_netlbl_sock_rcv_skb(struct sk_security_struct *sksec,
2691                                 struct sk_buff *skb,
2692                                 struct avc_audit_data *ad)
2693 {
2694         int rc;
2695         u32 netlbl_sid;
2696         u32 recv_perm;
2697
2698         rc = selinux_netlbl_skbuff_getsid(skb,
2699                                           SECINITSID_UNLABELED,
2700                                           &netlbl_sid);
2701         if (rc != 0)
2702                 return rc;
2703
2704         if (netlbl_sid == SECSID_NULL)
2705                 return 0;
2706
2707         switch (sksec->sclass) {
2708         case SECCLASS_UDP_SOCKET:
2709                 recv_perm = UDP_SOCKET__RECVFROM;
2710                 break;
2711         case SECCLASS_TCP_SOCKET:
2712                 recv_perm = TCP_SOCKET__RECVFROM;
2713                 break;
2714         default:
2715                 recv_perm = RAWIP_SOCKET__RECVFROM;
2716         }
2717
2718         rc = avc_has_perm(sksec->sid,
2719                           netlbl_sid,
2720                           sksec->sclass,
2721                           recv_perm,
2722                           ad);
2723         if (rc == 0)
2724                 return 0;
2725
2726         netlbl_skbuff_err(skb, rc);
2727         return rc;
2728 }
2729
2730 /**
2731  * selinux_netlbl_socket_setsockopt - Do not allow users to remove a NetLabel
2732  * @sock: the socket
2733  * @level: the socket level or protocol
2734  * @optname: the socket option name
2735  *
2736  * Description:
2737  * Check the setsockopt() call and if the user is trying to replace the IP
2738  * options on a socket and a NetLabel is in place for the socket deny the
2739  * access; otherwise allow the access.  Returns zero when the access is
2740  * allowed, -EACCES when denied, and other negative values on error.
2741  *
2742  */
2743 int selinux_netlbl_socket_setsockopt(struct socket *sock,
2744                                      int level,
2745                                      int optname)
2746 {
2747         int rc = 0;
2748         struct sk_security_struct *sksec = sock->sk->sk_security;
2749         struct netlbl_lsm_secattr secattr;
2750
2751         rcu_read_lock();
2752         if (level == IPPROTO_IP && optname == IP_OPTIONS &&
2753             sksec->nlbl_state == NLBL_LABELED) {
2754                 netlbl_secattr_init(&secattr);
2755                 rc = netlbl_socket_getattr(sock, &secattr);
2756                 if (rc == 0 && secattr.flags != NETLBL_SECATTR_NONE)
2757                         rc = -EACCES;
2758                 netlbl_secattr_destroy(&secattr);
2759         }
2760         rcu_read_unlock();
2761
2762         return rc;
2763 }
2764 #endif /* CONFIG_NETLABEL */